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Abstract 10 

A key challenge in epigenetics is to determine the biological significance of epigenetic variation among 11 

individuals. Here, we present Coordinate Covariation Analysis (COCOA), a computational framework that 12 

uses covariation of epigenetic signals across individuals and a database of region sets to annotate 13 

epigenetic heterogeneity. COCOA is the first such tool for DNA methylation data and can also analyze 14 

any epigenetic signal with genomic coordinates. We demonstrate COCOA’s utility by analyzing DNA 15 

methylation, ATAC-seq, and multi-omic data in supervised and unsupervised analyses, showing that 16 

COCOA provides new understanding of inter-sample epigenetic variation. COCOA is available as a 17 

Bioconductor R package (http://bioconductor.org/packages/COCOA). 18 

Keywords: epigenetics; DNA methylation; chromatin accessibility; principal component analysis; 19 

dimensionality reduction; data integration; cancer; EZH2; multi-omics 20 

Introduction 21 

Epigenetic data is inherently high-dimensional and often difficult to interpret. Because of the high 22 

dimensionality, it is common to group individual genomic loci into collections that share a functional 23 

annotation, such as binding of a particular transcription factor
[1-3]

. These genomic locus collections, or 24 

region sets, are analogous to the more common gene sets, but relax the constraint that data must be 25 

gene-centric. While gene set approaches may be applied to epigenetic data by linking regions to nearby 26 

genes
[4]

, this linking process is ambiguous and loses information because a regulatory locus may affect 27 

the expression of multiple genes or more distant genes. Alternatively, a region-centric approach is often 28 

more appropriate for epigenetic data, and there are now many region-based databases and analytical 29 

approaches
[1, 2, 5-7]

, such as using region set databases for enrichment analysis
[1, 7, 8]

 or to aggregate 30 
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epigenetic signals from individual samples across regions to assign scores of regulatory activity to 31 

individual samples or single cells
[2, 3, 6, 9]

. 32 

Region-based methods have provided complementary ways to annotate and understand epigenomic 33 

data, but they suffer from three drawbacks: First, it is common to ignore covariation between the 34 

epigenetic signal and continuous patient phenotypes, relying instead on differential signals between 35 

discrete sample groups. This approach loses information about the differences among samples within a 36 

group. Second, the use of discrete cutoffs for identifying significant epigenetic differences between 37 

samples loses information about the strength of covariation between epigenetic features and sample 38 

phenotype. Third, existing approaches are generally specific to certain scenarios (e.g. unsupervised 39 

analysis) or data types (e.g. ATAC-seq), and therefore do not provide a generally applicable framework 40 

for covariation-based analysis. 41 

Here, we present Coordinate Covariation Analysis (COCOA), a method for annotating epigenetic 42 

variation across individuals using region sets. COCOA offers several advantages compared to existing 43 

methods: First, COCOA provides a flexible framework that supports both supervised and unsupervised 44 

analysis. Second, for supervised analysis, COCOA leverages covariation information by allowing 45 

continuous sample phenotypes as well as discrete groups. Third, COCOA incorporates epigenetic signal 46 

values instead of using binarized values (i.e. significant or not significant), further taking advantage of 47 

the covariation information. Finally, COCOA works with any epigenetic data that have a numerical value 48 

associated with genomic coordinates, such as DNA methylation data, chromatin accessibility data, or 49 

even multi-omics data. Importantly, no such tool that leverages covariation of epigenetic signal across 50 

samples to annotate epigenetic variation previously existed for DNA methylation data. To demonstrate 51 

COCOA’s utility, we applied it in three unsupervised analyses with DNA methylation, ATAC-seq, and 52 

multi-omics data, and a supervised analysis of DNA methylation and cancer stage. We found that across 53 

multiple data types and biological systems, COCOA is able to identify promising biological sources of 54 

epigenetic heterogeneity across sample populations. 55 

 56 

 57 

 58 
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Results and Discussion 59 

An overview of COCOA 60 

COCOA is an approach to understanding epigenetic variation among samples. COCOA derives its 61 

annotation power from a database of region sets that are grouped by function. This choice is rooted in 62 

the observation that a single effector, such as a transcription factor, often regulates many regions across 63 

the genome. Because the regions are coregulated, their epigenetic signal may covary across samples 64 

according to the activity of the effector (Fig. 1A), which can then be used to infer activity of the effector 65 

(Fig. 1B). This principle of covariation of coregulated loci or genes has been leveraged by other methods 66 

related to gene regulation
[2, 3, 9-13]

. To distinguish small differences among samples in the activity level of 67 

the effector, COCOA boosts statistical power by aggregating signal in region sets
[3]

. 68 

COCOA uses this aggregated region set approach to annotate the underlying source of epigenetic 69 

variation that relates to a “target variable,” which can be either a supervised variable, like the 70 

phenotype of interest (Fig. 1C), or an unsupervised variable, like the primary latent factors in the data 71 

(Fig. 1D). COCOA annotates the inter-sample variation in the target variable by identifying region sets 72 

with variation patterns in epigenetic data that match the variation in the target variable. After a target 73 

variable is chosen, COCOA analysis consists of two main steps: first, for each locus, it computes the 74 

association of the inter-sample epigenetic variation with the target variable (Fig. 1E) and, second, it uses 75 

those associations to score a database of region sets (Fig. 1F). COCOA uses a permutation test to 76 

evaluate the statistical significance of each region set score. The result is a list of region sets ranked by 77 

how well the epigenetic signals in the region set correlate with the target variable. Highly scoring region 78 

sets have epigenetic signal that covaries across patients in the same way as the target variable, tying the 79 

functional annotation of the region set to the observed phenotypic variation.  80 

