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Abstract

Motivation: Accurate prediction of cancer drug response (CDR) is challenging due to the uncertainty of
drug efficacy and heterogeneity of cancer patients. Strong evidences have implicated the high dependence
of CDR on tumor genomic and transcriptomic profiles of individual patients. Precise identification of CDR
is crucial in both guiding anti-cancer drug design and understanding cancer biology.
Results: In this study, we present DeepCDR which integrates multi-omics profiles of cancer cells and
explores intrinsic chemical structures of drugs for predicting cancer drug response. Specifically, DeepCDR
is a hybrid graph convolutional network consisting of a uniform graph convolutional network (UGCN)
and multiple subnetworks. Unlike prior studies modeling hand-crafted features of drugs, DeepCDR
automatically learns the latent representation of topological structures among atoms and bonds of drugs.
Extensive experiments showed that DeepCDR outperformed state-of-the-art methods in both classification
and regression settings under various data settings. We also evaluated the contribution of different types
of omics profiles for assessing drug response. Furthermore, we provided an exploratory strategy for
identifying potential cancer-associated genes concerning specific cancer types. Our results highlighted
the predictive power of DeepCDR and its potential translational value in guiding disease-specific drug
design.
Availability: DeepCDR is freely available at https://github.com/kimmo1019/DeepCDR
Contact: ruijiang@tsinghua.edu.cn; muzhou@sensebrain.site
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Designing novel drugs with desired efficacy for cancer patients is of
great clinical significance in pharmaceutical industry (Lee et al., 2018).
However, the intra- and inter-tumoral heterogeneity results in diverse
anti-cancer drug responses among patients (Rubin, 2015; Kohane, 2015),
highlighting the complexity of genomics and molecular backgrounds.
Recent advances in high-throughput sequencing (HTS) technologies have
deepened our understanding of cancer phenotypes from the aggregated
amounts of cancer omics profiles (Gagan and Van Allen, 2015). For
example, the pharmacogenomics (Daly, 2017; Musa et al., 2017) is

evolving rapidly by addressing the interactions between genetic makeup
and drug response sensitivity.

Precise identification of cancer drug response (CDR) has become a
crucial problem in guiding anti-cancer drug design and understanding
cancer biology. Particularly, cancer cell lines (permanently established in
vitro cell cultures) play an important role in pharmacogenomics research
as they reveal the landscape of environment involved in cellular models
of cancer (Iorio et al., 2016). Databases such as Cancer Cell Line
Encyclopedia (CCLE) (Barretina et al., 2012) provide large-scale cancer
profiles including genomic (e.g., genomic mutation), transcriptomic (e.g.,
gene expression) and epigenomic data (e.g., DNA methylation). Also, the
Genomics of Drug Sensitivity in Cancer (GDSC) (Iorio et al., 2016) has
been carried out for investigating the drug response to numerous cancer
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cell lines. For example, the half-maximal inhibitory concentration (IC50)
is a common indicator reflecting drug response across cancer cell lines.
Mining these cancer-associated profiles and their interactions will help
characterize cancer molecular signatures with therapeutic impact, leading
to accurate anti-cancer drug discovery. However, due to the complexity
of omics profiles, the translational potential of identifying molecular
signatures that determines drug response has not been fully explored.

So far, a handful of computational models have been proposed for
predicting cancer drug response which can be divided into two major
categories. The first type is the network-driven methods which analyze
the information extracted from drug-drug similarities and cancer cell line
similarities. The core idea is to construct a similarity-based model and
assign the sensitivity profile of a known drug to a new drug if there
are structurally similar. For example, (Zhang et al., 2015) established a
dual similarity network based on the gene expression of cancer cell lines
and chemical structures of drugs to predict cancer drug response. (Turki
and Wei, 2017) proposed a link-filtering algorithm on cancer cell line
network followed by a linear regression for predicting the cancer drug
response. HNMDRP (Zhang et al., 2018) is a heterogeneous network that
integrates multiple networks, including cell line similarity, drug similarity
and drug target similarity. An information flow algorithm was proposed
for predicting novel cancer drug associations. Notably, network-driven
methods tend to show poor scalability and low computational efficiency.
Machine learning methods are another type of computational analysis
directly exploring profiles from large-scale drugs and cancer cell lines.
Typical approaches include logistic regression (Geeleher et al., 2014),
Support Vector Machines (SVM) (Dong et al., 2015), random forest
(Daemen et al., 2013) and neural networks (Chang et al., 2018; Liu et al.,
2019; Sharifi-Noghabi et al., 2019; Manica et al., 2019). Most machine
learning methods used single omics data from cancer cell lines, such as
genomic mutation or gene expression. For example, CDRscan (Chang
et al., 2018) used the molecular fingerprints for drug representation and
genomic mutation as cancer cell profile. They were fed to an ensemble
CNN model for cancer drug response prediction. tCNNs (Liu et al., 2019)
takes SMILES sequence for drug representation and genomic mutation
as cancer cell profile, which will be fed to a twin convolutional neural
network as inputs. We summarized the major limitations of prior studies
as follows.

