
1 
 

Plasma lipid and liporotein biomarkers in LBC1936: Do they predict general cognitive ability 

and brain structure? 

Sarah E. Harris PhD1*, Stuart J Ritchie PhD1,2, Gonçalo D S Correia PhD3, Beatriz Jiménez PhD3, 

Chloe Fawns-Ritchie PhD1, Alison Pattie BSc1, Janie Corley PhD1,, Susana Muñoz Maniega PhD1,4,5, 

Maria Valdés Hernández PhD1,4,5, John M. Starr PhD6, Derek Hill PhD7, Paul Wren PhD8, Mark E. 

Bastin PhD1,4,9, Matthew R Lewis PhD3, Joanna M. Wardlaw MD1,4,5,9, Ian J. Deary PhD1 

1 Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, 7 George Square, 

Edinburgh EH8 9JZ, UK. 

2Social, Genetic, and Developmental Psychiatry Centre, King’s College, London SE5 8AF, UK. 

3 National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial 

College London SW7 2AZ, UK. 

4Brain Research Imaging Centre, Neuroimaging Sciences, The University of Edinburgh, Chancellor's 

Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK. 

5UK Dementia Research Institute at the University of Edinburgh, Edinburgh BioQuarter, Edinburgh  

EH16 4SB, UK. 

6Alzheimer Scotland Dementia Research Centre, University of Edinburgh, 7 George Square, 

Edinburgh EH8 9JZ, UK. 

7Department of Medical Physics and Biomedical Engineering, University College London WC1E 

6BT, UK. 

8ESCAPE Bio, San Francisco, CA 94080, USA 

9Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, 300 Bath 

St, Glasgow G2 4LH, UK. 

*Corresponding author: 

Sarah.Harris@ed.ac.uk 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 10, 2020. ; https://doi.org/10.1101/2020.07.09.194688doi: bioRxiv preprint 

mailto:Sarah.Harris@ed.ac.uk
https://doi.org/10.1101/2020.07.09.194688
http://creativecommons.org/licenses/by/4.0/


2 
 

Running title: Plasma lipid and liporotein biomarkers in LBC1936 

  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 10, 2020. ; https://doi.org/10.1101/2020.07.09.194688doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.09.194688
http://creativecommons.org/licenses/by/4.0/


3 
 

Abstract 

Identifying predictors of cognitive ability and brain structure in later life is an important step 

towards understanding the mechanisms leading to cognitive decline and dementia. This study 

used ultra-performance liquid chromatography mass spectrometry (UPLC-MS) and nuclear 

magnetic resonance (NMR) to measure targeted and untargeted metabolites, mainly lipids 

and lipoproteins, in ~600 members of the Lothian Birth Cohort 1936 (LBC1936) at aged ~73 

years. Penalized regression models (LASSO) were then used to identify sets of metabolites 

that predict variation in general cognitive ability and structural brain variables. UPLC-MS-

POS measured lipids, together predicted 19% of the variance in total brain volume and 17% 

of the variance in both grey matter and normal appearing white matter volumes. Multiple 

subclasses of lipids were included in the predictor, but the best performing lipid was the 

sphingomyelin SM(d18:2/14:0) which occurred in 100% of iterations of all three significant 

models. No metabolite set predicted cognitive ability, or white matter hyperintensities or 

connectivity. Future studies should concentrate on identifying specific lipids as potential 

cognitive and brain-structural biomarkers in older individuals. 
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Introduction 

Ageing populations have an increasingly greater proportion of individuals affected by 

cognitive decline and dementia. To further our understanding of these important medical and 

societal problems, it is important to identify metabolite predictors of individual differences in 

cognitive ability and brain structure in later life 1–4. The present study investigates one set of 

potential predictors of cognitive and brain-structural differences: plasma lipid and lipoprotein 

biomarkers. 

