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Abstract 8 

1. Remote sensing of forested landscapes can transform the speed, scale, and cost 9 

of forest research. The delineation of individual trees in remote sensing images is 10 

an essential task in forest analysis. Here we introduce a new Python package, 11 

DeepForest, that detects individual trees in high resolution RGB imagery using 12 

deep learning. 13 

2. While deep learning has proven highly effective in a range of computer vision 14 

tasks, it requires large amounts of training data that are typically difficult to obtain 15 

in ecological studies. DeepForest overcomes this limitation by including a model 16 

pre-trained on over 30 million algorithmically generated crowns from 22 forests 17 

and fine-tuned using 10,000 hand-labeled crowns from 6 forests. 18 

3. The package supports the application of this general model to new data, fine 19 

tuning the model to new datasets with user labeled crowns, training new models, 20 
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and evaluating model predictions. This simplifies the process of using and 21 

retraining deep learning models for a range of forests, sensors, and spatial 22 

resolutions. 23 

4. We illustrate the workflow of DeepForest using data from the National Ecological 24 

Observatory Network, a tropical forest in French Guiana, and street trees from 25 

Portland, Oregon. 26 

Keywords: Remote Sensing, Forests, Tree Crowns, Crown Delineation, NEON, Deep 27 

learning, RGB 28 

Introduction 29 

Airborne individual tree delineation is a central task for forest ecology and the 30 

management of forested landscapes. The growth in sensor quality and data availability 31 

has raised hopes that airborne tree maps can complement traditional ground-based 32 

surveys (Hamraz et al. 2016). Most approaches to tree delineation in remote sensing 33 

use three-dimensional LIDAR data (Coomes et al. 2017), which is currently available for 34 

only a small fraction of the Earth’s surface. In contrast, high resolution RGB data has 35 

widespread coverage from commercial and government sources and is readily collected 36 

using unmanned aerial vehicles. As a result, there is an increasing need for RGB-based 37 

tree delineation approaches with easy to use open-source implementations. 38 

The introduction of deep neural networks has greatly enhanced the performance 39 

of remote sensing solutions for detecting objects in geospatial images (Zhu et al. 2017). 40 

Deep learning models use a series of hierarchical layers to learn directly from training 41 

data instead of using expert designed features. Initial layers learn general 42 
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representations, such as colors and shapes, and subsequent layers learn specific object 43 

representations. There are several barriers to applying deep learning to ecological 44 

applications including insufficient technical expertise, a lack of large amounts of training 45 

data, and the need for significant computational resources. DeepForest provides easy 46 

access to deep learning for tree delineation by creating a simple interface for training 47 

object detection models, using them to make predictions, and evaluating the accuracy 48 

of those predictions. DeepForest also includes a prebuilt model (based on Weinstein et 49 

al. 2020) pre-trained on tens of millions of LiDAR generated crowns and fine-tuned 50 

using over 10,000 hand-labeled crowns from diverse forests in the National Ecological 51 

Observatory Network. Users can apply this model to detect trees in new imagery or 52 

provide additional hand-labeled data to fine-tune performance for a specific site or forest 53 

type. Predictions from the model for an average 1km2 tile can be made in 7 minutes on 54 

a single CPU and DeepForest has built-in support for running on GPU resources to 55 

dramatically increase the speed of prediction at large scales. 56 

DeepForest Software 57 

DeepForest is an open source (MIT license) Python package supporting Python 3.6 and 58 

Python 3.7 and has been tested on Windows, macOS, and Linux operating systems. It 59 

can be installed using the Python Package Index (https://pypi.org/project/deepforest/) or 60 

using the conda package manager for Windows, Linux and OSX 61 

(https://github.com/conda-forge/deepforest-feedstock). The software is openly 62 

developed on GitHub (https://github.com/weecology/DeepForest) with automated 63 

testing and each release is archived on Zenodo 64 
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(https://doi.org/10.5281/zenodo.2538143). All DeepForest functions are documented 65 

online with reproducible examples (https://deepforest.readthedocs.io/) and video 66 

