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Summary 33 

 34 

To gain insight into the evolution of the epigenetic regulation of gene expression in primates, we 35 

extensively profiled a new panel of human, chimpanzee, gorilla, orangutan and macaque 36 

lymphoblastoid cell lines, using ChIP-seq for five histone marks, ATAC-seq and RNA-seq, further 37 

complemented with WGS and WGBS. We annotated regulatory elements and integrated chromatin 38 

contact maps to define gene regulatory architectures, creating the largest catalog of regulatory 39 

elements in primates to date. We highlight the role of promoters and intragenic enhancers in 40 

epigenetically coordinated gene regulatory architectures. We also observe that epigenetic 41 

conservation and its correlation with sequence conservation depends on the activity state of the 42 

regulatory element. Remarkably, we find that novel human-specific intragenic enhancers with weak 43 

activities are enriched in human-specific mutations and appear in genes with signals of positive 44 

selection, tissue-specific expression and specific functional enrichments, suggesting that these genes 45 

may have contributed to important human adaptations. 46 

 47 

Keywords: Epigenomics, gene regulation, evolution. 48 
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 68 

Introduction 69 

 70 

Changes in chromatin structure and gene regulation play a crucial role in evolution1,2. Gene 71 

expression differences have been extensively studied in a variety of species and conditions3–6. 72 

However, there is still much unknown about how regulatory landscapes evolve, even in closely 73 

related species. Previous work has focused on the dynamics of the establishment and removal of 74 

strongly active regulatory elements during the evolution of mammals –mainly defined from ChIP-seq 75 

experiments on a few histone marks7–10. These analyses suggested that enhancers evolve faster than 76 

promoters8,11. It has also been highlighted that the regulatory complexity of a gene defined as the 77 

number of strongly active enhancers located near a gene is important for the conservation of gene 78 

expression9. Moreover, in a selected group of primates –mostly chimpanzees and macaques– changes 79 

in histone mark enrichments are associated with gene expression differences12. Several studies have 80 

also targeted the appearance of human-specific methylation patterns13,14 and strongly active 81 

promoters and enhancers in different anatomical structures and cell types8,10. All these studies have 82 

proven that comparative epigenomics is a powerful tool to investigate the evolution of regulatory 83 

elements15,16. Nevertheless, a deeper understanding of the evolution of gene regulation requires the 84 

integration of multi-layered epigenome data. Only such integration can provide the necessary 85 

resolution for investigating recent evolutionary time frames, for example, within human evolutionary 86 

relatives. Here, we provide an in-depth comparison of the recent evolution of gene regulatory 87 

architectures using a homologous cellular model system in human and non-human primates.  88 

 89 

Results 90 

 91 

Comprehensive profiling of primate lymphoblastoid cell lines (LCLs) 92 

 93 

We have extensively characterized a panel of lymphoblastoid cell lines (LCLs) from human, 94 

chimpanzee, gorilla, orangutan and macaque, including two independent biological replicates for 95 

each species. This characterization includes chromatin immunoprecipitation data (ChIP-seq) from 96 

five key histone modifications (H3K4me1, H3K4me3, H3K36me3, H3K27ac, and H3K27me3) and 97 

deep-transcriptome sequencing (RNA-seq) (Fig. 1). We integrate these datasets into gene regulatory 98 

architectures (Fig. 2) to (1) better understand how primate gene expression levels are controlled and 99 

how expression changes occur between species and to (2) study patterns of evolutionary conservation 100 

of regulatory elements in primates. As part of this primate epigenomic resource, we have also 101 

processed high coverage whole-genome and whole-genome bisulfite sequencing data, as well as 102 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 6, 2020. ; https://doi.org/10.1101/2019.12.18.872531doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.18.872531
http://creativecommons.org/licenses/by-nc/4.0/


chromatin accessibility data (Supplementary Fig. 1, Supplementary Tables 1-10 and Additional files 103 

1-5). This catalog is the most extensive collection of great apes and macaque transcriptomic and 104 

epigenomic data to date. 105 

 106 

Annotation and classification of regulatory elements 107 

 108 

We used the signal of the ChIP-seq experiments from the five histone marks to identify regulatory 109 

regions with characteristic marks of promoters or enhancers (Supplementary Fig. 1) and defined 110 

regulatory regions for each cell line as those containing chromatin states enriched in any regulatory-111 

related histone mark (Fig. 2a). Overlapping regulatory regions in the two replicates of every species 112 

were merged to define species regulatory elements.  113 

 114 

We classified regulatory elements based on their epigenetic state (Fig. 2b). We established a hierarchy 115 

of epigenetic states that differentiates regulatory elements into those showing epigenetic promoter (P) 116 

and enhancer (E) states, with three different levels of activity: strong (s), poised (p) or weak (w) 117 

(Methods). Then, to improve the robustness of the assignments, we applied a linear discriminative 118 

analysis (LDA) using normalized histone and open chromatin enrichments (Methods and 119 

Supplementary Figs. 2 and 3). This resulted in significantly more similar regulatory landscapes 120 

between biological replicates (Wilcoxon signed rank-test: P < 0.05 in all species; Supplementary 121 

Figs. 4 and 5) which translated into a higher number of regulatory elements with the same epigenetic 122 

state in all species (Wilcoxon signed rank-test: P = 0.03; Supplementary Figs. 6 and 7).  123 

 124 

On average, we found ~11,000 and ~76,000 regulatory elements with promoter and enhancer states 125 

per species, respectively (Fig. 3a-b), of which 69% and 33% were strong, 8% and 4% were poised, 126 

and 14% and 45% were weak, respectively (Supplementary Fig. 8 and Supplementary Table 1). 127 

Active and poised activities were significantly more associated with promoter states, whereas weak 128 

activities were more frequently associated with enhancer states (Chi-square test: P < 2.2 x 10-16 in all 129 

species; Supplementary Fig. 9). 130 

 131 

We also classified regulatory elements into five different types of gene regulatory components 132 

according to the role they had in their target genes (Fig. 2, Methods). We first classified regulatory 133 

elements based on their proximity to a gene as genic promoters (gP), intragenic enhancers (gE) and 134 

proximal enhancers (prE) based on the corresponding species gene annotation17. Given that gene 135 

expression is controlled by a combination of short- and long-distance regulatory interactions18, we 136 

used available 3D contact maps for human LCLs19–21 to link interacting regulatory elements to their 137 
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target gene/s. This way, we defined promoter-interacting enhancers (PiE), regulatory elements that 138 

interact with genic promoters, and enhancer-interacting enhancers (EiE), regulatory elements that 139 

interact with any other type of gene associated enhancer (Fig. 3e). This approach allowed us to link, 140 

on average, nearly 3,500 distal regulatory elements to genes, which would have remained orphan 141 

otherwise (Supplementary Fig. 10). The set of regulatory elements associated with a gene defines its 142 

regulatory architecture.  143 

 144 

On average, 70% of the regulatory elements were associated with genes, of which 93% were protein-145 

coding and 61% were 1-to-1 orthologous protein-coding genes in all primate species (Fig. 3c-d). We 146 

annotated ~12,500 genic promoters, ~35,000 intragenic enhancers, ~6,700 proximal enhancers, 147 

~6,200 promoter-interacting enhancers and ~1,800 enhancer-interacting enhancers per species 148 

(Supplementary Fig. 11), of which 48%, 69%, 40%, 62%, and 61% were associated with 1-to-1 149 

orthologous protein-coding genes in all primate species (Fig. 3e-f).  150 

 151 

Altogether, this catalog of regulatory elements provides a comprehensive view of the regulatory 152 

landscape both in humans and non-human primates. Moreover, in contrast to other commonly used 153 

definitions of promoters and enhancers limited to strongly active regions, our multi-layered 154 

integration approach allows the additional annotation of weak and poised activities7,8. These activities 155 

are of particular relevance to improve the definition of regulatory elements and explore the regulatory 156 

potential of regions whose activity can differ in other cell types or conditions. 157 

 158 

Coordinated epigenetic signals at regulatory components explain gene expression levels 159 

 160 

To study the coordination of regulatory signals and gene expression in a comparable set of genes 161 

between all species, we focused on 1-to-1 orthologous protein-coding genes. The epigenetic state and 162 

the component assigned to regulatory elements were highly concordant. On average, 75% of genic 163 

promoters had a promoter regulatory state, and 90% of gene-associated enhancers had an enhancer 164 

state (Fisher’s exact test: P < 2.2 x 10-16 in all species, average OR = 64; Supplementary Fig. 12). 165 

More specifically, 98% of intragenic enhancers, 95% of proximal enhancers, 81% of promoter-166 

interacting enhancers and 89% of enhancer-interacting enhancers showed an enhancer epigenetic 167 

state (Supplementary Fig. 12). The activity state of promoters and enhancers in each type of 168 

regulatory component was also consistent across species (Chi-square test: P < 2.2 x 10-16 in all 169 

species; Fig. 3g and Supplementary Fig. 13). Genic promoters were strongly enriched in regulatory 170 

elements with strong promoter and poised promoter and enhancer states. Strong enhancer states were 171 
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mostly enriched at intragenic and promoter-interacting enhancers, whereas weak enhancer states were 172 

strongly associated with proximal enhancers (Supplementary Figs. 12 and 13). 173 

  174 

Gene expression levels are positively associated with the presence of elements with strong activities 175 

and negatively associated with the presence of elements with poised or weak activities in their 176 

regulatory architectures (Kruskal-Wallis test: P < 0.05 in all species and regulatory components; 177 