• Conventional feature extractions are unable to capture intrinsic
chemical structures of drugs. For example, engineered features
of compounds only consider chemical descriptors and molecular
fingerprints (Liu et al., 2018a; Wei et al., 2019; Chang et al., 2018).
Although they have been applied to drug discovery and compound
similarity search (Cereto-Massagué et al., 2015), such features are
sparse and computationally expensive for drug representation. Also,
string-based (e.g., SMILES) representation of drugs (Segler et al.,
2017; Guimaraes et al., 2017; Popova et al., 2018; Liu et al., 2019)
is quite brittle as small changes in the string can lead to completely
different molecules (Kusner et al., 2017).

• Despite the emergence of multi-omics profiles, the vast majority of
previous studies merely focused on the analysis of single type of
omics data, such as genomic or transcriptomic profiles of cancer cells.
The synergy of omics profiles and their interplay have not been fully
explored. In addition, the epigenomic data (e.g., DNA methylation),
proven to be highly related to cancer occurrence (Klutstein et al., 2016),
is largely ignored.

Considering the above limitations, we proposed a hybrid graph
convolutional network for predicting cancer drug response (Fig 1).
DeepCDR consists of a uniform graph convolutional network (UGCN) for
drug representation based on the chemical structure of drugs. Additionally,

DeepCDR contains several subnetworks for feature extraction of multi-
omics profiles from genomics, transcriptomics and epigenomics inputs.
The high-level features of drugs and multi-omics data were then
concatenated together and fed into a 1-D convolutional neural network
(CNN). DeepCDR enables prediction of the IC50 sensitivity value of a
drug with regard to a cancer cell line in a regression task, or claiming
the drug to be sensitive or resistant in a classification task. Conceptually,
DeepCDR can be regarded as a multimodal deep learning solution for
cancer drug response prediction. We summarized our contributions as
follows.

• We proposed a uniform graph convolutional network (UGCN) for
novel feature extraction of drugs. Compared to hand-crafted features
(e.g., molecular fingerprints) or string-based features (e.g., SMILES),
the novel design of UGCN architecture can automatically capture
drug structures by considering the interactions among atoms within
a compound.

• We discovered that the synergy of multi-omics profiles from cancer
cell lines can significantly improve the performance of cancer drug
response prediction and epigenomics profiles are particularly helpful
according to our analysis.

• We designed extensive experiments to reveal the superiority of
our model. DeepCDR achieves state-of-the-art performance in
both classification and regression settings, highlighting the strong
predictive power of UGCN architecture and multimodal learning
strategy.

2 Methods

2.1 Overview of DeepCDR framework

DeepCDR is constructed by a hybrid graph convolutional network for
cancer drug response (CDR) prediction, which integrates both drug-level
and multi-omics features (Fig 1). The output of DeepCDR is measured
by the IC50, which denotes the effectiveness of a drug in inhibiting the
growth of a specific cancer cell line. For example, small IC50 value reveals
a high degree of drug efficacy, implying that the drug is sensitive to the
corresponding cancer cell line.

DeepCDR consists of a uniform graph convolutional network (UGCN)
and several subnetworks for extracting drug and cancer cell line
information, respectively (see detailed hyperparameters in Supplementary
Table 1-2). On the one hand, the uniform graph convolutional network
(UGCN) takes the adjacent information of atoms in a drug into
consideration by aggregating the features of neighboring atoms together.
On the other hand, the subnetworks extract high-level features of cancer
omics profiles from a certain cancer cell line (i.e., genomic data,
transcriptomic data and epigenomic data). Then the high-level features
of drug and multiple omics data were concatenated and fed to a 1-D
convolutional neural network. To alleviate potential overfitting in the
training process, we used Batch normalization (Ioffe and Szegedy, 2015)
and Dropout (Srivastava et al., 2014) after each convolutional layer. We
used Adam as the optimizer for updating the parameters of DeepCDR in
the back-propagation process. Similar to (Liu et al., 2018b), the DeepCDR
classification model takes a sigmoid layer for prediction and cross-entropy
(CE) as loss function, while the DeepCDR regression model directly uses
a linear layer without an activation function and takes mean square error
(MSE) as loss function.

