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Abstract

Brain networks exhibit very variable and dynamical functional connectivity and flexible
configurations of information exchange despite their overall fixed structure (connectome).
Brain oscillations are hypothesized to underlie time-dependent functional connectivity
by periodically changing the excitability of neural populations. In this paper, we
investigate the role that the connection delay and the frequency detuning between
different neural populations play in the transmission of signals. Based on numerical
simulations and analytical arguments, we show that the amount of information transfer
between two oscillating neural populations can be determined solely by their connection
delay and the mismatch in their oscillation frequencies. Our results highlight the role of
the collective phase response curve of the oscillating neural populations for the efficacy
of signal transmission and the quality of the information transfer in brain networks.

Author summary

Collective dynamics in brain networks is characterized by a coordinated activity of their
constituent neurons that lead to brain oscillations. Many evidences highlight the role
that brain oscillations play in signal transmission, the control of the effective
communication between brain areas and the integration of information processed by
different specialized regions. Oscillations periodically modulate the excitability of
neurons and determine the response those areas receiving the signals. Based on the
communication trough coherence (CTC) theory, the adjustment of the phase difference
between local oscillations of connected areas can specify the timing of exchanged signals
and therefore, the efficacy of the communication channels. An important factor is the
delay in the transmission of signals from one region to another that affects the phase
difference and timing, and consequently the impact of the signals. Despite this delay
plays an essential role in CTC theory, its role has been mostly overlooked in previous
studies. In this manuscript, we concentrate on the role that the connection delay and
the oscillation frequency of the populations play in the signal transmission, and
consequently in the effective connectivity, between two brain areas. Through extensive
numerical simulations, as well as analytical results with reduced models, we show that
these parameters have two essential impacts on the effective connectivity of the neural
networks: First, that the populations advancing in phase to others do not necessarily
play the role of the information source; and second, that the amount and direction of
information transfer dependents on the oscillation frequency of the populations.
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Introduction 1

A typical sensory response process in the nervous system consists of the active selection 2

of relevant inputs, the segregation of the different features of the input, and the 3

integration of the information leading to the right action. All these stages depend on 4

the flexibility in the information routing, as well as in an efficient communication 5

between different regions of the nervous system. However, the circuit and the dynamical 6

mechanism explaining the fast reconfiguration of the effective pattern of communication 7

and the information transfer in the neural systems have so far not been satisfactorily 8

understood. 9

One interesting and widespread proposal is that in the presence of neural oscillations, 10

communication patterns can be controlled by adjusting the phase relation between the 11

local oscillations of different brain regions [1–8]. In the brain, synaptic interactions lead 12

to correlated activity of the neurons and the appearance of successive epochs of high 13

and low excitability, characterized by collective neuronal oscillations in different 14

frequency bands [9–15]. 15

Neural oscillations establish intermittent windows of high and low excitability, giving 16

rise to a time-dependent response of the system to the inputs from other brain regions. 17

According to the communication through coherence (CTC) hypothesis, it is possible to 18

adjust the phase relationship between two regions to activate and deactivate the 19

communication channel [1, 16–18] or continuously vary the efficacy of the channel [5]. 20

While in the original proposal, the widespread variability in neural systems and the 21

inconsistency of the coherence across time and space were ignored, recent studies 22

showed that the mechanism works if oscillations are not persistent and even if the 23

locking is not stable [19,20]. 24

The diversity and the time-dependency of the phase relationships reported in 25

experiments [5, 21–23] are supposed to underlie the rich variety of communication 26

patterns in the nervous circuits. Several experimental and computational studies have 27

shown that those regions that phase advance others act as leaders and can efficiently 28

transmit information to the laggard regions [20,24,25]. It has been shown that the 29

presence of frequency mismatch can give rise to a phase difference and a directional 30

information transfer, that is, nodes with higher frequency transmit information to those 31

with lower frequency when the connection delay is neglected [20,24]. However, one of 32

the key parameters which determine synchronization and the phase relation between 33

coupled oscillators, is the interaction delay due to the finite time of transmission of 34

signals between the oscillators. Since the synchronization and the phase relations 35

determine the effective routes for information transfer, and the synchrony properties 36

depend on the interaction delays, an important question arises: How do transmission 37

delays in brain circuits affect the effective communication patterns? 38

In many theoretical and computational studies in networks of coupled dynamical 39

systems, delays are disregarded mainly due to the analytical complexity and 40

computational burden. However, delays might have a crucial impact on the collective 41

properties of distributed dynamical systems [6, 7, 26–30]. In the brain, delays in the 42

transmission of signals between neurons and neural populations are quite heterogeneous 43

and cover a wide range, from milliseconds to tens of milliseconds [31]. So they can be of 44

the same order or larger than some important neural time scales, for example, the 45

integration time of the membrane, the period of gamma oscillations, or even of other 46

bands, and temporal window for spike timing dependent plasticity [13, 32–38]; therefore 47

cannot be ignored. Consequently, an adequate treatment of the CTC theory, needs the 48

delays to be explicitly taken into account. In fact, the phase relation resulting in 49

