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Supporting Information Text

1. Formal Background on Boolean networks

Notations The Boolean domain is denoted by B := {0, 1}. Given a configuration x ∈ Bn and i ∈ [n], we denote xi the ith

component of x, so that x = x1 . . . xn, and x̄ the complement of x, i.e., ∀i ∈ [n], x̄i = 1−xi. Given two configurations x, y ∈ Bn,
the components having a different state are noted ∆(x, y) := {i ∈ [n] | xi 6= yi}. Symbol ∧ denotes the logical conjunction, ∨
the disjunction, and ¬ the negation. Given a finite set S, |S| is its cardinality.

A. Boolean networks.

Definition 1.1 (Boolean network). A Boolean network (BN) of dimension n is a function f : Bn → Bn. For each i ∈ [n],
fi : Bn → B denotes the local function of its ith component.
Definition 1.2 (Locally-monotonic BN). A BN f : Bn → Bn is locally monotonic whenever for each component i ∈ {1, . . . , n},
there exists an ordering of components �i∈ {≤,≥}n such that ∀x, y ∈ Bn, (x1 �i1 y1 ∧ ... ∧ xn �in yn)⇒ fi(x) ≤ fi(y).
Example 1. The BN f of dimension 3 defined as

f1(x) = x3 ∧ (¬x1 ∨ ¬x2)
f2(x) = x3 ∧ x1

f3(x) = x1 ∨ x2 ∨ x3 ,

is locally monotonic, for instance with �1= (≥,≥,≤) and �2=�3= (≤,≤,≤).

B. Update semantics. BN semantics are expressed as irreflexive binary relations between the configurations. We use the symbol
→ decorated with the Boolean function and a symbol representing the semantics.
Definition 1.3 (Synchronous semantics).

∀x, y ∈ Bn x
f−→
s
y

∆⇐⇒ x 6= y ∧ y = f(x) .

Definition 1.4 (Fully asynchronous semantics).

∀x, y ∈ Bn, x
f−→
a1
y

∆⇐⇒ ∃i ∈ [n] : ∆(x, y) = {i} ∧ yi = fi(x) .

Definition 1.5 (Asynchronous semantics).

∀x, y ∈ Bn, x
f−→
a
y

∆⇐⇒ x 6= y ∧ ∀i ∈ ∆(x, y), yi = fi(x) .

Given a semantics σ, we write f−→
σ

∗ the reflexive and transitive closure of the binary relation f−→
σ
. Thus, x f−→

σ

∗ y if and only if

x = y or there exists a sequence x f−→
σ
x′

f−→
σ
· · · f−→

σ
y. The set of configurations which are in such a relation with a configuration

x is given by ρfσ(x):

ρfσ(x) := {y ∈ Bn | x f−→
σ

∗ y} . [1]

C. Dynamical properties.

Definition 1.6 (Fixed point). A configuration x ∈ Bn is a fixed point of the BN f with semantics σ whenever

ρfσ(x) = {x} .

Definition 1.7 (Reachability). Given two configurations x, y ∈ Bn of a BN f with semantics σ, y is reachable from x whenever

y ∈ ρfσ(x) .

Definition 1.8 (Attractor). A non-empty set of configurations A ⊆ Bn is an attractor of the BN f with semantics σ whenever

∀x ∈ A, ρfσ(x) = A .

D. Computational Complexity of Dynamical Properties with (A)synchronous Semantics. Let us fix a BN f of dimension n.

D.1. Fixed points. Remark that with synchronous, fully asynchronous, and asynchronous semantics, x ∈ Bn is a fixed point if and
only if f(x) = x.
Proposition 1. Deciding if there exists x ∈ Bn such that f(x) = x is NP-complete.

Proof. By reduction of the SAT problem (1).
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D.2. Reachability.

Proposition 2. Given two configurations x, y ∈ Bn, deciding if y ∈ ρfσ(x) with σ ∈ {s, a1, a} is PSPACE-complete.

Proof. As there is at most 2n configurations to explore, the problem is at most in PSPACE, as it sufficient to apply non-
deterministically at most 2n − 1 transitions from x using a counter on n bits.

With the synchronous semantics, the PSPACE-hardness derives by reduction of the reachability problem in reaction systems,
a subclass of synchronous BNs (2).

With fully asynchronous and asynchronous semantics, the PSPACE-hardness derives by reduction of the reachability
problem in synchronous BNs. Indeed, similarly to cellular automata (3), one can define a BN f ′ so that asynchronous and fully
asynchronous semantics give reachability relations that are equivalent with the synchronous semantics of f .

A possible construction is to decompose a synchronous transition in several steps which can be performed asynchronously.
This involves 3 stages: (a) the computation of the next value for each component i ∈ [n]; (b) the application of the new state for
each component; (c) the reset of components introduced by the construction. We give here an encoding as a BN f ′ with 3n+ 2
dimensions: one component z for which the state 1 triggers the reset of additional components (except z); one component w for
which the state 0, assuming z has state 0, triggers the computation stage (a), and the state 1 triggers the application stage
(b). For each component i ∈ [n] of f , two components ci and c̄i are defined, for which the state 1 specify respectively if fi is
true or false. The end of computation stage (a) is detected whenever for each component i ∈ [n], either ci or c̄i are in state 1.
Component w then switch to state 1; then, components i switch to state 0 if and only if c̄i is 1 and to state 1 if and only if ci is
1. The end of application stage (b) is detected whenever all the components i ∈ [n] have been updated. Component z then
witch to state 1 which will trigger the switch to state 0 of components w, ci and c̄i. Finally, component z switch back to state
0, which allows components ci and c̄i computing the next state of each components i ∈ [n]. This network f ′ : B3n+2 → B3n+2

can be formally defined as follows, where x1..n denotes the configuration x truncated at the first n components:

f ′i(x′) = ((¬x′w ∨ x′z) ∧ x′i) ∨ (x′w ∧ ¬x′z ∧ x′ci)
f ′ci(x′) = ¬x′z ∧

(
(¬x′w ∧ fi(x′1..n)) ∨ (x′w ∧ x′ci)

)
f ′c̄i(x′) = ¬x′z ∧

(
(¬x′w ∧ ¬fi(x′1..n)) ∨ (x′w ∧ x′c̄i)

)
f ′w(x′) = ¬x′z ∧

((
x′w ∨

∧
i∈[n](x

′
ci ∨ x′c̄i)

))
f ′z(x′) =

(
x′w ∧

∧
i∈[n](x

′
ci ⇔ x′i ∧ x′c̄i ⇔ ¬x′i)

)
∨
(
x′z ∧

(
x′w ∨

∨
i∈[n](x

′
ci ∨ x′c̄i)

))
It results that for all pairs of configurations x, y ∈ Bn,

y ∈ ρfs (x)⇐⇒ y02n+2 ∈ ρf
′

a (x02n+2)⇐⇒ y02n+2 ∈ ρf
′

a1(x02n+2)

where 02n+2 is the 0 vector of dimension 2n+ 2 and y02n+2 denotes its concatenation to y.

