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ABSTRACT 24 

The obligate intracellular bacterium Chlamydia trachomatis is an important human pathogen 25 

whose biphasic developmental cycle consists of an infectious elementary body and a replicative 26 

reticulate body. Whereas σ66, the primary sigma factor, is necessary for transcription of most 27 

chlamydial genes throughout the developmental cycle, σ28 is required for expression of some late 28 

genes. We previously showed that the Chlamydia-specific transcription factor GrgA physically 29 

interacts with both of these sigma factors and activates transcription from σ66- and σ28-dependent 30 

promoters in vitro. Here, we investigate the organismal functions of GrgA. We show that GrgA 31 

overexpression decreased RB proliferation via time-dependent transcriptomic changes. 32 

Significantly, σ66-dependent genes that code for two important transcription repressors are among 33 

the direct targets of GrgA. One of these repressors is Euo, which prevents the expression of late 34 

genes during early phases. The other is HrcA, which regulates gene expression in response to heat 35 

shock. The direct regulon of GrgA also includes a σ28-dependent gene that codes for the putative 36 

virulence factor PmpI. Conditional overexpression of Euo and HrcA also inhibited chlamydial 37 

growth and affected GrgA expression. Transcriptomic studies suggest that GrgA, Euo, and HrcA 38 

have distinct but overlapping indirect regulons. Furthermore, overexpression of either GrgA leads 39 

to decreased expression of numerous tRNAs. These findings indicate that a GrgA-mediated 40 

transcriptional regulatory network controls C. trachomatis growth and development. 41 

IMPORTANCE 42 

Chlamydia trachomatis is the most prevalent sexually transmitted bacterial pathogen worldwide 43 

and is a leading cause of preventable blindness in under-developed areas as well as developed 44 

countries. Previous studies showed that the novel transcription factor GrgA activated chlamydial 45 

gene transcription in vitro, but did not addressed the organismal function of GrgA. Here, we 46 
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demonstrate growth inhibition in C. trachomatis engineered to conditionally overexpress GrgA. 47 

GrgA overexpression immediately increases the expression of two other critical transcription 48 

factors (Euo and HrcA) and a candidate virulence factor (PmpI), among several other genes. We 49 

also reveal chlamydial growth reduction and transcriptomic changes including decreased GrgA 50 

mRNA levels in response to either Euo or HrcA overexpression. Thus, the transcription network 51 

controlled by GrgA likely plays a crucial role in chlamydial growth and pathogenesis. 52 

INTRODUCTION 53 

The Centers for Disease Control and Prevention (CDC) reports that chlamydia is the most common 54 

notifiable disease in the United States. Caused by infection with Chlamydia trachomatis, this 55 

sexually transmitted disease (STD) has comprised the majority of all STDs reported to CDC since 56 

1994 (1). The World Health Organization estimates 131 million new cases of C. trachomatis 57 

infection occur annually world-wide (2). Although infection with C. trachomatis is usually 58 

asymptomatic, untreated chlamydial infection is associated with high rates of infertility, pelvic 59 

inflammatory syndrome, abortion and/or premature birth, and ectopic pregnancy (1, 2). These 60 

serious complications exemplify the primary burden of disease. Furthermore, three C. trachomatis 61 

serotypes are known to cause ocular infection and blinding trachomatous trichiasis. These clinical 62 

manifestations are still common not only in many underdeveloped countries, but also in developed 63 

nations (3). 64 

Chlamydiae are obligate intracellular Gram-negative bacteria with a unique developmental 65 

cycle characterized by two cellular forms (4). The small, electron-dense form termed elementary 66 

body (EB) is capable of extracellular survival but incapable of proliferation. After binding to 67 

receptors on the target cell membrane, the EB is taken into a cell membrane-derived vacuole 68 

through endocytosis (5). Within the vacuole termed inclusion, the EB differentiates into a larger, 69 
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less electron-dense form termed reticulate body (RB) within several hours. The RB replicates with 70 

a doubling time of 2 to 3 h. Around 24 h, some RBs start to re-differentiate back into EBs while 71 

others continue to proliferate. At the end of the cycle, EBs and residual RBs are released from host 72 

cells through either cell lysis or extrusion of entire inclusions (6).  73 

The small C. trachomatis genome consists of a 1 million bp chromosome and a 7.5 kb 74 

plasmid. The chromosome carries less than 900 total protein-encoding genes and noncoding RNA 75 

genes. The plasmid encodes only 8 proteins (7). Previous cDNA microarray studies (8, 9) 76 

enumerate four successive stages of the developmental cycle. The immediate early stage is the first 77 

h when EBs are inside nascent inclusions near the plasma membrane. A small number of crucial 78 

genes are transcribed in this stage to establish an intracellular niche that enables EB survival, 79 

development into RBs, and eventual delivery of the inclusion to a perinuclear region. During the 80 

subsequent early stage, an additional number of genes are transcribed to complete the conversion 81 

of EBs into RBs. Midcycle commences upon the completion of EB-to-RB conversion and ends 82 

when RBs starts to differentiate back into EBs. Almost all genes are transcribed during this stage. 83 

Lastly, transcription of a smaller set of genes is initiated and/or upregulated before and during the 84 

late stage. 85 

In bacteria, all genes are transcribed by one type of RNA polymerase (RNAP). The RNAP 86 

holoenzyme consists of a catalytic core enzyme with one of several different sigma factors (σs) 87 

that recognize various promoters (10). C. trachomatis encodes three σs. A super majority of C. 88 

trachomatis promoters are σ66-dependent, while some late genes possess σ28 promoters or both σ66 89 

and σ28 promoters (11-13). To date, only two late genes are thought to carry a σ54 promoter (14). 90 

Consistent with their roles in the developmental cycle, expression of the three σs is also temporally 91 
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regulated (8, 15). σ66 mRNA is detected on microarray as early as 3 h postinoculation (hpi), 92 

whereas σ28 and σ54 mRNAs are not detected until 8 hpi (8). 93 

Transcription activities of the RNAP are regulated by transcription factors (TFs). 94 

Interestingly, C. trachomatis encodes fewer than 20 TFs despite a complicated developmental 95 

cycle (16). Most of these TFs regulate gene expression in response to nutrient and mineral 96 

availability (17-30). In contrast, the transcription repressor HrcA controls response to heat shock 97 

(31, 32).  98 

Only two C. trachomatis transcription factors demonstrate ability to control the chlamydial 99 

developmental cycle, Euo and CtcC. Euo is produced immediately after EBs enter host cells (8, 100 

33, 34) and binds late gene promoters to suppress transcription (11-13). CtcC is a part of a two-101 

component system and is predicted to function as an activator of the σ54-RNAP holoenzyme on 102 

the basis of orthologs in other bacteria (25).  103 

GrgA is the newest chlamydial TF. Identified via promoter DNA pulldown, GrgA 104 

physically interacts with σ66 and σ28, and activates transcription from both σ66- and σ28-dependent 105 

promoters in vitro (35-37). In this work, we investigated the organismal functions of GrgA. 106 