Supplementary Fig. 14), with particularly strong associations in genic promoters and intragenic 178 

enhancers (Dwass-Steel-Critchlow-Fligner test; Supplementary Fig. 15).  179 

 180 

To disentangle the underlying network of regulatory interactions between the different regulatory 181 

components and gene expression in primates, we use Sparse Partial Correlation Analysis (SPCA)22 182 

of the normalized RNA-seq and histone mark enrichments (aggregated by promoter and enhancer 183 

state in every type of regulatory component) (Methods). This approach establishes a stringent 184 

protocol (Benjamini-Hochberg’s correction, P < 1.8 x 10-22 for all selected partial correlations) that 185 

selects informative partial correlations based on the increase they confer to the explained variance of 186 

the co-dependent variables22.  187 

 188 

SPCAs performed independently for every histone mark showed a highly consistent global structure 189 

of regulatory interactions, with genic promoters and intragenic enhancers directly regulating gene 190 

expression and co-regulated between them, proximal and promoter-interacting enhancers connected 191 

with promoters and enhancer-interacting enhancers connected with intragenic and promoter-192 

interacting enhancers (Fig. 4a-b, Supplementary Figs. 16-18 and Supplementary Table 11).  193 

 194 

A global SPCA using all the histone marks and gene expression showed that this global structure of 195 

inter-component regulatory interactions implies strong coordination between the different histone 196 

marks within the regulatory components (Supplementary Fig. 19 and Supplementary Table 12). To 197 

unravel the contribution of each of these components to gene expression23, we defined the consensus 198 

signal of each type of regulatory component (or eigencomponents) inspired by the notion of 199 

eigengenes23. A SPCA based on the eigencomponents clearly shows the robust structure of the 200 

different regulatory components and gene expression coordination (Fig. 4c and Supplementary Table 201 

13). Interestingly, the network of Sparse Partial Correlations for the residuals of the histone mark 202 

signals consistently points to the same global structure (Supplementary Fig. 20 and Supplementary 203 

Table 14), suggesting that those histone mark signals that are not explained by the common 204 

coordination of the histone marks captured by the components still contribute to the coordination of 205 

the same inter-component regulatory network. To account for the possibility of incompleteness in our 206 
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architectures, we replicated all the analyses using only genes with full regulatory architectures (i.e., 207 

genes associated with regulatory components of every type) obtaining consistent results 208 

(Supplementary Figs. 21-28 and Supplementary Tables 11-14).  209 

 210 

In agreement with the structure of regulatory interactions recovered by our SPCAs, a generalized 211 

linear model of gene expression based on H3K27ac, H3K27me3 and H3K36me3 signals at genic 212 

promoters and intragenic enhancers and their interactions (15 variables) explained ~67% of gene 213 

expression variability (Supplementary Table 15). Remarkably, this is only a 6% lower than an 214 

exhaustive naive model, including the signal from all histone marks at all types of regulatory 215 

components with all possible interactions (1,225 variables) (Supplementary Table 16). These results 216 

confirm that the epigenetic activities of genic promoters, intragenic enhancers, and their interactions 217 

are likely the most direct determinants of gene expression regulation in our regulatory architectures. 218 

However, their co-dependency with the other components suggests that they are dependent, in turn, 219 

on the coordination of the whole architecture. 220 

 221 

The number of regulatory elements in a gene regulatory architecture can be considered a proxy of its 222 

regulatory complexity9. Genes are often associated with multiple intragenic enhancers, as well as 223 

several proximal, promoter-interacting and enhancer-interacting enhancers (Supplementary Fig. 29). 224 

Therefore, we evaluated the relationship between the complexity of each component-state 225 

combination and gene expression. Consistently with the SPCAs, the number of strong enhancers in 226 

intragenic and promoter-interacting enhancers was positively correlated with the gene expression 227 

level in all species (average Spearman’s rank correlation coefficient (ρ) = 0.21, P < 7.6 x 10-26  in all 228 

species, and ρ = 0.12, P < 0.0012 in all species, respectively; Supplementary Figs. 30 and 31). 229 

 230 

We investigated if evolutionary differences in the complexity or number of the regulatory elements 231 

associated with a gene were related to changes in expression between species (Supplementary Fig. 232 

32). We found that the effect on gene expression levels depends on the epigenetic state gained or lost 233 

at each type of regulatory component (Supplementary Fig. 33). Evolutionary changes that alter the 234 

epigenetic state at genic promoters, specifically the presence of either a strong promoter or poised 235 

enhancer state, as well as the number of intragenic enhancers with either strong or poised enhancer 236 

states, showed the most robust associations with gene expression differences (Supplementary Fig. 237 

33). The number of proximal enhancers in any enhancer epigenetic state and of strong promoter states 238 

and strong and poised enhancer states in promoter-interacting enhancers also showed significant 239 

though modest effects (Supplementary Fig. 33). These results highlight that the additive nature of 240 

gene regulation depends on the regulatory architectures. This dependency can be captured either by 241 
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the aggregation of histone enrichment signals into regulatory components (as in our SPCAs) or by 242 

the quantification of the evolution of gene complexities as changes in the number of regulatory 243 

components with specific activities. 244 

 245 

Patterns of evolutionary conservation of epigenetic regulatory states in primates 246 

 247 

To investigate the evolutionary conservation of the different epigenetic states throughout primate 248 

evolution, we focused on the 28,703 1-to-1 orthologous regions with a promoter or enhancer state in 249 

at least one species (Supplementary Fig. 34). Most of these orthologous regulatory regions (~76%) 250 

were associated with genes (Methods), a proportion larger than expected by chance (Binomial test:  251 

P < 2.2 x 10-16). Of the latter, ~96% could be associated with human genes and were significantly 252 

enriched in protein-coding genes (81% of orthologous regions associated with at least one protein-253 

coding gene) (Fisher’s exact test: P < 2.2 x 10-16, OR = 7). We defined the conservation of an 254 

epigenetic state in an orthologous regulatory region as the number of primate species showing that 255 

epigenetic state. We observed that promoter states were more conserved than enhancer states when 256 

associated with protein-coding genes (Supplementary Figs. 35-37), with 73% and 60% of orthologous 257 

regulatory regions with a promoter or enhancer state being fully conserved across primates (Fisher’s 258 

exact test: P < 2.2 x 10-16, OR = 1.84; Supplementary Fig. 36). On the contrary, less than 14% and 259 

8% of orthologous regulatory regions with a promoter or enhancer state, respectively, were specific 260 

to a primate species (Supplementary Fig. 36). Remarkably, enhancer states associated with non-261 

coding genes were more conserved than the corresponding promoter states (Fisher’s exact test: P < 262 

2.2 x 10-16, OR = 0.39; Supplementary Fig. 37), with 46% and 69% of fully conserved and 26% and 263 

3% of species-specific elements, respectively.  264 

 265 

We use the term repurposed promoters or enhancers to refer to those orthologous regulatory regions 266 

where one species showed a promoter state and all the rest showed an enhancer state or vice versa. 267 

We observed that most (93%) recently evolved regulatory elements with promoter states were 268 

acquired through repurposing events, whereas the majority (90%) of recently evolved regulatory 269 

elements with enhancer states were gained at orthologous regions with non-regulatory states in the 270 

other species (Chi-square test: P < 2.2 x 10-16; Methods and Supplementary Figs. 38 and 39). 271 

Interestingly, we observed the same pattern for those orthologous regions associated with protein-272 

coding (Fisher’s exact test: P < 2.2 x 10-16, OR = Inf) and with non-coding genes (Fisher’s exact test: 273 

P = 6.2 x 10-16, OR = 138; Supplementary Fig. 38, evaluated in human due to underrepresentation of 274 

non-coding gene annotations in non-human species). Our results are in agreement with previous 275 

studies in more distant species that also included regulatory changes associated with major genetic 276 
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alterations in their analysis24. These patterns suggest that the different dynamics observed for recently 277 

evolved promoter and enhancer states are independent of the coding potential of the associated genes.   278 

 279 

We further explored the patterns of evolutionary conservation of the different activity states. Globally, 280 

orthologous regulatory regions conserve their regulatory state more often than expected 281 

(Randomization analyses: 1,000 simulations, P < 0.05; Supplementary Figs. 40-42 and 282 

Supplementary Table 17). Remarkably, we found that different promoter and enhancer activities have 283 

characteristic patterns of conservation (Kruskal-Wallis test: P < 2.2 x 10-16; Supplementary Figs. 43-284 