Lipids are important metabolites that form essential components of cell membranes and are 

involved in cell signalling processes 5. Lipoproteins are responsible for transporting water-

insoluble lipids in blood and also carry apolipoproteins which determine the structure and 

function of the lipoproteins. Plasma lipid levels can be influenced by genetic 6 and 

environmental factors, including diet 7, exercise 8 and medication 9. Dysregulation of lipids 

has been associated with poorer cognitive function, cognitive decline, Alzheimer’s disease 

(AD), other dementias, and white matter hyperintensities (WMH), although — as one might 

expect for a relatively new area of research — results are not consistent 10.  

High total cholesterol, low-density lipoproteins, triglycerides and apolipoprotein B, and low 

high-density lipoproteins have been associated with poorer cognitive performance and 

increased risk for dementia, particularly vascular dementia, in some, but not all studies 

(reviewed in 10). Inconsistencies may be due to the age of the subjects, the cognitive domains 

tested, dementia diagnosis criteria, and the lipids measured. Sex specific and non-linear 

associations of serum lipid levels with cognitive function have also been identified in middle- 

to older- aged individuals 11 and a study in the Lothian Birth Cohort 1936 (LBC1936) 

indicated that associations with cognitive function in older age may be confounded by 

childhood cognitive function 12. 
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Cholesterol is an important lipid in the brain, vital for synapse formation and development, 

dendrite differentiation, axonal elongation, and long-term potentiation 13. The blood-brain 

barrier (BBB) separates brain metabolised cholesterol and lipoproteins from those in plasma. 

Increased BBB permeability is associated with cognitive decline and has been shown to occur 

in rats fed diets high in saturated fats and cholesterol 14–16. Anti-inflammatory and lipid-

lowering agents have been shown to reverse this phenomenon 14. Increased HDL-cholesterol 

and decreased LDL-cholesterol were associated with increased WMH in a longitudinal study 

of 1919 individuals aged over 65 years 17 and hyperlipidemia was associated with less severe 

WMH in patients with acute ischaemic stroke in two independent cohorts (N=1135) 18, 

suggesting that hyperlipidemia may actually protect against small vessel disease. Lower 

HDL-cholesterol predicted increased WMH volume from age 73 to 76 years in the LBC1936 

19. 

Extracellular plaques consisting of amyloid beta peptides are one of the main 

neuropathologies associated with AD. Genetic variants in genes involved in the amyloid 

pathway are associated with AD. Apolipoprotein E (APOE) regulates transport of cholesterol 

and lipids and mediates clearance of plasma lipoproteins. The APOE e4 allele, that is 

associated with an increased risk of late-onset AD as well as risk of steeper non-AD cognitive 

decline 20, impairs clearance of the plasma lipoproteins, enhancing amyloid beta aggregation 

21. Sphingolipids, including sphingomyelin and ceramide, have important functional and 

structural roles in cellular membranes. Sphingomyelin and cholesterol interact to influence 

membrane permeability 22. 

Modern analytical technologies such as nuclear magnetic resonance (NMR) and ultra-

performance liquid chromatography mass spectrometry (UPLC-MS) enable the broadscale 

detection and measurement of chemical constituents within biofluids and tissue extracts. 

Although both techniques have been used extensively to measure small molecule metabolites, 
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NMR has emerged in recent years as a popular and reproducible means to quantify 

lipoprotein species 23. Similarly, UPLC-MS is now commonly applied for the measurement 

of complex lipids from human biofluids and tissue extracts. Such analyses may be targeted to 

measure sets of well-defined species or untargeted whereby thousands of lipid-related 

features are detected in a single analysis. In the latter case, those measurements showing a 

positive association with a trait of interest require chemical annotation prior to downstream 

interpretation of the results.  

Large scale metabolomics studies of cognitive function and decline are starting to identify 

biological mechanisms and biomarkers of cognitive impairment in later life 24,25. A recent 

study of lipidome evolution in mammalian tissues showed a significant excess of lipid 

concentration changes in the brain cortex, with cortical changes clustered in glycerolipid, 

glycerophospholipid, and linoleic acid metabolism pathways, all of which have previously 

been implicated in neurodegenerative disorders 26. Serum levels of a glycerophosphocoline (a 

subclass of glycerophospholipids) have been suggested as potential marker of visceral fat 

related peripheral inflammation, associated with changes in brain structure and function 27. 