maximum signal transmission efficiency is not a zero phase-lag when the transmission 50

delays are non-negligible [39,40]. 51

In this manuscript, we study the conditions for an effective communication between 52
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two coupled neural populations by systemically varying the interaction delay and 53

mismatch of their oscillation frequencies. Our results show that for small delays, 54

information encoded in the population oscillating at higher frequency is transmitted to 55

other populations and when the information is encoded in the population oscillating at 56

lower frequency, the other population is unable to receive the information; compatible 57

with previous results [24, 41]. We find, however, that this is not always the case and the 58

amount and direction of the effective communication between populations depend, in 59

general, on the interaction delay. Symmetric information transmission and efficient 60

transmission in reverse direction (from slow to fast) are also passible for certain delays. 61

Moreover, a formulation based on the coupled phase oscillators and the phase 62

response curve allows us to provide a general framework to predict how the pattern for 63

effective communication between two coupled oscillators, changes with delay and 64

frequency mismatch. This novel findings provides a theoretical basis for how the 65

information is transmitted in the brain circuits along different channels and directions 66

and over different frequency bands. 67

Materials and methods 68

Neuron model: In our simulation we used the Hodgkin-Huxley (HH) neuron
model [42]. The evolution of the membrane potential and gate variables are given by:

C
dv

dt
= Iext + Isyn − gKn4(v − EK)

− gNam3h(v − ENa)− gL(v − EL)

dn

dt
= αn(v)(1− n)− βn(v)

dm

dt
= αm(v)(1−m)− βm(v)m

dh

dt
= αh(v)(1− h)− βh(v)h (1)

The αx and βx, x ∈ (n,m and h) are defined as below

αn(v) =
0.01(v + 55)

1− exp(−0.1(v + 55))

βn(v) = 0.125exp(−0.0125(v + 65))

αm(v) =
0.1(v + 40)

1− exp(−0.1(v + 40))

βm(v) = 4exp(−0.0556(v + 65))

αh(v) = 0.07exp(−0.05(v + 65))

βh(v) =
1

1 + exp(−0.1(v + 35))
(2)

where Iext and Isyn are the input and synaptic currents, respectively. The values of 69

parameters are given in Table 1. 70
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The synaptic current of the i-th neuron (Iisyn) is given by:

Iisyn(t) =
∑
j

gijSij(t)(vi − Ejsyn)

Sij(t) =
1

A
[exp(−(t− t∗j − t

ij
d )/τr)

− exp(−(t− t∗j − t
ij
d )/τd)]

A = (
τr
τd

)
τr

τd−τr − (
τr
τd

)
τd

τd−τr (3)

vi is the membrane potential of the post-synaptic neuron and Ejsyn is its reversal 71

synaptic potential. Sij is a double-exponential function, modeling the efficacy of the 72

chemical synapses mediated by AMPA and GABAa receptors. t∗j is the time at which 73

the pre-synaptic neuron spikes and td is the axonal delay between pre- and post-synaptic 74

neurons. The synapses’ parameters and synaptic weights (gij) are given in Table 1. 75

We numerically solved the equations using the Milshtein algorithm with an 76

integration step dt = 0.01 ms. 77

Population architecture. Each of our populations was composed of 100 neurons with 78

80% excitatory and 20% inhibitory neurons. The connectivity within the population 79

was chose as random and with probability of 10%. The connectivity between 80

populations was also chosen as random (but just among excitatory neurons) with 81

probability 5%. The intra population delay was taken as 0.5 ms while that between 82

populations was varied from 0 to 14 ms. 83

Table 1. Simulation parameters.

Parameter Value Description
C 1 µF/cm2 Capacitance
gK 36 mS/cm2 K conductance
gNa 120 mS/cm2 Na conductance
gL 0.3 mS/cm2 Leak conductance
EK −77 mV K reversal potential
ENa 50 mV Na reversal potential
EL −54.4 mV Leakage reversal potential
EEsyn 0 mV Excitatory reversal potential

EIsyn −80 mV Inhibitory reversal potential

tinnerd 0− 14 ms Inner population delay of excitatory unit
tintrad 0.5 ms Intra population axonal delay
τd 3 ms Synaptic decay time
τr 0.5 ms Synaptic rise time
Iext 10− 12 µA/cm2 Injected current
µ̄, σ 0, 0.5 µA/cm2 Mean and variance of Gaussian white noise
gEE 3.75µS/cm2 Synaptic weight, E → E
gEI 15µS/cm2 Synaptic weight, I → E
gIE 7.5µS/cm2 Synaptic weight E → I
gII 15µS/cm2 Synaptic weight I → I

Input signals: We inject constant current (varied from 10 to 12 µA/cm2) and a 84

Gaussian white noise (µ̄ = 0 µA/cm2, σ = 0.5 µA/cm2) to each neuron (Iext in Eq. 1). 85

Due to the value of the input current, neurons fired within a frequency range of 70-73 86