2.2 Drug feature representation

Each drug has its unique chemical structure which can be naturally
represented as a graph where the vertices and edges denote chemical atoms
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Fig. 1. The overview framework of DeepCDR. DeepCDR contains a uniform graph convolutional network (UGCN) and three subnetworks for processing drug structures and cancer cell
profiles (genomic mutation, gene expression and DNA methylation data) respectively. DeepCDR takes a pair of drug and cancer cell profiles as inputs and predicts the drug sensitivity
(IC50) (regression) or claims the drug to be sensitive or resistant (classification). The drug will be represented as a graph based on the chemical structure before transformed into a high-level
latent representation by the uniform graph convolutional network (UGCN). Omics featured learned by subnetworks will bes concatenated to the drug feature.

and bonds, respectively. Suppose we haveM drugs in our study, the graph
representation of these drugs can be described as {Gi = (Xi,Ai)|Mi=1}
where Xi ∈ RNi×C and Ai ∈ RNi×Ni are the feature matrix and
adjacent matrix of the ith drug, respectively. Ni is the number of atoms
in the ith drug and C is the number of feature channels. Each row of
feature matrix corresponds to the attributes of an atom. Following the
description in (Ramsundar et al., 2019), the attributes of each atom in a
compound were represented as a 75-dimensional feature vector (C=75),
including chemical and topological properties such as atom type, degree
and hybridization. We downloaded the structural files (.MOL) of all drugs
(M=223) from PubChem library (Kim et al., 2018) of which the number
of atoms Ni varies from 5 to 96.

2.3 Uniform graph convolutional network

We seek to achieve graph-level classification as each input of drug
represents a unique graph structure while the original graph convolutional
network (GCN) (Kipf and Welling, 2017) aims at node classification
within a single graph. To address this issue, we extended the original
GCN architecture and presented a uniform graph convolutional network
(UGCN) for processing drugs with variable sizes and structures. The
core idea of UGCN is to introduce an additional complementary graph
to the original graph of each drug to ensure the consistent size of feature
matrix and adjacent matrix. Given the original graph representation of M
drugs {Gi = (Xi,Ai)|Mi=1}, the complementary graphs of drugs can be
represented as {Gci = (Xc

i ,A
c
i )|Mi=1}, where Xc

i ∈ R(N−Ni)×C and
Ac
i ∈ R(N−Ni)×(N−Ni).N is a fixed number which is set to 100. Thus

the consistent representation of a drug is designed as follows:

A′i =

[
Ai Bi

BT
i Ac

i

]
,X′i =

[
Xi

Xc
i

]
(1)

where Bi ∈ RNi×(N−Ni) is a conjunction matrix which represents
the connection between the ith original graph and complementary graph.
A′i ∈ RN×N and X′i ∈ RN×C are the consistent adjacent matrix and
feature matrix. The uniform graph convolutional network (UGCN) applied
to ith drug is defined as f(X′i,A

′
i) with a layer-wise operation as

H
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i Ã′iD̃
′− 1

2
i H

(l)
i Θ(l)) (2)

where Ã′i = A′i+IN is the adjacent matrix with added self-connections,

D̃′i is the degree matrix of Ã′i which D̃′i[j, j] =
∑
k Ã′i[j, k]. H

(l)
i and

Θ(l) are the convolved signal and filter parameters of the lth layer. σ(·) is
the activation function, which is set toReLu(·) = max(0, ·) .We further
denote the first Ni rows of H

(l)
i as H

(l,α)
i and the remaining (N −Ni)

rows as H
(l,β)
i . For the first graph layer where l = 0, we initialized the

first layer as H
(0)
i = X′i and substituted formula (1) into (2), we can

derive the propagation rule of first layer of UGCN as the following:
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where D̃i and D̃c
i are the degree matrix of Ãi and Ãc

i and DB
i and DBT

i

are two diagonal matrix for describing row sum and column sum of Bi.
DB
i [j, j] =

∑
k Bi[j, k] and DBT

i [j, j] =
∑
k BT

i [j, k].
With mathematical induction, it can be inferred that the general layer-

wise propagation rule of UGCN can be represented by the following two
equations:
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We further consider a special case where the complementary graphs
have no connection to the original graphs (Bi = 0), so the layer-wise
propagation rule of UGCN will be simplified as
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 (5)

Overall we showed that the convolution on the original graph and the
corresponding complementary graph is independent in UGCN given the
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conjunction matrix Bi = 0. At last, we applied a global max pooling
(GMP) over the graph nodes in A′i to ensure that drugs with different
size will be embedded into a fixed dimensional vector (defulat dimension:
100). In our study, we set Bi = 0, Xc

i = 0 and l = 3 as the default
settings for initializing DeepCDR. We also explored another initailization
strategy in the discussion section.