Through overexpression, growth characterization, transcriptomic studies, and protein expression 107 

analyses, we identify a GrgA-directed transcriptional regulatory network (TRN) that likely plays 108 

a critical role in chlamydial growth and development. 109 

RESULTS 110 

GrgA overexpression inhibits Chlamydia trachomatis growth 111 

In our initial attempt to overexpress GrgA, we placed the GrgA open reading frame (ORF) 112 

downstream of a Neisseria meningitidis promoter (Pnm) in the pGFP::SW2 plasmid (38) (Fig. 113 

S1A). With this resultant pGFP-CmR-GrgA::SW2 vector (Fig. S1B), we failed to obtain 114 
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transformants after three independent attempts despite consistent transformant production by the 115 

control pGFP::SWP plasmid. These negative data were an early suggestion that GrgA 116 

overexpression may be toxic.  117 

Next, we constructed the pTRL2-NH-GrgA vector by placing His-tagged GrgA 118 

downstream of a Ptet promoter (Fig. S1C). pTRL2-NH-GrgA transformants of CtL2 were readily 119 

appreciable following two passages of selection with penicillin. These uncloned transformants 120 

formed a similar number of notably smaller inclusions after ATC treatment (Fig. S2). We 121 

proceeded by generating clonal populations, of which one was subject to Western blotting to 122 

confirmed successful overexpression after ATC treatment. Both anti-GrgA and anti-His-tag 123 

antibodies were able to individually detect recombinant His-tagged GrgA (Fig. S3).  124 

To further characterize the apparent effects of GrgA overexpression on chlamydial growth 125 

and development, we initiated ATC treatment of the clonal population analyzed in Fig. S3 at one 126 

of four time points: 0, 8, 18 and 24 h post-inoculation (hpi). We harvested one set of cultures at 30 127 

hpi and quantified their yield of progeny EBs. Images were acquired for another set of cultures at 128 

36 hpi. The control vector-transformed CtL2 showed no difference in the EB production between 129 

the non-induce and induced cultures (Fig. 1A). This finding was corroborated by a lack of 130 

difference in the number, size, and RFP intensity of inclusions (Figs. 1B, S4A-C). The GrgA-131 

transformed CtL2 produced a statistically significant lower number of EBs when ATC induction 132 

occurred between 0 and 18 hpi (Fig. 1C). Although a decrease in EB yield was not observed when 133 

ATC induction was conducted at 24 hpi (Fig. 1C), direct imaging of all conditions at 35 hpi did 134 

reveal reduced inclusion area and RFP intensity for the 24 hpi condition (Figs. 1D, S4D-F). These 135 

findings indicate that delicate regulation of physiological GrgA concentrations during the first 18 136 

h is critical for adequate CtL2 development and growth. 137 
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Deletion of σ66-binding domain from GrgA fully eliminates overexpression-induced 138 

inhibition while deletion of σ28-binding domain only partially reverses 139 

Our previous in vitro studies showed that GrgA activates both σ66-dependent and σ28-dependent 140 

transcription. GrgA binds σ66 and σ28 at residues 1-64 and 138-165, respectively (35, 36) (Fig. 2A). 141 

We constructed GrgA expression vectors that lack these regions to understand how each σ factor 142 

might contribute to chlamydial inhibition following GrgA overexpression, if at all. Expression of 143 

these GrgA deletion mutants in clonal populations of transformants was then detected by western 144 

blotting (Fig. S5). In contrast to full-length GrgA overexpression (Figs. 1, S4), Δ1-64 GrgA 145 

overexpression showed no adverse effects on chlamydial growth (Figs. 2B-C, S6A-C). Δ138-165 146 

GrgA overexpression reduced progeny EB production when ATC was added at 0, 8, and 18 hpi, 147 

albeit by magnitudes about 10-fold less than what was previously observed after full-length GrgA 148 

overexpression (Fig. 2D-E). Δ138-165 GrgA overexpression decreased the inclusion size and RFP 149 

intensity only at 0 hpi (Figs. 2D-E, S6D-F). These findings indicate that interaction with σ66 is 150 

absolutely required for GrgA overexpression-induced inhibition, whereas interaction with σ28 also 151 

plays a significant role.  152 

GrgA overexpression inhibits RB replication and volume expansion in a σ66-binding 153 

domain-dependent manner 154 

We further performed TEM for ATC-treated GrgA transformants from 8 to 14 hpi. This analysis 155 

revealed a statistically significant 16% decrease in RB size in the ATC-treated cultures (Figs. 4A, 156 

4B). This finding implies that GrgA overexpression not only impacts the EB-to-RB differentiation 157 

process, but also impedes RB volume expansion after division. 158 

We employed quantitative confocal microscopy to investigate the effect of GrgA 159 

overexpression on RB proliferation. In cells infected with control vector transformants, ATC 160 
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treatment did not affect the number of RBs per inclusion. In cells infected with GrgA 161 

transformants, ATC treatment during the period of 8 to 14 hpi caused a 50% reduction in the 162 

number of RBs per inclusion when compared to non-treated control cultures (Fig. 3C, D). 163 

Successive quantitative PCR (qPCR) analysis was conducted to corroborate these RB enumeration 164 

data. In GrgA transformants, a significant reduction in genome copy number was readily detected 165 

2 h after ATC induction, which became progressively severe in following hours (Fig. 3E). 166 

Together, we infer from the findings presented in Fig. 3 that RB proliferation is inhibited by GrgA 167 

overexpression. Furthermore, confocal microscopy analyses (Fig. S7) of GrgA deletion mutants 168 

also demonstrate that the inhibition of RB proliferation is highly dependent on the ability of GrgA 169 

to interact with σ66, and less dependent on its ability to interact with σ28. These results are consistent 170 

with cellular growth data presented in Figs. 2, S6. 171 

GrgA overexpression-mediated global transcriptomic changes include upregulated 172 

Euo, HrcA, and PmpI expression and decreased tRNA expression 173 

We performed RNA-seq analyses to determine the molecular mechanism underlying GrgA 174 

overexpression-induced growth inhibition. Since few chlamydial RNA-seq studies with unpurified 175 

organisms existed in the literature at the time, our pilot RNA-seq experiments were conducted to 176 

optimize the timing of ATC induction and sample harvesting. GrgA transformants were treated 177 

with or without ATC within two time periods: 12 to 16 hpi and 17 to 21 hpi (Table S1, S2). As 178 

expected, the mapping rates of samples prepared at 16 hpi were more than 3-fold lower than the 179 

rates of those prepared at 21 hpi (Table S3). With the exception of rRNAs, which were depleted 180 

prior to library preparation, RNAs of all chlamydial genes could be detected at 16 hpi despite this 181 

notable decrease. In both sets of experiments, mRNA reads of two transcription repressors Euo 182 

and HrcA were noticeably increased in ATC-induced cultures. For the 12 to 16 hpi induction, Euo 183 
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and HrcA reads increased by 3.1 and 2.8 fold, respectively. For the 17 to 21 hpi induction, they 184 