Hz. 87

To test the signal transmission we injected slow (5 Hz) and fast ( 70 Hz) 88

non-periodic signals (Depicted in Fig. 7) into the excitatory neurons of the host (or 89
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sender) population. By running simulations in the absence of an external signal, we 90

found the maximum firing rates. Its inverse value characterizes the oscillation period. 91

In the fast signal case, we applied a single pulse at a certain phase in a period, on all 92

the excitatory neurons. The phase of the impact of the pulse changed in each 93

experiment by dividing the oscillation cycle into 50 segments. In each experiment, we 94

applied a rectangular pulse of amplitude Ipulse = 0.25µA/cm2 and width of 2 (ms). 95

Analysis. In our analysis, we calculated the firing rate (multi unit activity (MUA)) 96

of the populations by using a Gaussian time window with σ = 2 ms and σ = 100 ms for 97

fast and slow modulation, respectively. By moving in time the Gaussian time window, 98

we calculated the weighted sum of the number of spikes in the window and put the 99

value of it to the related time at the center of the time window. 100

Cross covariance: The cross-covariance quantifies the similarity between two vector. 101

We used this measure to find the similarity between the firing rate of the receiver 102

population with the input signal that we injected on the excitatory neurons of the 103

sender (host) population. We assumed that if the signal was transmitted to the second 104

population, its behavior (firing rate) should follow the signal. In the figures we plotted 105

the un-biased and un-normalized value of the cross-covariance at zero lag (ZLC). 106

Coherency: To find the coherency of the populations we used a Gaussian time 107

window with σ = 2(ms), to calculate the firing rate of the population activity using the 108

spike train of the neurons. We defined the maximum coherency (C = 1), if all neurons 109

spiked at the same time. We calculated and preserved the maximum value of the firing 110

rate. We defined the coherency level of the oscillation by finding the firing rate of the 111

population activity (during 2 sec) and taking average over the last 20 oscillations, 112

normalizing to the value of the firing rate at the maximum coherency . 113

Delayed mutual information: To characterize the signal transmission and to define
the effective connectivity between the coupled populations, we calculated the time
delayed mutual information (dMI) [45], that quantifies the causal relation between the
activities of the coupled populations. The time delayed mutual information is computed
based on the Shannon’s entropy for two vector as:

dMIij(d) = δMI(Xi(t), Xj(t+ d)))

= H(Xi(t)) +H((Xj(t+ d)))

−H(Xi(t), Xj(t+ d)) (4)

where H(Xi) = −
∑
k∈Xi Pklog(Pk) is the marginal entropy of Xi and log is base 2 114

logarithm. Pk is the probability of occurrence of event k. The Joint entropy in Eq. 4 is 115

calculated as 116

H(Xi(t), Xj(t+ d)) = −
∑

n∈Xi(t)

∑
m∈Xj(t+d)

Pn,mlog(Pn,m). (5)

By integrating the dMI for positive lags, we quantified the amount of information that 117

was transmitted from i to j; integrating over negative lags, we computed the transferred 118

information in the opposite direction. Subtracting these two values, we obtained the 119

resulting information transferred between the two populations. 120

Phase Response Curve (PRC) of a population. To find the response of a population 121

to an injected pulse, we proceeded in a similar way as we do when we want to find the 122

PRC of a single neuron. First we calculated the firing rate of population activity. Then 123

we partitioned the time between two selected peaks into 30 segments. For each of these 124

segments, and by keeping all parameters unchanged, we applied a rectangular pulse at a 125

specified phase into all excitatory neurons of the population. By recalculating the firing 126

rate of the population, we defined the PRC as the difference between the osillation 127

period of the population without and with the injected pulse. The width and amplitude 128

of the rectangular pulse that we used were 2 ms and 1 µA/cm2, respectively. 129
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Fig 1. Properties of a single population. The coherency (panel (A)) and the
oscillation frequency (panel (B)) of the population activity is plotted in color code in
the noise amplitude (σ) vs. mean input current (I0) plane. In panel C (D) the raster
plot and the activity of a single population for I0 = 8 (I0 = 11) and σ = 0.8 (σ = 0.5) is
plotted with green (blue) line. In the rest of the simulations we use the set of parameters
considered in panel (D) resulting in a coherency value of 0.80 (green point in panel (A)).

Results 130

We start by investigating the role of the combination of transmission delay and 131

frequency mismatch on the effective communication between two bidirectionally 132

connected neural populations. Each population consists of N neurons (80% excitatory 133

and 20% inhibitory) modeled by the Hodgkin-Huxley (HH) equations. The 134

intra-population connectivity probability is 10% for all type of connections. Long-range 135

excitatory projection connect the excitatory neurons of the two populations with a 136

probability of 5%. The synaptic currents, assumed to be mediated by AMPA and 137

GABAA receptors, are modeled by a double-exponential function with synaptic rise and 138

decay time equal to 0.5 ms and 3 ms, respectively, for both type of synapses. The delay 139

between any pair of connected neurons inside the populations is assumed to be 0.5 ms. 140

The connection delay between populations will be varied. All neurons receive a 141