 81 

 82 
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83 

Figure 1. Overview of COCOA. A. A regulatory signal may covary with the epigenetic signal in the genomic regions it regulates. B. Covariation of 84 

the epigenetic signal in coregulated regions across individuals can be used to infer variation in the regulatory signal. C. COCOA can be used with 85 

an unsupervised target variable (latent factor), or D. with a supervised target variable (phenotype). E. The first step is to quantify the 86 

relationship between the target variable and the epigenetic data at each locus, resulting in a score for each locus. F. The second step is to 87 

annotate variation using a database of region sets. Each region set is scored to identify the region sets most associated with covariation 88 

between the epigenetic signal and the target variable. These top region sets can yield insight into the biological significance of the epigenetic 89 

variation.  90 

COCOA annotates inter-sample variation in breast cancer DNA methylation data 91 

We first evaluated COCOA in an unsupervised analysis to determine if COCOA could identify and 92 

annotate a driving source of variation.  We applied COCOA to DNA methylation data from breast cancer 93 

patients in The Cancer Genome Atlas (TCGA). In breast cancer, estrogen receptor (ER) status is a major 94 

prognostic factor and is known to be associated with a specific DNA methylation profile
[14, 15]

. We first 95 

used Principle Component Analysis to identify the top four Principal Components (PCs), which we used 96 

as the target variables, and asked whether COCOA would be able to identify ER as an important source 97 

of inter-sample variation using only the DNA methylation data, without requiring the samples’ ER status.98 

COCOA identified a strong ER-associated signature for Principal Component 1 (PC1). This signature 99 

included many ER-binding region sets as top hits, indicating that variation of the DNA methylation in 100 

these ER-binding regions is associated with PC1 (Fig. 2A, Additional file 1: Table S1). We also identified 101 

variation in region sets for FOXA1 and GATA3, which are known to be associated with ER status
[14, 15]

 102 

(Additional file 1: Table S1).  Furthermore, COCOA found the ER-associated histone modification 103 

H3R17me2 among the top scoring region sets
[16]

 (Additional file 1: Table S1). When we test the 104 
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association of each PC with ER status, PC1 scores have a highly significant association with ER status (p < 105 

10
-46

, Wilcoxon rank-sum test), whereas PC2 and PC3 are less associated (Fig. 2B). Therefore, COCOA 106 

clearly identified ER-related variation as relevant for the primary axis of inter-sample variation, despite 107 

not having access to ER status information. We found that PC4 was also associated with ER status to a 108 

lesser extent (p < 10
-20

). For PC4, COCOA identified regions with repressive chromatin marks, including 109 

binding sites for polycomb components EZH2 and SUZ12 and repressive histone modifications 110 

H3K27me3 and H3K9me3 (Fig. 2A, Fig. S1). Previous studies have linked polycomb expression to breast 111 

cancer: higher EZH2 expression is associated with ER- breast cancer
[17, 18]

, EZH2 interacts with the 112 

repressor of estrogen activity (REA) protein
[19]

, and Suz12 binding sites have DNA methylation 113 

differences between ER+ and ER- breast cancer
[14]

. Therefore, PC4 represents an additional aspect of ER-114 

related epigenetic variation. PC2 and PC3 had weaker associations with ER status (p < 0.01 and p < 10
-4

 115 

respectively); for PC3, the highest-ranking PC3 region sets include some ER-related region sets along 116 

with hematopoietic region sets (Additional file 1: Table S1). The hematopoietic region sets may 117 

represent inter-sample variation in the immune component of the tumors since breast cancer subtypes 118 

have been reported to be associated with differing immune cell profiles
[20]

. In summary, these results 119 

demonstrate that COCOA was able to identify relevant sources of inter-sample variation without 120 

requiring known sample groups and therefore reveal COCOA’s usefulness for unsupervised analysis of 121 

DNA methylation data.  122 
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123 

Figure 2. COCOA identifies sources of DNA methylation regulatory variation. A. The COCOA score for each region set, ordered from highest to 124 

lowest. The ER-related group includes GATA3, FOXA1, and H3R17me2. The polycomb group includes EZH2 and SUZ12. B. The association of PC 125 

scores with ER status for PCs 1-4 based on a Wilcoxon rank-sum test. C. Meta-region profiles of several of the highest scoring region sets from 126 

PC1 (GATA3, ER, H3R17me2) and two polycomb group proteins (EZH2, SUZ12). Meta-region profiles show covariance between PC scores and 127 

the epigenetic signal in regions of the region set, centered on the regions of interest. A peak in the center indicates that DNA methylation in 128 

those regions covaries with the PC specifically around the sites of interest. The number of regions from each region set that were covered by 129 

the epigenetic data in the COCOA analysis (panel A) is indicated by “n”. 130 

To visualize the inter-sample variation that drives the top region sets identified by COCOA, COCOA can 131 

also plot DNA methylation in a region set, ordered by PC value (Fig. S2). Using this approach, we 132 

6 

 

 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2020. ; https://doi.org/10.1101/2020.07.09.195289doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.09.195289
http://creativecommons.org/licenses/by/4.0/


7 

 

 

visualized how the DNA methylation in ER-related regions varies along PC1, demonstrating clear 133 

covariation across regions that drives the region set rankings (Fig. S2). To further confirm the specificity 134 

of the region sets, COCOA can also plot variation in broader genomic regions around the regions of 135 

interest. We found that the DNA methylation close to the transcription factor binding regions shows 136 

stronger covariation with the PC score than DNA methylation in the surrounding genome (Fig. 2C). This 137 

visualization of specificity of the covariation to the binding regions provides additional evidence of 138 

association between the PC and region set. Other high-ranking transcription factors also showed this 139 

specificity (Fig. 2C, Fig. S3). Some histone modifications, such as H3K9me3 and H3K27me3, where DNA 140 

methylation levels had high covariation with the PC showed broader regions of elevated covariation (Fig. 141 

S3). Overall, these visualization functions reveal aspects of epigenetic variation in the top region sets 142 

that could not be captured by a single region set score. 143 

COCOA annotates regulatory variation in ATAC-seq data 144 

Next, we asked whether COCOA could be applied to ATAC-seq data. Unlike DNA methylation data, which 145 

annotates individual nucleotides, ATAC-seq data is summarized by accessibility values at “peak” regions 146 