tutorials. 67 

Prebuilt model 68 

DeepForest currently includes one prebuilt model (available by running 69 

deepforest.use_release) that was trained on data from the National Ecological 70 

Observatory Network (NEON) using a semi-supervised approach outlined in Weinstein 71 

et al. (2019, 2020) (Figure 1). The model was pretrained on data from 22 NEON sites 72 

using an unsupervised LiDAR based algorithm (Silva et al. 2016) to generate millions of 73 

moderate quality annotations for model pretraining. The pretrained model was then 74 

retrained based on over 10,000 hand-annotations of RGB imagery from six sites 75 

(MLBS, NIWO, OSBS, SJER, TEAK, LENO; see NEON site abbreviations S1). The full 76 

workflow is shown in Figure 1. While LIDAR data is used to facilitate data generation for 77 

the prebuilt model, prediction relies only on RGB data, allowing the model to be used to 78 

detect trees using RGB imagery alone. This prebuilt model extends the methods from 79 

Weinstein et al. (2019, 2020) by pretraining on a much larger number of trees (30 80 

million LIDAR-generated crowns compared to 10 million in Weinstein et al. 2020) and 81 

diversity of sites (22 instead of 4 in Weinstein et al. 2020). Additional details on the 82 

modeling approach, data generation, and model evaluation are available in Weinstein et 83 

al (2019, 2020) and a brief summary is provided in S2. This model can be used directly 84 

to make predictions for new data or used as a foundation for retraining the model using 85 

labeled data from a new application. 86 
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 87 

Figure 1. Prebuilt model training workflow. Redrawn from Weinstein et al. (2020). 88 

Parallelograms in the workflow indicate input data, rectangles indicate an algorithmic 89 

step, and circles indicate the start and end of the workflow. The two sub-flows on the 90 

right-side of the figure can run in parallel and outline the pre-training and fine-tuning 91 

stages of the overall model fitting process. 92 

Training 93 

Tree crown delineation is a challenging task and a single model cannot realistically be 94 

expected to capture the tremendous taxonomic diversity at a global scale. This means 95 

that to perform optimal crown delineation for a particular forest requires training or fine-96 

tuning using data from a local area. A key advantage of DeepForest’s neural network 97 

structure is that users can retrain the prebuilt model to learn new tree features and 98 

image backgrounds while leveraging information from the existing model weights based 99 

on data from a diverse set of forests. Fine-tuning neural networks starting from an initial 100 

model requires less training data to produce reasonable results (Shin et al. 2016). 101 
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Known as “transfer learning”, this ability is important because training deep learning 102 

models from scratch often requires tens of thousands of labeled data points for 103 

ecological tasks (Weinstein 2018). In contrast, fine-tuning the prebuilt model with as few 104 

as 1000 hand labeled trees can provide significant improvement and be accomplished 105 

in approximately 8-10 hours (Weinstein et al. 2020). 106 

 107 

Figure 2. Screenshot of hand-annotated RGB image from NEON site YELL near Frog 108 

Rock, WY. For optimal training, all crowns in an image should be annotated. 109 

The standard training process starts with generating local training data by hand-110 

labeling trees in images by placing a bounding box around each visible tree (Figure 2). 111 

This can be done using either image labeling tools (e.g., RectLabel) or GIS software 112 

(e.g., ArcGIS, QGIS) and DeepForest includes helper functions to convert common 113 

formats (XML and shapefiles) into a csv format. Annotations can be made on images of 114 

any size, but training the model requires images with fixed standard dimensions. The 115 

prebuilt model was trained on square crops of length 400px (40m at 0.1m resolution), 116 

w 

f 
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which provides a good balance between image size and providing the model landscape 117 

context for prediction. DeepForest includes a preprocess.split_raster function 118 

that creates a set of appropriately sized images for training using a sliding window 119 

approach. The size of these input windows are optimized for the 10cm data used in 120 

training the prebuilt model. The upper resolution limit for tree crown delineation is 121 

currently unknown, as well as the optimal size of the input windows when performing 122 

predictions at coarser scales.  123 

Training can be performed by fine-tuning the prebuilt model or training only using 124 

the local training data (using deepforest.train). Training deep learning models 125 