Gaussian white noise with mean µ and variance σ (see Methods). In Fig. 1A-B, the 142

coherence and the oscillation frequency of the isolated populations is shown, when 143

changing the mean and the variance of the external noise. For the set of parameters we 144

have chosen (dots in Fig. 1A-B and Table 1), each population exhibits synchronous 145

oscillations in the high-gamma range. Sample spiking activity of the neurons and the 146

population activity of the networks are shown in Fig. 1C. 147

Phase locking between populations 148

We now concentrate on two populations connected with a given delay time (Fig. 1A). 149

The mean input current into population 2 is fixed at 11µA/cm2 (unless otherwise 150

noted), while the mean input current into population 1 is set at 11±∆, where ∆ 151

introduces a frequency mismatch (detuning) between the two populations. We 152

hypothesize that the theory of coupled oscillators can qualitatively predict the 153

properties of a system of two populations connected via long range 154

projections [6, 26, 30, 39, 42–44]. Then the degree of coherence between local oscillations 155

of the two populations is determined by the coupling strength and transmission delay of 156

the connections as well as the mismatch between the oscillation frequencies of the 157

July 3, 2020 6/22

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2020. ; https://doi.org/10.1101/2020.07.09.194969doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.09.194969
http://creativecommons.org/licenses/by/4.0/


populations [20, 29]. In this study we fix the strength of the long-range connections and 158

vary the frequency mismatch and the time delay. We observe that the locking window, 159

determined by the maximum frequency mismatch for which the system remains in the 160

phase-locked regime, depends on the delay, as expected (Fig. 2B-left panel). Within the 161

locking zone, where the two coupled populations oscillate at the same frequency, while 162

the phase difference between their oscillations changes with the delay and the frequency 163

mismatch (Fig. 2B-right panel). Such a varying phase difference affects the signal and 164

information transmission between the two populations as is shown below. 165

Transmission of slow (rate) signals 166

To evaluate the ability of the system to transmit information, we apply a time dependent 167

signal on one of the populations (the sender) and check how this signal is transmitted to 168

the other population (the receiver). We consider the two widespread neuronal coding 169

schemes, rate and spike-time coding. We do this by applying two different types of 170

signals. In the first case we modulate the oscillation frequency of the sender population 171

by using a time dependent input current (only on the excitatory neurons) whose 172

frequency is much lower than the oscillation frequency of the populations (Fig. 2C-E). 173

To assess the quality of the signal transmission, we first extract the instantaneous 174

oscillation frequency of the two populations, and then calculate the cross covariance 175

between the rate of the receiver population and the signal (see Methods). The result is 176

shown in Fig. 2C. Red color indicates a good transmission quality while green denotes 177

that the transmission is degraded. Some aspects are highlighted in Fig. 2E. A dominant 178

red color is observed for positive detuning indicating that the signal is better 179

transmitted when the sender oscillates at a higher frequency than the receiver for most 180

values of the transmission delay. However, also areas of weak transmission can be also 181

seen for some specific delay values and positive detuning. For negative detuning, signal 182

transmission can also occur from the population with lower oscillation frequency to that 183

of high oscillation frequency for certain delays with a relatively good, although not 184

maximal, quality. There are also some delay values that permit transmission in both 185

directions with a relatively good transmission quality. Finally, the zero detuning case is 186

not an optimal choice to transmit the signal. Similar results are obtained when 187

computing the delay mutual information as shown in Fig. 2D (see below). 188

Time traces of the evolution of the populations’ rate superimposed on the signal, are 189

shown in Fig. 2E for different delays and frequency mismatches (black dots in Fig. 2C). 190

It is seen that for small delays the signal transmits better from the population that 191

oscillates at higher frequency to the one that oscillates at lower frequency, as reported in 192

previous studies (Fig. 2C and the left column of E) [19,24, 40]. However, this no longer 193

holds for larger delays. Indeed, we observe that, for some values of the delay, the quality 194

of the transmission can be almost the same for both positive or negative detuning 195

(Fig. 2C and middle column of E) or can be even better for negative detuning, i.e., when 196

the sender population oscillates at a lower frequency (Fig. 2C and the right column of 197

E). 198

Transmission of pulse packets 199

In the second case we apply a single pulse packet on all excitatory neurons of the sender 200

population at a certain phase (defined between 0 and 2π over one cycle of the 201

oscillation) and measure the change in the response in both the sender and receiver 202

populations. The phase at which the pulse is applied is varied in order to cover the 203

whole 2π range. The effect of these pulses in the sender population is characterized by 204

the local phase response curve (pPRC) while that in the receiver population is 205
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Fig 2. Signal transmission and information transfer between the two
bidirectionally coupled populations. (A) Schematic diagram of the network
connectivity. Only excitatory neurons between the two populations are connected. (B)
The locking zone (left panel) and phase difference (right panel) of the activity of the
two populations are shown in color code in the input current mismatch (∆I) vs. delay
(δ) plane. Zero-lag cross-covariance (ZLC) between the firing rate of the second
population with the input signal (C), and the delayed mutual information between
firing rates of two populations (D) are shown in color code in the same plane as in panel
(B). In (E) the firing rate of the two populations and the input signal are plotted, for
the parameters values marked with black dots in (C). The value of ZLC is shown in
each panel. The offset and the amplitude of the external signal were scaled for a better
comparison.
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quantified by the non-local phase response curve (nPRC) which the latter is a measure 206