increased by 3.1 and 1.9 fold, respectively. 185 

Subsequent RNA-seq studies were conducted with samples harvested at 16 hpi. This time 186 

point corresponds to the mid-log phase of RB replication, whose regulatory mechanisms are most 187 

interesting to us. We repeated RNA-seq analyses with ATC-treated biological replicates for the 12 188 

to 16 hpi time period to generate statistic power. Consistent with our previous two RNA-seq 189 

studies, mRNA reads of both Euo and HrcA increased by a statistically significant level in response 190 

to ATC treatment. Euo increased by 3.3-fold, second only to the ATC-induced increase in GrgA 191 

mRNA reads. HrcA increased 2.1-fold, the 5th largest increase. RNA reads of 89 other genes also 192 

increased significantly (i.e., P < 0.05), whereas those of the remaining 86 genes were significantly 193 

decreased (Table S4). Of the 86 genes with significantly downregulated RNAs, 33 were tRNA 194 

genes. Only 4 of the 37 tRNAs were not significantly downregulated (Table S5). Retrospective 195 

analyses showed that numerous tRNAs were also downregulated in previous RNA-seq studies (31 196 

tRNAs in the experiment with ATC treatment from 12 to 16 hpi; 8 tRNAs in the experiment with 197 

ATC treatment from 17 to 21 hpi).   198 

Activation of euo and hrcA but not pmpI depends on σ66-binding of GrgA 199 

To determine the contribution of GrgA overexpression-induced transcriptomic changes to 200 

chlamydial growth defects in GrgA transformants, we performed RNA-seq for CtL2 transformants 201 

of Δ1-64 GrgA and Δ138-165 GrgA with and without ATC treatment between 12 and 16 hpi 202 

(Tables S6, S7). In ATC-treated Δ1-64 GrgA transformants, induction of only a single gene was 203 

statistically significant while repression of four genes was statistically significant. In ATC-treated 204 

Δ138-165 GrgA transformants, the numbers of activated and repressed genes were both higher 205 

than those of ATC-treated full-length GrgA transformants. The sole gene activated by Δ1-64 GrgA 206 
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overexpression was PmpI, which was also activated by overexpression of both full-length GrgA 207 

and Δ138-165 GrgA. Noticeably, PmpI mRNA increased after full-length GrgA overexpression 208 

(253%) and Δ1-64 GrgA overexpression (270%) by almost the same magnitude. These increases 209 

were significantly higher than the 40% increase observed after Δ138-165 GrgA overexpression. 210 

55 genes were induced by both full-length GrgA overexpression and Δ138-165 GrgA 211 

overexpression (Fig. 4A, Table S8). 2 of the 4 genes repressed by Δ1-64 GrgA were also repressed 212 

by both full-length GrgA and Δ138-165 GrgA overexpression. The third Δ1-64 GrgA-repressed 213 

gene was also repressed by full-length GrgA. In total, 45 genes were induced by both full-length 214 

GrgA overexpression and Δ138-165 GrgA overexpression (Fig. 4B). Of these 45 genes, 28 encode 215 

tRNAs (Table S9).  216 

Taken together, comparative transcriptomic analyses suggest that nearly all transcriptomic 217 

changes (including activation of euo and hrcA but pmpI) induced by GrgA depend on GrgA 218 

binding of σ66. By contrast, fewer changes depend on GrgA binding of σ28. However, 219 

overexpression of the σ28-binding defective Δ138-165 GrgA may induce additional transcriptomic 220 

changes not seen with full length GrgA overexpression. 221 

euo and hrcA among genes activated immediately following GrgA overexpression 222 

To identify genes directly targeted by GrgA, we determined changes in transcriptomic kinetics by 223 

extracting RNA at 16 hpi from non-induced cultures and cultures treated with ATC for 0.5, 1 and 224 

2 h and (see Fig. S8 for experimental design). Results of RNA-seq reads are presented in Table 225 

S10; expression levels normalized with values of the transcriptome fragments per kilobase per 226 

million reads mapped (FPKM) are presented in Table S11. The entire transcriptome can be divided 227 

into 6 groups based on changes in the expression kinetics of individual genes (Fig. 5, Table S12). 228 

Group A contains 6 genes whose mRNAs increased by 0.5 h (Fig. 5A), although the increase was 229 
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statistically significant for only four of the six mRNAs. The four statistically significantly 230 

increased mRNAs were those of Euo, PmpI [a polymorphic protein in the outer membrane and 231 

putative virulence gene (39, 40)], AroC (chorismate synthase, which is involved in aromatic amino 232 

acid biosynthesis), and LplA (lipoate protein ligase A) (Fig. 5A). These 6 genes are likely primary 233 

targets of GrgA. mRNAs of 175 genes, including hrcA, increased by 1 h (Fig. 5B). These large 234 

group of genes may be secondary or indirect targets of GrgA. mRNAs of 444 genes remained 235 

relatively constant (Fig. 5C) and are therefore unlikely targets of GrgA. mRNA levels of remaining 236 

genes decreased to various degrees (Fig. 5D-F), likely in response to expression changes of the 237 

primary and/or secondary targets. 238 

Among the six putative “early” genes induced by GrgA (Fig. 5A, Table S12), euo, pmpI, 239 

ctl0758 and ctl0418 are found in single-gene units (Fig. 6A), whereas lplA and aroC in operons. 240 

Based on the genome topology (7, 41), and results of genome-wide transcription start site analyses 241 

(42), lplA shares a promoter with ctl0536 (Fig. 6B), whereas aroC is cotranscribed with 3 other 242 

genes (Fig. 6C). Noticeably, cotranscribed mRNA reads did not increase as the reads of LplA and 243 

AroC mRNAs increased. To validate the RNA-seq data, we performed reverse transcription 244 

quantitative PCR (RT-qPCR). Among the four singly transcribed mRNAs, these analyses showed 245 

Euo and PmpI readily increased by about 2- and 3-fold, respectively, at 10 min after induction, 246 

and more than 3- and 4-fold, respectively, at 30 min (Fig. 1A). Smaller but significant increases 247 

were detected for the mRNA of ctl0758 from 10-30 min (Fig. 6A). However, a significant (57%) 248 

increase in ctl0418 was not detected until 30 min (Fig. 6A).  249 

For the two operon genes (lplA and aroC), we included a transcription partner in our RT-250 

qPCR analyses. mRNA expression trends of both LplA and its partner CTL0536 were similar to 251 

those of EUO and PmpI (Fig. 6B) with significant increases starting at 10 min. Trending increases 252 
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were also found for the mRNAs of AroC and its transcription partner AroB (Fig. 6C). These results 253 

validate lplA and aroC as early genes induced by GrgA. However, failure of RNA-seq analysis to 254 

detect increased mRNAs of their transcription partners at 30 min indicate that our RNA-seq was 255 

not as sensitive as RT-qPCR.  256 

The apparent higher detection sensitivity of RT-qPCR prompted its use to determine 257 

whether any additional genes whose mRNA reads increased at 1 h may actually be increased at 30 258 

min as well. Our criteria for selection were 1) a read increase with P < 0.05, and 2) at least one 259 

fragments per kilobase per million reads mapped (FPKM) being >900 for induced samples. As an 260 

exception, because HrcA is an important TF, its mRNA was also analyzed using RT-qPCR even 261 

though the FPKM values were only 445, 329 and 334 in ATC-induced samples. RT-qPCR analysis 262 

detected apparently increased levels for all mRNAs analyzed; however, only the increases in the 263 

mRNAs of MurE (UDP-N-acetylmuramoyl-L-alanyl-D-glutamate-2,6-diaminopimelate ligase in 264 

the peptidoglycan synthesis pathway) and HrcA were statistically significant (P < 0.05) (Fig. S12). 265 

