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Abstract 20 

The use of motorized treadmills as convenient tools for the study of locomotion has been in vogue 

for many decades. However, despite the widespread presence of these devices in many scientific 

and clinical environments, a full consensus on their validity to faithfully substitute free overground 

locomotion is still missing. Specifically, little information is available on whether and how the 

neural control of movement is affected when humans walk and run on a treadmill as compared to 25 

overground. Here, we made use of linear and nonlinear analysis tools to extract information from 

electromyographic recordings during walking and running overground, and on an instrumented 

treadmill. We extracted synergistic activation patterns from the muscles of the lower limb via non-

negative matrix factorization. We then investigated how the motor modules (or time-invariant 

muscle weightings) were used in the two locomotion environments. Subsequently, we examined 30 

the timing of motor primitives (or time-dependent coefficients of muscle synergies) by calculating 

their duration, the time of main activation, and their Hurst exponent, a nonlinear metric derived 

from fractal analysis. We found that motor modules were not influenced by the locomotion 

environment, while motor primitives resulted overall more regular in treadmill than in overground 

locomotion, with the main activity of the primitive for propulsion shifted earlier in time. Our 35 

results suggest that the spatial and sensory constraints imposed by the treadmill environment 

forced the central nervous system to adopt a different neural control strategy than that used for free 

overground locomotion. A data-driven indication that treadmills induce perturbations to the neural 

control of locomotion. 

Keywords 40 

Locomotion, muscle synergies, motor control, treadmill locomotion, overground locomotion 
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Introduction 

Amongst the various behaviors that can be used to investigate the neural control of movement, 

locomotion is an ideal choice: automatized, synergistic, general, cyclic, and phylogenetically old, 45 

it embodies many scientifically convenient characteristics (Bernstein, 1967). However, the study 

of overground locomotion in free, open spaces is often unfeasible due to logistical, technological, 

and other limitations. Motorized treadmills are an intuitive solution to simplify the analysis of 

locomotion and are nowadays of widespread use in research, clinical practice and sports-related 

training (Miller et al., 2019; Van Hooren et al., 2019). Nevertheless, despite their broad use, a full 50 

consensus as to whether treadmills are a valid means to generalize findings on the neural control 

of free locomotion is yet to be found (Rozumalski et al., 2015; Oliveira et al., 2016; Miller et al., 

2019; Van Hooren et al., 2019). 

Treadmill locomotion is often considered an invalid alternative to overground locomotion due to 

the mechanical advantage introduced by the moving belt. However, already in 1980, the Dutch 55 

biomechanist van Ingen Schenau showed that there are no mechanical differences between 

treadmill and overground locomotion as long as the belt’s speed remains constant (van Ingen 

Schenau, 1980). Yet, other factors might affect the physiological determinants of treadmill walking 

and running: the compliance of the surface, the lack of air resistance, the fixed rather than moving 

visual feedback, the degree of habituation, among others. (Jones and Doust, 1996; Parvataneni et 60 

al., 2009; Mooses et al., 2014; Miller et al., 2019; Van Hooren et al., 2019). For instance, when 

comparing the energetics and performance outcomes of treadmill and overground running in 

humans, a great variability across studies arises, some of which is related to the different speeds 

used for the investigation (Miller et al., 2019). The kinematics and kinetics of running seem to be 

largely independent on the chosen locomotion environment (Van Hooren et al., 2019). As for 65 
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walking, kinematics and kinetics can vary between treadmill and overground (Hollman et al., 

2016; Yang and King, 2016), but studies on the behavior of the triceps surae muscle fascicles and 

electromyographic (EMG) activity of the lower limbs did not find significant differences (Cronin 

and Finni, 2013; Ibala et al., 2019). Generally speaking, there is widespread scientific proof that 

the kinematics, kinetics, and EMG activity recorded during treadmill and overground locomotion 70 

are similar enough to allow the use of treadmill for scientific purposes (Lee and Hidler, 2008; 

Riley et al., 2008; Parvataneni et al., 2009; Chia et al., 2014). 

In this study, we set out to investigate the modular organization of muscle activity during 

overground and treadmill walking and running. We started from the general hypothesis that 

previously found similarities in kinematics, kinetics and EMG activity do not necessarily imply 75 

that locomotion in different environments is controlled with similar neuromotor strategies. Since 

it is known that when movement is constrained by internal or external factors the neuromotor 

control is affected (Martino et al., 2015; Santuz et al., 2019, 2020a), we sought to put together a 

new set of analysis tools designed to be more sensitive to such variations. Thus, to better 

understand the neural control processes underlying locomotion in different environments, we 80 

adopted a novel framework based on both linear and nonlinear approaches for extracting 

information from EMG data. First, we used non-negative matrix factorization (NMF) as a linear 

decomposition tool to extract muscle synergies from the EMG activity recorded from the lower 

limb during walking and running (Bernstein, 1967; Bizzi et al., 1991, 2008; Lee and Seung, 1999; 

Santuz et al., 2017a). Then, we analyzed the motor modules, or the weighted contributions of each 85 

muscle activity, and the timing characteristics of motor primitives, which are the time-dependent 

components of muscle synergies (Santuz et al., 2018a). Lastly, we used fractal analysis to compute 

the Hurst exponent of motor primitives, in order to gain deeper insight into their temporal structure 
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(Santuz and Akay, 2020). By using these tools, we recently found that both internal and external 

perturbations applied to human and murine locomotion affect the timing of motor primitives, 90 

despite minor changes in the number and composition of motor modules (Santuz et al., 2018b, 

2019, 2020a, 2020b; Santuz and Akay, 2020). Specifically, we could systematically associate a 

relatively longer duration of motor primitives (i.e. increased width of the signal) in genetically 

modified mice lacking proprioceptive feedback from muscle spindles (Santuz et al., 2019), in 

aging humans as compared to young (Santuz et al., 2020a), and in young adults walking and 95 

running on uneven terrain (Santuz et al., 2018b), on unstable ground (Santuz et al., 2020a) or 

running at extremely high speeds (Santuz et al., 2020b). 