In the present study we used penalized regression models (LASSO) to identify sets of 

metabolites (principally lipids and lipoproteins) in both targeted and untargeted UPLC-MS 

and NMR spectroscopy data sets that might be used to predict some of the variation in 

general cognitive ability and structural brain variables in the LBC1936. 

Materials and Methods 

Lothian Birth Cohort 1936 (LBC1936) 

The LBC1936 consists of 1091 individuals, most of whom, at the age of ~11 years, took part 

in the Scottish Mental Survey of 1947, when they took a validated test of cognitive ability, 
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the Moray House Test (MHT) version 12. Between 2004 and 2007, they were recruited to a 

study to determine influences on cognitive ageing at age ~70 years and have now taken part 

in five waves of testing in later life (ages ~70, ~73, ~76, ~79 and ~82 years). At each wave, 

they have undergone a series of cognitive and physical tests, with brain magnetic resonance 

imaging (MRI) introduced at age 73 years. For the present study plasma was extracted from 

lithium heparin collected blood at Wave 2 at a mean age of 72.5 (SD 0.7) years and stored at 

-80ºC 28. 

Metabolomics 

Plasma metabolic profiles were measured at the National Phenome Centre at Imperial 

College London. Plasma samples were shipped on dry ice and stored at -80C upon receipt 

prior to aliquoting for subsequent analyses by thawing in batches of 80 overnight at 4C, 

centrifuging, and decanting the homogenous supernatant into 96 well plates as previously 

described 29. Sample plates were stored at -80C until needed for analysis. Quality control 

materials including a study reference (SR) sample (equal-parts pool of all study samples) 

were prepared as previously described 29.  

Lipidomics 

Plasma samples were prepared for lipidomics analysis by dilution with isopropanol30 as 

previously described for serum analysis 29 with the following modification: 100 µL of sample 

were thawed at 4°C for 2h and protein precipitation was achieved by addition of four parts of 

an isopropanol solution containing reference standards to one part plasma. UPLC-MS was 

performed using Acquity UPLC chromatography systems (Waters Corporation, Milford, MA, 

USA) and Xevo G2-S Q-ToF mass spectrometers with electrospray interface (Waters Corp., 

Manchester, UK). Reversed-phase chromatography was conducted using an Acquity 

2.1×100mm BEH C8 column, and separate analyses were performed for positive and 
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negative ion detection (UPLC-MS-POS and UPLC-MS-NEG respectively). Details of the 

chromatographic solvent system, gradient elution, mass spectrometer parameters, and data 

acquisition have been published previously 29. Targeted integration of signals arising from 

known lipid species in the UPLC-MS datasets was performed using the peakPantheR R 

package 31 and an in-house database of empirical retention time and theoretical m/z values for 

annotated lipids. The nPYc-Toolbox 32 was then used to correct ion intensities for sample 

analysis-order intensity drift using a LOWESS smoother estimated using the intensities 

measured across repeated injections of the SR. Following drift correction, the SR samples 

and their serial dilution series were used to calculate feature-wise coefficients of variation 

(CV) and Pearson correlation coefficients with the dilution factor, respectively. Only signals 

with a CV lower than 30% and a correlation with dilution higher than 0.7 were kept for 

statistical analysis. 

Biocrates AbsoluteIDQ® p180 

The Biocrates AbsoluteIDQ® p180 (Biocrates Life Sciences AG, Innsbruck, Austria) kit 

provided absolute quantification for 53 compounds, and semi-quantitative measurements for 

a further 135 compounds. Data were acquired on Waters TQ-S instruments (Waters Corp., 

Manchester, UK) using Acquity UPLC systems (Waters Corporation, Milford, MA, USA). 