Further analysis confirmed that MurE mRNA increased at 30 min but not 10 or 20 min after ATC 266 

induction (Fig. 6D), but HrcA mRNA readily increased at even 10 min (Fig. 6E). hrcA is in an 267 

operon with two transcription partners grpE (which encodes heat shock protein-70 cofactor) and 268 

dnaK (a protein chaperone gene) although dnaK has an additional promoter. Similar to the HrcA 269 

mRNA, the mRNAs of GrpE and DnaK showed similar increases starting 10 min (Fig. 6E). Taken 270 

together, results presented in Fig. 6, S9 demonstrate that 5 genes (euo, pmpI, murE, ctl0418 and 271 

ctl0758), which are in single-gene transcription units, and 9 additional genes in 3 operons are 272 

activated by 10 to 30 min induction of GrgA overexpression. Most likely, these 14 genes comprise 273 

GrgA’s direct regulon.  274 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 8, 2020. ; https://doi.org/10.1101/2020.07.08.194431doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.08.194431
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

GrgA stimulates transcription from euo, hrcA and pmpI promoters 275 

Sequence analyses identified putative σ66 promoter elements in at least 5 of the 8 GrgA-regulated 276 

promoters and revealed that pmpI appears to carry additional σ28 promoter elements (Fig. S10). 277 

We constructed four transcription reporter plasmids, of which three carried a putative σ66 promoter 278 

of euo, hrcA, or pmpI. The remaining reporter plasmid carried the putative σ28 promoter of pmpI. 279 

Of these four constructed plasmids, all were able to successfully direct RNA synthesis except for 280 

the one carrying a putative σ66 promoter of pmpI. This suggests the cloned promoter fragment is 281 

nonfunctional. Among the other three plasmids, an increased number of transcripts were detected 282 

in the presence of GrgA (Fig. 7) indicating that GrgA activates transcription not only from the σ66 283 

promoters of euo and hrcA (i.e., PdnaK2), but also from the σ28 promoter of pmpI.  284 

Overexpression of either Euo or HrcA inhibits chlamydial growth 285 

To determine the contributions of upregulated Euo and HrcA expression to GrgA overexpression-286 

induced growth inhibition, we constructed ATC-inducible Euo and HrcA expression plasmids 287 

(Table S9) and generated CtL2 transformants thereafter. 10 nM ATC-induced overexpression of 288 

both Euo and HrcA following treatment at 0, 8, and 18 hpi caused severe to moderate growth 289 

inhibition; these effects were minimal after treatment at 24 hpi (Fig. 8). These results are similar 290 

to our earlier observations made following ATC-induced GrgA overexpression (Fig. 1). Next, we 291 

used lower ATC concentrations to induce 2- to 3-fold increases in the mRNAs of Euo and HrcA, 292 

which were comparable to their magnitudes of increase induced by ATC in GrgA transformants 293 

(Table S1, S2, S4). Noticeably, low ATC concentrations were also sufficient to cause growth 294 

inhibition (Fig. S11). These data support the notion that increased Euo and HrcA expression 295 

mediate GrgA overexpression-induced CtL2 growth.  296 
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Identification of genes commonly regulated by GrgA, Euo and HrcA 297 

We performed RNA-seq analyses to identify transcriptomic changes in Euo and HrcA 298 

transformants following ATC-induction between 12 and 16 hpi (Tables S13, S14). By comparing 299 

these two RNA-seq datasets with the RNA-seq dataset obtained from the GrgA transformant 300 

(Table S4), we identified the genes that are commonly regulated by GrgA, Euo, and HrcA (Fig. 301 

9). Whereas 9 genes were commonly activated (Fig. 9A, B) in all three transformants upon ATC 302 

treatment, 11 genes were commonly repressed (Fig. 9C, D). Genes that are commonly activated or 303 

repressed in two transformants as well as in all three transformants are listed in Tables S15, S16. 304 

Noticeably, 4 of the 9 genes that are commonly activated in all three transformants encode proteins 305 

involved in DNA replication, whereas the remaining 5 commonly activated genes encode proteins 306 

with various functions (Fig. 9B). Only 6 of the 11 genes commonly repressed in all three 307 

transformants following ATC treatment encode functionally known proteins. Three (PPA, IspH 308 

and FabI) catalyze metabolic reactions while the other three either constitute a protein translocase 309 

(YajC) or serve as secretion effectors (CTL0874 CTL0887) (Fig. 9D). These commonly activated 310 

and repressed genes may serve as upstream regulators of RB growth and proliferation or their 311 

expression levels are controlled consequent to growth inhibition.  312 

GrgA-controlled transcriptional network 313 

Using RNA-seq data (Tables S10) and RT-qPCR data (Figs. 6, S9) obtained from GrgA 314 

transformants, we elucidated a GrgA-regulated transcriptional network 30 min, 1 h, and 2 h after 315 

ATC treatment. Within 30 minutes of ATC treatment, GrgA activated expression of 12 molecules 316 

including the TFs Euo and HrcA, and repressed expression of two genes (trpB and ctl0887) (Fig. 317 

10A). As will be discussed, the repression is likely an indirect effect of GrgA overexpression.  318 
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Large numbers of additional genes were activated and repressed at 1 h and 2 h after ATC 319 

treatment in GrgA transformants. The products of these genes can be classified into at least 16 320 

clusters (Fig. S12). Overall, the networks at these two points are similar with only one major 321 

difference: 14 versus 4 downregulated tRNAs. Given the fact that 30 tRNA are downregulated at 322 

4 h (Fig. 10B), we suspect that our RNA-seq samples for these two time points have inadvertently 323 

been switched around.  324 

We developed the 4 h network by analyzing RNA-seq data obtained from not only GrgA 325 

transformants (Table S5), but also Euo and HrcA transformants (Tables 13, 14) to show how Euo 326 

and/or HrcA may mediate some of the transcriptomic changes in GrgA transformants induced with 327 

ATC. A still version of the network is presented in Fig. 10B, whereas an interactive version is 328 

provided as online supporting information (Fig. S13). The most striking event in this network is 329 

the downregulation of 30 tRNAs. Of these 30 tRNAs in GrgA transformants treated with ATC, 6 330 

were also downregulated in the Euo transformants treated with ATC, suggesting the possibility 331 

that Euo may mediate tRNA expression in response to GrgA. However, 2 tRNAs downregulated 332 

by GrgA overexpression were also upregulated by Euo overexpression.  333 

Other than tRNAs, there are slightly more genes in gene categories whose expression were 334 

changed by GrgA overexpression, compared with the networks developed for 1 h and 2 h (Fig. 335 