45). Most pairwise comparisons of the conservation distribution of different epigenetic states were 285 

significantly different (Dwass-Steel-Critchlow-Fligner test, Fig. 5a and Supplementary Figs. 43-45) 286 

except for the poised-weak enhancer comparison which showed a different distribution but a very 287 

similar average value.   288 

 289 

Promoter epigenetic states with strong activity were the most conserved: 80% of the orthologous 290 

regulatory regions in which we detected a strong promoter state showed a fully conserved activity in 291 

primates. On the contrary, we observed poor conservation of poised and weak promoter activities in 292 

human and non-human primates (Fig. 5a). Contrary to promoter activities, all enhancer activities 293 

showed the same pattern of evolutionary conservation (Fig. 5b). Enhancer states with strong activities 294 

were second in levels of evolutionary conservation. Nearly 40% of the orthologous regulatory regions 295 

with a strong enhancer showed a fully conserved activity in primates. However, poised enhancers 296 

followed closely, 36% of the orthologous regulatory regions with a poised enhancer state had a 297 

conserved activity in the five species. Lastly, ~21% of the orthologous regulatory regions in which 298 

we detected a weak enhancer conserved their activity across primates. We observed the same 299 

evolutionary conservation trends for regulatory regions associated with protein-coding and non-300 

coding genes (Supplementary Figs. 46-47). Interestingly, fully conserved epigenetic states (hereafter 301 

referred as conserved epigenetic states) were enriched in particular types of regulatory components 302 

(Fisher’s exact test: P = 0.0005). Conserved strong and poised promoter and enhancer states were 303 

significantly enriched in genic promoters. Strong enhancer states fully conserved among primates 304 

were enriched in intragenic enhancers and promoter-interacting-enhancers, whereas conserved weak 305 

enhancer states were associated with intragenic enhancers, proximal enhancers, and enhancer-306 

interacting-enhancers (Supplementary Fig. 48).   307 

 308 

The evolutionary conservation of the epigenetic state was positively correlated with the conservation 309 

of the underlying sequence z-scores of background normalized PhastCons values (Fig. 5c-d, Methods 310 

and Supplementary Fig. 49) for all epigenetic states but for weak promoters in regulatory regions 311 
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associated with protein-coding genes (Randomization analyses: 1,000 simulations; Fig. 5b, 312 

Supplementary Figs. 50-54). Orthologous regulatory regions with fully conserved epigenetic states 313 

showed significant differences in sequence conservation (Kruskal-Wallis test: P < 2.2 x 10-16; 314 

Supplementary Fig. 55). In particular, we found that strong promoter states were associated with 315 

significantly higher sequence conservation scores than weak promoter states and any other type of 316 

enhancer state, whereas weak enhancer states have significantly less conserved sequences than any 317 

other epigenetic state but weak promoter states (Dwass-Steel-Critchlow-Fligner test, Supplementary 318 

Fig. 55). The sequence conservation scores associated with strong and poised enhancer states were 319 

not significantly different. Note also that conserved poised promoter states were associated with very 320 

high conservation z-scores, which probably did not reach significance due to their low number (n = 321 

9 pP). Orthologous regions associated with non-coding genes were fewer and less conserved 322 

(Supplementary Figs. 47 and 50), what could be related to the interesting lack of correlation between 323 

the conservation of the sequence and the epigenetic state observed in all but in strong enhancer states 324 

(Supplementary Fig. 54). 325 

 326 

Then, we sought to characterize the expression patterns of the 1-to-1 orthologous protein-coding 327 

genes regulated by evolutionarily conserved regulatory regions. Not surprisingly, the expression 328 

levels of genes associated with genic promoters, intragenic enhancers and promoters-interacting 329 

enhancers with fully conserved strong activities were significantly higher than those associated with 330 

evolutionarily conserved weak enhancers (Kruskal-Wallis test: P < 2.2 x 10-16; Dwass-Steel-331 

Critchlow-Fligner test; Supplementary Fig. 56). On the contrary, genes associated with poised 332 

promoter or enhancer states at genic promoters were repressed. Remarkably, genes associated with 333 

intragenic enhancers with weak activities had very low expression levels, significantly lower than 334 

those genes associated with proximal enhancers and enhancer-interacting-enhancers with weak 335 

enhancer states.  336 

 337 

Novel human-specific intragenic enhancers appear in lowly expressed tissue-specific genes with 338 

signals of positive selection  339 

 340 

To investigate to which extent these conservation patterns of regulatory states translate into functional 341 

outcomes, we first examined the relationship between epigenetic conservation and the patterns of 342 

gene expression across tissues (Methods). Genes associated with genic promoters and intragenic 343 

enhancers with fully conserved strong promoter and enhancer activities, respectively, were highly 344 

expressed in LCLs (Fig. 6a, Supplementary Fig. 57 and Supplementary Table 18). As would be 345 

expected from genes associated with strong-activity elements, these genes were highly expressed in 346 
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most tissues (median expression > 10 TPMs in 23 out of 29 tissues for both types of components) and 347 

enriched in several functions associated with metabolism, chromatin organization and regulation of 348 

the cell cycle (Fisher’s exact test: Benjamini-Hochberg’s  correction, FDR < 0.05; Fig. 6b, Methods, 349 

Supplementary Fig. 58 and Supplementary Tables 19-21). Genes with conserved promoter-350 

interacting enhancers and strong enhancer activities also showed high expression levels in many 351 

tissues (with LCLs as the fourth higher expressing tissue; Supplementary Fig. 57) but did not show 352 

significant functional enrichments (Supplementary Fig. 59). These three sets of genes with conserved 353 

strong regulatory activities, regardless of the functional enrichments, showed wide expression breadth 354 

(median tissue specificity index (τ, Tau) < 0.24 in all three; Methods and Supplementary Fig. 60). 355 

 356 

On the contrary, genes with intragenic enhancers with fully conserved weak activities were lowly 357 

expressed in LCLs and showed their highest expression levels in testis, thyroid and pituitary (Fig. 358 

6a). This group of genes showed uneven expression levels (Supplementary Fig. 57), consistent with 359 

higher tissue-specificity compared to that of conserved strong regulatory activities both in promoters 360 

and enhancers (median τ = 0.72, Dwass-Steel-Critchlow-Fligner test: P < 2.2 x 10-16 in the three tests; 361 

Supplementary Fig. 60). These genes were expressed at intermediate-low levels (median expression 362 

< 5 TPMs in 28 out of the 29 tissues) and protein-coding genes within this set were enriched in various 363 

annotations, including neuronal-specific ones, such as cell projection and synapse (Fisher’s exact test: 364 

Benjamini-Hochberg’s correction, FDR < 0.05; Fig. 6b, Supplementary Fig. 58 and Supplementary 365 

Table 22). We then focused on the 134 genes associated with novel human-specific intragenic 366 

enhancers with weak activities (Methods). Similarly to genes associated with intragenic enhancers 367 

with fully conserved weak enhancer states, these genes were typically expressed at low levels (median 368 

expression < 5 TPMs in all tissues). This group of genes showed their highest expression in tissues 369 

unrelated to LCLs, such as brain, tibial nerve and testis, and have marginal or no expression in 370 

numerous tissues including LCLs (Wilcoxon-Nemenyi-McDonald-Thompson test: P < 1 x 10-4; 371 

Rank-biserial correlation effect size between brain and LCLs = 0.633; Fig. 6a, Supplementary Fig. 372 

57 and Supplementary Table 23). Remarkably, these genes have higher tissue-specific expression 373 

than those with conserved strong but not weak activities in their components (median τ = 0.843, 374 

Dwass-Steel-Critchlow-Fligner test: P < 4.5 x 10-14 when compared to strong activities and P = 0.06 375 

compared to genes with weak enhancer states; Supplementary Fig. 60) and were enriched in neuron 376 

parts and synapse (Fisher’s exact test: Benjamini-Hochberg’s  correction, FDR < 0.05; Fig. 6a and 377 

Supplementary Table 24). 378 

 379 

We then sought to identify the particular contribution of the tissues driving the tissue-specific 380 

expression patterns seen in genes with conserved and human-specific intragenic enhancers with weak 381 
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enhancer states. We found that testis and brain were the tissues with the highest number of tissue-382 

specific genes (τTissue > 0.8). Interestingly, whereas the fraction of testis-specific genes was 383 

comparable between gene sets (Two-tailed Fisher’s exact test: P = 0.54, OR = 1.20; Supplementary 384 

Fig. 60), brain-specific genes were more than 2-fold enriched in genes with human-specific intragenic 385 

enhancers (Two-tailed Fisher’s exact test: P = 0.02, OR = 2.29; Supplementary Fig. 60). 386 

 387 

Among the genes associated with novel human-specific intragenic enhancers with weak activities, 388 

we found several genes previously proposed as candidates for positive selection in humans25–28. Some 389 

of these genes were FOXP2, PALMD and ROBO1, which have known brain-related functions29–32 or 390 

ADAM1833, CFTR34,35 and TBX1536. To explore whether human-specific enhancers have been 391 

targeted by recent human adaptation, we investigated their co-occurrence in genes associated with 392 

signals of positive selection25–28 (Methods and Supplementary Table 25). We found that more than 393 

one third (38%) of the genes with novel weak intragenic enhancers were associated with genes 394 

targeted by positive selection (Fisher’s exact test: P = 6.52 x 10-18, OR = 5.69). Using a hierarchical 395 

strategy, we observed that this enrichment can be partially attributed to the human-specificity of these 396 

enhancers when compared to other genes with weak intragenic enhancers (Fisher’s exact test: P = 397 