requires a number of parameter choices such as batch size and number of epochs. For 126 

users less familiar with training deep learning models, DeepForest comes with a 127 

standard configuration file with reasonable defaults. While some parameter exploration 128 

will always be helpful, our aim is to make these innovations available even to novice 129 

users. Optional GPU support and model customization allow more experienced users to 130 

quickly develop and test larger and more complex models. Data augmentation to 131 

randomly crop and flip training images is also supported. This strategy is often useful to 132 

reduce overfitting when training on small datasets (Zoph et al. 2019) but has not been 133 

extensively tested for tree crown delineation. For additional recommendations for 134 

optimal model training see the online documentation (https://deepforest.readthedocs.io/) 135 

and Appendix S2.   136 

Evaluation 137 

Deep neural networks have millions of parameters and can readily overfit, producing 138 

high scores on training data, while performing poorly on new images. This makes it 139 
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essential to evaluate performance on held-out test data. To evaluate a set of 140 

annotations, users follow the same pattern as with training data: 1) Annotate one or 141 

more images of trees; 2) Cut the images into smaller windows for evaluation; and 3) 142 

Format annotations into a csv file using DeepForest’s utility functions. The 143 

deepforest.evaluate_generator method can then be used to evaluate the 144 

performance of the predictions for this test data using the mean average precision 145 

(mAP). mAP combines precision and recall into a single metric measuring the area 146 

under the precision-recall curve resulting in a score ranging from 0 to 1. In our 147 

experience, mAP scores above 0.5 are usable for scientific application, but the 148 

appropriate value depends on the particular research goal and application. 149 

Prediction 150 

After a model has been trained and evaluated, it can be applied to a larger collection of 151 

images to estimate the locations of trees at larger scales. High resolution images 152 

covering wide geographic extents cannot fit into memory during prediction and would 153 

yield poor results due to the size and density of bounding boxes. DeepForest has a 154 

deepforest.predict_tile method for automating the process of splitting the tile 155 

into smaller overlapping windows, performing prediction on each of the windows, and 156 

then reassembling the resulting annotations. Each bounding box annotation is returned 157 

with its xmin, ymin, xmax, ymax coordinates, and predicted probability score (the 158 

probability that the bounding box represents a tree) ranging from 0-1, with higher values 159 

indicating greater confidence in the prediction. To reduce overcounting among 160 

overlapping tiles, DeepForest sorts predictions by confidence scores and removes lower 161 

scoring overlapping boxes (i.e., non-max suppression). 162 
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Case Studies 163 

National Ecological Observatory Network 164 

To evaluate model performance across a range of forest types, we used data from the 165 

National Ecological Observatory Network to predict crowns in sites across the United 166 

States. This dataset consists of 212 images containing 5852 trees from 22 sites that is 167 

part of an upcoming tree crown benchmark data package (Weinstein et al. 2020). 168 

Training and evaluation data are separated by at least 1 km when they occur at the 169 

same site. Evaluation data were created by viewing RGB images and manually 170 

delineating tree crown boxes for all visible trees. Annotations were cross-referenced 171 

with field collected positions of tree stems (from the NEON Vegetation Structure 172 

dataset; NEON ID: DP1.10098.001) within each plot when available. Following 173 

Weinstein et al. (2019, 2020), we used precision, defined as the fraction of predicted 174 

crowns match real trees, and recall, defined as the fraction of all evaluation trees that 175 

are correctly detected for evaluation. Following the standard evaluation for object 176 

detection in the computer vision literature (Ren et al. 2015), we considered predictions 177 

with Intersection over Union (IoU) scores of 0.5 as true positives. IoU, also known as 178 

the Jaccard Index, is the area of intersection between the prediction and evaluation 179 

crown, divided by the joint area of the combined prediction and evaluation crowns. We 180 

assessed the performance of the prebuilt model at all 22 NEON sites and also 181 

compared the performance to a previous version of this model (Weinstein et al. 2020) 182 

that was only trained on data from 4 NEON sites. 183 
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Across all sites the average recall per image for the prebuilt model was 72% and 184 

the precision was 64%. Model performance varies across NEON sites, but most sites 185 

have both precision and recall values greater than 50% (Figure 3). The model performs 186 

similarly regardless of whether there was hand-annotated training data from the same 187 

site (Figure 3). Visual assessment of predictions across forest types reveals good 188 

overall correspondence between predicted bounding boxes and observations, with most 189 

errors resulting from insufficient overlap between observed and predicted tree crowns, 190 

rather than the model missing a tree entirely (Figure 4). The prebuilt model used by 191 