S13). RNA-seq data is consistent with the above-stated notion that while activating both Euo and 336 

HrcA expression, GrgA is repressed by both Euo and HrcA. Euo is in turn also repressed by HrcA. 337 

However, HrcA mRNA is significantly increased in Euo transformants treated with ATC for 4 h, 338 

suggesting that the long-term overall effect of Euo overexpression leads to increased HrcA 339 

expression even though it briefly downregulated HrcA expression at 15 min (Fig. S12B). 340 
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To recapitulate, our results presented above reveal pathways through which GrgA 341 

overexpression causes chlamydial growth inhibition via Euo- and HrcA-dependent and 342 

independent transcriptomic modulation. 343 

DISCUSSION 344 

In this report, we determined the effects of GrgA overexpression on chlamydial growth and 345 

transcriptomic expression through experimentation with full-length GrgA and GrgA deletion 346 

mutants. We identified direct and indirect regulons of GrgA, and uncovered a TRN that 347 

encompasses GrgA, Euo, and HrcA. We further documented the inhibitory effects of Euo and 348 

HrcA overexpression on chlamydial growth and transcriptomic expression. Our findings have 349 

important implications for progression of the chlamydial developmental cycle.    350 

The direct and indirect regulons of GrgA 351 

Our RNA-seq and RT-qPCR analyses revealed the direct and indirect regulons of GrgA by 352 

detecting time-dependent transcriptomic changes following ATC-induced GrgA overexpression. 353 

The direct regulon includes 12 genes that are activated within 10 to 30 min of ATC treatment (Figs. 354 

6, S9; Tables S10, S11). mRNAs of the C. trachomatis L2b strain (a variant of CtL2) have an 355 

average half-life of only 15 min (43). While this short half-life suggests 10 to 30 min of ATC 356 

treatment is adequate to identify most activated and repressed genes, a longer treatment duration 357 

may be required to detect changes in RNAs with extraordinarily long half-lives. Therefore, it is 358 

possible that we have not identified all direct targets of GrgA.  359 

Several lines of evidence presented in this report affirm that GrgA activates both σ66- and 360 

σ28-dependent promoters through direct interactions with σ66 and σ28, a notion drawn from our 361 

previous in vitro studies (35-37). Overexpression of the σ66-binding-defective Δ1-64 GrgA did not 362 

affect chlamydial growth, whereas full-length GrgA overexpression induced severe growth 363 
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inhibition. Overexpression of the σ28-binding-defective Δ138-165 GrgA caused mild growth 364 

inhibition, albeit by a magnitude much less than that caused by full-length GrgA overexpression. 365 

Additionally, full-length GrgA overexpression caused numerous transcriptomic changes while Δ1-366 

64 GrgA overexpression caused only a small increase in PmpI mRNA. Furthermore, among 8 367 

promoter regions upstream of the 4 single-gene units and 4 operons activated within 10 to 30 min 368 

of ATC induction of GrgA, 5 have conserved σ66-dependent promoter elements and 1 has 369 

recognizable σ28-dependent promoter elements (Fig. 6, S10). Finally, the transcription activities of 370 

two of the σ66-dependent promoters (Euo and HrcA) and the σ28-dependent pmpI promoter are 371 

stimulated by GrgA in vitro.  372 

Two genes (trpB and ctl0887) are downregulated 30 min after ATC treatment (Fig. 10 & 373 

Tables S10, S11). These genes are likely subjects to indirect rather than direct repression by GrgA. 374 

Neighboring genes encoded by different DNA strands can be activated or repressed by a bacterial 375 

TF if they share an intergenic promotor region (44). Because trpB and ctl0887 are located far from 376 

any GrgA-activated genes, the opportunity for direct repression is unlikely. Indeed, RNA-seq data 377 

from HrcA and Euo transformants suggest that GrgA downregulates trpB expression indirectly 378 

through HrcA, and downregulates ctl0887 expression through Euo and/or HrcA. Nonetheless, we 379 

cannot completely rule out the possibility that GrgA acts as a repressor since dual functional TFs 380 

have been identified in other bacteria (45). 381 

Excluding the 12 direct target genes induced by 30 min, we consider all genes whose RNA 382 

levels significantly increased or decreased between 1 h and 4 h as constituents of the indirect 383 

regulon of GrgA. Because GrgA is an activator of euo and hrcA, it is not surprising that the indirect 384 

regulon is much larger than the direct regulon. Nearly 150 target genes were identified by 4 h when 385 

an arbitrary threshold of 33% change was applied. This approximation likely underestimates the 386 
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true size of the regulon. As discussed above, physiological targets that show a percent change less 387 

than 33% are excluded. Furthermore, the fact that GrgA overexpression results in reduced RB 388 

replication suggests that the numbers of RNA reads should be normalized with the genome copy 389 

for cultures subjected to long ATC treatment (e.g., 2 to 4 h). However, there is no proper way to 390 

perform normalization because the RNA samples undergo procedures of host and bacterial rRNA 391 

removal and polyadenylated mRNA removal before library construction (47). Thus, we likely have 392 

underestimated the number of activated genes and the degrees of their activation, and at the same 393 

time overestimated the number of downregulated genes and the degrees of their downregulation. 394 

Chlamydial growth and development controlled by GrgA-directed TRN 395 

Activation of euo and hrcA transcription by GrgA and the expression profiles of the three TFs 396 

indicate that GrgA serves multiple roles in the chlamydial cycle. Euo was initially identified as an 397 

immediate early gene in Chlamydia psttaci (33). Microarray studies confirmed that euo is 398 

immediately transcribed C. trachomatis EBs enter host cells (8, 9). Microarray detected GrgA 399 

mRNA from 8 hpi through 40 hpi (8). Our own expression analysis using western blotting (35) 400 

and work by Skipp et al. using quantitative proteomics (48) both detected high levels of GrgA in 401 

both EBs and RBs. Furthermore, protein mass spectrometry carried out by Saka et al. also detected 402 

GrgA in EBs although they failed to observe GrgA in RBs (49). We speculate that the GrgA protein 403 

prepacked into EBs plays a critical role in activation of euo transcription immediately following 404 

host cell entry. The Euo protein functions as a master repressor of late genes (11-13). By binding 405 

to the promoters of late genes and repressing their expression, EBs can utilize limited resources to 406 

express early genes required for converting themselves into proliferative RBs.  407 

We believe that GrgA is also a physiological activator of hrcA transcription starting 24 hpi 408 