Here, we aimed at uncovering some neuromotor control features of overground and treadmill 

locomotion using a novel combination of machine learning and fractal analysis. Based on our 

previous findings on perturbed and unperturbed locomotion (Santuz et al., 2018b, 2019, 2020a; 100 

Santuz and Akay, 2020), we hypothesized that: a) treadmill, as compared to overground, would 

perturb more the locomotor system due to the increased sensory and spatial constraints; and b) the 

neural control of treadmill locomotion would be forced to be more regular by the aforementioned 

constraints, thus resulting in motor primitives having a Hurst exponent lower in treadmill than in 

overground. 105 
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Results 

Gait parameters 

The stance and swing times and the cadence are reported in Figure 1. The coefficient of variation 110 

of stance, swing and cadence, together with the strike index are reported in Table 1. A main effect 

of locomotion type (walking compared to running) was found for stance, swing and cadence (p < 

0.001). Stance and swing phase duration were significantly lower and cadence higher in running 

(p < 0.001). Treadmill, compared to overground locomotion, made swing times decrease (p = 

0.032). No environment by type interaction (p > 0.05) was observed for any of the gait parameters. 115 

All the other comparisons were statistically (p > 0.05) not significant. 

Table 1. The step-to-step percent coefficient of variation (CV) of stance, swing and cadence is reported as the ratio 

between mean and standard deviation. The strike index is the distance of the center of pressure at touchdown from the 

most posterior part of the heel, normalized to foot length. 

Locomotion 

type 
Environment Stance CV Swing CV Cadence CV Strike index 

Walking 
Overground 3.8 ± 3.5% 4.4 ± 4.2% 2.1 ± 2.1% 0.063 ± 0.030 

Treadmill 2.5 ± 1.8% 4.0 ± 3.0% 1.2 ± 0.4% 0.047 ± 0.018 

Running 
Overground 7.4 ± 3.4% 4.3 ± 1.7% 2.6 ± 1.4% 0.066 ± 0.029 

Treadmill 7.1 ± 15.9% 4.5 ± 8.6% 1.9 ± 2.3% 0.073 ± 0.051 
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 120 

Figure 1 Gait parameters. Boxplots depicting stance, swing, and cadence for the four locomotion conditions. 
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Muscle synergies 

The minimum number of synergies necessary to reconstruct the EMG data (i.e. the NMF 

factorization rank) was 4.6 ± 0.5 for overground walking, 4.5 ± 0.6 for treadmill walking, 4.2 ± 

0.6 for overground running and 4.6 ± 0.7 for treadmill running, with no significant differences 125 

(overground vs. treadmill p = 0.077; walking vs. running p = 0.239). The average reconstruction 

quality (i.e. the R2 or the EMG variability accounted for by the factorization) was 0.829 ± 0.028 

for overground walking, 0.843 ± 0.027 for treadmill walking, 0.850 ± 0.025 for overground 

running and 0.869 ± 0.026 for treadmill running. An effect of locomotion environment 

(overground vs. treadmill, p = 0.001) and type (walking vs. running, p < 0.001) was found for the 130 

reconstruction quality, but no environment by type interactions (p = 0.567). The percentage of 

combined synergies was 16.1% for overground walking, 19.1% for treadmill walking, 19.0% for 

overground running and 23.0% for treadmill running. 

Four fundamental synergies were clustered in all gait conditions. In both walking (Figure 2) and 

running (Figure 3), the first synergy functionally referred to the body weight acceptance, with a 135 

major involvement of knee extensors and hip extensors and abductors. The second synergy 

described the propulsion phase, to which the plantarflexors mainly contributed. The third synergy 

identified the early swing, showing the involvement of foot dorsiflexors. The fourth and last 

synergy reflected the late swing and the landing preparation, highlighting the relevant influence of 

knee flexors (in both walking and running), and foot dorsiflexors (mostly in running). No main 140 

effect of the locomotion environment was found for any of the motor modules in walking or 

running. In walking, the SPM analysis detected significant differences in the descending part of 

the late swing primitive (between the 179th and 185th normalized time points, p = 0.001), as shown 
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in Figure 2. In running (Figure 3), the SPM highlighted differences in both the ascending (points 

34 to 44, p < 0.001) and descending (points 63 to 82, p < 0.001) portion of the propulsion primitive. 145 

 

 

Figure 2 Motor modules and motor primitives of the four fundamental synergies for overground and treamill walking. 

The motor modules are presented on a normalized y-axis base: each muscle contribution within one synergy can range 

from 0 to 1 and each point represents individual trials. For the mean motor primitives (shaded standard deviation), the 150 

x-axis full scale represents the averaged gait cycle (with stance and swing normalized to the same amount of points 

and divided by a vertical line) and the y-axis the normalized amplitude. Differences in motor primitives between 

overground and treadmill found by statistical parametric mapping are shown as vertical shaded areas with relevant p-

value. Muscle abbreviations: ME=gluteus medius, MA=gluteus maximus, FL=tensor fasciæ latæ, RF=rectus femoris, 

VM=vastus medialis, VL=vastus lateralis, ST=semitendinosus, BF=biceps femoris, TA=tibialis anterior, 155 

PL=peroneus longus, GM=gastrocnemius medialis, GL=gastrocnemius lateralis, SO=soleus. 
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Figure 3 Motor modules and motor primitives of the four fundamental synergies for overground and treamill running. 

The motor modules are presented on a normalized y-axis base: each muscle contribution within one synergy can range 160 

from 0 to 1 and each point represents individual trials. For the mean motor primitives (shaded standard deviation), the 

x-axis full scale represents the averaged gait cycle (with stance and swing normalized to the same amount of points 

and divided by a vertical line) and the y-axis the normalized amplitude. Differences in motor primitives between 

overground and treadmill found by statistical parametric mapping are shown as vertical shaded areas with relevant p-

value. Muscle abbreviations: ME=gluteus medius, MA=gluteus maximus, FL=tensor fasciæ latæ, RF=rectus femoris, 165 

VM=vastus medialis, VL=vastus lateralis, ST=semitendinosus, BF=biceps femoris, TA=tibialis anterior, 

PL=peroneus longus, GM=gastrocnemius medialis, GL=gastrocnemius lateralis, SO=soleus. 