D.3. Attractors.

Proposition 3. Given a configuration x ∈ Bn, deciding if x belongs to an attractor of f with semantics σ ∈ {s, a1, a} is
PSPACE-complete.

Proof. The problem is in PSPACE as one can solve it through its complementary: x does not belong to any attractor if and
only if there exists a configuration y such that y is reachable from x and x is not reachable from y.

For the synchronous semantics, the PSPACE-hardness derives by reduction of the same problem in synchronous reaction
systems, a subclass of BNs (2). Then, the proof can be lifted to asynchronous and fully asynchronous semantics by the reduction
of the problem with the synchronous semantics (e.g., by using the construction in the previous section).
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2. Most Permissive Boolean Networks

A. Formal definition of the most permissive semantics. We give two different definitions which are equivalent in term of
reachability properties. The first one introduces dynamic states, the second one relies on the computation of hypercubes.

A.1. With dynamic states. A most-permissive configuration assigns to each BN component one state among four, noted P :=
{0,↗,↘, 1}. The possible binary interpretations of a configuration x ∈ Pn are denoted by

γ(x) := {x̃ ∈ Bn | ∀i ∈ [n], xi ∈ B⇒ x̃i = xi} . [2]

The semantics is defined as an irreflexive binary relation between configurations in Pn:

Definition 2.1 (Most permissive semantics f−−→
mp

).

∀x, y ∈ Pn, x
f−−→

mp
y

∆⇐⇒ ∃i ∈ [n] : ∆(x, y) = {i}

∧ yi =


↗ if xi 6= 1 ∧ ∃x̃ ∈ γ(x) : fi(x̃)
1 if xi = ↗
↘ if xi 6= 0 ∧ ∃x̃ ∈ γ(x) : ¬fi(x̃)
0 if xi = ↘

The set of binary configurations reachable from x ∈ Bn with the most permissive semantics is given by

ρfmp(x) := {y ∈ Bn | x f−−→
mp
∗ y} . [3]

The following figure shows the automaton of the state change of a component i in the most permissive semantics, following
notations of Def. 2.1. The labels fi(x̃) and ¬fi(x̃) on edges are the conditions for firing the transitions, where x̃ ∈ γ(x); the
label ε indicates transitions that can be done without condition:

1

↗

0

↘

f i
(x̃)

¬f
i(x̃

)
ε

ε

¬fi(x̃)

fi(x̃)

With the given definition, only one automaton is updated at a time. However, it is equivalent to allow any number of
simultaneous changes, as long as fully asynchronous updates are considered.

Given a configuration x ∈ Pn, one can remark that as long as only transitions towards dynamic states ↗ or ↘ are performed,
then the set of binary interpretations γ is growing. As a consequence, the ordering of such transitions does not matter.

Proposition 4. Given a BN f of dimension n, ∀x, y ∈ Pn such that x f−−→
mp

y and ∀j ∈ ∆(x, y) : yj /∈ B, γ(x) ⊆ γ(y).

Given a configuration x ∈ Bn, if we consider any reachable configuration where changed components are in an dynamic state,
and from which there is no more transitions from binary states towards dynamic states, then the set of binary interpretation of
this later configuration includes the set of all binary configurations reachable from x:

Proposition 5. Given a BN f of dimension n and a binary configuration x ∈ Bn, let us consider a configuration z ∈ Pn such
that x f−−→

mp
∗ z, ∀i ∈ ∆(x, z) : zi /∈ B, and there is no z′ ∈ Pn such that z f−−→

mp
z with for j ∈ ∆(z, z′), zj ∈ B and z′j /∈ B, then

ρfmp(x) ⊆ γ(z).

A.2. With hypercubes. The dynamic states might suggest that the most permissive semantics is close to multivalued networks
with 4 states. However, notice that states P are not totally ordered by the transitions, as it is required by multivalued networks.

We give here an equivalent definition of ρfmp which does not relies on these dynamic states, but on the computation of
hypercubes closed by f . An hypercube within Bn has a set of components being fixed to a Boolean state, and the others being
free (noted with ∗).

Definition 2.2 (Hypercube). An hypercube h of dimension n is a vector in (B∪ {∗})n. The set of its associated configurations
is denoted by c(h) := {x ∈ Bn | ∀i ∈ [n], hi 6= ∗ ⇒ xi = hi}.

Given two hypercubes h, h′ ∈ (B ∪ {∗})n, h is smaller than h′ if and only if ∀i ∈ [n], h′i 6= ∗ ⇒ hi = h′i. An hypercube is
minimal if there is no different hypercubes smaller than it.

An hypercube h is closed by f whenever for each configuration x ∈ c(h), f(x) ∈ c(h).
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An hypercube closed by f is also known as a trap space; if it is minimal, it is a minimal trap space.
We generalize the notion of closure by allowing restricting the set of components which should be closed.

Definition 2.3 (K-closed hypercube). Given a subset of components K ⊆ [n], an hypercube h ∈ (B ∪ {∗})n is K-closed by f
whenever for each configuration x ∈ c(h), for each component i ∈ K, hi ∈ {∗, fi(x)}.

Remark: an hypercube is closed if and only if it is [n]-closed.

Example 2. Let us consider the BN f : B3 → B3 with f1(x) := ¬x2, f2(x) := ¬x1, et f3(x) := ¬x1 ∧ x2. The hypercube 01∗
is closed by f , with c(01∗) = {010, 011}. The hypercube 1∗0 is the smallest hypercube {2, 3}-closed by f containing 110; it is
not closed by f , nor the smallest hypercube {2, 3}-closed by f containing 100.