(8, 9). HrcA is known as a heat-inducible TF in bacteria (50). However, C. trachomatis infection 409 
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seldom induces fever in infected humans. Its cyclic expression takes place C. trachomatis cultured 410 

at 37 ºC (8, 9), a point at which RBs start to convert back to infectious EBs. Thus, HrcA either 411 

plays an active role in the redifferentiation by repressing its target genes or by keeping them silent 412 

in EBs. Consistent with this interpretation, there are examples that HrcA controls cell cycle-413 

dependent protein expression in bacteria at normal growth temperature and plays only a minor role 414 

in heat shock response (51, 52). 415 

A question arises as to why GrgA would not activate hrcA when it activates euo. GrgA 416 

could have differential affinity for the promoters of euo and hrcA in vivo, as promoter hierarchy is 417 

common among TF regulons (44). In addition, the chromatin configuration, which can 418 

significantly influence transcription, differs drastically in EBs and RBs. 419 

How GrgA regulates RB growth during the midcycle is less obvious. Given the large 420 

number of genes in its indirect regulon (Fig. 10), GrgA likely fulfils its function as a growth 421 

regulator through balanced action of its direct and numerous indirect target genes with roles in 422 

biosynthesis, metabolism and other processes. Similarly, many genes (e.g., tRNA genes) regulated 423 

by GrgA may coordinate the transition of RBs to EBs during late developmental stages. 424 

We identified 9 commonly activated and 11 commonly repressed genes in GrgA, Euo, and 425 

HrcA transformants undergoing growth arrest due to ATC-induced overexpression of respective 426 

TFs (Fig. 9; Tables S15, S16). Their disregulated expression may contribute to or result from 427 

chlamydial growth inhibition. Paradoxically, 4 of the 9 commonly activated genes encode proteins 428 

involved in DNA replication and repair, which include topoisomerase I, DNA polymerase III, 429 

DNA helicase, and a site-specific tyrosine recombinase (XerD). Interestingly, all these four genes 430 

are also upregulated during interferon-γ-induced chlamydial persistence when growth is also 431 

reduced. In addition, Euo and mRNA of CT505, transcription partner of GrgA, are increased under 432 
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the condition (53). Thus, GrgA and Euo likely regulate chlamydial persistence, which can be 433 

induced by cytokines and antibiotic treatment (53-55).  434 

The fifth commonly activated gene pknD encodes a protein kinase (56, 57). It is known 435 

that inhibition of either PknD or a chlamydial phosphatase PP2C that dephosphorylates PknD can 436 

impede chlamydial growth  (58, 59). Given the importance of the balance between protein 437 

phosphorylation and dephosphorylation, increased PknD expression likely contributes to 438 

chlamydial growth inhibition. It is not apparent how increased expression of four remaining 439 

commonly activated genes, hemD, gluM, ctl 0466 and ctl0238b contributes to growth inhibition.  440 

6 of the 11 genes commonly repressed by GrgA, Euo, and HrcA overexpression encode 441 

functionally known proteins whose dysregulation may negatively affect chlamydial growth. The 442 

ppa-encoded enzyme is required for enterobacterial DNA replication (60). The enzyme encoded 443 

by ispH produces isopentyl diphosphate. The isoprenoid is a precursor of peptidoglycan (54, 61, 444 

62). In addition to inhibited peptidoglycan synthesis, downregulated IspH may lead to isoprenoid 445 

precursor accumulation, which may alter chlamydial gene expression through regulating the 446 

interaction of histone with DNA (63, 64). The product of fabI is a key enzyme required for 447 

chlamydial growth that acts in the type II fatty acid synthesis system (65). The product of yajC is 448 

a constituent of the preprotein translocase, which is required for protein export across the inner 449 

membrane, an essential function in Gram-negative bacteria (66). CADD interacts with death 450 

receptors on the host cells (67, 68), and may facilitate EB release by inducing host cell death in a 451 

late developmental stage. Finally, CTL0887 is a member of the chlamydial outer membrane 452 

complex (69, 70). Although the exact function of CTL0887 remains unknown, the complex is 453 

required for maintaining the integrity of the bacterium.  454 
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Numerous tRNAs are downregulated following GrgA overexpression (Table S5; Fig. 10), 455 

which would contribute to growth inhibition. A smaller number of tRNAs are also downregulated 456 

following Euo overexpression (Fig. 10; Tables S13, S16). Other bacteria downregulate tRNA 457 

transcription in response to nutrient deprivation (71, 72). This stringent response phenomenon is 458 

mediated by (p)ppGpp, a protein produced only during starvation that acts directly on the RNAP 459 

holoenzyme to reprogram transcription. Chlamydia lacks the capacity to synthesize (p)ppGpp 460 

however (7, 41). It is likely that chlamydial tRNA expression is temporarily delayed in the 461 

immediate early stage and later downregulated as RBs converts to EBs.  462 

In summary, we have identified at least 12 genes that are direct targets of GrgA, the newest 463 

transcription factor in Chlamydia. By activating expression of two major transcription factors, Euo 464 

and HrcA, and by regulating expression of numerous additional genes with functions in almost all 465 

cellular processes, GrgA acts as a master transcription regulator that controls chlamydial growth 466 

and development. It may also regulate chlamydial persistence, an important clinical phenomenon. 467 

Hopefully, an efficient gene-silencing technology not only applicable to nonessential genes but 468 

also essential genes will soon be developed to illuminate the precise roles of GrgA in chlamydial 469 

physiology (73).  470 

MATERIALS AND METHODS 471 

Plasmids 472 

Plasmids used for this study are listed in Table S18. Primers used to amplify fragments are listed 473 

in Table S19. All primers were custom synthesized at Sigma. pGFP::SW2-GrgA (Fig. S1) was 474 

constructed by fusing a PCR-amplified full-length GrgA fragment with SalI-cut pGFP::SW2 (38). 475 

The GrgA fragment was amplifying by PfuUltra DNA Polymerase (Agilent, Cat. # 600380). 476 
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Fusion was performed with the Cold Fusion Cloning Kit (SBI System Biosciences, Cat. 477 

#MC010B-1). 478 

pTRL2-NH-GrgA (Fig. S1) was constructed using the Cold Fusion Cloning Kit to combine 479 

two DNA fragments. Fragment 1, also termed fragment TRL2(Δgfp), was amplified by the 480 

PfuUltra DNA polymerase using pASK-GFP-L2-mkate2 (74) as the template. Fragment 2 481 

encoded NH-GrgA and was amplified by the same enzyme with pET21a-NH-GrgA as the 482 

template. pTRL2-GrgAΔ1-64 and pTRL2-NH-GrgAΔ138-165 were constructed using the 483 

QuickChange II Site-directed Mutagenesis Kit to delete DNA sequences from a pTRL2-NH-GrgA 484 

template that encode amino acid regions 1-64 and 138-165.  485 

Fragment amplification for constructing remaining plasmids was performed using Q5 high-486 

fidelity DNA polymerase (NEB, Cat. # M0491). A TRL2(Δgfp)-NH fragment was amplified using 487 

pTRL2-NH-GrgA as template. The Euo and HrcA encoding fragment was amplified by using CtL2 488 

genomic DNA as the template, and were fused to fragment TRL2(Δgfp)-NH using the NEBuilder 489 

HiFi DNA Assembly Cloning kit (NEBuilder, NEB, Cat. #M0491) to create plasmids pTRL2-NH-490 