DeepForest was fit to data from 22 NEON sites and outperforms the previous 4 site 192 

model (Weinstein et al. 2020) at 19 of 22 sites for recall and 16 of 22 sites for precision, 193 

demonstrating that increasing the diversity and amount of training data has improved 194 

the performance of the model. These results demonstrate that the prebuilt model can 195 

make reasonable predictions in forests ranging from deciduous forests of the Northeast, 196 

to southern pinelands, to coniferous forests of the mountain west. 197 

The site with the worst performance is Onaqui, Utah (ONAQ), which is a desert 198 

scrub site with a different vegetation structure from any of the training data. The site is 199 

almost treeless and includes trees with short and gnarled stature. This highlights the 200 

importance of using local training data to reduce uncertainty when working with data 201 

that is not well represented in the training data for the prebuilt model. In these contexts, 202 

the value of the prebuilt model is that it reduces the needed training sizes when applied 203 

to new conditions. This has the potential to support training with small amounts of data 204 

for applications to a wide array of questions surrounding tree health and ecology. For 205 

example, training a model specific to bare trees could allow studies of broad-scale pest 206 
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outbreaks or timing of deciduous phenology. Initial tests at the Soaproot Saddle, CA site 207 

(‘SOAP’ in Figure 4, 3rd row) show the prebuilt model can detect standing dead trees 208 

when visible. Adding additional training data could allow broad scale analysis of tree 209 

health when comparing images across time. 210 

 211 

Figure 3. Precision and recall scores for hand-labeled evaluation images from the 212 

National Ecological Observatory Network (current prebuilt model in red, Weinstein et al. 213 

2020 in blue). Sites in bold had hand-labeled data included in training the current 214 

prebuilt model. See S1 for site abbreviations. 215 

ite 

l. 
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216 

Figure 4. Panel of tree predictions from a broad range of evaluation images in the 217 

National Ecological Observatory Network with predicted tree crown boxes are in blue. 218 

Each image is labeled with the NEON site abbreviation and state. See S1 for site 219 

abbreviations. 220 

French Guiana Tropical Forest 221 

The DeepForest prebuilt model was trained on data from the United States that was 222 

collected using fixed-winged aircraft at 10cm resolution and provided as 1km2 223 

orthomosaics. Therefore, two key questions are: 1) Does this model generalize to 224 

 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 8, 2020. ; https://doi.org/10.1101/2020.07.07.191551doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.07.191551
http://creativecommons.org/licenses/by-nd/4.0/


13 
 

images collected in new locations or using different acquisition hardware; and 2) how 225 

useful are the (re)training features of the software for improving performance in novel 226 

contexts? It is also important to understand how the DeepForest RGB model compares 227 

to LiDAR-based models from recently published work. 228 

To address these questions, we used data from a recently published competition 229 

comparing LIDAR tree segmentation algorithms using remote sensing from French 230 

Guiana (Aubry-Kentz et al. 2019). In the original competition, each team was sent 231 

unlabeled data to predict and the evaluation data was kept private. This process was 232 

repeated for this paper, with the third author (Aubry-Kientz) running evaluation scores 233 

for the DeepForest predictions made by the corresponding author (Weinstein). 234 

Predictions were run on a Mac laptop with a 3.1 GHz Intel Core i5 processor. 235 

Predictions from each algorithm were compared to hand-delineated evaluation crowns 236 

based on field observation and manual comparison with RGB and LiDAR data. 237 

Validation crowns were delineated as polygons, rather than the rectangular bounding 238 

boxes generated by DeepForest. This case study also provides information on whether 239 