Starting from a binary configuration x ∈ Bn, the most permissive semantics can be expressed using the computation of
smallest hypercubes containing x and which are K-closed by f , for every K:

• x is the unique hypercube ∅-closed by f containing x;

• the change of state of component i ∈ [n] to ↗ or ↘ produces a configuration x′ where γ(x′) correspond to the hypercube
h ∈ (B ∪ {∗})n with hi = ∗ and for each other component j ∈ [n], j 6= i, hj = xj . Thus, h is the smallest hypercube
{i}-closed by f and containing x;

• by considering only the change of states towards ↗ and ↘, the most permissive semantics progressively enlarges the
hypercubes along the modified components, and each step results in a smallest hypercube K-closed by f and containing
x, for every K ⊆ [n].

With the most permissive semantics, the change of state of a component from a dynamic to a Boolean state is without
condition, and is solely determined by its current dynamic state: 1 from ↗ and 0 from ↘. Thus, starting from an initial
configuration which is binary, a component can be in the state ↗ only if a preceding configuration x′ ∈ Pn was such that
∃z ∈ γ(x′) with fi(z) = 1 (resp. ↘ if fi(z) = 0).

The following proposition establishes the correspondence with the initial definition with dynamic states:

Proposition 6. Given a BN f of dimension n and two configurations x, y ∈ Bn, y ∈ ρfmp(y) if and only if there exists K ⊆ [n]
such that the smallest K-closed hypercube h and containing x verifies (1) y ∈ c(h), and (2) ∀i ∈ K, there exists a configuration
z ∈ c(h) such that fi(z) = yi.

Example 3. Here below are examples of smallest K-closed hypercubes containing la configuration 000 (left), 010 (top right),
and 011 (bottom right) for the BN f of dimension 3 defined by f1(x) := ¬x2, f2(x) := ¬x1, f3(x) := ¬x1 ∧ x2. Configurations
belonging to the hypercube are highlighted in bold; these verifying the reachability property are boxed. The hypercube 011 is only
one which is closed by f and minimal.

010 110

000 100

011 111

001 101

010 110

000 100

011 111

001 101

010 110

000 100

011 111

001 101

K = ∅ K = {1} K = {1, 2, 3}
000 ∗00 01∗

010 110

000 100

011 111

001 101

010 110

000 100

011 111

001 101

010 110

000 100

011 111

001 101

K = {1, 2} K = {1, 2, 3} K = {1, 2, 3}
∗ ∗ 0 ∗ ∗ ∗ 011

B. Relation with quantitative refinements. Multivalued networks (MNs) are a generalization of BNs where the components can
take values in a finite discrete domain. Let us denote the possible values as M := {0, 1, . . . ,m} for some integer m. Without
loss of generality, we assume the same domain of values for all the components.

Definition 2.4 (Multivalued network). A multivalued network (MN) of dimension n over a value range M = {0, 1, . . . ,m} is a
function F : Mn → {−1, 0, 1}n.

A configuration of a MN of dimension n is a vector x ∈ Mn. Given two configurations x, y ∈ Mn, the components that differ
are noted ∆(x, y) := {i ∈ [n] | xi 6= yi}.
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Definition 2.5 (Asynchronous semantics). Given a multivalued network F , the binary irreflexive relation F−→
a
⊆ Mn ×Mn is

defined as:

x
F−→
a
y

∆⇐⇒ ∀i ∈ ∆(x, y), yi = xi + Fi(x) .

We write F−→
a
∗ for the transitive closure of F−→

a
.

We now define a notion of multivalued refinement of a BN, which formalizes the intuition that the value changes defined by
the multivalued network are compatible with those of the BN. The refinement criteria relies on a binarization of the multivalued
configuration. An appropriate binarization necessarily quantifies 0 as Boolean 0 and m as 1, and is free for the other dynamic
states. Let us denote by β(x) the set of possible binarization of configuration x ∈ Mn:

β(x) := {x′ ∈ Bn | ∀i ∈ [n], xi = 0⇒ x′i = 0 ∧ xi = m⇒ x′i = 1} . [4]

Definition 2.6 (Multivalued refinement). A multivalued network F of dimension n over a value range M refines a BN f of
equal dimension n if and only if for every configuration x ∈ Mn and every i ∈ [n],

Fi(x) > 0⇒ ∃x′ ∈ β(x) : fi(x′) = 1 ∧ Fi(x) < 0⇒ ∃x′ ∈ β(x) : fi(x′) = 0 .

This characterization of refinement can be readily extended to ODEs: similarly to multivalued networks, ODEs specify the
derivative of the (positive) real value of each component along the continuous time t:

dF(t, x)
dt

= F(x) with F : Rn≥0 → Rn . [5]

Here, F(x) is the derivative of F(t, x) along time t in function of continuous configurations x; F being usually unknown. ODEs
can be seen thus be seen as MNs with m going to infinity and with synchronous semantics: F model the simultaneous evolution
of all the components.

The admissible binarizations β should be slightly adapted to reflect the absence a priori of maximum value: β(x) := {x′ ∈
Bn | ∀i ∈ [n], xi = 0⇒ x′i = 0}. Then, the definition of refinement is identical.

B.1. Theorem 1 (Completeness). Let us consider a BN f of dimension n and any multivalued refinement F with m values. A
most-permissive interpretation of a multivalued configuration is a configuration in Pn where components having extreme states
in the multivalued configuration have the corresponding extreme states in the most permissive configuration, and otherwise are
either ↗ or ↘. Let us denote these interpretations by

α(x) := {x̂ ∈ Pn | xi = 0⇔ x̂i = 0 ∧ xi = m⇔ x̂i = m} [6]

Then, Theorem 1 states that for any asynchronous transition from x to y (x F−→
a
y), there is a most permissive trajectory

from any corresponding most permissive configuration x̂ ∈ α(x) to a configuration ŷ ∈ α(y) where the state of each component
is consistent with the changes between x and y.