EUO and pTRL2-NH-HrcA, respectively. 491 

An euo promoter fragment and an hrcA promoter fragment (Supplemental sDoc1) were 492 

amplified using CtL2 genomic DNA as templates, and were fused to vector fragments using 493 

NEBuilder to create pMT1125-Peuo and pMT1125-PhrcA, respectively. Promoter fragments were 494 

amplified using pMT1125 (75) as template. 495 

pMT1125-PpmpI(28) and pMT1125-PpmpI(66) were constructed in two steps. First, the 496 

putative 28-dependent and 66-dependent promoter fragments (Supplemental sDoc1) were 497 

amplified using CtL2 genomic DNA as the templates. Resultant DNA fragments were digested 498 

with XbaI and EcoRV and ligated to XbaI/EcoRV-digested pMT1125 using T4 DNA ligase. 499 
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Second, the quinine nucleotide inside the EcoRV site was deleted using Q5 site-directed 500 

mutagenesis kit (Cat. #E0554S). 501 

Plasmids constructed were subject to Sanger sequencing at Genscript or Psomogen to 502 

ensure sequence authenticity. For chlamydial expression vectors, sequencing analysis also covered 503 

the CtL2-encoded genes and additional applicable elements (i.e., the Pnm promoter, EGFP-Cat 504 

gene, ATC-inducible promoter, and/or tet repressor-coding sequence), in addition to the coding 505 

sequences of TFs or their deletion mutants. Promoter fragments and the reporter cassette in 506 

pMT1125-derived vectors were sequenced.  507 

CtL2 strains 508 

Wild-type CtL2 (strain 434/BU) was purchased from ATCC (76). EBs were purified from L929 509 

cells via MD-76 gradient ultracentrifugation as described previously (77). Titers of EB stocks were 510 

determined as follows. L929 cells grown on 96-well plates were infected by centrifugation for 20 511 

minutes at 900 × g. These infected cells were then fixed with cold methanol at 30 hours post-512 

inoculation (hpi) and stained successively with two antibodies: a monoclonal L21-5 anti-major 513 

outer membrane protein antibody (78) and an FITC-conjugated rabbit anti-mouse antibody (79).  514 

Transformation was performed as described (80) with modifications (81). 1.3 X 107 IFUs of EBs 515 

were mixed with 4-6 μg of plasmid DNA in 50 μl CaCl2 buffer (10 mM Tris, pH 7.4 and 50 mM 516 

CaCl2) and incubated for 30 minutes at room temperature. The mixture was then diluted with 1.2 517 

mL Hanks Balanced Salt Solution (HBSS; Sigma, Cat. # D8622) and used to inoculate a 6-well 518 

plate of nearly confluent L929 cells (i.e., ~0.2 ml of the suspension per well). Monolayers were 519 

infected at room temperature by centrifugation for 20 minutes at 900 × g, after which HBSS was 520 

replaced with DMEM containing 5% FBS (2 ml/well). Cultures were supplemented with 521 

cycloheximide (final concentrations: 1 µg/ml) and penicillin G (final concentration: 2 U/ml). Cells 522 
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from each well were harvested into 500 µl HBSS at 36 hpi, disrupted by brief sonication and 523 

centrifuged for 10 min at 1000 × g and 4 °C. The supernatant was used thereafter to infect a new 524 

well of nearly confluent L929 monolayer on a 6-well plate by centrifugation. Immediately after 525 

infection, medium containing both cycloheximide and penicillin G was added, and the process of 526 

harvesting and infection was repeated. After RFP-expressing inclusions were noted (typically at 527 

the end of passage 2 or 3), the concentration of penicillin G was increased to 4 U/ml for the next 528 

passage and further to 10 U/ml for 2 additional passages. Thereafter, penicillin G was replaced 529 

with 10 µg/ml ampicillin for further expansion.  530 

To generate transformant clonal populations, 6-well plates of L929 cells were inoculated 531 

with EBs (~1-6 inclusions/well) and cultured using medium with 20 µg/ml ampicillin. A P200 532 

micropipette was used to sample one inclusion from each well at 24 to 28 hpi (i.e., 6 total inclusions 533 

were sampled from 6 different wells). Intracellular chlamydiae were released from each sampled 534 

inclusion by sonication for 5 seconds, centrifuged, and subsequently used to inoculate an entirely 535 

new 6-well plate of L929 cells. 6 additional inclusions were picked from a plate with observable 536 

inclusions (typically, only 2-3 of the 6 inoculated wells yielded inclusions). This process was 537 

repeated one more time to ensure homogeneity. For further experimentation, EBs of transformant 538 

clonal populations were prepared and purified as described above. Infectivity of EB stocks were 539 

determined as described, except that RFP-expressing inclusions of CtL2 transformants in live 540 

cultures were scored without immunostaining (73).  541 

Determination of C. trachomatis growth 542 

Nearly confluent L929 cell monolayers grown on 24-well (for determining progeny EB 543 

production) and 6-well (for microscopic analysis) plates were infected with MD-76 gradient-544 

purified CtL2 transformants at a multiplicity of infection (MOI) of 1 IFU per 3 cells. Unless 545 
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otherwise indicated, expression of GrgA, Euo, and/or HrcA was induced by replacing culture 546 

media with fresh media containing 10 nM ATC. To quantify progeny EB production, cells were 547 

harvested in 500 μL SPG buffer at 30 hpi; recoverable IFUs were determined as previously 548 

described (73). RFP-expressing inclusions were imaged at 36 hpi. The Java-based ImageJ software 549 

was then used to process the images. An empiric threshold value was first determined and applied, 550 

after which noise reduction and binarization calculations were performed. The analyze particles 551 

function was then called with minimum size and circularity constraints to compute potential 552 

inclusion boundaries within the given image. Visual inspection was conducted to ensure accurate 553 

particle identification and selection for subsequent intensity measurements. 554 

Epi-fluorescence microscopy 555 

L929 cell monolayers grown on 6-well plates were infected with EBs of CtL2 transformants at an 556 

MOI of 1 IFU per 3 cells and incubated with or without 10 nM ATC for 34 to 36 hours. Bright 557 

field and red fluorescent images were acquired on an Olympus IX51 fluorescence microscope 558 

using a constant exposure time for each channel. Image overlay was performed using the 559 

PictureFrame software. 560 

Confocal fluorescent microscopy 561 

L929 cell monolayers grown on coverslips were infected with EBs of NH-GrgA transformants at 562 

an MOI of 1 IFU per 5 cells. GrgA expression was induced with 20 nM ATC at 8 hpi. 6 h later, 563 

cells were rinsed with PBS, fixed by incubation in PBS containing 3% formaldehyde, 0.045% 564 

glutaraldehyde for 10 min, washed twice with PBS and permeabilized with 90% cold methanol 565 

(82). Chlamydiae were stained with polyclonal a rabbit anti-tRFP antibody (Evrogen, Cat. # 233), 566 

which recognized the RFP mKate protein, and then FITC-conjugated goat anti-rabbit IgG 567 

secondary antibody (Immunotech). Host cell cytoplasm was stained with 0.01% Evans Blue; host 568 
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cell chromosomal DNA was stained with 1µg/mL Hoechst 33342. Cells were imaged using a Zeiss 569 