DeepForest’s approach of predicting rectangular bounding boxes leads to lower 240 

prediction accuracy than methods producing polygons. Algorithm recall was scored 241 

based on the proportion of labeled trees predicted with IoU scores of greater than 0.5. 242 

Precision was not calculated because not all crowns in the test imagery were delineated 243 

(see Figure 5).  244 
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 245 

     246 

Figure 5. RGB images collected over a tropical forest in French Guiana and example of 247 

manually segmented crowns used to evaluate the segmentation.  248 

We used DeepForest to detect tree crowns using three approaches 1) the 249 

prebuilt DeepForest model with no local training; 2) a model fit solely to 5018 local 250 

hand-annotated crowns (annotated by BW using only the RGB data on tiles separate 251 

from the evaluation data)  and 3) the prebuilt model fine-tuned using the local 252 

annotations. RGB tiles were divided into 800px windows for model training and 253 

evaluation. The default patch size of 400px was increased to 800px to minimize the 254 

edge effect of overlapping crowns. Models 2 and 3 were trained for 7 epochs with a 255 

runtime of approximately 11 minutes/CPU on a laptop, which demonstrates that while 256 

advanced GPU hardware is convenient for training large datasets, fine-tuning and 257 

training on small datasets can be done locally on CPU. 258 

The prebuilt model performed well on this novel data with a recall of 0.64, close 259 

to the 0.71 recall for the best performing LIDAR based algorithm from Aubry-Kientz et 260 

al. (2019). Training only on the 5018 local annotations resulted in a poorer recall of 261 

0.35. Retraining the prebuilt model with the local annotations produced the best results 262 
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with a recall of 0.78, slightly better than the highest performing LiDAR algorithm from 263 

Aubry-Kientz et al. (2019). This analysis is not sufficient to draw general conclusions 264 

about RGB versus LiDAR-based methods, but these results do suggest that 265 

DeepForest is competitive with state-of-the-art LiDAR-based approaches. Overall, the 266 

case study demonstrates the utility of DeepForest both using the prebuilt model and 267 

using local retraining to improve crown delineation based on local conditions. 268 

269 

Figure 6. Predictions made on a tropical forest in French Guiana using the prebuilt 270 

model retrained with local annotations. Each individual tree is labeled with a blue 271 

bounding box. 272 

Portland Street Trees 273 

DeepForest’s use of widely available RGB data provides the potential for it to be used 274 

across very large spatial extents. Scaling up is challenging because algorithms need to 275 

handle large ranges of habitat types and because the resolution of the data available 276 

over large areas is typically coarser. To explore how DeepForest performs using 277 

coarser resolution data in unique habitats, we applied both the prebuilt model and a 278 

retrained model to crown delineation of street trees in an urban environment. The 279 

locations of urban trees are important for ecological, sociological and public 280 
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infrastructure applications. In addition, the urban environment is very different from the 281 

natural environments on which the prebuilt model was trained. The image data from the 282 

Oregon Statewide Imagery Program is also coarser at 0.3m spatial resolution (1ft), a 283 

resolution that is widely available as part of the National Agriculture Imagery Program 284 

(NAIP - https://www.fsa.usda.gov/programs-and-services/aerial-photography/imagery-285 

programs/naip-imagery/). 286 

We used imagery from the Portland metro area that overlapped with the Portland 287 

Street Trees dataset (http://gis-pdx.opendata.arcgis.com/datasets/street-trees). The 288 

street trees dataset contains geospatial information for the majority of trees accessible 289 

from public roads in the metro area. Not all trees in an image are labeled, since many 290 

trees occur on private property and are not mapped. We divided the RGB imagery into 291 

geographically distinct training and test datasets and used the street trees dataset to 292 

guide hand-annotation of a small number of tree crowns (n=1033). Annotation by hand 293 

took approximately three hours and covered a small geographic area of mixed urban 294 

development, empty lots and ballfields (Figure 6). The street trees data was collected 295 

prior to the RGB images and was cleaned to remove trees that had been cut down or 296 

were obvious errors (e.g. trees located in the middle of buildings). To evaluate the street 297 