[21]
. COCOA handles either data type. To demonstrate the region-type analysis, we ran COCOA with 147 

ATAC-seq data from TCGA breast cancer patients
[21]

, expecting that ER-related region sets would be 148 

among our top results, similar to the DNA methylation data. As before, we used PCA on the ATAC-seq 149 

data and then applied COCOA to annotate the sources of variation for each PC. We identified many of 150 

the same region sets to be associated with epigenetic variation, despite far fewer samples (657 vs 73). 151 

We found ER-related region sets to be among the top ranked results for PC1 (Fig. 3A, Additional file 1: 152 

Table S2). PC2 was characterized by high-ranking hematopoietic transcription factors (Fig. 3A, Additional 153 

file 1: Table S2), once again potentially representing inter-sample variation in the immune component of 154 

the tumors
[20]

, as in PC3 of the DNA methylation data. A few other top PCs including PC4 also had high-155 

ranking hematopoietic transcription factors (Fig. 3A, Fig. S4). Consistent with our results, visual 156 

inspection of the chromatin accessibility signal in top ER-related and hematopoietic region sets also 157 

revealed correlation between the signal and PC scores for the PCs in which the region sets were highly 158 

ranked (Fig. S5). Polycomb region sets did not rank as prominently for the ATAC-seq data as for the DNA 159 

methylation data but there were several polycomb region sets in the top 10% of region set scores for 160 

PC4 (Fig. S6, Additional file 1: Table S2). These results are consistent with variation in ER status, which is 161 

significantly associated with PC1 and PC2 (p < 0.01, Wilcoxon rank-sum test, Fig. 3B) and to a lesser 162 

extent PC4 (p < 0.05). Visualization of the correlation between each PC and the ATAC-seq signal in the 163 
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top region sets also shows specificity to the transcription factor-binding regions compared to the 164 

surrounding genome (Fig. 3C). Thus, COCOA can identify meaningful sources of variation in ATAC-seq 165 

data, providing a novel tool for regulatory analysis of ATAC-seq data. 166 

167 

Figure 3. COCOA can be used for region-based data such as ATAC-seq. A. The COCOA score for each region set, ordered from highest to 168 

lowest. The ER-related group includes GATA3, FOXA1, and H3R17me2. For definition of the hematopoietic TF group, see “Region set database” 169 

in methods. B. The association of PC scores with ER status for PCs 1-4 based on a Wilcoxon rank-sum test. C. Meta-region profiles of the two 170 

highest scoring region sets from PC1 (GATA3, ER) and PC2 (CEBPA, ERG). Meta-region profiles show correlation between PC scores and the 171 

epigenetic signal in regions of the region set, centered on the regions of interest. A peak in the center indicates that chromatin accessibility in 172 

those regions correlates with the PC specifically around the sites of interest. The number of regions from each region set that were covered by 173 

the epigenetic data in the COCOA analysis (panel A) is indicated by “n”. 174 
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COCOA identifies regulatory variation in multi-omics integration 175 

We also aimed to determine if COCOA could annotate inter-sample variation in multi-omics analyses 176 

that integrate epigenetic data with other data types. We therefore applied COCOA to a cohort of 200 177 

chronic lymphocytic leukemia patients
[22]

 with gene expression, ex vivo drug response, somatic 178 

mutation, and DNA methylation data. We used preprocessed data from MOFA (Multi-Omics Factor 179 

Analysis), a multi-omics dimensionality reduction method that summarized the high-dimensional data 180 

into 10 new dimensions referred to as latent factors (LFs)
[23]

. As part of the published analysis 181 

interpreting the 10 latent factors, the authors used a gene-centric method to annotate the latent factors 182 

with gene sets but only 5 could be associated with gene sets
[10, 23]

.  Because COCOA works with data 183 

associated with genomic coordinates, we were able to use the DNA methylation data from the MOFA 184 

analysis with COCOA to annotate the latent factors with region sets. Since only a subset of the DNA 185 

methylation data was used for the MOFA calculations, we calculated the correlation of each CpG in the 186 

450k microarray with each latent factor and used this matrix as input for COCOA. Using COCOA, we are 187 

able to annotate 4 of the 5 latent factors that were not associated with gene sets, demonstrating that 188 

COCOA’s region-centric approach complements the gene-centric approach applied by the MOFA authors 189 

(Fig. 4A). For latent factor 1 (LF1), we found variability in region sets for hematopoietic regulatory 190 

regions and transcription factors (Additional file 1: Table S3), consistent with the conclusions of the 191 

original paper that LF1 is related to the hematopoietic differentiation state of the leukemic cell of origin. 192 

The top region set for LF1 was enhancer regions in the GM12878 transformed B-lymphocyte cell line, 193 

which had stark differences in DNA methylation across samples that correlated with IGHV mutation 194 

status, a marker of mature B cells that have undergone somatic hypermutation
[24]

 (Fig. 4B). This result 195 

shows that COCOA was able to identify a plausible source underlying the latent factor, a result which 196 

was not identified using gene sets. As another example, we found region sets related to stem cell 197 

biology, including OCT4, NANOG, H3K4me1 from the H9 stem cell line, and SOX2, to be associated with 198 

LF8 (Fig. 4C, Additional file 1: Table S3). Since OCT4 and NANOG activity has been shown to be 199 

associated with β catenin
[25-27]

, a mediator of WNT signaling, our results support and further expand 200 

upon the original association between LF8 and WNT reported by the MOFA authors. These results 201 

demonstrate that COCOA can enable richer multi-omics analysis by annotating the epigenetic 202 

component of inter-sample variation. 203 
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204 