2.4 Omics-specific subnetworks

We designed omics-specific subnetworks to integrate the information of
multi-omics profiles. We used the late-integration fashion in which each
subnetwork will first learn a representation of a specific omics data in a
latent space and then be concatenated together. The three subnetworks can
be represented as {yg=fg(xg),yt=ft(xt),ye=fe(xe)} for processing
genomic, transcriptomic and epigenomic data per sample, respectively.
Similar to (Chang et al., 2018), we used a 1D convolutional network
for processing genomic data as the mutation positions are distributed
linearly along the chromosome. For transcriptomic and epigenomic data,
we directly used fully-connected networks for feature representation. (see
detailed hyperparameters of subnetworks in Supplementary Table 2).

fg : xg ∈ R1×dg 7→ yg ∈ R1×d

ft : xt ∈ R1×dt 7→ yt ∈ R1×d

fe : xe ∈ R1×de 7→ ye ∈ R1×d

The dimension of latent space d is set to 100 in our experiments by
detault.

2.5 Data preparation

We integrated three public databases in our study including Genomics of
Drug Sensitivity in Cancer (Iorio et al., 2016) (GDSC), Cancer Cell Line
Encyclopedia (Barretina et al., 2012) (CCLE) and TCGA patient data
(Weinstein et al., 2013). GDSC database provides IC50 values for a large-
scale drug screening data, of which each IC50 value corresponds to a drug
and a cancer cell line interaction pair. CCLE database provides genomic,
transcriptomic and epigenomic profiles for more than a thousand cancer
cell lines. For the three omics data, we focused on genomic mutation
data, gene expression data and DNA methylation data, which can be
easily accessed and downloaded using DeMap portal (https://depmap.org).
TCGA patient data provide both genetic profiles of patients and clinic
annotation after drug treatment. We used TCGA dataset for an external
validation.

We downloaded IC50 values (natural log-transformed) across
hundreds of drugs and cancer cell lines from GDSC database as the ground
truth of drug sensitivity profiles for measuring cancer drug response.
We excluded drug samples without PubChem ID in GDSC database and
removed cancer cell lines in which any type of omics data was missing.
Note that several drugs with different GDSC ids may share the same
PubChem ids due to the different screening condition. We treated them
as individual drugs in our study. We finally collected a dataset containing
107446 instances across 561 cancer cell lines and 238 drugs. Considering
all the 561 × 238 = 133518 drug and cell line interaction pairs,
approximately 19.5% (26072) of the IC50 values were missing. The
corresponding drug and cancer cell line datasets used in this study are
summarized in Supplementary Table 3-4. Each instance corresponds to a
drug and cancer cell line interaction pair. Each cell line was annotated with
a cancer type defined in The Cancer Genome Atlas (TCGA) studies and
we only considered TCGA cancer types suggested by (Chang et al., 2018)
in the downstream analysis.

For multi-omics profiles of cancer cell lines, we only consider
data related to 697 genes from COSMIC Cancer Gene Census
(https://cancer.sanger.ac.uk/census). For genomic mutation data, 34673

unique mutation positions including SNPs and Indels within the above
genes were collected. The genomic mutation of each cancer cell line was
represented as a binary feature vector in which ’1’ denotes a mutated
position and ’0’ denotes a non-mutated position (dg=34673). For gene
expression data, the TPM value of gene expression was log2 transformed
and quantile normalized. Then the gene expression of each cell line
can be represented as a 697-dimensional feature vector (dt=697). The
DNA methylation data was directly obtained from the processed Bisulfite
sequencing data of promoter 1kb upstream TSS region. Then we applied a
median value interpolation to the data as there were a minority of missing
values. The methylation of each cell line is finally represented by a 808-
dimensional feature vector (de=808). The three types of omics data were
finally transformed into a latent space where the embedded dimension was
fixed to 100 (d=100).

For TCGA patient data, we chose the patients with cervical squamous
cell carcinoma and endocervical adenocarcinoma (CESC) disease with two
criterions. 1) The gene mutation, gene expression and DNA methylation
data are available. 2) The clinic annotation of drug response was also
available. We finally created an external data source with 54 records across
31 patients and 12 drugs. The genetic profiles were preprocessed the same
way as cell line data and we took records with "Complete Response" clinic
annotation as positive examples (see details in Supplementary Table 5).

2.6 Baseline methods

The following competing methods were considered. The best or default
parameters of each method were used for model comparison.