Nuclear Magnetic Resonance (NMR) Spectroscopy 

An adaptation of the standard metabolic profiling method for NMR 33 was developed and 

validated for this analysis due to the limited sample volume available. Briefly, 40 µL of 

plasma were mixed with 40 µL of aqueous buffer containing 20% of D2O 75 mM of 

NaH2PO4, 4.6 mM of TSP (3-(trimethylsilyl)-2,2,3,3-tetradeuteropropionic acid or TMSP-d4) 

and 6.2 mM of NaN3 at pH 7.4 in an Eppendorf and vortexed. Subsequently, 60 µL of the 

mixture were transferred to a 4’’ 1.7 mm tube using a 100 µL Hamilton syringe. Samples 
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were prepared in batches of 80 samples and subsequently split into two batches of 27 and one 

of 26 for analysis. One SR and one LTR samples were included in each of the batches with a 

total of 6 QCs included per 80 samples. An additional 600 µL of LTR sample was prepared 

and run during the calibration of each spectrometer in order to transfer the IVDr methods to 

the small volume samples. Each 27-sample batch was transferred to the refrigerated sample 

handling robot (SampleJet, Bruker Corporation, Germany) of a one of three Bruker Avance 

III HD 600 NMR spectrometers for analysis and parallel acquisition was completed within 24 

hours of sample preparation. 1D NMR profiling was acquired using the 1D-NOESY presat 

pulse sequence, a spin-echo experiment using the 1D-CPMG (Carr-Purcell-Meiboom-Gill) 

presat pulse sequence and J-res 2D experiments were run in automation at 310 K using a BBI 

probe with z-gradients and high degree shimming. A relaxation edited spin-echo experiment, 

the CPMG sequence, is often acquired for plasma samples in order to filter out fast relaxing 

signals belonging to proteins and other large molecules in the 1H NMR spectrum, providing a 

better resolution for the slow relaxing signals belonging to metabolites and small molecules. 

128 Free Induction Decays (FID) were accumulated for each experiment in 96 K points using 

a 30 ppm window centred at 4.78 ppm for the general profile while it was set to 20 ppm for 

the spin-echo, and 6 scans and 40 planes were acquired for the 2D J-resolved experiment. 

The relaxation delay was set at 4 s for the 1Ds while the Jres was set to 2s and a water pre-

saturation pulse was applied during this period to cancel the water signal. 

Quality of the spectra were assessed following the criteria described in 33. Any samples not 

passing the QC criteria were rerun at least once, and otherwise left outside the final dataset. 

Data was prepared for statistical analysis with the nPYc-Toolbox 32, by re-calibrating the 

chemical shift scale using the α-glucose signal at δ 5.233 and re-interpolating all spectra to a 

common chemical shift axis. 

B.I.-LISA platform 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 10, 2020. ; https://doi.org/10.1101/2020.07.09.194688doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.09.194688
http://creativecommons.org/licenses/by/4.0/


10 
 

One hundred and five specific lipoproteins were measured using a modified version of the 

Bruker B.I.-Lisa platform (Bruker IVDr Lipoprotein Subclass Analysis). The platform is 

developed and optimised for the analysis of 300 L aliquot plasma samples as described in34. 

In order to calculate the correction factor needed to extend the applicability of the method to 

the current analysis, an independent set of 622 samples was analysed both using the standard 

protocol and the reduced volume one used for this project. The error associated to the current 

measurements is increased with respect to the precision and accuracy reported in 23. The 

lipoproteins measured were cholesterol, free cholesterol, phospholipids, triglycerides, 

apolipoproteins A1, A2, B and particle numbers for the overall concentrations contained in 

plasma but also information on the concentration of the subclasses of those lipoproteins as 

obtained by ultracentrifugation was provided. 