 
 

 170 
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Motor primitive geometrics  

The CoA of the propulsion primitive shifted earlier in time when switching from overground to 

treadmill locomotion in both walking and running (Figure 4). Moreover, the CoA of motor 

primitives was different between walking and running in all synergies: higher in weight acceptance 

and early swing; lower in propulsion and late swing (Figure 4). The weight acceptance and 175 

propulsion primitives were wider (i.e. higher FWHM) relative to the stance phase in running than 

in walking, but the locomotion environment did not show an effect on FWHM. The widening is 

visible in both the box plots of Figure 5 and the heat maps of Figure 6. 

 

 180 
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Figure 4 Box plots representing the center of activity (CoA) values for the motor primitives of the four fundamental 

muscle synergies. Individual trial values are presented as points. 

 185 
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Figure 5 Box plots representing the full width at half maximum (FWHM) values for the motor primitives of the four 

fundamental muscle synergies. Individual trial values are presented as points. 
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 190 

Figure 6 Heat maps representing the average occurrence of values bigger than half maximum for each trial (rows of 

the maps). We calculated trial-by-trial, for each of the 200 time points (columns of the maps) and gait cycle, the 

number of times a motor primitive was exceeding half maximum and reported the mean results in a color-coded 

fashion: from white (the primitive never exceeded half maximum) to blue or red (the primitive exceeded half 

maximum in all the 30 gait cycles of that trial). Missing primitives are reported as fully white rows. 195 
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Fractal analysis of motor primitives 

The H values and the rescaled range versus window length log-log plots are shown in Figure 7. H 

values of motor primitives were lower in treadmill compared to overground in both walking and 

running. Moreover, the mean H values were lower than 0.5 in all four conditions, indicating anti-200 

persistent behavior of motor primitives (Mandelbrot, 1983; Gneiting and Schlather, 2004). Anti-

persistence means that, in the motor primitives of treadmill locomotion, short-term oscillations 

between high and low values were less random than in overground. In other words, the power-like 

decay of motor primitive’s autocorrelation was faster in treadmill than in overground locomotion 

(Tarnopolski, 2016). 205 

 

 

 

Figure 7 Left: box plots representing the Hurst exponent (H) values, calculated as the average exponent of all 

primitives per trial. Individual trial values are presented as points. Right: log-log plot of the rescaled range (R/S) versus 210 

window size (n, in number of normalized time points) for the four locomotion conditions. The slope of each regression 

line is H. Standard deviations are presented as shaded areas around each relevant regression line. 
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Discussion 

Fractal analysis revealed that motor primitives were more regular in treadmill than in overground 

locomotion, as hypothesized. This novel finding suggests that the spatial and sensory constraints 215 

imposed by the treadmill environment forced the CNS to adopt a different neural control strategy. 

While no difference was found in the FWHM of motor primitives for overground and treadmill 

locomotion, we could show that the CoA of the propulsion primitive was shifted earlier in time 

when our participants walked and ran on a treadmill. This partially confirmed our hypothesis that 

treadmills induce perturbations to locomotion. 220 

Gait spatiotemporal parameters were in general scarcely affected by the locomotion environment. 

We found only a decreased swing duration in treadmill compared to overground running. This is 

in agreement with most of the relevant literature reports (Lee and Hidler, 2008; Parvataneni et al., 

2009; Oliveira et al., 2016; Van Hooren et al., 2019; Santuz et al., 2020a). Moreover, the 

coefficient of variability of the cadence, measured in steps per minute, was significantly lower in 225 

treadmill for both walking and running, suggesting a higher degree of regularity of treadmill 

locomotion imposed by the less variable speed (Dingwell and Cusumano, 2000). 

We and others showed in previous studies that both the number and function of muscle synergies 

are largely shared across locomotion types and settings. For instance, in mice the number of 

synergies for walking and swimming is identical (Santuz et al., 2019) as it is in humans for walking 230 

and running (Cappellini et al., 2006; Lacquaniti et al., 2012; Santuz et al., 2017a) or in locomotion 

at different speeds (Ivanenko et al., 2004; Santuz et al., 2020b). When adding external (e.g. 

mechanical) or internal (e.g. aging or pathology) perturbations to locomotion, the number of 

synergies is not affected in both mice (Santuz et al., 2019) and humans (Maclellan et al., 2014; 

Santuz et al., 2018b, 2020a; Holubarsch et al., 2019; Janshen et al., 2020). Several studies have 235 
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attempted in the past to highlight potential discrepancies between overground and treadmill 

locomotion from many perspectives concluding that spatiotemporal, kinematic, kinetic, and 

muscle-tendon interaction measures are scarcely influenced by the locomotion environment (Van 

Hooren et al., 2019). One study also examined muscle synergies, finding that motor primitives 

underwent “minimal temporal adjustments” (Oliveira et al., 2016). Here, we extended that 240 

investigation by adding walking to the analysis, unmistakably confirming that the number of 

muscle synergies was conserved across locomotion types (i.e. walking and running) and 

environments (i.e. overground and treadmill). The four extracted synergies described the two 

macro phases of the gait cycle: the stance (weight acceptance and propulsion synergies) and the 

swing (early and late swing synergies), similar to what was found in other studies (Santuz et al., 245 

2018b, 2018c, 2020a, 2020b). These observations indicate that overground and treadmill 

locomotion share largely similar modular organization of muscle activations, despite small 

temporal adjustments of motor primitives. A fact, however, that does not exclude further 

alterations of the neuromotor control that are invisible to the naked eye. 