tree case study, we used field collected location of the tree stems to measure tree recall 298 

and the rate of undersegmentation. Recall was defined as the proportion of street tree 299 

locations that were contained within a predicted tree bounding box. Undersegmentation 300 

rate was defined as the proportion of predicted boxes that matched more than one 301 

street tree. Minimizing undersegmentation is challenging because trees growing close 302 
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together can appear to be a single tree from above and is therefore best evaluated 303 

against ground collected data. 304 

We found that evaluating and retraining on data with coarser resolution than the 305 

prebuilt model required careful choosing of the size of the focal view. The prebuilt model 306 

was originally trained on a 40m focal view (400px windows with 0.1m data). Data 307 

exploration on the coarser data source showed that larger focal views of 60-120m 308 

performed better than maintaining the original 40m view, and 60m was chosen for this 309 

analysis. In general, we expect that the focal view size should increase with coarser 310 

resolution data, but this remains an area of further exploration. 311 

 As with the tropical forest case study, we found that the prebuilt model performed 312 

reasonably well (recall = 0.55; undersegmentation = 0.25) and retraining with a small 313 

amount of local training data significantly improved algorithm performance with an 314 

increase in recall and decrease in undersegmentation (recall = 0.72; undersegmentation 315 

= 0.17; Figure 7). Visual inspection shows that many of the errors in using the retrained 316 

model are for small trees difficult to resolve in the imagery, or tree types not present in 317 

the limited training data (e.g. ornamental trees with a deep purple hue). 318 
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 319 

 320 

Figure 7. Predictions for the Portland street tree case study. Bounding box predictions 321 

from the prebuilt model are in orange. Bounding box predictions from the retrained 322 

model using local data are in blue. Street tree locations are marked in purple. 323 

Conclusion 324 

DeepForest provides an open source software package for: 1) delineating tree crowns 325 

in RGB imagery, 2) evaluating the performance of that crown delineation using hand 326 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 8, 2020. ; https://doi.org/10.1101/2020.07.07.191551doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.07.191551
http://creativecommons.org/licenses/by-nd/4.0/


19 
 

labeled evaluation data, and 3) training new models and fine-tuning of the included 327 

prebuilt model to support prediction tailored to specific forest types. The inclusion of a 328 

prebuilt model allows users to benefit from the strengths of deep learning without 329 

needing to deal with many of the challenges. Given the enormous diversity of tree 330 

appearance at a global scale, defining a single unified model for tree crown delineation 331 

is challenging. To address this, DeepForest provides an explicit retraining method to 332 

improve performance for specific use cases. This allows the user to decide what level of 333 

accuracy is required for the target question, and then annotate local data and retrain the 334 

model to produce predictions with sufficient accuracy for their use case. We recommend 335 

defining a clear evaluation dataset, setting a threshold for desired performance before 336 

training, and using evaluation data that is geographically separate from the training data 337 

to ensure that the prediction threshold holds outside of the training region.  338 

 The minimal spatial resolution for accurate tree prediction using this software 339 

remains unknown and may ultimately relate to the desired ecological or management 340 

question. Analysis of the NEON data show that individual tree segmentation is 341 

achievable at 10cm.  The Portland Street trees example shows that 30 cm data (which 342 

is publicly available for many states and counties) provides reasonable delineations. 343 

However, the accuracy will not be as high as with higher resolution data, and further 344 

analysis at this resolution is necessary. One meter resolution imagery is increasingly 345 

available at near continental scales (e.g., NAIP 1m imagery which provides nearly 346 

complete coverage of the United States; https://www.fsa.usda.gov/programs-and-347 

services/aerial-photography/imagery-programs/naip-imagery/). It is unlikely that these 348 
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data will be effective at distinguishing small individual trees, but it may be useful in 349 

identifying large trees or clusters of trees in sparse landscapes. 350 

 To support the broad application of predictions from DeepForest, these 351 

predictions can be easily exported for use in further analysis and combination with other 352 

sensor products for forest research. Individual tree crown delineation is often the first 353 

step in key remote sensing analyses of forested landscapes, including biomass 354 