Theorem 1. Given a BN f of dimension n, for any multivalued network F : Mn → {−1, 0, 1}n being a refinement of f ,

∀x, y ∈ Mn, x
F−→
a
y =⇒ ∀x̂ ∈ α(x), ∃ŷ ∈ α(x) : x̂ f−−→

mp
∗ ŷ with ∀i ∈ [n], ŷi =



↗ if yi > xi ∧ yi < m

↘ if yi < xi ∧ yi > 0
0 if yi = 0
1 if yi = m

x̂i otherwise.

Proof. From MN semantics, for each component i ∈ ∆(x, y), whenever yi > xi (resp. yi < xi), necessarily Fi(x) > 0 (resp.
Fi(x) < 0). From the refinement property, there exists a binarization x′ ∈ β(x) such that fi(x) = 1 (resp. fi(x) = 0). Now
remark that for any x̂ ∈ α(x), x′ ∈ β(x̂). Therefore, for each component i ∈ ∆(x, y), if yi > xi and x̂i 6= ↗, the i can change to
state ↗, and if yi < xi and x̂i 6= ↘, the i can change to state ↘. By Proposition 4, these transitions can be applied in any
order; let us denote by z the obtained configuration. Finally, for each component i ∈ ∆(x, y) where yi = 0 (resp. yi = m),
remark that zi = ↘ (resp. zi = ↗), thus it can change to state 0 (resp. 1), in any order. Therefore, x̂ f−−→

mp
∗ ŷ.

Remark that the theorem considers asynchronous transition, which includes any restrictions (synchronous, fully asynchronous,
sequential, ...).

As the proof relies solely on the sign of the derivative of the refinement of f , the property extends to ODE refinements,
which can be seen as MN with m to infinity and with synchronous semantics. The function α then becomes

α(x) := {x̂ ∈ Pn | ∀i ∈ [n], xi = 0⇔ x̂i = 0 ∧ x̂i 6= 1} [7]
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Corollary 1. For any ODE system F : Rn≥0 → Rn refining a BN f of dimension n,

∀x ∈ Rn≥0, ∀x̂ ∈ α(x), x̂
f−−→

mp
∗ ŷ with ∀i ∈ [n], ŷi =


↗ if Fi(x) > 0
↘ if Fi(x) < 0 ∧ xi > 0
x̂i otherwise.

Remark that a BN f is a multivalued refinement of itself with M = B and for each i ∈ [n], Fi(x) = 1 if fi(x),−1 otherwise.
Therefore another corollary of the above theorem is that the most permissive semantics of BNs simulates the asynchronous
semantics of f :

Corollary 2. Given a BN f of dimension n,

∀x, y ∈ Bn, x
f−→
a
∗ y =⇒ x

f−−→
mp
∗ y .

Thus, the number of attractors with the most permissive semantics is at most the number of attractor with update semantics.

B.2. Theorem 2 (Minimality). Whereas complete, one should wonder whether the most permissive semantics introduce spurious
behaviors. We prove in this section that the most permissive semantics is the tightest abstraction of multivalued refinements
with respect to reachability properties.

First, Proposition 7 ensures that if there exists a most-permissive trajectory between two Boolean configurations x and
y ∈ Bn, then there exists a multilevel refinement of the BN which allows an asynchronous trajectory between corresponding
configurations m.x and m.y with m = 2. The idea is to construct a MN which can reproduce the shortcut trajectory,
with dynamic states identified to an intermediate state 1 of the MN: in a first phase, components increase to 1 (possibly
fully-asynchronously), then a last synchronous step leads to the target 2.y configuration.

Then, we introduce the notion of trace refinement witch matches most permissive trajectories with MN asynchronous
trajectories having coherent successions of states, both with respect to admissible most-permissive interpretation, and with
respect to derivatives: whenever a component i changes to the dynamic state ↗ (resp. ↘), Fi is positive (resp. negative) in
the corresponding multivalued configuration. Theorem 2 establishes for any most permissive trajectory, there exists a MN
refinement with m = 3 which admits a matching asynchronous trajectory.

Therefore, the most permissive semantics introduces no spurious behavior with respect to the admissible refinements of a
BN f .

Proposition 7. For any BN f of dimension n and any pair of configurations x, y ∈ Bn, if y is reachable from x with the most
permissive semantics, then there exists a MN F with m values which is a refinement of f and where m.y is reachable from m.x
with the asynchronous semantics.

Proof. Let K ⊆ [n] be the smallest subset of components verifying Proposition 6. We now define a sequence of configurations
x, x′, . . . , x(|K|) ∈ Pn to be arbitrary such that ∀0 < i ≤ |K|, x(i−1) f−−→

mp
x(i) and j ∈ ∆(x(i−1), x(i)) =⇒ j ∈ K ∧ x(i−1)

j ∈

B ∧ x(i)
j /∈ B. Note that such a sequence is guaranteed to exist thanks to K being minimal.

We define another sequence of configurations z, z′, . . . , z(|K|) ∈ {0, 1, 2}n as the multivalued equivalent of x, x′, . . . , x(|K|):
∀0 ≤ i ≤ |K| and ∀j ∈ [n], x(i)

j ∈ B =⇒ z
(i)
j = 2.x(i)

j and x(i)
j /∈ B =⇒ z

(i)
j = 1.

We now construct the coveted MN F with 3 values. based on z, z′, . . . , z(|K|) as follows:

• For any 0 ≤ i < |K|, F (z(i)) = z(i+1) − z(i).

• F (z|K|) = 2.y − z|K|. (2.y − z|K| ∈ {−1, 0, 1}n thanks to y being in the smallest K-closed hypercube containing x.)

• For any other z ∈ {0, 1, 2}n, F (z) = 0n.

Clearly, 2.y is reachable from 2.x = z in F with synchronous semantics. What remains to be proven is that F is a refinement
of f . Nothing needs to be shown for cases when F returns 0, let thus first 0 ≤ i < |K| and {j} = ∆(z(i), z(i+1)). Let us further
assume Fj(z(i)) = 1 as the Fj(z(i)) = −1 case is symmetric. We need to show ∃x̃ ∈ β(z(i)) such that f(x̃). By definition,
x(i+1) = ↗, thus ∃x̃ ∈ γ(x(i)) such that f(x̃). Since for any j ∈ [n], z(i)

j = 1 exactly when x(i)
j /∈ B, we have γ(x(i)) ⊆ β(z(i)).