for signal transmission. 207

In the different panels of Fig. 3A the pPRC and the nPRC upon the impact of pulse 208

packets are shown, for different values of delay and frequency detuning. It can be 209

clearly seen that for certain delay values, the nPRC has a finite amplitude which 210

indicates the transmission of the signal. However, for other delays, the nPRC is flat 211

indicating that the signal has not affected the receiver population. We also integrated 212

the absolute value of the nPRC curves over a period as a measure of the signal 213

transmission quality (results shown in Fig. 3B). It can be seen that the results 214

qualitatively agree with those obtained for slowly varying signals (rate modulation; see 215

Fig. 2). For small delays the signals are more efficiently transmitted from the fast to the 216

slow oscillating population, but for larger delay values, symmetric transmission or even 217

a better transmission in the reverse direction are found. It should be noted that, as 218

occurs in the case of slow modulation, a better signal transmission is found in general 219

for positive detuning (higher oscillation frequency of the sender population) as 220

compared to the case of negative detuning (lower oscillation frequency of the sender 221

population) when changing the coupling delay. 222

Green curves in In Fig. 3A and Fig. 3B show the prediction of the analytical results 223

based on the multiplication the pPRC and the absolute value of its derivative, at the 224

time at which the spikes of the sender populations arrive to the receiver population 225

(after the delay, see section Theoretical background). A good agreement is seen between 226

the analytical predictions and the numerical results. 227

The PRC qualitatively predicts the information transmission 228

flow 229

Our previous results highlight the importance of the PRC analysis. Indeed, the response 230

of the receiver population to a perturbation applied to the sender population depends 231

on the excitability state of the both populations at the time they receive the 232

perturbation. The value of the PRC at the phase at which the external pulse impacts 233

the sender populations determines the local response and the effect of the pulse on the 234

sender population. If the receiver population receives the perturbation (after a 235

transmission time δ) in a phase at which the time-derivative of the PRC is 236

non-negligible (within the non-zero part of the blue solid curves in Fig. 3A), then the 237

receiver population detects the perturbation. Otherwise, the perturbation is filtered out. 238

In Fig. 4A we have shown examples for how a perturbation is transmitted or filtered out 239

by analyzing the PRC of the populations. In Fig. 4B we quantify the transmission 240

quality by changing detuning and delay solely based on the PRC of the oscillating 241

populations without any external perturbation (See also the section Theoretical 242

background). It can be seen that the results agree well with those obtained by analyzing 243

the pulse transmission in Fig. 3B, highlighting the importance of PRC analysis. 244

Information transfer 245

In the previous section we used cross-covariance and phase response curves as measures 246

of the quality of the transmission of external signals in the system. Here we question if 247

the above results can predict (and be inferred from) the causal relationship between the 248

populations and the direction of the information flow. To this end, we compute the 249

delayed mutual information (see Methods Eq. 4) between the two populations. This 250

measure quantifies the information flow regardless of how the information is encoded 251

and decoded [45]. 252

Previous studies have shown that, in the absence of transmission delay, a frequency 253

mismatch between the oscillations of the two populations breaks the symmetry of the 254
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Fig 3. Response of the network to fast signals. (A) The PRC of the sender
population (pPRC; red) and the PRC of the receiver population (non-local PRC, nPRC;
sky-blue) is plotted versus the phase β for different values of the detuning ∆. The green
curve shows the analytical prediction for the response calculated as the value of the
derivative of PRC, multiplied by the value of PRC. To compute the nPRC we use the
phase (or time) at which the pulse is injected in the sender population, and calculate
the difference of the ISIs without and with signal injection. (B) The integral of the
absolute value of the response of the receiver population to the input pulse on the
sender population (area under the absolute value of blue curves in (A)) is ploted in the
detuninng vs. delay plane.
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Fig 4. (A) Schematic plot of the PRC (dotted lines) and its time derivative (solid
lines) represented between two successive oscillation peaks of the populations for three
delays, δ = 0, 4, 6 (ms) and two detuning values, ∆ = −0.4, 0.4. The values on top of
each panel PRC

′

i|j , are the absolute value of PRC
′

of the population i when the spikes

of population j arrives. This measure predicts the quality of the transmission. (B) The
absolute value of derivative of the PRC of the receiver population at the time it receives
the spikes of the sender population, is plotted in the detunning vs. delay plane.

information flow favoring the fast-to-slow direction [19,24,40]. As it can be seen in 255

Fig.2D the direction of information flow changes with the delay and frequency mismatch 256

in a qualitatively similar manner as for the signal transmission, indicating that the 257

quality of signal transmission can accurately predict the direction of information flow 258

and vice versa. 259

It is worth mentioning that similar results can be obtained when the networks 260

oscillate in another frequency, being the only difference that the range of delays scales 261

with the carrier frequency. This is a remarkable result due to its functional importance: 262