Cognitive Tests 

Cognitive ability was assessed using 13 cognitive tests taken by the LBC1936 sample, all at 

age 72.5 (SD 0.7) years (Wave 2). The tests were the Matrix Reasoning (MR), Block Design 

(BD), Digit Span Backward (DSB), Symbol Search (SS), and Digit-Symbol Substitution 

(DSS) tests from the Wechsler Adult Intelligence Scale, Third UK Edition 35; the Logical 

Memory (LM), Verbal Paired Associates (VPA), and Spatial Span (SSP) tests from the 

Wechsler Memory Scale, Third UK Edition 36; the National Adult Reading Test (NART) 37; 

the Wechsler Test of Adult Reading (WTAR) 38; a phonemic Verbal Fluency (VF) test 39; a 

Choice Reaction Time (CRT) test 40; and an Inspection Time test (IT) 41. Structural equation 

modeling was used to produce a latent variable from the variance shared among these tests in 

the following manner. On the basis of previous factor-analytic work in this sample 42, the 

tests were organized into a higher-order confirmatory factor-analytic model that included 

latent domains of visuospatial ability (indicated by the tests of MR, BD, and SSP), verbal 
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memory (indicated by LM, VPA, and DSB), processing speed (indicated by SS, DSS, CRT, 

and IT), and crystallized ability (indicated by NART, WTAR, and VF), all of which were 

indicators of the highest-level latent variable, which we named “general cognitive ability”. 

From this model, the factor scores for the general cognitive ability factor were saved, and 

were used to index each individual participant’s general cognitive ability in our prediction 

models. Structural equation modelling was performed, and the latent variables were 

produced, using the lavaan package for R 43. 

Brain MRI 

Whole-brain structural and diffusion tensor MRI data were acquired using a 1.5T GE Signa 

Horizon scanner (General Electric, Milwaukee, WI, USA) at the Brain Research Imaging 

Centre, the University of Edinburgh, shortly after cognitive testing and plasma collection. 

Mean age at scanning was 72.7 (SD 0.7) years. Full details are given in 44. Total brain, grey 

matter, normal appearing white matter and WMH volumes were calculated using a semi-

automated multispectral fusion method, described previously 45–47.  

The diffusion tensor MRI protocol employed a single-shot spin-echo echo-planar (EP) 

diffusion weighted sequence in which diffusion-weighted EP volumes (b  = 1000 s mm-2) 

were acquired in 64 non-collinear directions, together with seven T2-weighted EP volumes (b 

= 0 s mm-2). This protocol was run with 72 contiguous axial slices with a field of view of 256 

× 256 mm, an acquisition matrix of 128 × 128 and 2mm isotropic voxels 47. 

White matter connectivity data were created using the BEDPOSTX/ProbTrackX algorithm in 

FSL (https://fsl.fmrib.ox.ac.uk) and 12 major tracts of interest were segmented using Tractor 

(https://www.tractor-mri.org.uk) scripts: the genu and splenium of the corpus callosum, and 

bilateral anterior thalamic radiations, cingulum bundles, uncinate, arcuate and inferior 

longitudinal fasciculi. Tract-average white matter fractional anisotropy (FA) and mean 
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diffusivity (MD) were derived as the average of all voxels contained within the resultant tract 

maps. General factors of FA (gFA) and MD (gMD) were derived from a confirmatory factor 

analysis with a single general variable indicated by either FA or MD values from across all 

12 tracts, to reflect the well-replicated phenomenon of common microstructural properties of 

brain white matter 48–50. As above, the confirmatory factor analytic models used the lavaan 

package. 

Brain imaging data and metabolite measures were available for a maximum of 668 and 595 

individuals, respectively. 

Statistical analyses 

LASSO prediction models 

In order to produce metabolomic predictors of general cognitive function and of 

neuroimaging measures, Least Absolute Shrinkage and Selection Operator (LASSO) 

penalized regression models were used 51. These models produce a sparse solution to a 

prediction problem, dealing with a large number of predictors and the potential for 

collinearity among them. They do so by shrinking (penalizing) the coefficients of many of the 

predictors to zero in their regularisation process; in this sense, they also allow for variable 

selection, since a smaller (and thus more manageable) number of predictors might survive the 

process than at the outset. 

We ran a series of LASSO models, attempting to predict variation in each brain MRI variable 

or cognitive outcome from all of the features derived from each metabolomic array in turn. 