8.24 x 10-7, OR = 2.61; Fig. 6c).  398 

 399 

Finally, we explored whether these recently evolved human-specific intragenic enhancers were 400 

associated with human-specific mutations. For this, we collected a set of over 2.8 million single 401 

nucleotide changes fixed in humans (hSNCs) that differ from fixed variants in the genomes of the 402 

remaining non-human primates (Methods and Supplementary Table 25). We observed that the hSNCs 403 

density was higher in human-specific intragenic enhancers (Mann-Whitney U test: P = 0.01; Methods 404 

and Supplementary Fig. 61). More than one-third of the genes with novel human-specific intragenic 405 

enhancers with weak enhancers states and with hSNCs also have signals of selection (Fig. 5d), a 406 

proportion very similar to the expected 38% (see above). This result suggests that although human-407 

specific mutations and positive selection signals are both associated with the presence of human-408 

specific intragenic enhancers with weak activities, they are not mutually conditioned. As such, it 409 

implies that none of these signals is necessary (nor sufficient) to explain the appearance of human-410 

specific intragenic enhancers with weak activities.  Among the 11 genes with both signals of positive 411 

selection and hSNCs (Fig. 6d), there are several interesting candidates for adaptive evolution of 412 

different traits. Many of these genes are associated with neuronal functions (ROBO1, CLVS1, 413 

SEMA5A, KCNH7, SDK1 and ADGRL2), but also with pigmentation (LRMDA) or actin organization 414 

in cardiomyocytes (FHOD3). Other genes that include human-specific weak intragenic enhancers are 415 

not associated with either hSNCs in these enhancers (FOXP2, TNIK, ASTN2, NPAS3 or NTM) or 416 
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signals of human selection (PALMD, VPS13C, IGSF21 or CADM2). Interestingly, we found only one 417 

antisense RNA gene, MEF2C-AS1 showing both signals of positive selection and a human-specific 418 

enhancer with hSNCs (Supplementary Fig. 62). This gene has been associated with ADHD37 and its 419 

target gene MEF2C is a very well known target of genetic alterations (many of them also affecting 420 

MEF2C-AS1) associated with severe intellectual disability38, cerebral malformation38 or 421 

depression38,39. 422 

 423 

Remarkably, three human-specific intragenic enhancers accumulated more hSNCs than expected 424 

(Randomization test: 10,000 simulations, Bonferroni correction, P < 0.02 in all cases; Methods and 425 

Supplementary Figs. 62 and 63), a number which is also significantly higher than expected 426 

(Randomization test:  10,000 simulations, P = 8 x 10-4; Supplementary Fig. 64). Two of these genes 427 

are protein-coding genes with known functions in brain cell types and with signals of positive 428 

selection. CLVS1 is a protein-coding gene with brain-specific expression (τBrain = 0.964) required for 429 

the normal morphology of endosomes and lysosomes in neurons40. ROBO1 is a broadly expressed 430 

integral membrane protein that participates in axon guidance and neuronal migration (τ = 0.388)41,42 431 

that has also been associated with human speech and language acquisition since the split from 432 

chimpanzees30. The third enhancer is included in AC005906.2, a long intergenic non-protein-coding 433 

gene specifically expressed in brain (τBrain = 1). Interestingly, this gene overlaps with KCNA1, a 434 

voltage-gated potassium channel with the same brain-specific expression pattern (τBrain = 0.995) and 435 

for which mutations have been associated with neurological malfunctions43. 436 

 437 

Discussion 438 

The evolution of human and non-human primates is an area of major interest, but access to direct 439 

biological material is often limited by ethical, legal and practical constraints. In this study, we have 440 

generated a unique, comprehensive and unified dataset of epigenomic landscapes in LCLs for human 441 

and four non-human primate species. Despite the artificial nature of our cellular model44–46, previous 442 

studies have shown the value of LCLs as an experimentally convenient model of somatic cells that 443 

accurately resembles the phenotype of its cell type of origin47 and which can be robustly used for 444 

comparative studies in humans and primates12,48–50. Moreover, its clonality ensures a cell type-445 

specific experimental system reducing the confounding factors associated with cell population 446 

diversity in bulk tissue samples. With this cell model, we could reproduce biological observations 447 

about the dynamics of the evolution of regulatory elements previously obtained in more distant 448 

species using liver samples7,9,24. Moreover, we have expanded these observations to explain how these 449 

dynamics are a consequence of the different evolutionary constraints associated with their epigenetic 450 
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activities. Therefore, we prove that taking weak and poised activities into account is of major 451 

relevance to fully understand the evolution of regulatory regions.  452 

The network of regulatory co-dependencies reveals that the epigenetic activities of each type of 453 

regulatory component influence gene expression levels and their evolution differently (Fig. 4). In 454 

brief, coordinated epigenetic activities in genic promoters and intragenic enhancers form the core of 455 

these architectures and explain gene expression levels. Regulatory activities in proximal and 456 

promoter-interacting enhancers are coordinated with promoter components, and activities in 457 

enhancer-interacting enhancers are associated with promoter-interacting enhancers. These results 458 

show that the influence of regulatory components on gene expression reflect the structure of the 459 

regulatory architecture.  460 

The evolution of regulatory complexities, assessed as the number of elements associated with the 461 

gene, also reflects how each type of component influences the regulation of gene expression. 462 

Acquisition or removal of strong promoter activities in promoter components or strong and poised 463 

enhancer activities in intragenic enhancers consistently co-occurs with gene expression changes 464 

between primate species. The remaining components show fewer changes linked to expression 465 

differences, but they can still be instrumental for gene expression evolution, probably through their 466 

influence on promoters and intragenic enhancers. Our conceptual framework provides a starting point 467 

for future in-depth investigations on the inter-dependence of different regulatory regions and 468 

mechanisms in the evolution of gene regulation. In this sense, we stress the importance of considering 469 

promoter and enhancer activity states in the different types of gene components to achieve a more 470 

detailed description of the regulatory processes.  471 

We also observed that different epigenetic activities have characteristic evolutionary patterns in 472 

primates that are likely the result of their different influence on gene expression. The correlations 473 

between epigenetic and sequence conservations are also different for each epigenetic state. 474 

Interestingly, similar epigenetic conservation patterns have lower or no correlation with sequence 475 

conservation for those orthologous regulatory regions associated with non-coding genes, compared 476 

to protein-coding genes. We hypothesize that the association of the former regulatory elements with 477 

different gene architectures in other cell types could explain better their sequence conservation in 478 

primates. 479 

Despite the larger influence of strong and poised activities on gene regulation, our results in LCLs 480 

suggest that major insights can arise from the analysis of the elements with a negligible regulatory 481 

role in our cell model. Intragenic enhancers with weak enhancer activities seem to carry information 482 

about the degree of regulatory innovation in unrelated cell types. We report recently evolved 483 
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intragenic enhancers in the human lineage in genes that show signals of positive selection, patterns 484 

of tissue-specific gene expression and brain-related functions, suggesting that these genes may have 485 

contributed to human adaptation in several traits. Our findings suggest that the appearance of novel 486 

intragenic enhancers with tissue-specific and functionally relevant implications is bound to the co-487 

appearance of weaker activity signals that can be detected in other cell types. These echoes that we 488 

detect as human-specific weak enhancer activity seem to provide an unexpected window to the study 489 

of regulatory evolution in the human lineage. Further research will be needed to clarify the specific 490 

role of these elements in different tissues and cell types.  491 

Taken together, our results show that the evolution of gene regulation is deeply influenced by the 492 

coordination of epigenetic activities in gene regulatory architectures. Our insights call for the 493 

incorporation of better integrative datasets and refined definitions of regulatory architectures in 494 

comparative evolutionary studies to fully understand the interplay between epigenetic regulation and 495 

gene expression. 496 

 497 

Methods 498 

Definition of regulatory elements 499 

We used ChromHMM to jointly learn chromatin states across samples and segment the genome of each 500 
sample51. ChromHMM implements a multivariate Hidden Markov Model aiming to summarize the 501 
combinatorial interactions between multiple chromatin datasets. Bam files from the five histone modifications 502 
profiled were binarized into 200 bp density maps. Each bin was discretized in two levels, 0 or 1, depending on 503 
their enrichment computed by comparing immunoprecipitated (IP) versus background noise (input) signal 504 
within each bin and using a Poisson distribution. Binarization was performed using the BinarizeBam function 505 
of the ChromHMM software51. A common model across species was learned with the LearnModel 506 
ChromHMM function for the concatenated genomes of all samples but O1 (orangutan sample 1) 507 
(Supplementary Fig. 75). Several models were trained with a number of chromatin states ranging from 8 to 20. 508 
To evaluate the different n-state models, for every sample, the overlap and neighborhood enrichments of each 509 
state in a series of functional annotations were explored. A 16-state model was selected for further analysis 510 
based on the resolution provided by the defined chromatin states, which capture the most significant 511 
interactions between histone marks and the state enrichments in function-annotated datasets (Supplementary 512 
Fig. 1). The genomic coordinates of regulatory elements (RE) were defined for each sample by merging all 513 
consecutive 200 bp bins excluding elongating (E1 and E2), repressed heterochromatin (E16) and low signal 514 
(E15) chromatin states. Species regulatory elements were defined as the union of sample regulatory elements. 515 
For orangutan we did not include regulatory elements specific to O1.  516 
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 517 