When taking into account the transmission delays, the quality of signal transmission 263

depends on the (carrier) frequency. 264

Effect of asymmetric connectivity 265

The connections between brain regions are mostly asymmetric [46,47]. Due to its 266

biological importance, we check the results for the case of asymmetric connection 267

strengths between two populations. We first explore the results for a feedforward 268

network (no feedback connection) from the receiver to the sender. The computed 269

mutual information transfer reveals that the transmission is independent of the delay, as 270

expected, and is determined by the mismatch between the oscillation frequencies of the 271

two populations (Fig. 5A). For all delay values, the positive mismatch (higher frequency 272

of the sender population) yields a better information transfer. 273

We then fix the detuning at a positive value and the connection from sender and 274

receiver to gfor, and vary the strength of the connection from the receiver to the sender 275

from zero to 2gfor. The effect of the delay becomes more apparent with increasing 276

feedback strength (Fig. 5B). For gbac < 0.5gfor the information transmission remains 277

from the sender to the receiver almost independent of the delay. For gbac > 0.5gfor we 278
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Fig 5. Effect of connection asymmetry on the information transfer. In (A)
the connection is unidirectional from the sender to the receiver. The mutual information
transfer depends on the detunning but, as expected, is independent of the delay. In (B)
the delayed mutual information is plotted, in color code, in the ratio between
feedforward and feedback strength versus delay plane for a positive inhomogeneity value
(∆ = 0.4).

find windows of delays where the information transfer from the sender to the receiver is 279

considerably degraded, while in other ranges the transmission is facilitated. 280

Interestingly, the presence of the feedback connections facilitate the transmission for 281

some ranges of delay and degrades the transmission for some other ranges. 282

Theoretical background 283

To gain insight into the mechanisms that regulate the information flow between to 284

delay-coupled oscillating neuronal populations, we analyze a minimal model of two 285

coupled phase oscillators. These oscillators are characterized by their natural frequency 286

ωi and their phase response function Qi. The evolution of the system is described by: 287

θ̇1 = ω1 +K12Q1(θ2 − θ1 − δ),
θ̇2 = ω2 +K21Q2(θ1 − θ2 − δ), (6)

where θ1 and θ2 are the phase of the oscillators, K12 and K21 are the coupling 288

strengths, and δ represents the interaction phase (that relates to the delay τ as 289

δ = ωlocked ∗ τ). We assume that the strength of the connections are symmetric 290

K12 = K21 = K and that response functions are the same Q1 = Q2 = Q. We then 291

define the new variables φ = θ1 − θ2 and Θ = θ1 + θ2 and find 292

Θ̇ = W +K Q(−φ− δ) +K Q(φ− δ)
= W +KΛ(φ, δ), (7)

φ̇ = ∆ +K Q(−φ− δ)−K Q(φ− δ)
= ∆ +KΓ(φ, δ), (8)
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where, Ω = ω1 + ω2 and ∆ = ω1 − ω2. Phase-locking is then determined by φ̇ = 0. The 293

phase difference in the locked state is implicitly given by 294

Γ(φ∗, δ) = −∆

K
. (9)

A solution of this system exists while min[Γ] < −∆
K < max[Γ], and the stability 295

condition for a locked state is given by dΓ
dφ |φ∗ ≤ 0. 296

The main objective is to explore how a local external signal imposed on one of the 297

oscillators affects the other, i.e., how the signal transmits. The signal appears as a weak 298

time dependent perturbation on the intrinsic frequency of one of the oscillators–the 299

sender oscillator. Now we address the question of how the signal injected into one 300

oscillator (the sender) affects the other oscillator (the receiver). Here we consider both 301

the tonic signals which vary in a long time scale compared to the period of the 302

oscillations, and pulsatile signals that model the synaptic inputs whose time constants 303

(mainly decay time) are short compared to the oscillation periods of the populations. 304

These approaches can be related to the rate and spike-time coding schemes in 305

neuroscience [48]. 306

To quantify the transmission of synchronous signals, we define a non-local phase 307

response curve (nPRC) which is specified as the change in the phase of the receiver 308

oscillator upon the incidence of the pulse injected into the sender one [49]. We assume 309

that the unperturbed oscillators are locked at the phase difference φ∗(∆, δ) determined 310

by Eq. 9. The impact of a pulse at a given phase β on the sender oscillator, changes its 311

phase as ∆φ1 = Q(β). This gives rise to an instantaneous change in the argument of the 312

coupling function in the second equation of Eq. 6 by Q(β) and changes the right hand 313

side of that equation by Q(β)Q′(φ∗ − δ) (where Q′ is derivative of Q with respect to its 314

argument), given Q(β) is small. As a result, the phase change in the receiver oscillator 315

(and the nPRC) is expected to be proportional to both Q(β), which quantifies how much 316

the sender is affected by the signal, and to Q′(φ∗ − δ), which quantifies to what extent a 317

change in the phase of the sender is transferred to the receiver (see Fig. 3A and B). 318