Figure 4. COCOA can be applied to multi-omics analyses that include epigenetic data. A. COCOA can annotate latent factors that were not 205 

annotated by a gene set approach. In the top of panel A, dark blue indicates that the data type explained at least 1% of the variation of the 206 

latent factor while light blue indicates that the data type explained between 0.1% and 1% of the variation. Gray indicates less than 0.1% 207 

explained. In the bottom of panel A, green indicates that at least one statistically significant gene set or region set was found for the latent 208 

factor and gray indicates no significant gene or region sets were found. B. COCOA identifies an enhancer region set from a transformed B-209 

lymphocyte cell line where DNA methylation is correlated with latent factor 1 and IGHV mutation status, a marker of mature B cells that have  210 

undergone somatic hypermutation. The 50 CpGs with the highest absolute correlation with LF1 from the region set are shown. C. Meta-region 211 

profiles show covariation between DNA methylation and LF8 score in certain regions bound by transcription factors functional in stem cell 212 

biology and by H3K4me1 in a stem cell line compared to the surrounding genome. The number of regions from each region set that were 213 

covered by epigenetic data in the COCOA analysis is indicated by “n”. 214 

COCOA reveals associations between epigenetic state and variation in sample phenotype 215 

The three examples thus far demonstrate how COCOA can be applied in an unsupervised analysis, which216 

explores biological variation in the absence of known groups. To explore whether we could apply COCOA217 

to a setting where groups or phenotypes are known, we extended COCOA to accommodate supervised 218 

analysis. For the supervised approach, we select a sample phenotype of interest (such as a molecular 219 

phenotype or a clinical outcome) and then measure the association of epigenetic variation with that 220 

parameter. To demonstrate a supervised COCOA analysis, we analyzed TCGA 450k methylation 221 

microarrays from kidney renal clear cell carcinoma (KIRC). This dataset includes a phenotypic annotation222 

of cancer stage, which we used as our target variable. We hypothesized that COCOA could associate an 223 

0 
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epigenetic regulatory state with cancer stage and decreased survival. To test this hypothesis, we used 224 

COCOA to identify region sets where DNA methylation is correlated with cancer stage. We used a 225 

training-validation approach to assess significance of our results (see Methods). In the training samples, 226 

COCOA identified polycomb protein (EZH2 and Suz12)-binding region sets to have the highest 227 

correlation with cancer stage (Fig. 5A, Additional file 1: Table S4). Next, we tested whether the average 228 

DNA methylation level in the top EZH2 region set is associated with cancer stage. In both training and 229 

validation samples, average DNA methylation level in EZH2-binding regions had a significant positive 230 

correlation with cancer stage (p < 10
-16

 and p < 10
-7

, t approximation) showing that the COCOA result 231 

extends beyond the training set (Fig. 5B, Additional file 1: Table S5). Higher DNA methylation levels in 232 

EZH2-binding regions in advanced stages of cancer suggest that these regions could be repressed in 233 

advanced cancer stages, which would be consistent with higher activity of the repressive protein EZH2. 234 

This result is consistent with previous studies, which have found that higher EZH2 expression could 235 

promote metastasis in renal cell carcinoma
[28]

 and other cancers
[29-31]

 and is associated with a more 236 

advanced cancer stage
[32, 33]

.  237 

To further assess the relevance of our COCOA results, we tested the association between DNA 238 

methylation in our top EZH2 region set and patient survival. We compared the quartile of patients with 239 

highest average DNA methylation in the EZH2 region set to the quartile of patients with the lowest 240 

average DNA methylation, using a Kaplan-Meier estimate (Fig. 5C). Patients with higher EZH2 region set 241 

DNA methylation have significantly decreased survival compared to those with lower DNA methylation 242 

(p < 0.01, log-rank test, Fig. 5C).  A Cox proportional hazards model correcting for age, gender and 243 

average genome methylation levels also revealed a significant association between average DNA 244 

methylation level in EZH2 binding regions and patient survival (p < 10
-4

, Fig. 5D, Additional file 1: Table 245 

S6). Previous studies found EZH2 expression to be prognostic for survival in renal cell carcinoma and 246 

other cancers
[29, 32, 34]

, but to our knowledge, this is the first demonstration that DNA methylation levels 247 

in EZH2 binding regions could be prognostic for survival in renal cell carcinoma. We further assessed for 248 

cancer stage and survival association for the top TF region sets from the COCOA analysis. We tested the 249 

two highest scoring TFs – JUND and TCF7L2. In the validation data, DNA methylation in JUND-binding 250 

regions had a significant negative correlation with cancer stage (p=0.022, t approximation) but we could 251 

not validate its association with survival because it did not satisfy the Cox proportional hazards 252 

assumption (Fig. S7A, Additional file 1: Table S6). DNA methylation in TCF7L2-binding regions was not 253 

significantly correlated with cancer stage in the validation data (Fig. S7B, Additional file 1: Table S5) but 254 
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higher DNA methylation was significantly associated with better overall survival (p= 0.038, Cox 255 

proportional hazards model, Fig. S7C, Additional file 1: Table S6). Through this supervised analysis, we 256 

demonstrate that COCOA can identify epigenetic variation related to a given sample phenotype of 257 

interest, providing a novel means for targeted analysis of epigenetic variation.  258 

259 

Figure 5. COCOA identifies region sets related to a patient phenotype of interest, cancer stage. A. Region sets for the polycomb proteins EZH2 260 

and SUZ12 were the top region sets related to cancer stage. B. Average DNA methylation level in EZH2-binding regions (the top EZH2 region set261 

increases with cancer stage. P-values by t approximation with null hypothesis that correlation is zero. C. Kaplan-Meier curves of the validation 262 

samples, grouping samples by average DNA methylation in EZH2 binding regions (25% highest samples and the 25% lowest samples). P-value 263 

from log-rank test. E. Cox proportional hazards model of average DNA methylation in the top EZH2-binding region set, correcting for age, 264 

gender, and average genome methylation level.  265 

2 

 

 

 

) 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2020. ; https://doi.org/10.1101/2020.07.09.195289doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.09.195289
http://creativecommons.org/licenses/by/4.0/