Finally, let us consider z|K|. We need to show ∀j ∈ ∆(z(|K|), 2.y), ∃x̃ ∈ β(z(|K|)), f(x̃) = yj . By definition, we have
∆(z(|K|), 2.y) = K. Since K verifies Property 6, we know ∀j ∈ K, ∃x̃ ∈ c(h), f(x̃) = yj , where h is the smallest K-closed
hypercube containing x. By definition of x(|K|), ∀j ∈ K, x(|K|)

j /∈ B and thus c(h) ⊆ γ(x(|K|)). Furthermore, since for any
j ∈ [n], z(|K|)

j = 1 exactly when x(|K|)
j /∈ B, we have γ(x(|K|)) ⊆ β(z(|K|)).

Definition 2.7 (Trace Refinement). Given a BN f of dimension n and a multivalued refinement F : Mn → {−1, 0, 1}n of f .
Let x, x′, . . . , x(k) ∈ Pn be a finite sequence of configurations such that ∀0 < i ≤ k, x(i−1) f−−→

mp
x(i) (finite trace of f with the

most permissive semantics).
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Then a finite sequence y, y′, . . . , y(l) ∈ Mn such that ∀0 < i ≤ l, y(i−1) F−→
a
y(i), is a trace refinement of x, x′, . . . , x(k) if there

exists a function κ : {0, . . . , k} → {0, . . . , l} (trace refinement function) satisfying the following requirements:

1. κ is non-decreasing, i.e. i < j =⇒ κ(i) ≤ κ(j);

2. κ(0) = 0 and κ(k) = l;

3. ∀j ∈ [n], xj = yj and for each 0 < i ≤ k, (x(i)
j = 0 =⇒ y

(κ(i))
j < m) ∧ (x(i)

j = 1 =⇒ y
(κ(i))
j > 0);

4. For each 0 < i ≤ k such that x(i)
j /∈ B where {j} = ∆(x(i−1), x(i)), x(i)

j = ↗ =⇒ Fj(y(κ(i−1))) = 1 and x
(i)
j = ↘ =⇒

Fj(y(κ(i−1))) = −1.

Theorem 2. For any BN f of dimension n and any sequence of configurations x, x′, . . . , x(k) ∈ Pn such that x ∈ Bn and
∀0 < i ≤ k, x(i−1) f−−→

mp
x(i), there exists a MN F : Mn → {−1, 0, 1}n which is a refinement of f and has a trace refinement

y, y′, . . . , y(l) ∈ Mn of x, x′, . . . , x(k).

Proof. We construct F and y, y′, . . . , y(l) iteratively along the sequence x, x′, . . . , x(k). For each step i ∈ {0, . . . , k} we maintain
that the constructed network F is a refinement of of f and y, y′, . . . , y(li) is a trace refinement of x, x′, . . . , x(i).

Let us first construct our initial F and y (for i = 0). We define the MN F with m = 3 as follows:

∀z ∈ Bn,∀j ∈ [n],
{
fj(z) = 0 =⇒ ∀z′ ∈ Πn

i=1{2 · zi, (2 · zi + 1)}, Fj(z′) = −1
fj(z) = 1 =⇒ ∀z′ ∈ Πn

i=1{2 · zi, (2 · zi + 1)}, Fj(z′) = 1

We first show that F is indeed a refinement of f . Let z ∈ Mn and j ∈ [n] be arbitrary such that F (z) = −1 as the case of
F (z) = 1 is symmetric. We want to show ∃z′ ∈ β(z) such that f(z′) = 0.

Consider the state z′ defined as follows:

∀j ∈ [n], z′j = zj − (zj mod 3)
3

Surely such state is a binarization of z, z′ ∈ β(z). Moreover, f(z′) = 0 as by definition of F , f(z′) =⇒ F (z) = 1 leads to a
contradiction.

Let us define y = 3.x: it is trivially a trace refinement of x with the trace refinement function κ : 0 7→ 0.
We now iterate over i ∈ {1, . . . , k}, adjusting F , y, y′, . . . , y(li) and κ to ensure y, y′, . . . , y(li) is a trace refinement of

x, x′, . . . , x(i). Moreover, we maintain that no transition increases any component value beyond 2 or decreases below 1 along
y′, . . . , y(li) and ensure that ∀j ∈ [n], x(i)

j = ↘ =⇒ y
(κ(i))
j = 1 and x(i)

j = ↗ =⇒ y
(κ(i))
j = 2.

Let {e} = ∆(x(i−1), x(i)) and let li−1 denote the current length of the sequence of configurations y, y′, . . . , y(li−1). We modify
F and extend y, y′, . . . , y(li−1) based on the value of x(i)

e :

• x
(i)
e /∈ B. Let us assume x(i)

e = ↘ without loss of generality, as the construction is symmetric for x(i)
e = ↗.

First, we extend y, y′, . . . , y(li−1) based on y(li−1)
e :

– y
(li−1)
e = 3, y(li−1+1) := z ∧ y(li−1+2) := z′;

– y
(li−1)
e = 2, y(li−1+1) := z′;

where z and z′ are equal to y(li−1) but ze = 2 and z′e = 1. The trace refinement function is adjusted accordingly,
y

(li−1)
e = 3 =⇒ κ : i 7→ li−1 + 2 = li and y(li−1)

e = 2 =⇒ κ : i 7→ li−1 + 1 = li.

If ∀0 < j ≤ li, y(j−1) F−→
a
y(j), we are done. Otherwise, we modify Fe(y(li−1)) := −1 and, if necessary, also Fe(z) := −1.

Since for any j ∈ [n], y(li−1)
j ∈ {1, 2} exactly when xi−1

j /∈ B, the new F is a refinement of f . ∀0 < j ≤ li, y(j−1) F−→
a
y(j)

holds in the new F as the e-th component never increases value beyond 2 along y, y′, . . . , y(li).
Finally, y, y′, . . . , y(li) is indeed a trace refinement of x, x′, . . . , x(i) with κ:

1. κ being non-decreasing is guaranteed as li > li−1.
2. κ(0) = 0 remains unchanged from the initial step and κ(i) = li by definition.
3. 0 < y

(li)
e = 1 < 3 and the rest follows from the induction hypothesis.