Assignment of a regulatory state to regulatory elements 518 

Regulatory elements were assigned a chromatin-state based annotation. Combining the information gathered 519 
through the overlap and neighborhood enrichment analyses in functionally defined regions, we established a 520 
hierarchy to designate poised (p), strong (s) and weak (w) promoter and enhancer states. Chromatin states E8, 521 
E9 and E11 defined promoter states (P); E8 and E9 were strongly enriched at TSSs, CGI, UMR (unmethylated 522 
regions) and open chromatin regions, while E11 was mostly located downstream the TSS; the presence of E14 523 
defined poised promoter states (pP); absence of E14 and presence of E9 or E11 defined strong promoter states 524 
(sP); remaining P were classified as weak promoter states (wP). Non-promoter regulatory elements were 525 
assigned an enhancer state (E). The presence of E14 defined poised enhancer states (pE); absence of E14 and 526 
presence of E3, E4, E5, E6 and E12 defined strong enhancer states (sE): E5 and E6 were strongly enriched 527 
LMRs (low methylated regions) whereas E3, E4 and E12 were highly abundant at introns; remaining E were 528 
classified as weak enhancer states (wE) (Supplementary Figs. 1 and 65). 529 

One of the limitations of chromatin states is that bin assignments are based on the presence or absence of 530 
particular epigenetic marks. However, oftentimes, the lines separating different regulatory elements are blurry: 531 
e.g., the distinction between promoter and enhancer states generally resides in the H3K4me3/H3K4me1 532 
balance. Hence, some misclassifications are expected due to insufficient precision of the qualitative 533 
classification. Considering the quantitative relationship between co-existing histone modifications can help to 534 
accurately annotate epigenetic states in regulatory elements. We used linear discriminant analysis (LDA)52 to 535 
refine chromatin-state based annotations. This method is commonly applied to pattern recognition and category 536 
prediction. LDA is a technique developed to transform the features into a lower-dimensional space, which 537 
maximizes the ratio of between-class variance to the within-class variance, thereby granting maximum class 538 
separation. We performed LDA analysis using the lda function in the R package MASS (version 7.3-47)53. The 539 
predictor variables were the background-noise normalized IP signals from the five different histone 540 
modifications profiled and chromatin accessibility signal at species regulatory elements. The categorical 541 
variable to be predicted based on the underlying enrichments was the chromatin-state based annotation. The 542 
regulatory state at the species level was determined based on the regulatory state in each of the biological 543 
replicates. Thus, the regulatory state of a regulatory element with different epigenetic states in the two 544 
replicates, could be aP or aE, when both samples of a given species were annotated as either P or E but differ 545 
in their activity; P/E, when a regulatory element was classified as P in one biological replicate and E in the 546 
other one; and P/Non-RE or E/Non-RE, when the regulatory elements was so only in one replicate 547 
(Supplementary Fig. 6 and Supplementary Table 1).  548 

 549 

 550 
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Classification of regulatory elements in different types of components of gene regulatory 551 

architectures  552 

We first pre-classified each regulatory element into gene regulatory component based on their genomic 553 
location with respect to their corresponding species ENSEMBL release 9117 gene annotations. Regulatory 554 
elements found up to 5Kb upstream to the nearest TSS were classified as genic promoters (gP). Additional 555 
regulatory elements located up to 10Kb to the nearest TSS were classified as proximal enhancers (prE). 556 
Regulatory elements that overlapped a gene were classified as intragenic enhancers (gE). Other regulatory 557 
elements that could not be linked to a gene based on their genomic proximity were initially classified as distal 558 
enhancers (dE). 559 

Then, we made use of available interaction data for the cell line GM12878 (HiC19,  HiChIP-H3K27ac20 and 560 
ChIA-PET21) to map interactions between regulatory elements. Each interacting pair was mapped 561 
independently to hg38 coordinates using the liftOver tool from the UCSCTOOLS/331 suite54, and only 562 
interactions for which both pairs could be mapped were kept. Subsequently, interactions were mapped to the 563 
non-human primate reference genome assemblies. For inter-species mappings, coordinates were mapped 564 
twice, going forward and backward, and only pairs that could be mapped in both directions were kept. 565 
Interacting regulatory elements were defined as those that overlapped with each pair of any given interaction. 566 
First-order interactions were annotated between promoters and enhancers, allowing the definition of promoter-567 
interacting enhancers (PiE). Second-order interactions were annotated between enhancer components (gE, prE 568 
or PiE), allowing the definition of enhancer-interacting enhancers (EiE) (Fig. 2).  569 

 570 

Gene expression levels and regulatory states in gene components 571 

To investigate the influence of the activity state of regulatory elements in each type of component on gene 572 
expression levels, we classified 1-to-1 orthologous protein-coding genes, separately for each species, into six 573 
mutually excluding categories, one for each regulatory state within each type of component (component-state 574 
combinations). Whereas genes can only be associated with one genic promoter and hence, they can only be 575 
classified into one category for genic promoters depending on the corresponding epigenetic state of the 576 
regulatory element, genes can be associated with more than enhancer component (gE, prE, PiE and EiE). In 577 
those cases we classified genes into a given component-state category accordingly to the presence of at least 578 
one regulatory element with a given epigenetic state in that component using the following state hierarchy: pE 579 
> pP > sE > sP > wE > wP (Supplementary Fig. 14).  To statistically assess the influence of each state in each 580 
component we used (1) Kruskal-Wallis test (kruskal.test function as implemented in R)55 to test whether the 581 
distributions of the expression levels of genes associated with each component-state combination were 582 
different for the different regulatory states, (2) Dwass-Steel-Critchlow-Fligner test to assess the significance 583 
of every pairwise comparison (dscfAllPairsTest function from the R package PCMRplus version 1.4.4)56 and 584 
(3) Glass rank biserial correlation coefficient effect size for Mann-Whitney U test to compute the effect sizes 585 
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associated with all statistically significant pairwise comparisons (wilcoxonRG function from the R package 586 
rcompanion version 2.3.25)57 (Supplementary Fig. 15). To explore whether expression levels were correlated 587 
with the number of regulatory elements with a given state in each enhancer component (gE, prEm PiE and 588 
EiE), for each component we calculated the number of elements in each component-state combination and 589 
calculated the Spearman rho correlation with the gene expression level (Supplementary Fig. 30). We corrected 590 
P-values obtained with the cor.test function implemented in R55 using the Benjamini-Hochberg procedure58. 591 

 592 

Partial correlation analysis 593 

To disentangle the network of direct co-dependencies between the different components, regulatory states, 594 
histone marks and gene expression, we performed a series of partial correlation analyses22,59. To tackle the 595 
diversity of architectures detected for the different genes, we added up the calibrated signal of all the regulatory 596 
elements with a given regulatory state (promoter or enhancer) in a given type of component for any gene 597 
architecture. This decision was based on the observed relationship between the number of strong elements in 598 
a gene architecture and the expression level of its target gene. Separation of histone signals in each type of 599 
component between those contributing to a promoter or to an enhancer was intended to reflect the potential 600 
differences in their role in gene expression regulation. As a result of this design, our system has 51 variables 601 
(RNA-seq signal + 5 histone mark signals x 2 regulatory states x 5 components) and 57,370 cases (5,737 genes 602 
x 5 species x 2 samples). 603 

All partial correlation analyses were performed using an adaptation of a recently published Sparse Partial 604 
Correlation Analysis protocol22 based on the continuous values of the accumulated ChIP-seq signals (instead 605 
of their ranks) to take advantage of their pseudo-quantitative nature. This protocol combines the recovery of 606 
statistically significant partial correlations with a cross-validation process to filter out those relationships 607 
leading to overfitted reciprocal linear LASSO models (significant partial correlations unlikely to be 608 
biologically meaningful). In our case, in every analysis, we recovered those partial correlations recovered in 609 
at least four of the five species without leading to overfitting when determining the reciprocal explanatory 610 
power in the remaining species. This protocol is intended to detect biologically relevant co-dependences out 611 
of the set of significant partial correlations and as a result, this approach filters out many significant partial 612 
correlations with very low explanatory power. In fact, all the partial correlations recovered in any of the 613 
analyses performed showed very low P-values (Benjamini-Hochberg’s correction58, P < 1.8 x 10-22).  In our 614 
case, given the relatively small amount of data, we focused on recovering those partial correlations that are 615 
likely to be relevant in any species. For these analyses, we used a modified version of the R code provided by 616 
the authors (http://spcn.molgen.mpg.de/code/sparse_pcor.R/) to perform 5-fold cross-validation analyses 617 
separati by species instead of the original 10-fold cross-validation protocol suitable for larger datasets. Network 618 
visualizations were performed with Cytospace60. 619 