estimation (Kamoske et al. 2019), species classification (Maschler et al. 2018), and leaf-355 

trait analysis (Marconi et al. 2019). DeepForest both ingests and outputs crowns in an 356 

easily accessible, standardized annotation format, and will facilitate further 357 

improvements in the prebuilt model based on community contributions. 358 

Data Availability 359 

DeepForest source code is available on GitHub 360 

(https://github.com/weecology/DeepForest) and archived on Zenodo 361 

(https://doi.org/10.5281/zenodo.2538143). The code for the case studies is available in 362 

a separate repo (https://github.com/weecology/DeepForest_demos).  The in-363 

development  version of the NEONTreeEvaluation benchmark is available online 364 

(https://github.com/weecology/NeonTreeEvaluation) and will continue to be updated as 365 

more images are annotated. The Oregon RGB imagery was provided by the Oregon 366 

Statewide Imagery Program 2018: 1 foot orthophotography of western Oregon: State of 367 

Oregon data release, https://www.oregon.gov/geo/Pages/imagery_data.aspx    368 
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Supplementary 1 434 

NEON Site Abbreviations 435 

Site Name Site ID State Latitude Longitude 

Onaqui ONAQ UT 40.17759 -112.45244 

Santa Rita Experimental Range SRER AZ 31.91068 -110.83549 

Niwot Ridge Mountain Research Sta-

tion 

NIWO CO 40.05425 -105.58237 

Yellowstone Northern Range (Frog 

Rock) 

YELL WY 44.95348 -110.53914 

Wind River Experimental Forest WREF WA 45.82049 -121.95191 

Abby Road ABBY WA 45.76243 -122.33033 

Lower Teakettle TEAK CA 37.00583 -119.00602 

Caribou-Poker Creeks Research Wa-

tershed 

BONA AK 65.15401 -147.50258 

Soaproot Saddle SOAP CA 37.03337 -119.26219 

San Joaquin Experimental Range SJER CA 37.10878 -119.73228 

Lenoir Landing LENO AL 31.85388 -88.16122 

UNDERC UNDE MI 46.23388 -89.53725 

Ordway-Swisher Biological Station OSBS FL 29.68927 -81.99343 

Disney Wilderness Preserve DSNY FL 28.12504 -81.4362 

Jones Ecological Research Center JERC GA 31.19484 -84.46861 

Blandy Experimental Farm BLAN VA 39.06026 -78.07164 

Smithsonian Environmental Research 

Center 

SERC MD 38.89008 -76.56001 

Smithsonian Conservation Biology In-

stitute 

SCBI VA 38.89292 -78.1395 

Bartlett Experimental Forest BART NH 44.06388 -71.28731 

Konza Prairie Biological Station KONZ KS 39.10077 -96.56309 

Talladega National Forest TALL AL 32.95046 -87.39327 

Dead Lake DELA AL 32.54172 -87.80389 

Mountain Lake Biological Station MLBS VA 37.37828 -80.52484 

The University of Kansas Field Station UKFS KS 39.04043 -95.19215 

Harvard Forest HARV MA 42.5369 -72.17266 

  436 
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S2: Technical background to DeepForest and advice on model development 437 

The goal of this paper is to provide a robust open-source implementation for RGB tree crown 438 

delineation. For detailed information on data generation and model testing see Weinstein et al. 439 

(2019, 2020). Here we provide an overview with recommendations for parameters that could 440 

affect model performance. For more discussion with code examples see 441 

https://deepforest.readthedocs.io/ .  442 

 DeepForest is a deep learning object detection model. Deep learning uses a series of 443 

hierarchical filters to connect low-level image features, such as colors and shape, to high-level 444 

concepts such as crown contours. Deepforest uses the keras-retinanet implementation (Gaiser 445 

et al 2017) of the Retinanet one-stage object detector with a Resnet-50 classification backbone 446 