Fractal analysis can expose local or global properties of a time series that would be otherwise 250 

hardly visible to the naked eye and/or simply too difficult to quantify (Santuz and Akay, 2020). In 

a recent study where we used the Higuchi’s fractal dimension, we found similar local complexity 

of motor primitives for overground and treadmill locomotion (Gneiting and Schlather, 2004; 

Santuz et al., 2020a). Here however, we set out to analyze the global, rather than local, fractal 

properties of motor primitives by estimating the parameter H. There is no specific advantage in 255 

analyzing the local or global fractal properties of motor primitives: both characteristics are 

informative, even though on a different level. While the Higuchi’s fractal dimension tells us what 

happens in the short term by “zooming in” on the signal, H helps us depicting a general picture of 
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what happens in the long term (Gneiting and Schlather, 2004; Santuz and Akay, 2020). H can vary 

between 0 and 1, with H = 0.5 indicating a random series (Mandelbrot, 1983; Qian and Rasheed, 260 

2004). For 0.5 < H < 1, in the long term a positive or negative trend is visible, making the time 

series persistent or with “long memory” (Mandelbrot, 1983; Gneiting and Schlather, 2004). For 0 

< H < 0.5, the series is anti-persistent: in the long term high values in the series will be probably 

followed by low values, with a frequent switch between high and low values as in motor primitives 

extracted from locomotion (Mandelbrot, 1983; Gneiting and Schlather, 2004). We found that H 265 

values were: i) lower than 0.5 in all the analyzed conditions, ii) independent on the locomotion 

type, and iii) lower in treadmill than in overground locomotion. 

First, H < 0.5 is an indication of anti-persistence, meaning that our motor primitives did not show 

a trend. To make an example of a persistent (i.e. with trend) time series, one can think at the space 

vs. time graph of a person walking overground at self-paced comfortable speed. Such a curve 270 

would be close to a line with slope equal to the speed of the person. As the person walks with 

almost constant speed, the distance traveled increases as well, showing a positive trend: the 

distance from the starting point is more likely to increase as time passes rather than to oscillate 

around a certain value. This example is intuitively dissimilar from the behavior of motor 

primitives, which are time series that oscillate around a mean value (i.e. they are anti-persistent), 275 

due to the fact that locomotion is quasi-periodic (Santuz and Akay, 2020). Thus, it is possible to 

explain from a physiological perspective why we obtained H < 0.5 for all the analyzed locomotion 

conditions. 

Second, the fact that H is independent on the locomotion type (i.e. walking or running) suggests 

that speed does not have an influence on the global fractal properties of motor primitives. While 280 

at increasing locomotion speeds the local complexity of motor primitives decreases (Santuz et al., 
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2020b), the global regularity (as measured by H) is not affected. From a neurophysiological point 

of view, this behavior has no easy explanation. Neural circuits for the control of locomotor type 

and speed have been found in several regions of the vertebrate CNS: from the diversified 

populations of inhibitory V1 and excitatory V2a spinal interneurons in the zebrafish spinal cord 285 

(Ampatzis et al., 2014; Kimura and Higashijima, 2019), to the human prefrontal cortex (Suzuki et 

al., 2004; Bulea et al., 2015) and the murine and human brainstem (Al-Yahya et al., 2011; Capelli 

et al., 2017), passing through the feline cerebellum (Armstrong, 1988) and the V0 and V3 

commissural interneurons for left-right alternation and synchronization in the mouse system 

(Danner et al., 2016). All these circuits have one important thing in common: they implement a 290 

flexible modular organization of neuronal excitation and inhibition for smoothly controlling the 

type and speed of locomotion. Our results suggest that the modular activation of muscles, the final 

effectors for motion creation and control, is constantly tuned to maintain similar patterns, despite 

the profound changes happening in the underlying neural circuits. 

Third, the found lower H values in treadmill compared to overground suggest that motor primitives 295 

for treadmill locomotion are more regular than those for overground walking or running. If 

primitives were all perfect sinusoidal time series with period equal to the gait cycle, H would be 

zero. Conversely, if primitives were oscillating around their mean value in a random way, H would 

be 0.5. It follows that if H decreases from 0.5 to 0, the level of randomness in the time series 

decreases as well, while regularity increases. A reason for the increased regularity of motor 300 

primitives might be the intrinsic regularity of the treadmill belt’s speed (Dingwell and Cusumano, 

2000; Riley et al., 2008). Even though it has been shown that treadmill belts slightly decelerate at 

touchdown only to recover the set speed later in the stance phase and accelerate at lift-off (Van 

Hooren et al., 2019), the oscillations are likely small and, most importantly, systematic as shown 
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by the lower CV of cadence in both walking and running. The enforced average speed (Dingwell 305 

and Cusumano, 2000) and other parameters such as the limited belt dimensions (Van Hooren et 

al., 2019), could have contributed to make treadmill a more restricted locomotion environment 

than overground. Physiologically speaking, this suggests that a more regular neural control 

strategy was needed to overcome the sensory constraints imposed by the treadmill environment, 

showing that treadmills might be influencing motor coordination more than previously thought. 310 

Recently, we used the FWHM of motor primitives as a measure of robustness, concluding that 

wider (i.e. active for a longer time) primitives indicate more robust motor control in perturbed 

locomotion settings (Santuz et al., 2018b, 2020a; Janshen et al., 2020). Our idea of robust control 

is based on the optimal feedback control theory, which postulates that motor systems selectively 

combine sensory feedback and motor commands to optimize performance (Todorov and Jordan, 315 

2002; Scott, 2004; Tuthill and Azim, 2018). It is known that the treadmill environment, as 

compared to free locomotion over solid and even ground, can reweight the sensory feedback due 

to many factors, such as the level of familiarity with the device, the dimensions of the belt or the 

stationarity of visual feedback (Van Hooren et al., 2019). The constraints imposed by the limited 

space and necessity of matching the belt’s speed (Dingwell and Cusumano, 2000), can act as 320 

external perturbations. However, our current results exclude that the CNS coped with those 

potential perturbations by widening the motor primitives. 