• Ridge Regression is a linear regression model with L2 penalty.
We first concatenated genomic mutation features and molecular
fingerprints of drugs together and then fed to ridge regression model.
The ridge regression model was implemented using sklearn library
(Pedregosa et al., 2011). Basically, we found no significant changes in
results as we tried different settings of theL2 penalty coefficient from
{0.1,0.5,1.0,5.0}. We finally chose the default coefficient parameter
1.0 provided by sklearn library in the comparing experiments.

• Random Forest is a tree-based regressor in which the input is the
same as the ridge regression model. The random forest was also
implemented with sklearn library (Pedregosa et al., 2011). We set
the number of trees in the forest from {10,100,200,500} and chose the
best parameter in the comparing experiments.

• CDRscan (Chang et al., 2018) applies an ensemble convolutional
neural networks (CNNs) model for predicting cancer drug response
using molecular fingerprints of drugs and genomic mutation data of
cancer cell line.

• tCNNs (Liu et al., 2019) applies an convolutional neural network
(CNN) for predicting cancer drug response using SMILES sequences
of drugs and genomic mutation data of cancer cell line.SMILES
sequences of drugs will first be encoded into one-hot representation
and fed to the neural network.

• MOLI (Sharifi-Noghabi et al., 2019) is one of the few studies that
considers multi-omics profiles (genomic mutation, copy number and
gene expression) with encoder neural networks. Specifically, MOLI is
a drug-specific model where each model is trained for a specific drug.

2.7 Model evaluation

In the regression experiments for predicting natural log-transformed
IC50 values given the profiles of drugs and cancer cell lines, we
used three common metrics for measuring the statistical correlation
between observed values and predicted IC50 values, including Pearson’s
correlation coefficient (PCC), Spearman’s correlation coefficient (SCC)
and root mean squared error (RMSE). PCC measures the linear correlation
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Fig. 2. Performance of DeepCDR in cancer drug response prediction under different experiment settings. (A) and (B) highlighted the scatter plots in two TCGA cancer types with the best
(MM) and worst (LAML) performance. (C) and (D) showed the scatter plots in two drugs with the best (Belinostat) and worst (Pazopanib) performance. (E) The predicted IC50 values of
missing data in GDSC database grouped by drugs. Drugs were sort according to the average predicted IC50 value in missing cell lines. The number of missing cell lines for each drug is
also denoted below/above the violin plot. Each violin plot corresponds to a specifc drug response in all missing cell lines. The blue and red violin plots denote the top-10 drugs with the
highest and the lowest efficacy.(F) The performance of DeepCDR and tCNNs in blind test for drugs. The x-axis and y-axis of each dot represent the Pearson’s correlation of tCNNs and
DeepCDR, respectively. The dot fallen into the left upper side denotes the case where DeepCDR outperforms tCNNs. (G) The performance of DeepCDR and tCNNs in blind test for cell
lines. (H) and (I) show the receiver operating characteristic (ROC) and precision-recall (PR) curve of the four comparing methods, respectively. (J) and (K) show the violin plots of the area
under ROC curve (AUC) and area under PR curve (auPRs) across TCGA cancer types. Note that each dot within a violin plot represents the average AUC or auPR score within one TCGA
cancer type. Additionally, one-sided Mann–Whitney U tests between DeepCDR and tCNNs were conducted. *p-value=1.01×10−5 , **p-value=0.062.

Table 1. Regression experiments of IC50 values with DeepCDR and five comparing methods. Three different measurements, including Pearson’s correlation,
Spearman’s correlation and root mean square error (RMSE), were illustrated. We trained neural network based models from scratch for five times and the standard
deviations of each method were also calclated for evaluating the model robustness. DeepCDR demonstrates a consistant highest performance in all measurements
comparing to other methods

Methods Pearson’s correlation Spearman’s correlation RMSE

Ridge Regression 0.780 0.731 2.368
Random Forest 0.809 0.767 2.270

MOLI 0.813±0.007 0.782±0.005 2.282±0.008
CDRscan 0.871±0.004 0.852±0.003 1.982±0.005

tCNNs 0.885±0.008 0.862±0.006 1.782±0.006
DeepCDR 0.923±0.006 0.903±0.004 1.058±0.006

between observed and predicted IC50 values while SCC is a nonparametric
measure of rank correlation of observed and predicted IC50 values. RMSE
directly measures the difference of observed and predicted IC50 values.

For classification experiments, we chose the area under the receiver
operating characteristic curve (AUC) and area under the precision-recall
curve (auPR) as the two commonly used measurements of a classifier.