For each model, the LBC1936 data were split at random into a training sample (80% of the 

data) and a testing sample (20% of the data). We first performed a LASSO regression in the 

training sample alone. Using 10-fold cross-validation, the penalization parameter (often 

denoted as λ) that provided the lowest prediction error in the training set was identified. The 
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predicted values from a regression with this cross-validated penalization parameter were then 

taken forward to the testing sample, where they formed a predictor that was regressed on the 

relevant outcome variable (cognitive ability or brain volume). The R2 (proportion of variance 

accounted for by the predictor, expressed in the results below as a percentage) was recorded 

for each model. This procedure was repeated 1,000 times, with the LBC1936 dataset being 

split into a different random training and testing set each time. The mean R2 from the 1,000 

iterations was calculated, and the standard deviation across all the iterations was used as the 

(bootstrapped) standard error for this mean value. Where the computational demands were 

too high for this iterative procedure to successfully be performed, the number of model 

iterations was reduced. 

The LASSO models were run using the glmnet package for R 52, with wrapper functions from 

the caret package 53. 

In a final feature-selection stage, metabolites that occurred in > 75% of the 1000 iterations 

were identified for those models where the metabolites explained a significant proportion of 

the variance in the outcome (that is, the confidence interval of their R2 value, derived using 

the bootstrapped standard error, did not cross zero). Since a large number of R2 values were 

calculated across all the arrays, we corrected their significance levels using the False 

Discovery Rate correction. This adjustment for multiple comparisons meant that, at the end 

of our analysis, only the strongest predictions would remain statistically significant. 

Sensitivity analyses 

For models where the metabolites explained a significant proportion of the variance in the 

outcome, two sensitivity analyses were performed: 1) using rank-based inverse normal 

transformed metabolites (ranknorm() function from the R package RNOmni 54) to ensure that 

predictions were not being driven by outlying measurements; 2) correcting brain volumes for 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 10, 2020. ; https://doi.org/10.1101/2020.07.09.194688doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.09.194688
http://creativecommons.org/licenses/by/4.0/


14 
 

intracranial volume (a proxy measure of previous brain volume) to identify specific 

associations with age-related brain volume atrophy. Correlations between total brain, grey 

matter and normal appearing white matter volumes, and intracranial volume were also 

calculated. 

Results 

Descriptive statistics for general cognitive ability and brain MRI variables are shown in Table 

1. Eight hundred and sixty-six subjects provided cognitive data, and between 656 and 668 

provided data on the brain imaging variables. 

For the Biocrates AbsoluteIDQ® p180 platform, 171 of 188 metabolites were detected in 

LBC1936 (Supplementary Table 1). All 105 B.I.-LISA platform metabolites were detected. 

(Supplementary Table 2). From the UPLC-MS features, 193 and 55 metabolites were 

annotated, respectively, in the UPLC-MS-POS and UPLC-MS-NEG datasets (Supplementary 

Tables 3 and 4). Untargeted NMR-NOESY and NMR-CPMG sequences each detected 

18,646 features. Metabolites detected by each platform were used in platform-specific 

penalized regression models (LASSO) as described above.  

Prediction results are displayed in Table 2. Only a small number of predictions, all from the 

UPLC-MS-POS array, remained statistically significant after correction for multiple 

comparisons. However, in those cases, the predicted variance from the LASSO models was 

substantial.  

UPLC-MS-POS lipids together predicted 19% (SE 5%, p=0.00025) of the variance in total 

brain volume and 17% (SE 5%, p=0.001) of the variance in both grey matter and normal 

appearing white matter volumes (Table 2). Nineteen of the 193 UPLC-MS-POS lipids 

occurred in more than 75% of iterations for at least two of the significant models 
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(Supplementary Table 5). These included lipids from the following lipid subclasses: 

sphingomyelins, ceramides, fatty acylcarnitines, monoacylglycerols, 

diacylglycerophosphocholines and monoacylglycerophosphocholines. Sphingomyelin, 

SM(d18:2/14:0), occurred in 100% of iterations of all three statistically significant models. 

No set of metabolites predicted cognitive ability, WMH volume, or either measure of white 

matter connectivity.  