4. Fe(y(κ(i−1))) = Fe(y(li−1)) = −1.

• πi(k) ∈ B. No change is made safe for the completion of the trace refinement function κ : i 7→ κ(i− 1).
y, y′, . . . , y(li−1) being a trace refinement of x, x′, . . . , x(i) is trivial as the fourth point of Definition 2.7 is not applicable.

8 of 17 Loïc Paulevé, Juraj Kolčák, Thomas Chatain, Stefan Haar



C. Computational complexity. We address the computational complexity of basic dynamical properties, as done in Sect. 1.D,
but with the most permissive semantics.

First, remark that fixed points of the most permissive semantics are exactly the fixed points of the (a)synchronous semantics
(for any configuration x ∈ Pn, ρfmp(x) = {x} ⇔ x ∈ Bn ∧ f(x) = x). Therefore the complexity of deciding if a configuration x is
a fixed point is the same (NP-complete, Proposition 1).

C.1. Theorem 3 (Reachability). Lemma 1 establishes that if there exists a sequence of most-permissive transitions from a configura-
tion x to a configuration y, then there exists a sequence of linear length linking the two configurations. Lemma 2 then states
that searching for such a sequence requires exploring at most a quadratic number of transitions, which leads to Theorem 3
establishing the computational complexity for deciding reachability as in P for locally-monotonic BNs and in PNP (also known
as ∆P

2 ) otherwise.

Lemma 1. Given a BN f of dimension n and any configurations x, y ∈ Bn, if x f−−→
mp
∗ y, then there exists a sequence of at most

3n transitions f−−→
mp

from x to y. This sequence starts with at most n and at least |∆(x, y)| transitions of the form B→ {↗,↘},

then at most n transitions of the form {↗,↘} → {↘,↗}, and then at most n transitions of the form {↗,↘} → B.

Proof. Let us consider any sequence of transitions x f−−→
mp

w1 f−−→
mp
· · ·wk f−−→

mp
y. Let us define the set of components which went

through the state ↗ or ↘ during this sequence of transitions, Î := {i ∈ [n] | ∃j ∈ [k], wj /∈ B}.
Let us prove that there exists ẑ ∈ Pn with ∆(x, ẑ) = Î and ∀i ∈ Î, ẑi /∈ B, such that x f−−→

mp
∗ ẑ in |Î| transitions.

For each component i ∈ Î, we write ν(i) the smallest index j ∈ [k] such that wji 6= B. Necessarily, for each i ∈ Î,
∃z ∈ γ(wν(i)−1) : fi(z) 6= xi, identifying w0 with x. The components in Î can then be ordered as {i1, . . . , i|Î|} = Î with
ν(i1) < · · · < ν(i|Î|). First, remark that ν(i1) = 1, hence x f−−→

mp
z1 with ∆(x, z1) = ∆(wν(i1)−1, wν(i1)) = {i1} and z1

i1 = w
ν(i1)
i1 .

Then, remark that γ(wν(i2)) ⊆ γ(z1), hence, z1 f−−→
mp

z2 with ∆(z1, z2) = ∆(wν(i2)−1, wν(i2)) = {i2} and z2
i2 = w

ν(i2)
i2 . By

induction, we obtain x f−−→
mp
∗ ẑ. Remark that ∀i ∈ Î, ẑi = ↗ whenever xi = 0 and ẑi = ↘ whenever xi = 1.

Now, let us consider the subset of components in Î which are equal in x and y, Ī := {i ∈ Î | xi = yi}: for each of these
components i ∈ Ī, there exists j′ ∈ {ν(i), . . . , k} such that wj

′

i = ↘ whenever xi = yi = 0 and wj
′

i = ↗ whenever xi = yi = 1.
By definition of Î and ẑ, we obtain that γ(wj′) ⊆ γ(ẑ). Therefore, there exists ž ∈ Pn with ∆(ẑ, ž) = Ī and ẑ f−−→

mp
∗ ž using |Ī|

transitions. Finally, remark that ž f−−→
mp
∗ y using |Î| transitions.

In summary, x f−−→
mp
∗ ẑ

f−−→
mp
∗ ž

f−−→
mp
∗ y in |Î|+ |Ī|+ |Î| ≤ 3n iterations.

Lemma 2. Given a BN f of dimension n and any configurations x, y ∈ Bn, deciding if x f−−→
mp
∗ y requires computing at most

n(n−1)
2 transitions of f−−→

mp
; whenever y belongs to an attractor, it requires as most n transitions.

Proof. Let us consider the following procedure with L ⊆ [n], initially with L = ∅:

1. From x, apply only transitions of the form B→ {↗,↘} to components i ∈ [n] \L. Let us denote by ẑL ∈ Pn the (unique)
reached configuration.

2. If y /∈ γ(ẑL), then y is not reachable from x.

3. Otherwise, let us consider the components that cannot reach their value in y from ẑL, ĪL := {i ∈ [n] | ẑLi /∈ B ∧ @z ∈
γ(ẑL), fi(z) = yi}:

(a) If ĪL = ∅, then ẑL f−−→
mp
∗ y.

(b) Otherwise, repeat the procedure with L := L ∪ ĪL.

Remark that this procedure can be iterated at most n times, each of them computing at most n−|L| transitions. Its correctness
can be demonstrated as follows.

By Lemma 1, x f−−→
mp
∗ y if and only if there exists L ⊆ [n] such that y ∈ γ(ẑL) and ĪL = ∅. Notice that there is a unique

⊆-minimal L∗ verifying y ∈ γ(ẑL∗) and ĪL∗ = ∅: if L1 and L2 verify these properties, then so does L1 ∩ L2.
Let us denote by L0, . . . , Lm the successive values of L at the beginning of each iteration of the procedure (L0 = ∅). We

prove that L∗ = Lm. Let us admit that Lk ⊆ L∗ with k < m. By construction, γ(ẑL∗) ⊆ γ(ẑLk ). Let us assume there exists
i ∈ ĪL

k and i /∈ L∗. Then, ẑL∗ = ẑL
k

/∈ B, and there exists z ∈ γ(ẑL∗) with fi(z) = yi, which is a contradiction.
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Whenever y belongs to an attractor, Ī∅ = ∅. Indeed, remark that ρfmp(y) ⊆ γ(ẑ∅). Thus, if there exists a component i ∈ Ī∅,
then from any configuration y′ ∈ ρfmp(y), y /∈ ρfmp(y′), which is a contradiction. Therefore, the procedure is executed only once,
which involves computing at most n transitions.