Using this approach, we first performed independent histone analyses to determine the Sparse Partial 620 
Correlation Network of each of the histone marks and RNA-seq without considering the possible influence of 621 
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the remaining histone marks (Fig. 4a-b, Supplementary Figs. 16-18 and Supplementary Table 11). The 622 
similarity of these networks points to a common backbone of inter-component co-dependences reflected in 623 
every histone mark. A global partial correlation analysis considering all 51 variables shows a very clear 624 
structure of direct co-dependencies with a strong intra-component contribution for the two states of every 625 
single component and a clear but more modest exclusive inter-component contribution (Supplementary Fig. 626 
19 and Supplementary Table 12). 627 

In a partial correlation model, direct co-dependencies are established between individual variables. However, 628 
the strong intra-component contribution to the network suggests that coordination of the different histone 629 
marks within components is important to define the global epigenetic configuration of a component, which 630 
itself could be considered the relevant variable for this analysis. To better address this situation in our analysis, 631 
we defined a consensus signal for every component following the same approach established by WGCNA23 to 632 
define eigengenes as representative variables of clusters of co-expressed genes. In brief, we defined 633 
eigencomponents as the variables summarizing the common signals of the different histone marks in a 634 
component (actually calculated as the first PCA component of these five variables). So that eigencomponents 635 
keep the meaning of the activities, they were defined as codirectional with H3K27ac signals in each component 636 
(eigenvectors negatively correlated with H3K27ac signals were multiplied by -1). We performed a Sparse 637 
Partial Correlation Analysis of these 10 eigencomponents and RNA-seq that recovers very clearly the structure 638 
of direct co-dependecies between the epigenetic configuration of the different components and gene expression 639 
(Fig. 4c). 640 

Finally, we defined the remaining unexplained signal of every histone mark by its eigencomponent as the 641 
residuals of a linear model of the original variables and the corresponding eigencomponent. A Sparse Partial 642 
Correlation Analysis of these residuals (Supplementary Fig. 20 and Supplementary Table 13) shows that even 643 
these residuals reflect the same inter-component structure and highlights that our eigencomponents miss some 644 
relevant information for the definition of this regulatory coordination (mainly weaker co-dependencies 645 
involving promoter states in intragenic and promoter-interacting enhancers and enhancer states in promoters). 646 

Our dataset of regulatory components shows a quite unbalanced contribution of the components to the 647 
architectures, with intragenic enhancers being the most abundant type of component and promoter-interacting 648 
and enhancer-interacting enhancers being the least abundant (Supplementary Fig. 11). These differences could 649 
be at least partially related to our inability to recover some of the chromatin interaction-mediated regulatory 650 
associations. More importantly, this imbalance, if not real, could affect the ability of our partial correlation 651 
networks to reflect the contribution of those components less represented in our datasets. To explore this point, 652 
we recovered the subset of genes (an average of 1068 genes per sample) with full architectures (those with at 653 
least one element in every type of component) and repeated all the Sparse Partial Correlation Analyses 654 
explained above with this dataset of genes. In all the cases, we obtained very similar results, recovering fewer 655 
relevant partial correlations due to the smaller number of genes, but with no signal of any relevant difference 656 
in the global structure of the coordinated network of components and gene expression (Supplementary Figs. 657 
21-28 and Supplementary Tables 11-14).   658 
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All the components of the connected network can be very influential in gene expression through their direct or 659 
indirect connection with gene expression. However, our Sparse Partial Correlation Networks point consistently 660 
to the direct co-dependency of RNA-seq with the genic promoter and intragenic enhancer components and the 661 
co-dependency between them. To quantify the explanatory power of these dependencies for gene expression, 662 
we performed a simple generalized linear model (glm function as implemented in R55) for RNA-seq using 663 
H3K27ac, H3K27me3 and H3K36me3 signals in genic promoters and intragenic enhancers and the 664 
interactions between them. This model was able to explain 67% of the gene expression variance 665 
(Supplementary Table 15), a percentage 5% higher than the 62% explained by a naïve model including the 666 
signals of all histone marks in all the components but no interaction between them (Supplementary Table 16), 667 
supporting that genic promoters and intragenic enhancers contained nearly all the epigenetic information 668 
needed to define gene expression levels in our data. 669 

 670 

Differential gene expression analyses 671 

We identified genes with differential expression levels across species using the iDEGES/edgeR pipeline in the 672 
R package TCC (version 1.12.1)61,62 at an FDR of 0.1 and testing all species pairwise comparisons. Then, we 673 
determined the patterns of differential expression, species and direction of the gene expression change, using 674 
a two-step approach. For every gene, the Q-values obtained in species pairwise comparisons were ordered 675 
from smallest to largest. Different expression labels were then assigned to each species according to the ordered 676 
Q-values. Once all species had an assigned label, the average normalized expression values between groups 677 
were compared to determine the directionality of the change. We separate differentially expressed genes into 678 
two categories: genes with species-specific expression changes and gene with non-species-specific expression 679 
changes. 680 

To investigate the relationship between changes in gene expression and changes in the regulatory architecture 681 
of a gene, for every type of regulatory component we run a Wilcoxon signed-rank test evaluating whether the 682 
number of regulatory elements with a given regulatory state in that particular regulatory component was 683 
significantly associated with higher expression levels, for strong and weak activities, or lower expression 684 
levels, for poised activities. P-values obtained for each regulatory role were corrected for multiple testing using 685 
the Benjamini–Hochberg procedure58. 686 

 687 

Analysis of evolutionary conservation at orthologous regulatory regions 688 

We studied patterns of evolutionary conservation of promoter and enhancer states using a set of 21,753 one-689 
to-one orthologous regions associated with genes in which at least one species showed a promoter or enhancer 690 
epigenetic state. We use the term repurposed promoters to refer to those orthologous regulatory regions where 691 
one species showed a promoter state and all the rest showed an enhancer state or vice versa. We use the term 692 
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novel promoter or enhancer states to refer to those orthologous regulatory regions where a given species 693 
showed a promoter or enhancer state and all other species showed no evidence of regulatory activity (classified 694 
as non-regulatory).  695 

To study the patterns of evolutionary conservation of regulatory states, we focused on the subset of 10,641 696 
one-to-one orthologous regions in which at least one species showed a strong, poised or weak regulatory state 697 
(we do not include orthologous regions including elements with different activities between biological 698 
replicates). To statistically assess the different evolutionary dynamics observed for the different regulatory 699 
states we first run randomization analysis. We randomized (1,000 randomizations) the regulatory states 700 
associated with each species in orthologous regulatory regions. We determined the P-value as the number of 701 
randomizations with an average conservation equal to or above the observed conservation for each regulatory 702 
state. We further explored the different patterns of conservation combining: (1) Kruskal-Wallis test 703 
(kruskal.test R function)55 to test whether the global distributions of the number of species in which each 704 
particular state was conserved were different for the different regulatory states and (2) Dwass-Steel-Critchlow-705 
Fligner test to assess the significance of every pairwise comparison (dscfAllPairsTest function from the R 706 
package PMCMRplus version 1.4.4)56 and (3) Glass rank biserial correlation coefficient for Mann-Whitney U 707 
test to compute the effect sizes associated with all statistically significant pairwise comparisons (wilcoxonRG 708 
function from the R package rcompanion version 2.3.25)57. 709 

To study the patterns of evolutionary conservation of the sequence underlying orthologous regulatory regions, 710 
we first assigned each orthologous regulatory region a conservation score. We computed this score based on 711 
the phastCons30way sequence conservation track63. To control for background sequence conservation levels, 712 
we first computed the average and standard deviations phastCons30way in TADs defined in the cell line 713 
GM1287864 (Supplementary Fig. 49). Then, we used these summary statistics to calculate the z-score for each 714 
bp in every orthologous regulatory region, using the average and standard deviations values of the TAD in 715 
which each orthologous regulatory region was found. We averaged the z-scores within each orthologous 716 
regulatory regions in bins of 200 bp that overlap 50 bp with the next bin and assign each orthologous regulatory 717 
region the maximum z-score values associated with its bins. We computed the Spearman rho correlation 718 
between the z-scores and the number of species in which each orthologous regulatory region was conserved, 719 
separately for each regulatory state. To determine the statistical significance of these correlations we used 720 
randomization analysis. For each regulatory state we created 1,000 sets randomizing the z-score associated 721 
with each orthologous regulatory region and calculated the Spearman correlation in each randomization. We 722 
determined the P-value as the number of randomizations with a Spearman rho correlation value equal to or 723 
above the observed correlation (Supplementary Figs. 52-54). 724 

We used a Chi-square test to identify the component-state combinations enriched in fully conserved 725 
orthologous regulatory regions (Supplementary Fig. 48). To explore the expression patterns of genes regulated 726 
by evolutionarily conserved component-state combinations, for all positively enriched component-state 727 
combinations, we recovered the associated orthologous protein-coding genes and computed their average 728 
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expression across species. We excluded those genes associated with more than one component-state 729 
combination. 730 