Using rank-based inverse normal transformed metabolites in the models, indicated that 

significant predictions were not being driven by outlying metabolite measurements, as results 

remained essentially the same (Supplementary Table 6). Correlations between total brain, 

grey matter and normal appearing white matter volumes, and intracranial volume ranged 

from 0.8-0.9 (Supplementary Table 7). Correcting total brain, grey matter and normal 

appearing white matter volumes for intracranial volume greatly attenuated the results 

(Supplementary Table 6), indicating that the associations were mainly with absolute brain 

volumes and not age-related brain volume atrophy. 

Discussion 

This study tested a variety of metabolite arrays for their ability to predict important cognitive 

and brain structure phenotypes in later life. UPLC-MS array analysis followed by penalized 

regression models (LASSO) identified sets of lipids that made statistically significant and 

substantial predictions of total brain, grey matter and normal appearing white matter volumes 

in the LBC1936 sample at the approximate age of 73 years. 

The best performing single lipid, SM(d18:2/14:0), occurred in 100% of iterations of all three 

significant models, indicating a robust association which stood out beyond other lipids. 

SM(d18:2/14:0) is a sphingomyelin previously shown, in combination with three other 
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compounds, to discriminate between stable and unstable angina 55 and to be associated with 

obesity 56. To our knowledge, it has not previously been associated with brain volume or 

other brain imaging related phenotypes. A second sphingomyelin, SM(d18:0/16:0), occurred 

in >85% of iterations of at least two of the significant models. The ceramide Cer(d18:1/16:0), 

which occurred in 99 or 100% of iterations of all three significant models, was previously 

associated with major adverse cardiovascular events 57. A second ceramide, Cer(d19:1/24:0), 

occurred in >79% of iterations of all three significant models. 

Sphingolipids, including sphingomyelin and ceramide, are enriched in the central nervous 

system and sphingomyelin is a component of myelin sheaths. Levels of sphingomyelin and 

ceramide increase with age 58–60 and both levels and ratios of these sphingolipids have 

previously been associated with neurodegenerative disease 61–63, cognitive function, cognitive 

decline, and changes in white matter microstructure 64. Sphingomyelin degradation leads to 

increased ceramide 65. Ceramide regulates cell growth, differentiation, and apoptotic 

signaling in cells types, including neurons 66. Sphingolipids may, therefore, contribute to the 

prediction of brain tissue volumes in the LBC1936 via these mechanisms.  

A fatty acylcarnitine [CAR(26:0)] occurred in 99 or 100% of iterations of all three significant 

models. Fatty acylcarnitines are important for energy production and levels are often altered 

in fatty acid oxidation disorders 67. Five other fatty acylcarnitines occurred in >75% of 

iterations of at least two of the significant models. Other lipid classes occurring in >75% of 

iterations of at least two of the significant models included, monoacylglycerols, 

diacylglycerophosphocholines and monoacylglycerophosphocholines, indicating that a 

number of lipid subclasses may be important in predicting brain volume in later-life. 

Although sets of lipids predict later-life brain tissue volumes in the LBC1936, this study 

provides no evidence that they can be used to predict later-life general cognitive ability, 

WMH volume or white matter connectivity. However, as we refine the lipid sets, prediction 
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of these may be possible in the future. Future analyses could also investigate specific 

cognitive domains, rather than general cognitive ability, as these may be more sensitive to the 

effects of lipids. 

Sets of lipoproteins, as measured using NMR, did not predict general cognitive ability or 

brain structure in this study. It may be that they are not as predictive as the lipids themselves, 

or that they are not as sensitive to detection by the methods used in this study.  