Yet, when looking into the timing of main activation as described by the CoA, we found that motor 

primitives for treadmill locomotion were shifted earlier in time in both walking and running. This 

happened in one synergy out of four: the one for propulsion. The coordinated activity of foot 325 

plantarflexors characterize this synergy providing the main support and forward acceleration of 

the body mass (Arampatzis et al., 1999; Liu et al., 2008; Hamner and Delp, 2013; Santuz et al., 
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2018b; Bohm et al., 2019). It has been shown in humans that proprioceptive feedback from group 

II (muscle spindles) and/or group Ib (Golgi tendon organs) afferents is of paramount importance 

for the activation of plantarflexors (Dietz et al., 1994; Sinkjær et al., 2000). Additionally, mouse 330 

studies reported a crucial role of the proprioceptive feedback from plantarflexors in regulating the 

amplitude of muscle activity at different speeds (Mayer et al., 2018). We reinforced those 

observations showing that genetically modified mice lacking muscle spindles undergo a 

redistribution of the motor modules for propulsion when compared to wild type (Santuz et al., 

2019). Moreover, we found that mutants could not manage to modulate the timing of motor 335 

primitives when external perturbations were added to locomotion (Santuz et al., 2019). Thus, the 

shifted CoA of the propulsion motor primitive might indicate that treadmill locomotion likely 

induced alterations in the proprioceptive sensory feedback from foot plantarflexors (i.e. PL, GM, 

GL, and SO). Additionally, we and others found similar shifts of the propulsion primitive’s CoA 

in both wild type mice (Santuz et al., 2019) and healthy humans (Maclellan et al., 2014; Santuz et 340 

al., 2018b) undergoing external perturbations, suggesting from yet another perspective that 

treadmills might perturb locomotion in ways that were never discussed before. 

Conclusions 

In this study, we used a novel combination of machine learning and fractal analysis to understand 

those neuromotor control features of overground and treadmill locomotion that were not grasped 345 

by previous literature. Specifically, we found time-related alterations of motor primitives, the basic 

activation patterns common to functionally-related muscle groups. First, the primitives for the 

propulsion phase of both walking and running showed their main activation earlier in treadmill 

than in overground. This is similar to what previously reported for perturbed locomotion as 

compared to unperturbed. Second, motor primitives were on average more regular in treadmill 350 
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than in overground locomotion. A data-driven suggestion that treadmills might constrain the 

muscle activation patterns for the control of human locomotion. 
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Materials and Methods 

This study was reviewed and approved by the Ethics Committees of the Humboldt-Universität zu 355 

Berlin. All the participants gave written informed consent for the experimental procedure, in 

accordance with the Declaration of Helsinki. 

Experimental protocol 

For the experimental protocol we recruited 30 healthy and regularly active young adults (15 

females, height 173 ± 10 cm, body mass 68 ± 12 kg, age 28 ± 5 years, means ± standard deviation). 360 

None of them was using orthotic insoles, had any history of neuromuscular or musculoskeletal 

impairments, or any head or spine injury at the time of the measurements or in the previous six 

months. All the volunteers completed a self-selected warm-up running on a treadmill, typically 

lasting 3 to 5 min (Santuz et al., 2016, 2018c). After being instructed about the protocol, they 

completed the measurements described in detail below. 365 

The experimental protocol consisted of walking at 1.4 m/s and running at 2.8 m/s overground and 

on a single-belt treadmill (mercury, H-p-cosmos Sports & Medical GmbH, Nussdorf, Germany) 

equipped with a pressure plate recording the plantar pressure distribution at 120 Hz (FDM- THM-

S, zebris Medical GmbH, Isny im Allgäu, Germany). The speeds were chosen since walking at 1.4 

m/s and running at 2.8 m/s are close to the average comfortable locomotion speeds commonly 370 

reported in the scientific literature (Santuz et al., 2016, 2017a). Three pairs of photocells installed 

at 300 cm from each other were used to control the overground locomotion speed. After an 

accommodation period which usually involved 10 to 20 attempts to meet the requested speed, we 

recorded those trials that presented an error in matching the speed lower than ± 0.05 m/s in walking 

and ± 0.10 m/s in running. 375 
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EMG recordings 

The muscle activity of the following 13 ipsilateral (right side) muscles was recorded: gluteus 

medius (ME), gluteus maximus (MA), tensor fasciæ latæ (FL), rectus femoris (RF), vastus medialis 

(VM), vastus lateralis (VL), semitendinosus (ST), biceps femoris (long head, BF), tibialis anterior 

(TA), peroneus longus (PL), gastrocnemius medialis (GM), gastrocnemius lateralis (GL) and 380 

soleus (SO). The electrodes were positioned as previously reported (Santuz et al., 2018c, 2019). 

For the treadmill recordings, after the warm-up the participants were allowed to at least 60 s 

habituation (Santuz et al., 2018b). We recorded 10 overground and one treadmill trials (60 s) per 

locomotion type, per participant by means of a 16-channel wireless bipolar EMG system (Wave 

Plus wireless EMG with PicoEMG transmitters, Cometa srl, Bareggio, Italy) with an acquisition 385 

frequency of 2 kHz. For the recordings, we used foam-hydrogel electrodes with snap connector 

(H124SG, Medtronic plc, Dublin, Ireland). The overground trials were then concatenated (i.e. 

joined together) in a single one, so that for each participant four total trials were used for 

subsequent analysis: 1) concatenated overground walking; 2) concatenated overground running; 

3) treadmill walking; 4) treadmill running. The first 30 gait cycles of each trial were considered 390 

for subsequent analysis (Santuz et al., 2018c). All the recordings can be downloaded from the 

supplementary data set, which is accessible at Zenodo (DOI: 10.5281/zenodo.3932767). 

Gait parameters 

The gait cycle breakdown (foot touchdown and lift-off timing) was obtained by processing 3D 

acceleration data for the overground and plantar pressure distribution for the treadmill trials. For 395 

the segmentation of the overground attempts, we positioned a 3D accelerometer over the second-

last pair of shoe eyelets, tightening the sensor using Velcro straps. We processed the obtained data 

using validated algorithms previously reported (Santuz et al., 2018b, 2020a). Treadmill recordings 
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were segmented applying a previously published algorithm (Santuz et al., 2016) to the plantar 

pressure distribution data, recorded through the plate integrated in the treadmill. Other calculated 400 

gait spatiotemporal parameters were: stance and swing times, cadence (i.e. number of steps per 

minute), and the strike index, calculated as the distance from the heel to the center of pressure at 

impact normalized with respect to total foot length (Santuz et al., 2016). For stance, swing and 

cadence, we calculated the step-to-step percent coefficient of variation as the ratio between the 

standard deviation and the mean of each trial (Erra et al., 2019). 405 

While for the treadmill trials the strike index was calculated by processing plantar pressure 

distribution data (Santuz et al., 2016), for the overground trials we made use of kinetics and 

kinematics data. In order to locate the center of pressure at touchdown, an infrared motion capture 

system (Vicon Nexus, version 1.7.1, Vicon Motion Systems, Oxford, UK) and a force plate (AMTI 