 731 

Analysis of tissue-specific gene expression patterns 732 

We defined sets of human genes associated with fully conserved component-state combinations, and human 733 
genes associated with human-specific gains/losses of regulatory elements. Note that these gene lists are not 734 
mutually exclusive since a gene can we associated with different types of conserved or species-specific 735 
component-state combinations (e.g., a gene with both a human-specific intragenic enhancer with weak activity 736 
and a fully conserved intragenic enhancer with a strong activity). We obtained expression levels (median TPM 737 
values) across a collection of different tissues from the latest GTEx release (v8)65. We only included tissues 738 
with at least 70 samples and grouped tissue subregions into the same tissue category, as stated in 739 
Supplementary Table 18. For each component-state combination we followed a two-step approach to remove 740 
consistently low-expressed genes across tissues. For that we first assigned a value of 0 to all genes with a 741 
median expression level below 0.1 TPM and then we excluded from the analyses those genes that had an 742 
accumulated expression value in all tissues below 0.1xNumber of tissues (n = 29 tissues). For each component-743 
state combination, differences in median expression across tissues were assessed with the Friedman test using 744 
the friedman.test function as implemented in R55. We used the Wilcoxon-Nemenyi-McDonald-Thompson test 745 
implemented in the pWNMT function of the R package NSM3 (version 1.14)66 to assess whether expression 746 
levels were significantly different for all pairwise tissue combinations. Then, we made use of the rank-biserial 747 
correlation to calculate the effect sizes for all statistically significant pairwise tests with the wilcoxonPairedRC 748 
function of the R package rcompanion (version 2.3.25)57.  749 

We then evaluated the tissue-specificity of the genes associated with the different component-state 750 
combinations. For this we calculated the tissue specificity index67 (τ, tau) for each gene, which is defined as: 751 

𝜏 = ∑ "#$!"
!#$
%#"

  752 

where 𝑁 is the number of tissues and 𝑥! is the expression value normalised by the maximum expression value. 753 
This value ranges from 0, for housekeeping genes, to 1, for tissue-specific genes (values above 0.8 are used to 754 
identify tissue-specific genes)68. Tissue-specificity indices were calculated for all genes included in the latest 755 
GTEx release65. Gene expression levels (median TMP) of grouped tissue categories (Supplementary Table 18) 756 
were normalised within and across tissues before calculating τ as implemented in the R package tispec (version 757 
0.99.0)69. The calcTau function from this package provides a tau value for each gene and also a tau expression 758 
fraction for each tissue (which also ranges from 0 to 1) that indicates the specificity of a given gene for that 759 
tissue. 760 

After calculating τ values, we compared their distributions between gene datasets with the Kruskall-Wallis test 761 
and assessed the significance of every pairwise comparison with the Dwass-Steel-Critchlow-Fligner test 762 
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(dscfAllPairsTest function from the R package PMCMRplus version 1.4.4)56. Glass rank biserial correlation 763 
coefficient was used to compute the effect sizes associated with all statistically significant pairwise 764 
comparisons using the wilcoxonRG function from the R package rcompanion version 2.3.2557 (P < 0.05, 765 
Supplementary Fig. 60). 766 

 767 

Over-representation analyses (ORA) of functional annotations 768 

To ensure the representativeness of the functional enrichments, we removed from the gene sets defined in the 769 
tissue-specificity gene expression analyses those genes associated with conserved components with different 770 
epigenetic states activities (strong, poised or weak promoter or enhancer) or conservation levels (fully 771 
conserved and species-specific) and kept those gene lists with a minimum of 15 genes for enrichment analyses. 772 

Over-representation of Gene Ontology (GO) terms was performed using the WebGestaltR function from the 773 
R package WebGestaltR (version 0.4.3)70 with minNum = 25 and remaining default options. This function 774 
controls the false discovery rate (FDR) by applying Benjamini-Hochberg procedure (default threshold FDR = 775 
0.05)58,71. Previous analyses have shown that recent enhancers tend to occur in the same genes that already 776 
have highly conserved enhancers9. To avoid biases due to the presence of a gene in different gene sets, we 777 
filtered out those genes associated with both conserved and species-specific component-state combinations. 778 
To control for the particular background of each component, we built different background gene sets including 779 
the set of human genes associated with at least one-to-one orthologous regulatory regions of each type of 780 
component, hence we have specific and different backgrounds for genic promoters, intragenic enhancers and 781 
promoter-interacting enhancers. To represent and compare enriched GO terms between component-state 782 
combinations, we performed a clustering of all significantly enriched GO terms using REVIGO72. We 783 
associated each GO term with the proportion of genes from each component-state combination that overlapped 784 
that GO term. In the case of GO terms enriched in more than one gene set, we chose the highest proportion of 785 
genes. We used this list as input for REVIGO. Given that REVIGO only reports the clustering of approximately 786 
350 GO terms and our input list was larger than that, we used the R package GofuncR (version 1.8.0)73 to 787 
retrieve the parent GO terms of the remaining unassigned GO terms and add them to the corresponding group 788 
as defined by REVIGO. REVIGO group names were manually assigned, taking into account the most 789 
representative parent term (Supplementary Table 19). 790 

 791 

Association of genes containing intragenic enhancers with signals of positive selection in 792 

humans 793 

First, we recovered a dataset of human genomic regions with previously detected signals of positive selection 794 
in humans25–27 and selective sweeps in modern compared to archaic humans28. BEDtools74 was used to assign 795 
these regions to both protein-coding and non-coding genes following similar criteria to those used for building 796 
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the gene regulatory architectures (Methods’ section Classification of regulatory elements in different types of 797 
components of gene regulatory architectures). We assigned these regions to a protein-coding gene if they were 798 
located within the gene or up to 5 Kb upstream of its TSS. Then, we made use of available interaction data for 799 
the cell line GM12878 (HiC19,  HiChIP-H3K27ac20 and ChIA-PET21) to assign positively selected regions to 800 
their interacting protein-coding genes. We defined the 2,004 genes associated with at least one positively 801 
selected region as the set of genes with signals of positive selection in the human lineage. We computed the 802 
overlaps between this gene list and the lists of genes associated with the different component-state 803 
combinations. We used one or two-tailed Fisher's exact test to assess the enrichment significance.  804 

 805 

Analyses of the density of human-fixed single nucleotide changes (hSNCs) in intragenic 806 

enhancers with weak enhancer states 807 

In order to study the distribution of human-fixed changes in a specific type of regulatory element, we first built 808 
a dataset with human-specific changes. We used sequencing data from a diversity panel of 27 orangutans, 42 809 
gorillas, 11 bonobos and 61 chimpanzees75–77, as well as 19 modern humans from the 1000 genomes project78, 810 
all mapped to the human reference assembly hg19. We applied a basic filtering for each site in each individual 811 
(sequencing coverage >3 and <100), and kept sites where at least half of the individuals in a given species had 812 
sufficient data. Furthermore, at least 90% of the kept individuals at a given site in a given species had to share 813 
the same allele, otherwise the site was labeled as polymorphic in the population. Indels and triallelic sites were 814 
removed, and only biallelic sites were kept. We used data from a macaque diversity panel79, applying the same 815 
filters described above. The allele at monomorphic sites was added using bedtools getfasta74 from the macaque 816 
reference genome rheMac8. Since this panel uses the macaque reference genome, we performed a liftover to 817 
hg19 using the R package rtracklayer80 and merged the data with the great ape diversity panel. 818 

Lineage-specific changes were retrieved as polymorphisms with sufficient information. Hence, human-specific 819 
changes (hSNCs) were defined as positions where each species carry only or mostly one allele within their 820 
respective population, the majority of individuals in each population have a genotype call at sufficient 821 
coverage, and the human allele differs from the allele in the other populations.  822 

BEDtools74 was used to annotate those hSNCs in conserved or human-specific weak intragenic enhancers and 823 
the density of changes was calculated as the number of hSNCs present in each enhancer divided by the length 824 
of the enhancer. 825 

To determine which human-specific intragenic weak enhancers were enriched in human-specific changes, we 826 
compared their density to what would be expected at random. For that, we first established the number of 827 
hSNCs that fall in human intragenic enhancers with weak enhancer states associated with 1-to-1 orthologous 828 
regulatory regions (our universe of enhancers). In each simulation, this number of mutations was randomly 829 
placed in this universe and we computed the density for each of the human-specific weak intragenic enhancers 830 
(10,000 simulations). With this approach, we corrected for the differences in the length of the enhancers. The 831 
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P-value for each enhancer was computed as the number of simulations with a density equal to or above the 832 
observed density for that particular enhancer. All P-values were corrected by multiple testing using the 833 
Bonferroni method with the number of tests equal to the number of human-specific weak intragenic enhancers. 834 

We then assessed whether the number of enhancers that were statistically enriched in hSNCs (or number of 835 
hits) was greater than what would be expected at random. In order to do that, for each enhancer we defined its 836 
mutation density critical value adjusting by multiple testing and using the simulated values. For example, in a 837 
hypothetical case of 100 enhancers and 10,000 simulations, for each enhancer we would order its simulated 838 
density of hSNCs from smallest to largest and take the 5th value as the critical one (given that our chosen alpha 839 
equals 5%, but it has to be corrected by 100 tests; therefore it becomes 0.05%). Once we established a critical 840 
value for each human-specific intragenic weak enhancer, we determined, for each simulation, how many 841 
enhancers had a density equal to or above their corresponding critical value. Finally, we computed the P-value 842 
comparing the the number of artificial hits in each simulation with the  number of observed hits. 843 
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Figures: 889 