Limitations of this study included the fact that the metabolites were measured in blood 

plasma rather than cerebrospinal fluid. However, plasma is a much less invasive material to 

collect and therefore biomarkers that can be measured in blood are particularly useful. The 

implications of our choice of LASSO models over other forms of penalized regression should 

also be borne in mind. The LASSO, compared to the related Elastic Net regression, tends to 

provide a sparser—and thus more readily-interpretable—set of selected features. However, 

given the very large number of predictors included in some of our models, the LASSO was 

more computationally feasible, since it does not require calculation of the additional 

hyperparameters required for an Elastic Net analysis. Other strengths of this study include the 

fact that the metabolites, cognitive ability, and structural brain MRI variables were measured 

at about the same time in ~600 individuals with a narrow age range and from an ancestrally 

homogeneous population. Our penalized regression analysis allowed us to run prediction 

models that were robust to overfitting (since we split our overall sample into training and test 

subsets, and used cross-validation in the training subset), and multicollinearity. The form of 

modelling we employed to deal with the cognitive variables, latent variable structural 

equation modelling, reduced the impact of measurement error specific to any individual task 

or domain of cognitive ability, and allowed us to examine more directly each participant’s 

cognitive ability at a highly general level. 
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In conclusion, sets of lipids, particularly sphingolipids measured using UPLC-MS, predicted 

up to 19% of the variance in brain tissue volumes in an older relatively healthy Scottish 

cohort. These results suggest that future studies should concentrate on identifying specific 

lipids as potential cognitive and brain-structural biomarkers in older individuals. 
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Variable N Mean (SD) 

Age at cognitive testing 

and plasma collection 

(years) 

866 72.49 (0.71) 

General fluid cognitive 

ability* 

866 0 (1) 

Age at brain scan 

(years) 

731 72.68 (0.72) 

Total brain volume 

(cm3) 

657 990.32 (89.40) 

Grey matter volume 

(cm3) 

657 472.43 (44.68) 

Normal appearing 

white matter volume 

(cm3) 

657 476.89 (50.55) 

White matter 

hyperintensity volume 

(cm3) 

656 12.22 (12.18) 

general fractional 

anisotropy* 

668 0 (1) 

general mean 

diffusivity* 

668 0 (1) 

Sex (male; female) 448; 418 - 

Note: *These variables were standardized (with a mean of zero and standard deviation of 

one). 

Table 1 Summary descriptive data for LBC1936
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 Biocrates B.I.-LISA UPLC-MS-POS UPLC-MS-NEG NMR-NOESY NMR-CPMG 

 R2 SE P R2 SE P R2 SE P R2 SE P R2 SE P R2 SE P 

g 0.079 0.041 0.054 0.010 0.013 0.477 0.071 0.038 0.064 0.046 0.030 0.120 0.006# 0.009 0.538 0.016 0.018 0.355 

TBV 0.033 0.026 0.213 0.106 0.046 0.020 0.185 0.051 0.00025 0.111 0.045 0.015 0.098 0.043 0.023 NA NA NA 

GMV 0.051 0.032 0.113 0.108 0.046 0.018 0.171 0.049 0.001 0.108 0.047 0.022 0.108 0.052 0.037 0.110 0.052 0.036 

NAWM 0.014 0.017 0.403 0.083 0.041 0.045 0.170 0.052 0.001 0.096 0.042 0.023 0.094 0.046 0.041 0.063 0.034 0.067 

WMHV 0.002 0.006 0.807 0.040 0.032 0.212 0.002* 0.006 0.747 0.002 0.006 0.732 0.004 0.008 0.591 0.003 0.007 0.707 

gFA 0.005 0.008 0.540 0.005 0.007 0.496 0.005 0.009 0.563 0.016 0.016 0.344 0.004 0.009 0.667 0.004 0.008 0.583 

gMD 0.012 0.015 0.425 0.018 0.017 0.290 0.004 0.007 0.550 0.008 0.011 0.444 0.003 0.006 0.634 0.005 0.007 0.526 

 

Table 2 Results from LASSO prediction models. g = general cognitive ability, TBV = total brain volume, GMV = grey matter volume, NAWM 

= normal appearing white matter volume, WMHV = white matter hyperintensity volume gFA = general fractional anisotrophy, gMD = general 

mean diffusivity. *500 iterations, #100 iterations were run rather than 1000 due to high computational demands. FDR corrected significant 

findings are indicated in b
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