BP600, Advanced Mechanical Technology, Inc., Watertown, MA, USA) were used. Nine infrared 410 

cameras operating at 250 Hz recorded the position of two spherical reflective markers (⌀ 14 mm) 

placed on the heel and toe cap of the right shoe, approximately over the Achilles tendon insertion 

on the calcaneus and the first toe tip, respectively. The ground reaction forces were recorded at 1 

kHz, and the center of pressure location during the stance phase was calculated using the recorded 

data. The participants were asked to walk or run on the straight pathway and were not told about 415 

the existence of the force plate. It was the operator’s task to check whether the plate was met by 

the right foot. If not, the trial was repeated. Strike index values range from 0 to 1, denoting the 

most posterior and the most anterior point of the shoe, respectively (Santuz et al., 2017b). Values 

from 0.000 to 0.333 are indication of a rearfoot strike pattern, while values from 0.334 to 1.000 

represent a mid/forefoot strike pattern (Santuz et al., 2016). 420 
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Muscle synergies extraction 

Muscle synergies data were extracted from the recorded EMG activity through a custom script (R 

v3.6.3, R Core Team, 2020, R Foundation for Statistical Computing, Vienna, Austria) using the 

classical Gaussian NMF algorithm (Lee and Seung, 1999; Santuz et al., 2017a, 2018b, 2018c). The 

raw EMG signals were band-pass filtered within the acquisition device (cut-off frequencies 10 and 425 

500 Hz). Then the signals were high-pass filtered, full-wave rectified and lastly low-pass filtered 

using a 4th order IIR Butterworth zero-phase filter with cut-off frequencies 50 Hz (high-pass) and 

20 Hz (low-pass for creating the linear envelope of the signal), as previously described (Santuz et 

al., 2018b). 

After subtracting the minimum, the amplitude of the EMG recordings obtained from the single 430 

trials was normalized to the maximum activation recorded for every individual muscle. In other 

words, every EMG channel was normalized to its maximum for every trial (Santuz et al., 2018c, 

2019, 2020a). Each gait cycle was then time-normalized to 200 points, assigning 100 points to the 

stance and 100 points to the swing phase (Santuz et al., 2017b, 2018b, 2018c, 2019, 2020a). The 

reason for this choice is twofold (Santuz et al., 2018c). First, dividing the gait cycle into two macro-435 

phases helps the reader understanding the temporal contribution of the different synergies, 

diversifying between stance and swing. Second, normalizing the duration of stance and swing to 

the same number of points for all participants (and for all the recorded gait cycles of each 

participant) makes the interpretation of the results independent from the absolute duration of the 

gait events. 440 

Synergies were then extracted through NMF as follows (Santuz et al., 2018b, 2018c). The 13 

muscles listed above were considered for the analysis, (ME, MA, FL, RF, VM, VL, ST, BF, TA, 

PL, GM, GL and SO). The m = 13 time-dependent muscle activity vectors were grouped in a 
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matrix V with dimensions m × n (m rows and n columns). The dimension n represented the number 

of normalized time points (i.e. 200*number of gait cycles). The matrix V was factorized using 445 

NMF so that V ≈ VR = MP. The new matrix VR, reconstructed by multiplying the two matrices M 

and P, approximates the original matrix V. The motor modules (Gizzi et al., 2011; Santuz et al., 

2017a) matrix M, with dimensions m × r, contained the time-invariant muscle weightings, which 

describe the relative contribution of muscles within a specific synergy (a weight was assigned to 

each muscle for every synergy). The motor primitives (Dominici et al., 2011; Santuz et al., 2017a) 450 

matrix P contained the time-dependent coefficients of the factorization with dimensions r × n, 

where the number of rows r represents the minimum number of synergies necessary to 

satisfactorily reconstruct the original set of signals V. M and P described the synergies necessary 

to accomplish the required task (i.e. walking or running, overground or on a treadmill). The update 

rules for M and P are presented in Equation (EQ1) and Equation (EQ2). 455 

 

⎩
⎪
⎨

⎪
⎧ 𝑃𝑃𝑖𝑖+1 = 𝑃𝑃𝑖𝑖

𝑀𝑀𝑖𝑖
𝑇𝑇𝑉𝑉

𝑀𝑀𝑖𝑖
𝑇𝑇𝑀𝑀𝑖𝑖𝑃𝑃𝑖𝑖

                   (EQ1)

𝑀𝑀𝑖𝑖+1 = 𝑀𝑀𝑖𝑖
𝑉𝑉(𝑃𝑃𝑖𝑖+1)𝑇𝑇

𝑀𝑀𝑖𝑖𝑃𝑃𝑖𝑖+1(𝑃𝑃𝑖𝑖+1)𝑇𝑇        (EQ2)
 

 

The quality of reconstruction was assessed by measuring the coefficient of determination R2 

between the original and the reconstructed data (V and VR, respectively). The limit of convergence 460 

for each synergy was reached when a change in the calculated R2 was smaller than the 0.01% in 

the last 20 iterations (Santuz et al., 2017a) meaning that, with that amount of synergies, the signal 

could not be reconstructed any better. This operation was first completed by setting the number of 
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synergies to one. Then, it was repeated by increasing the number of synergies each time, until a 

maximum of 10 synergies. The number 10 was chosen to be lower than the number of muscles, 465 

since extracting a number of synergies equal to the number of measured EMG activities would not 

reduce the dimensionality of the data. Specifically, 10 is the rounded 75% of 13, which was the 

number of considered muscles (Santuz et al., 2019). For each synergy, the factorization was 

repeated 10 times, each time creating new randomized initial matrices M and P, in order to avoid 

local minima (D’Avella and Bizzi, 2005). The solution with the highest R2 was then selected for 470 

each of the 10 synergies. To choose the minimum number of synergies required to represent the 

original signals, the curve of R2 values versus synergies was fitted using a simple linear regression 

model, using all 10 synergies. The mean squared error (Cheung et al., 2005) between the curve 

and the linear interpolation was then calculated. Afterwards, the first point in the R2-vs.-synergies 

curve was removed and the error between this new curve and its new linear interpolation was 475 

calculated. The operation was repeated until only two points were left on the curve or until the 

mean squared error fell below 10−4. This was done to search for the most linear part of the R2-

versus-synergies curve, assuming that in this section the reconstruction quality could not increase 

considerably when adding more synergies to the model.  