To comprehensively evaluate the performance of our model DeepCDR,
we demonstrated results under various data settings. We breifly
summarized these different data settings in the following:

• Rediscovering Known Cancer Drug Responses. Based on the known
drug-cell line interactions across 561 cancer cell lines and 238 drugs,

we randomly selected 80% of instances of each TCGA cancer type as
the training set and the remaining 20% of the instances as the testing set
for model evaluation. The five-fold cross-validation was conducted.

• Predicting Unknown Cancer Drug Responses. We trained
DeepCDR model with all the known drug-cell line interaction pairs and
predicted the missing pairs in GDSC database (approximately 19.5%
of all pairs across 561 cancer cell lines and 238 drugs).

• Blind Test for Both Drugs and Cell Lines. In order to evaluate the
predictive power of DeepCDR when given a new drug or new cell line
that is not included in the training data. We randomly split the data
into 80% training set and 20% test set on the cell line or drug level.
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The five-fold cross-validation using leave drug out and leave cell line
out strategy was conducted.

• External Validation with Patient Data. To evaluate whether
DeepCDR trained with in vitro cell line data can be generalized to
in vivo patient data. We trained DeepCDR classification model with
cell line data and tested on TCGA patient data.

3 Results

3.1 DeepCDR recovers continuous degree of drug
sensitivity

We first designed a series of experiments to see whether DeepCDR can
help recover continuous degree of drug sensitivity. For this objective, we
created datasets of the drug and cancer cell lines profiles from GDSC (Iorio
et al., 2016) and CCLE (Barretina et al., 2012) database, respectively.
We then evaluated the regression performance of DeepCDR and five
comparing methods based on the observed IC50 values and predicted IC50

values. Three common regression evaluation metrics, including Pearson’s
correlation coefficient (PCC), Spearman’s correlation coefficient (SCC)
and root mean square error (RMSE), were considered.

First, we evaluated the ability of DeepCDR and competing methods
by rediscoverying cancer drug response across multiple drugs and cell
lines. We observed that DeepCDR demonstrated superior predictive
performance of drug response in the regression experiments by achieving
the highest Pearson’s correlation and Spearman’s correlation and lowest
RMSE comparing to five competing methods (Table 1). Generally,
deep neural network models significantly outperformed other baselines
as linear or tree-based model may not well capture the intrinstic
structural information within drugs. Among the four deep learning models,
DeepCDR outperforms three other deep learning methods with a relatively
large margin by achieving a Pearson’s correlation of 0.923 as compared to
0.813 of MOLI, 0.871 of CDRscan and 0.885 of tCNNs. This conclusion is
also consistent considering other metrics such as Spearman’s correlation
and root mean square error (RMSE). Additionally, we also showed the
model variance by indepedent training for five times.

Next, we illustrated several prediction cases across multiple TCGA
cancer types or different drug compounds. Among the 30 different TCGA
cancer types, DeepCDR reveals a consistently high performance by
achieving a Pearson’s correlation ranging from 0.889 to 0.941. The best
prediction case in mutiple myeloma cancer type and the worst prediction
case in acute myelold leukemia cancer type were shown in Fig 2A and
Fig 2B, respectively. In the perspective of drug, we also evaluated the
regression performance with respect to a specific drug. We observed that
the DeepCDR illustrates a relatively more dynamic regression performance
by achieving a Pearson’s correlation ranging from 0.328 to 0.938 (Fig 2C-
2D), which may due to the drug similarity diversity. We then validated
this conclusion by measuring the drug similarity among training set and
found that Belinostat has a significantly higher drug similarity score
compared to Pazopanib (Supplementary Fig.1, p-value=2.38×10−37).
The distribution of correlation across TCGA cancer types and drugs were
provided in Supplementary Fig.2.

Next, we applied DeepCDR to predicting unknown cancer drug
responses in the GDSC database. Towards this goal, DeepCDR was trained
on all known drug cell line interaction pairs across 561 cell lines and 238
drugs, then it was used for predicting the missing pairs in GDSC database
(approximately 19.5% of all pairs). Fig 2E illustrates the distributions
of predicted IC50 values in GDSC database grouped by drugs. Note
that drugs were sorted by the median predicted IC50 value across all
missing cell lines. We provided the predicted IC50 values of top-10 drugs
and related cancer cell lines in Supplementary Table 6. Interestingly,
Bortezomib was the drug with highest efficacy in our prediction which

has been proved to be a proteasome inhibitor that has activity in multiple
cancer cell lines (Richardson et al., 2003). Specifically, the predicted IC50

of Bortezomib with a oesophagus cell line KYSE-510 is 7.45 × 10−5

which implies a strong therapeutic effect. This prediction was supported
by the findings in (Lioni et al., 2008), which highlighted the robust activity
of Bortezomib in esophageal squamous cells. Phenformin and AICA
ribonucleotide are predicted to have the lowest efficacy. The former was
used for treating type 2 diabetes mellitus by inhibiting complex I (Marchetti
et al., 1987). The latter is capable of stimulating AMP-dependent protein
kinase (AMPK) activity (Corton et al., 1995). The anti-cancer of the two
drugs might be not their main function but the side effect.