(Ren et al. 2015). This classification backbone was pretrained on the ImageNet dataset (He et 447 

al., 2016). This pretraining is useful for reducing training time and minimize overfitting to smaller 448 

ecological datasets. Given an input image, the model predicts both the location of bounding 449 

boxes and object classes simultaneously. In the DeepForest implementation, the prebuilt model 450 

has only 1 “Tree” class. All instances of the target class are predicted, such that if there are 40 451 

trees in the image, an ideal model will predict 40 bounding boxes. Deep learning models have 452 

millions of parameters and take significant computational resources. To reduce memory 453 

consumption, we cut each prediction image into 40m by 40m windows with an overlap of 5%. 454 

Using a pool of unsupervised LiDAR-based tree predictions generated using Silva et al (2016), 455 

we pretrained the network with a batch size of 20 on 2 Tesla K80 GPU for 5 epochs. To align 456 

these unsupervised classifications with the ImageNet pretraining weights, we normalized the 457 

RGB channels by subtracting the ImageNet mean from each channel. We then retrained the 458 

network using the hand-annotated data for 40 epochs. Data augmentation of random flips and 459 

translations was tested and found to have little effect on the final score. 460 

Key parameter choices 461 
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Given the diversity of forests, data resolutions and image backgrounds, it is unlikely that a 462 

universal tree crown method exists without some parameter tuning. The prebuilt model does a 463 

good job in many situations, but to get the most of of DeepForest, some parameter exploration 464 

will be needed. Using the prebuilt model, users should consider: 465 

• Patch Size 466 

The prebuilt model was built on 40m crops with 0.1m imagery (400^2 pixels). The model can 467 

generalize to new resolutions, (see street trees example), but may need to vary the image patch 468 

size. For example, on the 30cm NAIP data, we found that increasing patch size from 40 to 60 469 

meters per image improved model performance. While an exact equation between image 470 

resolution and optimal patch size is unknown, we anticipate that coarser resolution data require 471 

larger patches to gather more context around visible tree crowns. 472 

• IoU suppression threshold 473 

Object detection models have no inherent logic about overlapping bounding boxes. For tree 474 

crown detection, we expect trees in dense forests to have some overlap, but not be completely 475 

intertwined. We therefore apply a postprocessing filter called ‘non-max-suppression’, which is a 476 

common approach in the broader computer vision literature. This routine starts with the boxes 477 

with the highest confidence scores and removes any overlapping boxes greater than the 478 

intersection-over-union threshold (IoU). Intersection-over-union is the most common object 479 

detection metric, defined as the area of intersection between two boxes divided by the area of 480 

union. If users find that there is too much overlap among boxes, increasing the IoU will return 481 

fewer boxes. To increase the number of overlapping boxes, reduce the IoU threshold. 482 

 483 

Training New Models 484 
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Ultimately, the best performance will come from training local data. Even a small amount of local 485 

training data can be beneficial. When training images, it is important to label all visible trees, not 486 

just the trees that the user has high confidence in. Skipping trees in an image will teach the 487 

model to skip trees during prediction. During annotation, we highly suggest users spend the 488 

time to answer 2 questions: 1) What kind of data am I trying to predict? Capturing the variability 489 

and the broad range of tree taxonomy and presentation will make development go more 490 

smoothly. 2) What kind of accuracy do I need to answer my question? It is natural to want the 491 

best model possible, but one can waste a time trying to eek out another 5% of recall without 492 

understanding whether that increase in performance will improve our understanding of a given 493 

ecological or natural resource question.  494 

• Batch size 495 

Neural networks are often trained in batches of images, since the entire dataset is often too 496 

large to read into memory at once. The size of these batches affects both the speed of training 497 

(larger batches train faster) and the stability of training (larger batches lead to more consistent 498 

results). The default batch size of 1 is chosen because it is not possible to anticipate the 499 

available memory and should be increased whenever possible. Typically, batch sizes are evenly 500 

divisible by the size of the entire dataset. 501 

• Epochs 502 

An ‘epoch’ is one iteration of training on all images. The more times the model sees the training 503 

data, the higher the training accuracy. However, deep learning models have millions of 504 

parameters and can easily overfit. For small datasets (< 10,000 annotations), 5-10 epochs 505 

should be sufficient. If training for longer, make sure to carefully evaluate validation accuracy on 506 

out-of-sample data. 507 

 508 

 509 
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