In the second case we consider a slowly varying signal and quantify the transmission 319

of the signal by calculating a non-local response function defined as the derivative of the 320

rate of the collective phase change Θ̇ with respect to the free-running frequency of the 321

sender oscillator i 322

Si =
dΘ̇

dωi
=

dW

dωi
+K

dΛ

dωi

=
dW

dωi
+K

dΛ

dφ∗
× dφ∗
dωi

. (10)

Note that the signal is assumed to be weak enough so that the system remains in the 323

locked state, therefore, the dynamics of the collective phase is also representative of the 324

dynamics of the receiver oscillator. The response function can be considered as a 325

measure of the impact of the signal on the dynamics of the receiver oscillator. We will 326

show through numerical simulation of Eq. 6 that this quantity can indeed qualitatively 327

predict the correlation between the signal and the rate of change in the phase of the 328

receiver oscillator. 329

As an example we consider Q(α) = sin(α) which serves as the canonical form for 330

type-II excitable systems and resembles the interaction function for Kuramoto 331

Model [50]. In this case, the phase difference φ∗ in the locked state is determined by 332

sin(φ∗) = ∆/2K cos(δ) (Eq. 9), provided that |W/2K cos(δ)| ≤ 1. The non-local PRC, 333

which quantifies the transmission of pulse signals, is proportional to cos(φ∗ − δ). For 334

the slow (rate) signals the response function is given by: 335

Si = 1 + ∆
tanδ√

4K2cos2δ −∆2
. (11)
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The corresponding imbalance measure is calculated as: 336

∆S = 2∆
tanδ√

4K2cos2δ −∆2
(12)

. 337

The analytical results for the nPRC and the response function Si, for different values 338

of frequency mismatch ∆ and delay δ, are plotted in Fig. 6A and B.
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Fig 6. Analytical results (A) The response function Si (Eq. 11) to the input of slow
signals for the case of two delay-coupled phase oscillators is plotted in color code, in the
detuning vs. phase plane. In (B) the same results as (A) are shown for ∆ = −2, 0, 2,
depicted by red, green and blue colors in (A), for the sake of clarification. (C) The
absolute value of derivative of the PRC (Q), at phase (φ∗ − δ). To plot this figure, we
first find for each value of ∆ and δ the locked regime using the Eq. 9 and then we find
the absolute value of sin(φ∗ − δ) (D) The schematic of how a pulsatile perturbation in
the first oscillator affects the phase of the second oscillator, as discussed in the text.

339

The results show that in the locked state, and for relatively small delays 340

0 < δ < π/2, the signal is better transmitted when it is injected on the high-frequency 341

oscillator. Instead, for larger delays, phases π/2 < δ < π, the transmission is facilitated 342

in the reverse direction from the low- to the high-frequency oscillator. Interestingly, the 343

maximum response (and the minimum response in reverse direction) is found near the 344

boundaries of locking zone, where the imbalance is also maximized. 345

To check the validity of our analytical results, we perform numerical simulations for 346

the coupled phase oscillators with Q(φ) = sin(φ). In the first case we impose an impulse 347

on the sender oscillator and numerically measure the phase change in the receiver 348

oscillator. The results shown in Fig. 7 are in agreement with the theoretical prediction 349

Fig. 6. We then apply a small amplitude dichotomous random signal, which switches 350

between two states at random times, on the sender and calculate the correlation of the 351

rate of the oscillations of the receiver with the signal. The results shown in Fig. 7(A) 352

are in excellent agreement with the analytical results. The only difference with the 353

analytical results is that for the out of phase solution, and near the locking region, a 354

reliable transmission and a large imbalance is seen. However, since the analytical results 355

are obtained assuming phase locking, they are not valid for this region. Consequently, 356

the extension of the results to this region can be explained by the presence of 357

intermittent locked epochs when the system approaches the locking zone [51]. 358

Although the results normally depend on the exact form of PRC, a qualitative 359

agreement with the simulation results for two neural populations (Fig. 2) can be 360
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Fig 7. Numerical results for the case of Kuramoto oscillators. In panel (A)
top we plot the stochastic dichotomous signal that is applied to the first oscillator (the
sender). In panel (A) middle, we plot the correlation of the rate of the phase change of
the second oscillator (the receiver) with the signal. The bottom panel is the
transmission imbalance (eq. 7) which quantifies the difference of the signal transmission
in the two directions. In panel (B) top we plot the random signal that is applied to the
sender oscillator. In the middle panel, we plot the rate of the phase change of the
receiver oscillator with the signal and bottom panel is the transmission imbalance. (C)
Rate of phase change of two coupled oscillators for δ = π/4 and ∆ = 0,±2,±4. The
black line is the scaled input signal. The simulation parameters: ω = 55Hz, K = 4,
δ ∈ [0, 2π], ∆ = 4, and we added noisy input with µ = 0, and σ = 1.