13 

 

 

DNA methylation in EZH2-binding regions is associated with cancer stage and survival in multiple 266 

cancers 267 

Given that COCOA identified associations with EZH2 region sets in both our unsupervised analysis of 268 

breast cancer and our supervised analysis of kidney renal cell carcinoma, we wondered whether the link 269 

with EZH2 and DNA methylation would hold true for other cancer types. To test this, we performed a 270 

pan-TCGA analysis investigating the association between average DNA methylation in EZH2/SUZ12-271 

binding regions and cancer stage as well as overall patient survival. We combined regions from the top 272 

group of 11 EZH2 and SUZ12 region sets from the KIRC analysis (Fig. 5A, Additional file 1: Table S4) to 273 

generate a single EZH2/SUZ12 region set, referred to hereafter simply as EZH2-binding regions. We then 274 

computed the average DNA methylation in this region set for each sample and tested its association 275 

with either cancer stage or overall survival. We found a significant correlation between DNA methylation 276 

in EZH2-binding regions and cancer stage in multiple cancer types (Fig. S8, Additional file 1: Tables S7 277 

and S8). DNA methylation in EZH2-binding regions positively correlated with cancer stage in 5 of 21 278 

tested cancers, but trended negative in 3 cancer types (Fig. S8), of which colon adenocarcinoma (COAD) 279 

had a significant negative correlation (p < 0.05, t approximation, Holm-Bonferroni correction), consistent 280 

with a previous report
[35]

. To further investigate the significance of the EZH2-binding regions, we used a 281 

Cox proportional hazards model to test for association between survival and average DNA methylation 282 

in these regions and found a significant association in 5 cancer types (Fig. 6, Additional file 1: Tables S8 283 

and S9). Similar to the cancer stage analysis, higher DNA methylation level was more often associated 284 

with increased risk of death, but trended to lower risk in a few cancer types (Fig. 6). This result is 285 

consistent with previous reports that EZH2 can be either oncogenic or a tumor suppressor
[31, 36, 37]

 and 286 

emphasizes the context-specific effects of EZH2. Our pan-cancer analysis also supports previous reports 287 

suggesting that polycomb activity may be commonly dysregulated in cancer
[31]

 and may influence 288 

survival in a variety of cancers, with some cancers having a positive and others a negative association
[31]

. 289 

Our results contrast with previous reports for several cancer types (Supplementary Discussion). This 290 

analysis identified a novel connection between EZH2 and survival in adrenocortical carcinoma (ACC), 291 

which has not been previously demonstrated. Furthermore, we have shown for the first time that 292 

variation in DNA methylation at EZH2-binding regions is associated with cancer stage and patient 293 

survival across a variety of cancers. Overall, this analysis demonstrates the ability of COCOA to annotate 294 

epigenetic variation and its potential to generate new mechanistic hypotheses about epigenetic 295 

heterogeneity and disease drivers. 296 
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 297 

Figure 6. Pan-cancer survival analysis of DNA methylation in EZH2/SUZ12-binding regions. The mean hazard ratio and 95% confidence interval298 

for the average DNA methylation in EZH2/SUZ12-binding regions are shown for each cancer type. Color indicates the raw p-values and asterisks 299 

mark significance after Holm-Bonferroni correction. 300 

Comparison of COCOA to other methods 301 

COCOA distinguishes itself from other methods by being the only method of its type for DNA 302 

methylation data and by its flexibility in supporting a wide range of analyses for epigenetic data. We 303 

conceptualize COCOA as being in a class of methods that relies on covariation of epigenetic signal to 304 

annotate epigenetic variation. This separates COCOA from the methods that annotate epigenetic 305 

variation without taking into account covariation. To demonstrate the power of this approach, we 306 

4 

 

l 

 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2020. ; https://doi.org/10.1101/2020.07.09.195289doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.09.195289
http://creativecommons.org/licenses/by/4.0/


15 

 

 

compared COCOA to LOLA, a method that does not consider covariation. This analysis demonstrated 307 

that COCOA has superior ability to mitigate noise (Supplemental Information; Fig. S9; Additional file 1: 308 

Tables S10, S11, S12). Other methods that do take into account covariation have key differences from 309 

COCOA. First, while tools exist that aggregate signal in related groups such as gene sets or region sets 310 

and use PCA to identify covariation of signal across samples (Table 1), no existing tool does this for DNA 311 

methylation data. Second, COCOA creates a generalized framework for region set analysis which results 312 

in great flexibility in applications. This generalized framework allows COCOA to be used in analyses that 313 

other tools may not support: with multiple epigenetic data types, for supervised or unsupervised 314 

analyses, with a variety of mathematical metrics, and for single-omic or multi-omic analyses. For a brief 315 

description of each method from Table 1 and further comparison to COCOA, see “Comparison of COCOA 316 

to other region set or covariation-based methods” in the supplementary text. Of the epigenetic tools 317 

with similar goals to COCOA, chromVAR
[2]

 is the most widely used and most similar to COCOA in its input 318 

type. Therefore, we selected chromVAR for comparison to COCOA with the breast cancer ATAC-seq 319 

data. Each method revealed relevant but partially divergent aspects of inter-sample variation. COCOA 320 

had an improved ability to identify ER-related epigenetic variation and to separate biological signals with 321 

its use of PCA (Fig. S10, Supplementary Information: “Comparison of COCOA to chromVAR”, Additional 322 

file 1: Tables S2, S13). COCOA also extends beyond chromVAR in COCOA’s analysis options and 323 

supported data types. COCOA thus provides a novel framework for flexible covariation-based analysis of 324 