Steps 1 and 3 of the procedure check for the existence of transitions in a most-permissive configuration, i.e., for the existence
of a binary configuration compatible with it and such that the local function has a given value. This is exactly the SAT
problem, which is NP-complete in the general case, and P whenever f is locally-monotonic.

Theorem 3. Given a BN f of dimension n and two configurations x, y ∈ Bn, deciding if y ∈ ρfmp(x) is in P if f is
locally-monotonic, and in PNP otherwise.

C.2. Theorem 4 (Attractors). Attractors of the BN f with the most permissive semantics match exactly with the minimal trap
spaces of f (4) (Proposition 8). Thus, Deciding if a given configuration x belongs to an boils down to deciding if the smallest
hypercube closed by f and containing x is minimal.

The fact that an attractor is necessarily an hypercube comes from the property that if two configurations lying on a diagonal
of an hypercube are within the same attractor, then all adjacent configurations are within the attractor as well. This is
illustrated by the following drawing, where boxed configurations belongs to a same attractor:

010 110

000 100

011 111

001 101
=⇒

010 110

000 100

011 111

001 101

Proposition 8. A ⊆ Bn is an attractor of f with the most permissive semantics if and only if there exists a minimal hypercube
h ∈ (B ∪ {∗})n closed by f such that c(h) = A.

Proof. Let us consider a configuration x ∈ A, and let h ∈ (B ∪ {∗})n be the smallest hypercube closed by f containing x. Let
us denote by y ∈ c(h) the configuration of this hypercube which is the most distant from x: ∀i ∈ [n], yi = ¬xi whenever hi = ∗,
otherwise yi = xi. According to the previous section, remark that y is reachable from x; thus by attractor hypothesis, x is also
reachable from y. Now remark that the smallest hypercube closed by f and containing y is the same h (otherwise h would
not be closed). Thus, for any component i ∈ [n] which is free in h (hi = ∗), there exists a configuration z ∈ c(h) such that
fi(z) = 0 and a configuration z′ ∈ c(h) such that fi(z′) = 1. Therefore, any configuration of the hypercube h is reachable from
x. Finally, notice that if there exists a configuration y ∈ c(h) reachable from x, but where x does not belong to the smallest
hypercube closed by f and containing y, then x is not reachable from y, and thus does not belong to any attractor.

Theorem 4. Given a BN f of dimension n and a configuration x ∈ Bn, deciding if x belongs to an attractor of f with the
most permissive semantics is in coNP whenever f is locally monotonic, and in coNPcoNP otherwise.

Proof. Consider IS-NOT-CLOSED(f, h) the problem of deciding if the given hypercube h is not closed by f : it is equivalent to
deciding if there exists component i ∈ [n] with hi 6= ∗ and z ∈ c(h) such that fi(z) 6= hi, which is NP-complete in general, and
P whenever f is locally monotonic. Then, the complementary problem IS-CLOSED(f, h) is in coNP in the general case and in
P in the locally-monotonic case.

Consider IS-NOT-MINIMAL(f, h) the problem of deciding if the hypercube h closed by f is not minimal: it can be solved
by deciding wherever there exists an hypercube h′ which is strictly included in h and which is closed by f , which is at most
NPIS-CLOSED. Thus, the complementary problem IS-MINIMAL(f, h) is in coNPIS-CLOSED, i.e., coNPcoNP = ΠP

2 in the general
case and coNP in the locally-monotonic case.
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3. Case studies

A. Code. A simple implementation of reachability and attractor computations for Most Permissive Boolean Networks is available
at https://github.com/pauleve/mpbn. It relies on Answer-Set Reprogramming (5) and the solver clingo (6) which offers
features such as minimal model enumeration.

The computational analyzes have been performed within the CoLoMoTo environment (7) and can thus be reproduced using
the provided notebook files within the Docker image colomoto/colomoto-docker:2020-03-19:

Using Python (https://python.org), execute the following command in a terminal:

sudo pip install -U colomoto - docker # you may have to use pip3
colomoto - docker -V 2020-03-19

Alternatively, you can run the image directly with Docker (https://docker.com):

docker run -it --rm -p 8888:8888 colomoto /colomoto - docker :2020-03-19

and then open your webbrowser to https://localhost:8888. See https://colomoto.org/notebook for detailed instructions.
The notebook files (with .ipynb extension) used in the next sections can be downloaded from http://doi.org/10.5281/

zenodo.3719097 and then be uploaded and executed within the Jupyter web interface.

B. Models of differentiation processes from literature. We show on several case studies from literature that MPBNs, although
potentially predicting more behaviors than asyncrhonous BNs, are still stringent enough to predict cell fate decision processes,
i.e., absence of attractor reachable from specific configurations or with specific perturbations.

B.1. Tumour invasion model by Cohen et al. 2015. (8) This BN (32 components, Fig. S2) models cellular decision processes involved
in tumour invasion, with attractors related to apoptosis, cell cycle arrest, and various stages leading to metastasis. The study
analyzed the reachability of these attractors from a set of initial conditions and subject to different mutations. We reproduced
the analysis of reachable attractor from the same initial condition in the wild-type model and with the sol NICD gain of
function and the combined NICD gain of function and p53 loss of functions. In each case, MPBNs repart the same reachable
attractors than the original analysis with fully asynchronous BNs, the later double mutant leading to the loss of capability to
reach apoptotic attractors.

The details of the analysis can be found in the notebook “MPBN applied to Tumour invasion model by Cohen et al.
2015.ipynb”, which can be visualized online at doi:10.5281/zenodo.3936123.

B.2. T-cell differentiation model by Abou-Jaoudé et al. 2015. (9) This multivalued network (101 components, Fig. S3) models
reprogramming capabilities across different T-cell types. T-cell types are modeled by attractors where pre-determined markers
have a fixed value. The authors also pre-determined input conditions of the signaling pathways, which should be associated to
the inevitable reachability of specific T-cell types. The original study then analyzed which input conditions can stir (inevitably)
the system from any state (not only in attractors) matching with the markers of a T-cell type to an attractor matching a
different T-cell type. This results in a so-called reprogramming graph, where nodes are the T-cell subtypes, and directed edges
show the possible trans-differentiation, parameterized by the input condition triggering it.