observed since the pPRC of the population is type-II. But since the two PRCs are not 361

exactly the same, the results do not conform in details, e.g., the transmission is not 362

symmetric in the two directions over different delay ranges and favors fast-to-slow 363

direction (compare Fig. 7 with (Fig. 2)). 364

Discussion 365

Extensive experimental and theoretical studies over the recent decades have unleashed 366

the role of brain oscillations in several cognitive and executive brain functions like 367

sensory processing [52], memory [53,54] attention [55], and motor functions [56]. 368

Oscillations and the coordinated activity of the neurons facilitate the transmission of 369

signals along different stages of neural processing systems and enable an efficient 370

communication between brain areas [57–59]. Integration of information which is 371

processed across distributed specialized brain regions is hypothesized to be controlled by 372

the temporal coordination of their local dynamics [60]. Oscillations change the 373

excitability of the neurons over time and enable control of communication between 374

brain areas by adjusting their phase relations [18]. Moreover, oscillations provide a 375

functional substrate to transmit multiplex of information along different routes and 376

directions over different frequency bands [61–64]. 377
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Numerous theoretical and numerical studies have been carried out to shed light on 378

the mechanisms through which the oscillations control the transmission of information 379

and give rise to flexible communication channels in brain circuits [19,20,58,65]. In the 380

last years, the effect of the frequency mismatch, in particular, has been the focus of 381

several theoretical studies addressing the control of information routing in brain 382

circuits [19,20,24,66,67]. 383

In this paper, we revealed the essential role that the transmission delay plays in the 384

efficiency and direction of functional interaction between the oscillating regions. With a 385

systematic change of the frequency mismatch and delay time in the coupling between 386

two oscillating neuronal populations, we showed that previous results on the 387

information flow from high-frequency to low-frequency populations is only correct for 388

small delays [20,24]. Interestingly, other patterns of effective communication, including 389

almost symmetric communication channel or information flow in the reverse direction, 390

can be observed when increasing the delay. Notably, our results were found to be valid 391

and consistent for both slow (rate coding type) and fast (temporal coding type) signals. 392

0.1 Role of collective phase response functions 393

The PRC has been extensively shown to be important to explain different 394

synchronization scenarios between coupled dynamical systems (see .e.g. [29, 68]). It the 395

case of delay-coupled neuronal populations, the PRC accurately reveals the efficacy and 396

the direction of the information transfer. Our theoretical framework with phase 397

oscillators showed that the signal transmission depends on the phase response of the 398

coupled elements (phase oscillators or neural populations). Once knowing the collective 399

PRC of the neural population (pPRC), the regions for good transmission of the signals 400

in the parameter space including delay and the frequency detuning can be predicted. 401

These results were in good agreement with those obtained when modulating the sender 402

population and computing the information flow. 403

While the collective phase response is widely studied for populations of 404

oscillators [69–72], those results are not readily applicable to the neural ensembles. The 405

neural populations composed of excitatory and inhibitory neurons show collective 406

oscillations at the population level while the single neurons irregularly fire [11,73]. 407

The mechanism of the synchrony and mathematical formulations of the emergence of 408

the rhythms in such networks are far different from those of networks of coupled 409

oscillators [74,75]; though their response to the external inputs might be different and 410

warrants for more systematic studies [49,76]. 411

0.2 Role of the frequency detuning and connection delay 412

While the role of frequency mismatch has been shown to be an important factor in 413

information routing [19,20,24,66,67], here we showed that, more than the detuning 414

alone, is the combination between the detuning and the connection delay which matters. 415

Based on our results, it can be concluded that there is a certain preference towards a 416

larger flow of information for positive detuning than for negative ones compatible with 417

previous studies. But this is not the case for all values of the delays. Symmetric 418

information exchange and information flow from the low to the high frequency 419

population is also possible in some narrower range of delays. 420

0.3 Limitations and future studies 421

In this study our network operated at the state of oscillation at a single frequency. We 422

showed that the signals and information transmission change with delay, when delay is 423

changed over a period of oscillation. At a given delay time, then, the transmission 424
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changes with frequency of oscillation. It can be concluded that the effective connectivity 425

between the brain regions is different at different frequencies because of the delayed 426

interactions. This provides the possibility to transmit the information over different 427

routes and directions at different frequency bands as is observed in experimental 428

studies [61, 62]. Since our network was capable to produce oscillation in single frequency 429

in the gamma range, it was not possible to check the transmission in multiple frequency 430

bands. 431

In the brain, the network operates at multiple frequency bands (including a fast and 432

a slow oscillatory component) and several modeling studies have suggested mechanisms 433

to reproduce this regime [77–79]. In our model we only considered synapses mediated by 434

AMPA and GABAA receptors, and used the classical description of the 435

Hodgkin-Huxley neuron model. To account for networks with richer dynamics and to 436

produce oscillations at multiple frequencies, we need to incorporate synapses with slow 437

dynamics and chose more appropriate neuronal models [77,80]. Moreover, to highlight 438

the role of delay we set our network in a high coherence regime. It is necessary to 439

explore how the results translate to more realistic networks with unstable oscillatory 440

dynamics and lower coherence [19]. 441
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