DNA methylation and other epigenetic data. ameliorate 325 

 326 
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 327 

Table 1. Features of COCOA and related methods. *
1
BROCKMAN uses k-mer counts but the regions containing each k-mer can be 328 

conceptualized as a region set. *
2
MOGSA and pathwayPCA can involve multiple “omics” data types but including gene-centric data such as gene329 

or protein expression is important for the methods. *
3
coMethDMR finds differentially methylated regions but often annotates them in 330 

reference to genes. 331 

 332 

Conclusion 333 

We created a flexible framework for identifying and understanding sources of regulatory variation in 334 

epigenetic data. COCOA could be applied to any epigenetic data that has a value associated with 335 

genomic coordinates, which includes both nucleotide-level data such as bisulfite sequencing and region-336 

based data such as ATAC-seq data. Our results also demonstrate how COCOA can be integrated with 337 

multi-omics analyses that include epigenetic data. Our tool allows scientists to leverage publicly 338 

available regulatory data to annotate variation in their epigenetic data. In an unsupervised analysis, 339 

COCOA can annotate the major axes of inter-sample variation. In a supervised analysis, COCOA can 340 

annotate inter-sample variation related to a specific phenotype of interest. We have released COCOA as 341 

a Bioconductor package
[38]

, facilitating this new method of regulatory analysis. COCOA is a flexible and 342 

powerful method for interpreting regulatory variation between individuals.  343 

 344 

 345 
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Methods 346 

COCOA algorithm 347 

Overview 348 

COCOA annotates variation in epigenetic data through two steps. In the first, we quantify the 349 

association between each feature in the epigenetic data and the target variable using a metric such as 350 

correlation (Fig. 1C). This gives a score to each epigenetic feature that represents how much it is 351 

associated with the target variable. Then in the second step, we use the epigenetic feature scores to 352 

score region sets from a large collection of region sets (Fig. 1D). Finally, we use a permutation test to 353 

assess statistical significance, and return a ranked list of region sets. 354 

Step 1: Quantifying variation across samples 355 

COCOA starts with a data matrix of epigenetic signal values in genomic regions, where each row is a 356 

genomic locus (e.g. a CpG or an ATAC-seq region), and each column is a sample. The values in the matrix 357 

correspond to signal intensity levels (e.g. DNA methylation level or chromatin accessibility) of a given 358 

sample at a given locus. The first step in a COCOA analysis is to transform the original data into a score 359 

for each locus measuring how much it contributes to the target inter-sample variation. We refer to the 360 

score for an epigenetic feature (locus) as a “feature contribution score” (FCS). This calculation can be 361 

either supervised or unsupervised (Fig. 1B): 362 

Supervised. For supervised analyses, the goal is to identify sources of variation associated with a target 363 

sample phenotype of interest. Therefore, in addition to the epigenetic data matrix, we require a vector 364 

representing the target sample phenotype. We then quantify the association between the target sample 365 

phenotype and the epigenetic signal at each genomic locus using a method such as Pearson correlation. 366 

We end up with a vector of scores (which for correlation is the correlation coefficient) representing how 367 

strongly epigenetic variation at a genomic locus is associated with variation in the sample phenotype. 368 

Metrics other than Pearson correlation can be used to quantify variation, as long as they produce a 369 

score for each genomic locus. A detailed discussion of metric choice follows in the section, Metric for 370 

quantifying variation. 371 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2020. ; https://doi.org/10.1101/2020.07.09.195289doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.09.195289
http://creativecommons.org/licenses/by/4.0/


18 

 

 

Unsupervised. For unsupervised analyses, we first apply a dimensionality reduction technique such as 372 

PCA or MOFA
[23]

 to identify latent factors that represent significant sources of inter-sample variation
[10]

. 373 

Then, we treat these latent factors as target sample phenotypes and quantify the association between 374 

each latent factor and the epigenetic data as we would for the sample phenotype in the supervised 375 

analysis. In this case, the feature contribution score for each genomic locus represents how strongly 376 

epigenetic variation at that genomic locus is associated with variation in the latent factor. 377 

Step 2: Annotate variation with the COCOA algorithm 378 

After quantifying inter-sample variation, we are left with one or more vectors that assign FCS to each 379 

genomic locus in the original data matrix. COCOA next seeks to determine which region sets are 380 

associated with that variation. For this step, COCOA relies on a database of region sets. Here, we have 381 

used a subset of the LOLA database
[1]

, which includes several thousand region sets that have been 382 

manually collected from several large-scale experiments and databases, including the ENCODE
[39, 40]

 and 383 

Roadmap Epigenomics projects
[41, 42]

. For the sample-specific data, COCOA can operate on two types of 384 

signal data: single-nucleotide data (e.g. DNA methylation) or region-based data (e.g. ATAC-seq peaks). In 385 

either case, we will aggregate the scores for all individual genomic loci into a combined score for each 386 

region set (Fig. 1D). Due to different experiments testing the same TF or histone modification, some 387 

region sets share similar regions to each other and therefore their scores are not completely 388 

independent. 389 

For single base-pair resolution data (e.g. DNA methylation data), the following algorithm is used for a 390 

single region set and a single FCS vector: First, we optionally take the absolute value of the FCS 391 

(Supplementary Methods). Then, we identify all features whose genomic coordinates overlap the given 392 

region set. Within each region from the region set, we average the FCS of any overlapping features to 393 

get a single average value for each region. We then average the region scores to get the final score for 394 

that combination of region set and FCS vector. This score represents how much that region set is 395 

associated with the latent factor or phenotype that corresponds to the FCS vector. We repeat this 396 

process for each pairwise combination of region set and latent factor/phenotype FCS vector.  397 

For region-based data such as ATAC-seq data, the scoring is conceptually similar to single-nucleotide 398 

data, but with slight differences. We use the following algorithm: To score a region set for a given latent 399 

factor or phenotype, we first identify all overlaps between “data regions” (regions for the epigenetic 400 

signal data) and region set regions. For each overlap, we calculate what proportion of the region set 401 
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region is overlapped by the data region. We then take a weighted average of the FCS of all the 402 

overlapping data regions, weighting each data region’s FCS by the proportion that region overlaps a 403 

region set region and dividing by the sum of all overlap proportions. This weighted average is the region 404 

set score that represents how much the region set is associated with the latent factor or phenotype. We 405 

repeat this process for each combination of region set and latent factor/phenotype. 406 