Motor primitive geometrics and functional classification of synergies 480 

We compared motor primitives by evaluating the one-dimensional statistical parametric mapping 

(SPM), center of activity (CoA), and the full width at half maximum (FWHM) (Cappellini et al., 

2006, 2016; Pataky, 2010, 2012; Martino et al., 2014; Santuz et al., 2018b, 2019). The CoA was 

defined cycle-by-cycle as the angle of the vector (in polar coordinates) that points to the center of 

mass of that circular distribution (Cappellini et al., 2016), and then averaged. The polar direction 485 

represented the gait cycle’s phase, with angle 0 ≤ θt ≤ 2π. The following equations define the CoA: 
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⎩
⎪
⎨

⎪
⎧𝐴𝐴 = �(cos 𝜃𝜃𝑡𝑡 × 𝑃𝑃𝑡𝑡)

𝑝𝑝

𝑡𝑡=1

      (𝐸𝐸𝐸𝐸3)

𝐵𝐵 = �(sin 𝜃𝜃𝑡𝑡 × 𝑃𝑃𝑡𝑡)
𝑝𝑝

𝑡𝑡=1

      (𝐸𝐸𝐸𝐸4)

 

𝐶𝐶𝐶𝐶𝐶𝐶 = arctan (𝐵𝐵 𝐴𝐴⁄ )         (𝐸𝐸𝐸𝐸5) 

 490 

where p is the number of points of each gait cycle (p = 200). The FWHM was calculated cycle-

by-cycle after subtracting the cycle’s minimum as the number of points exceeding each cycle’s 

half maximum, and then averaged (Martino et al., 2014). As a tool for visualizing differences in 

FWHM, we created heat maps (Figure 6) by counting cycle-by-cycle how many points of the 

relevant motor primitive exceeded half maximum and then averaging the obtained values over the 495 

30 gait cycles per trial. The CoA and FWHM calculations and the subsequent SPM analysis were 

conducted only for the motor primitives relative to fundamental synergies. A fundamental synergy 

can be defined as an activation pattern whose motor primitive shows a single main peak of 

activation (Santuz et al., 2018b). When two or more fundamental synergies are blended into one 

(or when one synergy is split into one or more synergies), a combined synergy appears. 500 

Combined synergies usually constitute, in our locomotion data, 10 to 30% of the total extracted 

synergies. While fundamental synergies can be compared given their similar function (i.e. motor 

primitives and motor modules are comparable since they serve a specific task within the gait cycle), 

combined synergies are often so different one from another that their classification is not possible. 

Due to the lack of consent in the literature on how to interpret them, we excluded the combined 505 

synergies from the FWHM analysis. The recognition of fundamental synergies was carried out by 
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clustering similar motor primitives through NMF, using the same algorithm employed for synergy 

extraction with the maximum number of synergies set to the maximum factorization rank plus one. 

The obtained “principal shapes” for each of the four locomotion conditions were then compared 

to the motor primitives in order to cluster similar shapes. A primitive was considered similar to 510 

one of the principal shapes if the NMF weight was equal at least to the average of all weights. We 

then calculated the R2 of all the primitives that satisfied this condition, with the relevant principal 

shape. If the R2 was at least the 25% (or four times if the R2 was negative) of the average R2 

obtained by comparing all the remaining primitives with their own principal shape, we confirmed 

the synergy as fundamental and classified it based on function. Primitives that were not clustered, 515 

were labeled as combined. 

Fractal analysis of motor primitives 

To estimate the long-range dependence of motor primitives, we conducted a fractal analysis and 

calculated the Hurst exponent (H) following the rescaled range (R/S) approach (Hurst, 1951; 

Mandelbrot and Wallis, 1969). We proceeded as follows: 1) calculated the mean of the considered 520 

motor primitive of length n; 2) subtracted the mean to the original primitive; 3) calculated the 

cumulative sum of the obtained time series; 4) found the range R of this series (the range is the 

difference between the maximum and minimum values of a series); 5) calculated the standard 

deviation S; 6) computed the rescaled range R/S; 7) repeated the previous for N = n/2, n/4, n/8… 

and until a minimum of N=200, which is the normalized period of each motor primitive (Santuz 525 

and Akay, 2020); 7) calculated H as the slope of the log(N) vs. log(R/S) curve. 

 H can vary between 0 and 1. For 0.5 < H < 1, in the long term high values in the series will be 

probably followed by other high values (i.e. positive autocorrelation); in other words, the series is 

persistent or has long-term memory (Mandelbrot, 1983; Gneiting and Schlather, 2004; 
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Tarnopolski, 2016). For 0 < H < 0.5, in the long term high values in the series will be probably 530 

followed by low values, with a frequent switch between high and low values (i.e. negative 

autocorrelation); in other words, the series is anti-persistent or has short-term memory 

(Mandelbrot, 1983; Gneiting and Schlather, 2004; Tarnopolski, 2016). A Hurst exponent of 0.5 

indicates a completely random series without any persistence (Mandelbrot, 1983; Qian and 

Rasheed, 2004; Tarnopolski, 2016). 535 

Statistics 

To investigate the effect of locomotion environment and type on the factorization rank, gait 

parameters, CoA, FWHM, and H of motor primitives and motor modules, we fitted the data using 

a generalized linear model with Gaussian error distribution. The homogeneity of variances was 

tested using the Levene's test. If the residuals were normally distributed, we carried out a two-way 540 

repeated measures ANOVA with type II sum of squares for the dependent variables factorization 

rank, cadence, stance and swing time, CoA, FWHM, H, and muscle, the independent variables 

being the locomotion type (i.e. walking or running) and environment (i.e. overground or treadmill). 