Because of the size of the model, the study had to rely on approximations through model reduction, and use symbolic
model-checkers to avoid computing explicitly the attractors of the model.

Employing MPBNs after a booleanization (10) of the full-size model, we are able to explicitly compute all the attractors
with the MP semantics in each of the defined input conditions. It turns out that in most of them, all the attractors are fixed
points, except in APC and proTh1 conditions which both have one complex attractor. Fixed points are invariant in MPBNs
and (fully) asynchronous BNs, and to each complex MP attractor corresponds at least one complex asynchronous attractor.

The details of the analysis can be found in the notebook “MPBN applied to T-Cell differentiation model by Abou-Jaoudé et
al. 2015.ipynb”, which can be visualized online at doi:10.5281/zenodo.3936123.

C. Scalability. The theoretical complexity gain brought by the Most Permissive semantics has a drastic impact for the analysis
of large BNs. We illustrate it both on large networks from literature, and on very large networks (up to 100,000 components)
generated randomly. Computation times are obtained on an Intel(R) Xeon(R) E-2124 CPU @ 3.30GHz.

C.1. Networks from literature. In the two analysis of the previous section, the computation of reachable attractors takes less than
10ms on the Tumour invasion model (32 components) and less than 100ms on the T-cell differentiation model (104 components).

We additionally performed reachable attractor computations on the Bladder tumorigenesis model by Remy et al.
2015 (11), as it served as benchmark for evaluating simulations methods for devising reachable attractors and their propensity
in (12). The network has 35 components. The computation of reachable attractors in diverse settings are performed in less
than 10ms, whereas simulations of asynchronous BNs were reported taking from 10s to 700s, and possibly not successful.
Note however that contrary to the simulation methods, we are not able to compute nor estimate the propensity of reachable
attractors. Nevertheless, the enumeration is guaranteed to be complete. In this application, the number of attractors of Most
Permissive semantics is the same as the reported with fully asynchronous semantics.

The details of the analysis can be found in the notebook “MPBN applied to Bladder Tumorigenesis by Remy et al 2015.ipynb”
which can be visualized online at doi:10.5281/zenodo.3936123.
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https://nbviewer.jupyter.org/urls/zenodo.org/record/3936123/files/MPBN%20applied%20to%20Bladder%20Tumorigenesis%20by%20Remy%20et%20al%202015.ipynb


C.2. Very large networks. We generated random influence graphs (13) with scale-free structure (14) with a number of components
ranging from 1,000 to 100,000 with in-degrees up to 1,400. We then applied the inhibitor dominant rule to assign a Boolean
function to each component: the activation occurs only in configurations whenever no inhibitor are active and at least one
activator is active. The following computations are measured: computation of 1 attractor; enumeration of (at most) 1000
attractors; and enumeration of (at most) 1000 attractors reachable from random initial configurations.

The details of the analysis can be found in the notebook “Scalability on large random BNs.ipynb” which can be visualized
online at doi:10.5281/zenodo.3936123.

Fig. S4 summarizes the results and shows that the computation of reachable attractors take a fraction of a second with
1,0000 components, less than 2 seconds with 10,000, and less than 50 seconds with 100,000 components. The computation
times exclude the time for parsing the input text file (up to 20s for larger networks).

4. I3-FFL network motif

The incoherent feed-forward loop of type 3, I3-FFL (15, Fig. S1) describes a simple interaction motif where an input node 1
directly inhibits the output 3, but indirectly activates it via node 2. This network can then be excited by a signal on node 1.
According to theoretical studies (16, 17) employing quantitative models and experimental data from synthetically designed
circuits (18), the following behaviors are observed under some range of kinetics parameters:

• with no signal, the system stays steady showing no activity;

• switching on the signal enables observing a transient activation of the output (node 3) before reaching a stable state
where nodes 1 and 2 are active and node 3 inactive.

We show in the main text that synchronous and asynchronous analysis of the corresponding BN fails to predict this behavior,
whereas the MP interpretation enable recovering it.

One may wonder whether there exist different BN matching the network motif and the observed behavior. We employed the
in-development software BoNesis (19) which provides an exhaustive identification of all BNs compatible with a given influence
graph and dynamical properties under the MP semantics.

It results that the BN depicted in Fig. S1 is the only compatible BN under the MP semantics. Notice that the input
properties refer to the existence of two fixed points and of specific trajectories. Therefore, because MPBNs have the same fixed
points as (a)synchronous BNs, the set of MPBNs compatible with the dynamical properties includes all the BNs compatible
with (a)synchronous semantics.

Therefore, an (a)synchronous Boolean analysis would conclude that the network motif has to be revised in order to reproduce
the observed behavior, whereas it is actually sufficient.

The details of the analysis can be found in the notebook “I3FFL - compatible MPBNs.ipynb” which can be visualized online
at doi:10.5281/zenodo.3936123.
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Fig. S1. Incoherent feed-forward loop of type 3 (a) and its associated Boolean logic for nodes activities (b). Whereas theoretical and experimental studies show a possible
activation of the output (c), usual Boolean networks analysis cannot predict this transient behavior (d). Conversely, the Most Permissive interpretation can reproduce this
behavior, (e) showing one of its possible execution. A configuration is represented by a pile of 3 squares, where the top square represents the state of the first component, and
so forth. A white square represent the inactive (0) state; a blue square represents the active (1) state; the increasing state↗ is represented by a top-right white and bottom-left
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Fig. S2. Influence graph of the tumour invasion model by Cohen et al. (2015)
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Fig. S3. Influence graph of the T-cell differentiation model by Abou-Jaoudé et al. (2015)
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Fig. S4. Computation times on a 3GHz CPU obtained using mpbn software tool on BNs generated with random scale-free influence graph for the computation of a single
attractor, the enumeration of 1,000 attractor, and the computation of attractors reachable from random initial conditions. See notebook “Scalability on large random BNs.ipynb”
available at doi:10.5281/zenodo.3936123.
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