COCOA also offers alternative scoring methods including the option to use the median instead of the 407 

mean. We discuss this option in the Supplementary Discussion where we compare results for COCOA of 408 

breast cancer DNA methylation using median and mean scoring methods, finding overall similar results 409 

and high correlation between median and mean scores (Fig. S11, Additional file 1: Tables S1, S14). Other 410 

scoring options can be found in the software documentation. 411 

Metric for quantifying variation 412 

Choosing an appropriate metric can help to effectively capture the relationship between epigenetic 413 

variation and variation in the target variable (Supplementary Methods). In this paper, we used 414 

covariance, Pearson correlation, Spearman correlation, PCA, and MOFA
[23]

 to quantify variation, but 415 

other variation metrics and dimensionality reduction techniques can be used with COCOA for 416 

quantifying inter-sample variation, depending on the specific circumstances of a given analysis. The only 417 

requirement is that the metric must provide a score for each epigenetic locus that quantifies how much 418 

it is associated with variation in the target variable. The choice of metric can depend on the data type.  419 

For DNA methylation data, since DNA methylation data is bounded from 0 to 1, we used covariance to 420 

give greater weight to CpGs with larger changes in DNA methylation across samples. Since the range of 421 

ATAC-seq counts could be very different between different peaks, we used Pearson correlation for the 422 

ATAC-seq data in order to give each peak a comparable score, regardless of the peak’s range. This 423 

principle also applies to PCA. When performing PCA, we recommend scaling the data by dividing each 424 

variable by its variance for ATAC-seq data (equivalent to correlation) but not for DNA methylation data 425 

(equivalent to covariation). Then, when treating the principal components as the target variables, we 426 

use the corresponding metric -- covariance or correlation -- to get the feature scores. We recommend 427 

Spearman correlation when the relationships between the target variable and the epigenetic features 428 

are monotonic but not linear, as may occur when the target variable is ordinal (e.g. cancer stage).  429 

 430 
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Permutation test 431 

To assess statistical significance of the COCOA results, we use a permutation test. For both supervised 432 

and unsupervised COCOA analyses, we have a target variable (i.e. the sample phenotype or latent 433 

factor) and want to understand the relationship between the target variable and the epigenetic data. 434 

For a single permutation, we randomly shuffle the samples’ target variable values then recalculate the 435 

association between the epigenetic data and the target variable as done in Step 1 (Fig. 1C). This gives 436 

each epigenetic feature an FCS for the shuffled target variable. Then we run COCOA on the new feature 437 

contribution scores to score each region set in the database. This process is repeated for each 438 

permutation. The COCOA scores for a given region set from the permutations form a region set-specific 439 

null distribution. Because the sample labels were shuffled instead of the epigenetic data, the null 440 

distributions can appropriately capture the correlation structure of the epigenetic data, accounting for 441 

the correlation between epigenetic features in a given region set. The region set-specific null 442 

distributions also protect against false positives that could arise from some region sets being more fully 443 

covered by the epigenetic assay than others because each score in a region set’s null distribution is 444 

created from the same coverage profile. To reduce the computational burden, we calculated 300 445 

permutations and applied a permutation approximation technique
[43]

. We fit a gamma distribution to 446 

each null distribution using the method of moments in the fitdistrplus R package
[44]

 and then calculated 447 

a p-value for each region set using its gamma distribution. To test the appropriateness of fit of the 448 

gamma approximation, we ran a simulation study with 100,000 permutations, and then subsampled and 449 

applied the approximation to see how close the approximation is to the true p-value. Our conclusion is 450 

that the gamma approximation is accurate for high p-values, but the gamma approximation may 451 

overestimate the significance of low p-values; therefore, we advise that it can be helpful for screening 452 

out region sets that are not significant (Fig S12; further discussion in Supplementary Information). To 453 

correct p-values for the number of region sets tested, we used Benjamini-Hochberg false discovery rate 454 

(FDR) correction
[45]

 with an FDR of 5%.  455 

Meta-region profile plots 456 

To visualize results, COCOA produces a plot we call the meta-region profile plot (e.g. Fig 2C). The goal of 457 

the meta-region profile is to compare the feature contribution scores in the regions of interest to the 458 

surrounding genome to assess how specific the captured signal is to a region set. We combine 459 

information from all regions of the region set into a single summary profile as has been done for DNA 460 
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methylation data
[3, 6]

. Each region in the region set is expanded on both sides to include the surrounding 461 

genome (e.g. expanded to 14 kb total, centered on the region of interest). This enlarged region is then 462 

split into bins of approximately equal size. Finally, the FCS for corresponding bins from each region of 463 

the region set are averaged to get a single “meta-region” FCS profile. A peak in the middle of this profile 464 

suggests that there is variation that is specific to this region set. 465 

Region set database 466 

To annotate variation in the epigenetic data, we used a subset of the LOLA database
[1]

 (filtered with R 467 

script, see Supplementary Materials), totaling 2246 region sets from public sources. Sources included 468 

the ENCODE project
[39, 40]

, Roadmap Epigenomics
[41, 42]

, CODEX database
[46]

, and the Cistrome 469 

database
[47]

. Additionally, we included some region sets derived from JASPAR motif
[48]

 predictions. 470 

Examples of region sets include transcription factor binding sites from ChIP-seq experiments, histone 471 

modification regions from ChIP-seq experiments, and cell type or condition-specific accessible chromatin 472 

from ATAC-seq experiments. For a discussion of how to choose a region set database and other related 473 

considerations, see Additional file 1. For each analysis, we only considered in the results region sets that 474 

had at least 100 regions with any coverage by the epigenetic data. Since the CLL MOFA data was in 475 

reference genome hg19 and the breast cancer data was in hg38, we used the corresponding hg19 or 476 

hg38 version of the region set database when analyzing each dataset. A brief description of the region 477 

sets can be found in the supplementary data (Additional file 1: Tables S1-S4) and the database is 478 

available at http://databio.org/regiondb
[1]