At last, we designed a series of blind tests for both drugs and cell
lines. The task becomes much more challenging as the drugs or cell
lines in the test data were unseen during the training process. The drug
sensitivity data from GDSC database were split into training and test sets
on the drug or cell line level. We compared our model DeepCDR to the
best baseline model tCNNs in the previous experiments. In the blind test
for drugs, the performance of both methods largely decreased compared
to previous experiments. However, DeepCDR still achieves an average
Pearson’s correlation of 0.503, compared to 0.429 of tCNNs (Fig 2F, p-
value<1.51×10−6, Supplementary Table 7). In the blind test for cell lines,
DeepCDR again outperforms tCNNs by a quite large margin by achieving
an average Pearson’s correlation of 0.889, compared to 0.865 of tCNNs
(Fig 2G, p-value<2.2×10−16, Supplementary Table 8).

Table 2. Model ablation studies with different experimental settings. We
showed both the contribution of each omic profile and the contribution of graph
convolution module

Experimental setting Pearson’s correlation

Single genomics 0.889
Single transcriptomics 0.878

Single epigenomics 0.890
Multi-omics without adjacent info 0.886

Multi-omics with adjacent info 0.923

3.2 DeepCDR predicts binary drug sensitivity status

In this section, we binarized IC50 according to the threshold of each
drug provided by (Iorio et al., 2016). After filtering drug samples without
a binary threshold, we collected a dataset with 7488 positive instances
in which drugs are sensitive to the corresponding cancer cell line and
52210 negative instances where drugs are resistant to cancer cell lines.
Similar to the regression experiment settings, we first compared DeepCDR
to three other neural network models by rediscovering the cancer drug
response status. Despite of the unbalanced dataset (around 1:7), DeepCDR
outperforms three other methods by a large margin by achieving a
significantly higher AUC and auPR score of 0.841 and 0.502 (Fig 2H-
I), reaffirming the advance of DeepCDR in capturing the interaction
information of drug and cancer cells. As seen in Fig 2J-K, we grouped
the test instances (each instance denotes a drug and cancer cell line pair)
according to the TCGA cancer types, then we calculated the AUCs and
auPRs of the two methods under different cancer type groups. We observed
that DeepCDR achieves higher AUC score and auPR score than tCNNs
with respect to every TCGA cancer type. In the blind test for both drugs
and cell lines, DeepCDR achieves a consistently better performance than
the best baseline tCNNs with average AUC of 0.737 (Supplementary
Fig 3-4). Besides, statistical hypothesis tests, including binomial exact
test and Mann-Whitney U test, were additionally conducted in both blind
test experiments for drugs and cell lines (Supplementary Table 9-10).
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Table 3. Top-5 cancer-associated genes prioritized by DeepCDR. We proposed a simple gradient-based strategy for prioritizing all the genes when making a
prediction of a specific drug and cancer cell line pair. Many top-ranked genes have been verified to be highly associated with cancers by existing literatures

Drug Cell line TCGA type Top-5 cancer-associated genes
ln(IC50)

Observed Predicted

Erlotinib A3/KAW DLBC EGFR,ALK,BCL10,CREB3L1,STAG1 1.110 1.206
Lapatinib BT-474 BRCA ERBB2,MDS2,FOXL2,EGFR,MNX1 -1.028 -0.879

Bleomycin A-375 SKCM ACKR3,ASXL 1,MTCP1,FOXL2,SALL4 -1.514 -1.428
Nilotinib BHT-101 THCA CBLC,ABI1,POU5F1,KLF4,ZNF198 -0.630 -0.714
Salubrinal SUP-B15 ALL JAK3,EIF1AX,NUMA1,PRDM1,IL21R 1.781 1.471

Last, we introduced TCGA patient data as an external validation. We
trained DeepCDR model on in vitro cell line data described above, and
tested on in vivo patient data. Note that the external dataset even contains
more than 40% of drugs that were not included in the cell line data.
DeepCDR still achieves an performance with AUC 0.688, compared to
0.618 of tCNNs (Supplementary Fig 5).