LSM710 confocal microscope equipped with a 100X Plan-Apochromat oil immersion lens.  570 

Electron Microscopy 571 

L929 cell monolayers were infected with GrgA transformants at an MOI of 1 IFU per cell. Cultures 572 

were then treated with or without aTC, collected in PBS containing 10% FBS at 14 hpi, and 573 

centrifuged for 10 minutes at 500 × g. Pelleted cells were resuspended in EM fixation buffer (2.5% 574 

glutaraldehyde, 4% paraformaldehyde, 0.1 M cacodylate buffer) at RT, allowed to incubate for 2 575 

hours, and stored at 4 ºC overnight. To prepare samples for imaging, cells were first rinsed in 0.1 576 

M cacodylate buffer, dehydrated in a graded series of ethanol, and then embedded in Eponate 812 577 

resin at 68 ºC overnight. 90 nm thin sections were cut on a Leica UC6 microtome and picked up 578 

on a copper grid. Grids were stained with Uranyl acetate followed by Lead Citrate. TIFF images 579 

were acquired on Philips CM12 electron microscope at 80 Kv using AMT XR111 digital camera. 580 

RB diameters were measured using ImageJ software (83).  581 

Cellular genomic DNA and RNA isolation 582 

Total host and chlamydial genomic DNA and RNA were isolated from non-infected and 583 

chlamydia-infected L929 cells using TRI reagent (Sigma, Cat. # 93289), which separates DNA 584 

and RNA into different phases. DNA and RNA were purified in accordance with the 585 

manufacturer’s instructions (84). Genomic DNA was dissolved in a buffer containing 0.1 M 586 

HEPES and 8 mM NaOH. These samples were stored at -20 °C. RNA was dissolved in DEPC-587 

treated H2O and further treated with RNase-free DNaseI to eliminate residual DNA contamination. 588 

The resultant DNA-free RNA samples were stored at -80 °C. 589 
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Quantitative PCR (qPCR) and reverse transcription qPCR (RT-qPCR) 590 

Thermo Fisher QS5 qPCR machine was used for qPCR and RT-qPCR analyses to quantify relative 591 

CtL2 genome copy numbers and mRNA levels, respectively. Genomic qPCR was performed using 592 

Applied Biosystems PowerUp SYBR Green Master Mix (Thermo Fisher Scientific, Cat. # 593 

A25742) following manufacturer’s instructions. For each reaction, 5 ng of purified total host and 594 

bacterial genomic DNA was used as template. The primer pair were qPCR-ctl0631-F and qPCR-595 

ctl0631-R (Table S10). RT-qPCR was performed using Luna Universal One-Step RT-qPCR kit 596 

(NEB, Cat. # E3005E) following manufacturer’s instructions. For each reaction, 600 ng of purified 597 

total host and bacterial RNA was used as initial template for cDNA synthesis. All genomic and 598 

RT-qPCR reactions were performed in technical duplicate or triplicate.  599 

RNA sequencing  600 

Total RNA integrity was determined using Fragment Analyzer (Agilent) prior to RNA-seq library 601 

preparation. Illumina MRZE706 Ribo-Zero Gold Epidemiology rRNA Removal kit was used to 602 

remove mouse and chlamydial rRNAs. Oligo(dT) beads were used to remove mouse mRNA. 603 

RNA-seq libraries were prepared using Illumina TruSeq stranded mRNA-seq sample preparation 604 

protocol, subjected to quantification process, pooled for cBot amplification and sequenced with 605 

Illumina HiSeq 3000 platform with 50 bp single-read sequencing module. In average, 20-25 606 

million reads were obtained for each RNA-seq sample. Short read sequences were first aligned to 607 

the CtL2 chromosome (accession # NC_010287.1) and the transformed plasmids using TopHat2 608 

aligner and then quantified for gene expression by HTSeq to obtain raw read counts per gene, and 609 

then converted to RPKM (Read Per Kilobase of gene length per Million reads of the library) (85-610 

87). 611 
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TRN development  612 

Pathway analysis was first performed on significantly regulated gene sets whose P values were < 613 

0.05 by STRING-db v.11 and modified to increase font size, nodes and edges were changed by 614 

color coding. Secondly, add more GrgA-regulated genes pathway (edges) according RNA 615 

sequencing data without altering original network relationships. 616 

In vitro transcription assay 617 

Chlamydial RNA polymerase holoenzyme was partially purified from RBs of pTRL2Δgfp-618 

transformed CtL2 using Heparin Agarose (Sigma) as previously described (35). In vitro 619 

transcription assays for σ66-dependent promoters and σ28-dependent promoters were performed as 620 

previously described (35, 36).  621 

Western Blotting  622 

L929 cells grown on 6-well plates were infected with transformants. Expression induction was 623 

performed at 14 hpi using 10 nM ATC. Cells were harvested in 100 μL 1X SDS-PAGE sample 624 

buffer at 15 hpi, heated at 95 °C for 5 min, and sonicated for 1 minute at 35% amplitude (5 second 625 

on, 5 seconds off). Proteins were resolved in 10% SDS-PAGE gels and transferred onto PVDF 626 

membranes. GrgA and mutants were detected using a monoclonal anti-His antibody (Genscript, 627 

Cat. A00186) and a mouse anti-GrgA antibody (35). 628 

Statistical analysis 629 

R package DESeq was used to normalize data and find group-pairwise differential gene expression 630 

based on three criteria: Pval < 0.05, average rpkm > 1, and fold change ≥ 1. Genes were clustered 631 

into groups based on temporal patterns of transcriptomics using Gaussian mixture models (88). 632 

All other quantitative data were analyzed using t tests in Excel of Microsoft Office.  633 
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Fig. 1. Ectopic expression of GrgA inhibits chlamydial growth. ATC was added to cultures of control 
vector transformants (A, B) and GrgA transformants (C, D) at the indicated h post-inoculation (hpi). Number of 
progeny EBs formed were determined at 30 hpi (A, C); RFP-expressing inclusions in live cultures were imaged at 
35 hpi (B, D). (A, C) Data are averages ± standard deviations of triplicate experiments. See Fig. S4 for number of 
inclusions per image, inclusion sizes, and inclusion RFP intensities associated with panels B and D. 
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Fig. 6. RT-qPCR detection or confirmation of early target genes of GrgA. Relative mRNA levels of 5 non-operon 
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p < 0.01; ***, p < 0.001.
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Fig. 10. GrgA-regulated transcriptional 
network. (A) Network established within 30 min of 
ATC-induced GrgA overexpression. (B) Network 
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sion. (A, B) Blue and red nodes are genes activated 
and repressed by GrgA, respectively. Solid and 
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labeled. Abbreviations: AA, amino acid; metab., 
metabolism; Nt.M, nucleotide metabolism; 
Post-transl., posttranslational protein modification; 
recom, recombination; replic, replication.
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