If the normality assumptions on the residuals were not met, we used the function “raov”, a robust 

(rank-based) ANOVA from the R package Rfit (Kloke and McKean, 2012; McKean and Kloke, 545 

2014). We then performed a least significant difference post-hoc analysis with false discovery rate 

adjustment of the p-values. Moreover, differences in motor primitives were tested using a two-

way repeated measure ANOVA one-dimensional SPM (Pataky, 2010, 2012), with independent 

variables locomotion environment (i.e. overground or treadmill) and gait cycle (30 levels, each 

being one of the 30 recorded gait cycles per trial, per participant). To account for the bias related 550 

to the order of gait cycles, we performed the repeated measures ANOVA SPM 10000 times, 
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randomizing at each repetition the gait cycle order for each participant. Results are reported as 

mean of the 10000 resamples. 

All the significance levels were set to α = 0.05 and the statistical analyses were conducted using 

custom R v3.6.3 or Python (v3.8.2, Python Software Foundation, 2020, Wilmington, Delaware, 555 

United States) scripts. The spm1d (Pataky, 2012) open-source Python package v0.4.3 (spm1d.org) 

was used to generate F-values maps, F* limit and areas for the SPM analysis. 

Data availability 

In the supplementary data set accessible at Zenodo (DOI: 10.5281/zenodo.3932767) we made 

available: a) the metadata with anonymized participant information; b) the raw EMG, already 560 

concatenated for the overground trials; c) the touchdown and lift-off timings of the recorded limb, 

d) the filtered and time-normalized EMG; e) the muscle synergies extracted via NMF; f) the code 

to process the data. In total, 120 trials from 30 participants are included in the supplementary data 

set. 

The file “metadata.dat” is available in ASCII and RData format and contains: 565 

• Code: the participant’s code 

• Sex: the participant’s sex (M or F) 

• Locomotion: the type of locomotion (W=walking, R=running) 

• Environment: to distinguish between overground (O) and treadmill (T) 

• Speed: the speed at which the recordings were conducted in [m/s] (1.4 m/s for 570 

walking, 2.8 m/s for running) 

• Age: the participant’s age in years 

• Height: the participant’s height in [cm] 
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• Mass: the participant’s body mass in [kg]. 

The files containing the gait cycle breakdown are available in RData format, in the file named 575 

“CYCLE_TIMES.RData”. The files are structured as data frames with 30 rows (one for each gait 

cycle) and two columns. The first column contains the touchdown incremental times in seconds. 

The second column contains the duration of each stance phase in seconds. Each trial is saved as 

an element of a single R list. Trials are named like “CYCLE_TIMES_P0020_TW_01,” where the 

characters “CYCLE_TIMES” indicate that the trial contains the gait cycle breakdown times, the 580 

characters “P0020” indicate the participant number (in this example the 20th), the characters “TW” 

indicate the locomotion type and environment (O=overground, T=treadmill, W=walking, 

R=running), and the number “01” indicate the trial number. Please note that the running 

overground trials of participants P0001, P0007, P0008 and P0009 only contain 21, 29, 29 and 26 

cycles, respectively. 585 

The files containing the raw, filtered, and the normalized EMG data are available in RData format, 

in the files named “RAW_EMG.RData” and “FILT_EMG.RData”. The raw EMG files are 

structured as data frames with 30000 rows (one for each recorded data point) and 14 columns. The 

first column contains the incremental time in seconds. The remaining 13 columns contain the raw 

EMG data, named with muscle abbreviations that follow those reported above. Each trial is saved 590 

as an element of a single R list. Trials are named like “RAW_EMG_P0003_OR_01”, where the 

characters “RAW_EMG” indicate that the trial contains raw emg data, the characters “P0003” 

indicate the participant number (in this example the 3rd), the characters “OR” indicate the 

locomotion type and environment (see above), and the numbers “01” indicate the trial number. 

The filtered and time-normalized emg data is named, following the same rules, like 595 

“FILT_EMG_P0003_OR_01”. 
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The muscle synergies extracted from the filtered and normalized EMG data are available in RData 

format, in the file named “SYNS.RData”. Each element of this R list represents one trial and 

contains the factorization rank (list element named “synsR2”), the motor modules (list element 

named “M”), the motor primitives (list element named “P”), the reconstructed EMG (list element 600 

named “Vr”), the number of iterations needed by the NMF algorithm to converge (list element 

named “iterations”), and the reconstruction quality measured as the coefficient of determination 

(list element named “R2”). The motor modules and motor primitives are presented as direct output 

of the factorization and not in any functional order. Motor modules are data frames with 13 rows 

(number of recorded muscles) and a number of columns equal to the number of synergies (which 605 

might differ from trial to trial). The rows, named with muscle abbreviations that follow those 

reported above, contain the time-independent coefficients (motor modules M), one for each 

synergy and for each muscle. Motor primitives are data frames with 6000 rows and a number of 

columns equal to the number of synergies (which might differ from trial to trial) plus one. The 

rows contain the time-dependent coefficients (motor primitives P), one column for each synergy 610 

plus the time points (columns are named e.g. “time, Syn1, Syn2, Syn3”, where “Syn” is the 

abbreviation for “synergy”). Each gait cycle contains 200 data points, 100 for the stance and 100 

for the swing phase which, multiplied by the 30 recorded cycles, result in 6000 data points 

distributed in as many rows. This output is transposed as compared to the one discussed in the 

methods section to improve user readability. Trials are named like “SYNS_ P0012_OW_01”, 615 

where the characters “SYNS” indicate that the trial contains muscle synergy data, the characters 

“P0012” indicate the participant number (in this example the 12th), the characters “OW” indicate 

the locomotion type and environment (see above), and the numbers “01” indicate the trial number. 

Given the nature of the NMF algorithm for the extraction of muscle synergies, the supplementary 
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data set might show non-significant differences as compared to the one used for obtaining the 620 

results of this paper. 

All the code used for the pre-processing of EMG data and the extraction of muscle synergies is 

available in R format. Explanatory comments are profusely present throughout the script 

“muscle_synergies.R”.   
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