3.3 Model ablation analysis

Since most early studies only considered single type of omics data, it is
necessary for us to evaluate the contribution of different types of omics
data. For each type of omics data, we discarded other types of omics
data and trained DeepCDR regression model from scratch for model
ablation analysis. When using single omic data, the Pearson’s correlation
of DeepCDR ranges from 0.878 to 0.890, indicating the usefulness of all
individual omics profiles (Table 2). In particular, the epigenomics data
(DNA methylation) contributes the most among different omics profiles.
Notably, DeepCDR still achieved a higher Pearson’s correlation than
tCNNs even only genomic data was used in both methods (0.889 vs
0.885). Furthermore, to verify the effectiveness of graph convolution, we
first eliminated the adjacent information of atoms within drugs by setting
adjacent matrices to identity matrices (Ãi = INi

). Then the DeepCDR
model without adjacent information achieved a reasonable Pearson’s
correlation of 0.886. We concluded that the regression performance can
be significantly boosted with the powerful representation inferred from
adjacent information by the proposed UGCN architecture (0.923 vs 0.886).

3.4 DeepCDR helps prioritize cancer-associated genes

To deepen the understanding of biological knowledge revealed by
DeepCDR, we further proposed an exploratory strategy for prioritizing
cancer-associated genes given an input drug and cancer cell line pair, where
we prioritized the involved genes by assigning each gene with an associated
score. In detail, to obtain the associated scores for 697 genes involved in
COSMIC Cancer Gene Census, we considered the absolute gradient of
the predicted outcome from DeepCDR regression model with respect to
the each gene’s expression. We highlighted several cases where the drugs
were shown sensitive to the corresponding cancer cell lines (Table 3).
Importantly, we found that many top-ranked genes have been verified to be
associated with cancers by existing literature. For example, Erlotinib and
Lapatinib, two known drugs for treating lung cancer, have been proven to
be EGFR inhibitors (Sayar et al., 2014), EGFR gene ranks first and fourth
from DeepCDR prioritizer in A3/KAW and BT-474 cell lines, respectively.
Also, Nilotinib is a potential drug treatment for chronic myelogenous
leukemia (Kantarjian et al., 2011). Interestingly, in our predictive task in
a BHT-101 cell line, ABI1 ranked as the second cancer-associated gene,
which has been previously proved to have specific expression patterns in
leukemia cell lines (Shibuya et al., 2001). Taken together, these evidences

support that DeepDCR could reveal potential therapeutic targets for anti-
cancer drugs and help discover hypothetical cancer-associated genes for
additional clinical testing.

4 Discussion
In this study, we have proposed DeepCDR as an end-to-end deep
learning model for precise anti-cancer drug response prediction. We found
that graph convolutional networks (GCNs) were extremely helpful for
capturing structural information of drugs according to our anaylysis. To
the best of our knowledge, DeepCDR is the first work to apply GCN
in cancer drug response (CDR) problem. In addition, we demonstrated
that the combination of multi-omics profiles and intrinsic graph-based
representation of drugs are appealing for assessing drug response
sensitivity. Extensive experiments highlighted the predictive power of
DeepCDR and its potential translational value in guiding disease-specific
drug design.

We provide two future directions for improving our method. 1) The
proposed uniform graph convolutinal network (UGCN) can be ultilized
for data augmentation when training instances were not adequate enough
or extremely unbalanced by randomly sampling multiple complementary
graphs for each drug. In the classification experiment where the training
data is unbalanced, if we randomlized the feature matrix and gave random
connections of complementary graphs and augmented the positive training
instances by five times, the average AUC can be further improved by 0.8%.
Augmentation with UGCN can potentially further improve prediciton
performance. 2) DeepCDR can be leveraged in combination with molecule
generation tasks. Current molecule generation models based on RNN
language models (Segler et al., 2017), generative adversarial networks
(GANs) (Guimaraes et al., 2017) and deep reinforcement learning (Popova
et al., 2018) focused on generating general compounds and ignored profiles
of targeted cancer cell. Methods focused on cancer-specific or disease-
specific novel drug design can be proposed by using CDR predicted by
DeepCDR as a prior knowledge or a reward score for guiding molecule
generation.

To sum up, we introduced DeepCDR that can be served as an
application for exploring drug sensitivity with large-scale cancer multi-
omics profiles. DeepCDR outperforms multiple baselines and our analysis
illustrates how our method can help prioritize therapeutic targets for anti-
cancer drug discovery. In future work, we plan to expand data inclusion for
a large-scale omics data profiled both before and after treatment to assess
how their molecular profiles respond to perturbation by the testing drugs.
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