Figure. 1 Overview of the study design and data generated. a, One human and eight non-human 890 

primate lymphoblastoid cell lines were cultured to perform a variety of high-throughput techniques 891 

including whole genome sequencing (WGS), whole genome bisulfite sequencing (WGBS), 892 

chromatin-accessibility sequencing (ATAC-seq), chromatin immunoprecipitation sequencing (ChIP-893 

seq) targeting five different histone modifications (H3K27me3, H3K4me1, H3K27ac, H3K4me3 and 894 

H3K36me3) and transcriptome sequencing (RNA-seq). We integrated previously published datasets 895 

from an extensively profiled human lymphoblastoid cell line (GM12878) to balance the number of 896 

human samples (Supplementary Methods). b, Number of sequencing reads generated per sample and 897 

experiment. Striped lines indicate data retrieved from previously published experiments81,82. 898 

 899 

Figure 2. Schematic illustration of the approach followed to annotate and classify regulatory 900 

elements. a, DNA strand represents a gene annotation track, wherein dark grey regions correspond 901 

to coding annotated regions. The second row represents the binarized output from ChromHMM51, 902 

wherein each box corresponds to a 200 bp bin. Light grey indicates bins without evidence of promoter 903 

or enhancer states, whereas the different colors represent the different learned chromatin states 904 

(Methods, Supplementary Fig. 1). Shorter DNA strands represent the genomic coordinates defined 905 

for regulatory elements that result from merging adjacent 200 bp bins with epigenetic signals 906 

associated with promoter or enhancer states. We defined species regulatory elements from the union 907 

of the regulatory elements detected in each biological replicate (Methods). b, We established a 908 

hierarchy between chromatin states based on the combination of chromatin marks found within each 909 

regulatory region and classified regulatory elements into epigenetic promoter (P) and enhancer (E) 910 

states with three different activity levels: strong (s), weak (w) or poised (p) (Methods). Then, we 911 

applied a linear discriminative analysis (LDA) (Methods) using normalized histone and open 912 

chromatin enrichments to refine this epigenetic classification (Supplementary Methods). c, We linked 913 

regulatory elements to genes and assigned them to a type of regulatory component. We first classified 914 

regulatory elements into genic promoters (gP), genic enhancers (gE) and proximal enhancers (prE) 915 

based on their linear proximity to annotated genes. Then, we used previously published 3D chromatin 916 

maps in GM12878 cells19–21 to recover physical interactions between regulatory elements adding 917 

promoter-interacting enhancers (PiE) and enhancer-interacting enhancers (EiE), to the list of gene 918 

regulatory components. This approach allowed us to link distal regulatory elements, that otherwise 919 

would have remained orphan, to their target genes. 920 

 921 

Figure 3. Epigenetic and regulatory characterization of regulatory elements annotated in 922 

primates. Number of regulatory elements with a, promoter and b, enhancer epigenetic states in each 923 
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species. c, Number of regulatory elements associated with genes in each species. Dark, medium and 924 

light shades correspond to 1-to-1 orthologous protein-coding, protein-coding and non-protein-coding 925 

genes, respectively. d, Number of orphan regulatory elements (not associated with any gene, Fig. 2c) 926 

in each species. e, Average number of regulatory elements across species associated with 1-to-1 927 

orthologous protein-coding genes classified as gP, gE, prE, PiE and EiE. f, Average number of 928 

orthologous protein-coding genes associated with each type of regulatory element. In e, and f, error 929 

bars show the standard deviation across species and differently shaped points show the values for 930 

each species as indicated in the legend. g, Proportion of regulatory elements with a given epigenetic 931 

state associated with 1-to-1 orthologous protein-coding genes for each type of regulatory component. 932 

Dots and error bars show the average proportion and standard deviation across species, respectively. 933 

 934 

Figure 4. Epigenetic signals in gene regulatory architectures explain gene expression levels. 935 

Sparse Partial Correlation Networks showing the statistical co-dependence of the RNA-seq (Gene 936 

expression) and the ChIP-seq signals for the histone marks in the different components (segregated 937 

by their promoter or enhancer epigenetic state) of the gene regulatory architectures. ChIP-seq 938 

enrichment values of different elements classified as the same component in the same gene were 939 

aggregated. Sparse Partial Correlation Network for a, H3K27ac (minimal partial correlation = -0.4; 940 

maximal partial correlation = 0.49; all partial correlations Benjamini-Hochberg's P < 1.4 x 10-109), b, 941 

H3K27me3 (minimal partial correlation = -0.4; maximal partial correlation = 0.2; all partial 942 

correlations Benjamini-Hochberg's P < 3.9 x 10-57) and c, the eigencomponents representing the 943 

consensus ChIP-seq signals of the five histone marks in every component (minimal partial correlation 944 

= -0.41; maximal partial correlation = 0.33; all partial correlations Benjamini-Hochberg's P < 4.1 x 945 

10-303). Blue edges represent positive partial correlations and red edges negative ones. Edge widths 946 

are proportional to absolute partial correlation values within each network. All the networks are based 947 

on the 5,737 1-to-1 orthologous protein-coding genes associated with at least one regulatory element 948 

in all species. Only nodes for values with significant and relevant partial correlations (Methods) are 949 

represented. 950 

 951 

Figure 5. Different regulatory activities have different patterns of epigenetic and sequence 952 

conservation. a, Barplots show the average number of orthologous regulatory regions across species 953 

with the corresponding color-coded epigenetic state conserved in 1, 2, 3, 4 or 5 species. Error bars 954 

show the standard deviation across species and differently shaped dots show the number of regulatory 955 

regions with this conservation for each species, as in Fig, 3e-f. b, Distribution of the sequence 956 

conservation scores (calculated as z-scores of the distribution of phastCons30way63 values for non-957 
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coding regions in the same Topologically Associated Domain64; Methods) of human orthologous 958 

regulatory regions with different epigenetic states conserved in 1, 2, 3, 4 or 5 of our primate species.  959 

 960 

Figure 6. Intragenic enhancers with weak activities echo brain-specific regulation and co-961 

localize with signals of recent human selection. a, Median expression levels of genes associated 962 

with intragenic enhancers with strong conserved (763 genes), weak conserved (528 genes) and weak 963 

human-specific (105 genes) enhancer activities in their three least and three most expressed tissues 964 

from GTEx data. b, Functional enrichment of conserved and human-specific activities (strong 965 

promoter -sP- and strong and weak enhancer activities -sE and wE, respectively-) in specific 966 

regulatory components (genic promoters -gP- and intragenic enhancers -gE-). Circles denote 967 

significant enrichment of conserved elements, whereas diamonds refer to human-specific elements 968 

(Fisher’s exact test: Benjamini-Hochberg’s correction, FDR < 0.05). The size of the circles/diamonds 969 

shows the proportion of genes included in that functional category out of the total number of genes 970 

contained in the corresponding regulatory group. The number of genes with conserved elements is 971 

1372, 730 and 445 genes for sP, sE and wE, respectively, and 78 genes that include human-specific 972 

gains of wE. Terms associated with molecular functions in Supplementary Fig. 58. c, Hierarchical 973 

strategy to assess the specific enrichment of signals of positive selection in human-specific intragenic 974 

enhancers (gE) with a weak enhancer state (wE). We first tested the enrichment in the set of genes 975 

with intragenic enhancers with weak activities (1740 genes) compared to the genes containing 976 

intragenic enhancers from any other activity (3608 genes) (One-tailed Fisher’s exact test: P = 1.75 x 977 

10-14, OR = 2.03). To test whether this activity-associated enrichment is specific of the conservation 978 

level of the enhancer, we considered the enrichment in intragenic enhancers with human-specific (134 979 

genes) or with conserved weak enhancer activities (600 genes) compared to the complementary sets 980 

of genes with intragenic weak enhancers (One-tailed Fisher’s exact test: P = 8.24 x 10-7, OR = 2.61 981 

and P = 0.38 OR = 1.05, respectively) and the enrichment in genes with human-specific enhancers 982 

compared to genes with conserved enhancers (One-tailed Fisher’s exact test: P = 0.0013, OR = 2.1). 983 

H, C, G, O, M are used to refer to each species and non-RE is used to define a non-regulatory element. 984 

d, Top: Schematic representation of a human-specific intragenic weak enhancer with a hSNC 985 

(nucleotide change in humans shown in red) contained in a gene with signals of selection (orange 986 

peaks). Bottom: Venn diagram illustrating the overlap between the 41 genes containing human-987 

specific weak intragenic enhancers with signals of selection (orange) and the 30 genes with these 988 

enhancers and with human single nucleotide changes (hSNCs) fixed in humans and distinct from 989 

other non-human primates (red). 990 

 991 

 992 
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