. To designate region sets “hematopoietic TFs” for Fig. 3, we 479 

did a literature search, selecting three reviews: one focusing on myeloid TFs
[49]

, one focusing on 480 

lymphoid TFs
[50]

 and one general hematopoietic TF
[51]

. The hematopoietic TFs identified from these 481 

reviews are the following: RUNX1, TAL1, PU.1, CEBPA, IRF8, GFI1, CEBPE
[49]

, TCF3, EBF1, PAX5, FOXO1, 482 

ID2, GATA3
[50]

, KLF1, GATA1, GATA2, IKZF1, CMYB, and NFE2
[51]

. Since GATA3 was also identified as an 483 

ER-related TF, we did not consider GATA3 as a hematopoietic TF in plots to avoid confusion. 484 

Breast cancer analyses 485 

Datasets 486 

For the unsupervised breast cancer analyses, we used DNA methylation and ATAC-seq datasets from The 487 

Cancer Genome Atlas (TCGA). We retrieved the DNA methylation and clinical data with the TCGAbiolinks 488 

R package
[52]

. We identified 657 patients with both 450k DNA methylation data and known ER and 489 
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progesterone status. For the ATAC-seq data, we retrieved a peak count matrix for the consensus set of 490 

breast cancer ATAC-seq peaks identified by Corces et al. from the following location: 491 

https://atacseq.xenahubs.net/download/brca/brca_peak_Log2Counts_dedup. We used a sample ID 492 

lookup table to match the ATAC-seq IDs to the standard TCGA identifiers: https://gdc.cancer.gov/about-493 

data/publications/ATACseq-AWG. We excluded one patient of the 74 patients with ATAC-seq data 494 

(TCGA-AO-A0J5) for whom we did not have sufficient metadata.  495 

Data processing and quantifying variation 496 

For the breast cancer DNA methylation data, we excluded the sex chromosomes. For the ATAC-seq data, 497 

we used the peak count matrix from Corces et al.
[21]

, without further processing. We performed PCA on 498 

the DNA methylation data and the ATAC-seq data separately with the `prcomp` R function, with 499 

centering and without scaling. PCA is used to get covariance of features and to prioritize the largest 500 

sources of covariance. After PCA, we calculated the covariance or correlation coefficient for each 501 

epigenetic feature with each latent factor to get a value that represented how much each feature 502 

contributed to each latent factor. We used covariation for the DNA methylation data and correlation for 503 

the chromatin accessibility data. To test the association of ER status with PC score, we used the 504 

Wilcoxon rank-sum test with ER positive samples and ER negative samples as the two groups. 505 

Comparison of COCOA and chromVAR 506 

To compare COCOA and chromVAR
[2]

, we completed two tests with the breast cancer ATAC-seq data. 507 

First, we applied chromVAR with the same region set database used by COCOA in our ATAC-seq analysis. 508 

Second, we applied COCOA and chromVAR with the main motif database used by chromVAR in its 509 

publication, which is a curated version of the cisBP database
[53]

 and is available as the 510 

"human_pwms_v1" data object from the “chromVARmotifs" R package that can be downloaded from 511 

the “GreenleafLab/chromVARmotifs” Github repository. We applied chromVAR to the normalized data 512 

from Corces et al., adding a pseudocount to bring the minimum normalized signal up to zero. To use the 513 

motif database with COCOA, we identified peaks with motif hits using the “matchMotifs” function from 514 

the “motifmatchr” R package
[54]

 with default parameters and took those regions as a region set. The 515 

“matchMotifs” function is the method chosen by chromVAR authors for identifying motif matches in the 516 

chromVAR Bioconductor vignette.  For the chromVAR figure, we designated motifs as AP-1-related 517 

based on an AP-1 review (Figure 1 of review)
[55]

. 518 
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 519 

Multi-omics chronic lymphocytic leukemia analysis 520 

Datasets 521 

For the unsupervised multi-omics analysis, we used preprocessed data that was included with the MOFA 522 

R package, specifically the latent factors from the multi-omics dimensionality reduction analysis of 200 523 

chronic lymphocytic leukemia (CLL) patients as described by Argelaguet et al.
[22, 23]

. We retrieved the 524 

450k DNA methylation data for these patients using the ExperimentHub R package
[56]

 (CLLmethylation 525 

data package, ExperimentHub ID: EH1071)
[22]

.  526 

Data processing and quantifying variation 527 

For the multi-omics analysis, we used the dimensionality reduction results from the paper by Argelaguet 528 

et al. and then extended the results to CpGs that were not included in the dimensionality reduction. The 529 

original multi-omics analysis used only the most variable 1% of CpGs (4,248 CpGs) for calculation of the 530 

latent factors. Since COCOA benefits from higher coverage of CpGs across the genome, we calculated 531 

the correlation of each CpG from the DNA methylation microarrays (excluding sex chromosomes) with 532 

each latent factor. This yielded a matrix with CpG, latent factor correlations where each row is a CpG 533 

and each column is a latent factor, which can be used as input to COCOA. 534 

Kidney renal clear cell carcinoma analysis 535 

Dataset 536 

For the supervised KIRC analysis, we used DNA methylation and clinical data from The Cancer Genome 537 

Atlas. We used 450k DNA methylation microarray data for 318 patients, retrieved with the 538 

curatedTCGAData R package
[57]

. The clinical data included cancer stage and survival information that was 539 

used to label samples in the supervised analysis.  540 

Data processing and quantifying variation 541 

For the supervised analysis of KIRC methylation, we first split the data into two groups: training (2/3 of 542 

patients) and validation (1/3 of patients), keeping approximately equal proportions of each cancer stage 543 

in each group. With the COCOA samples, we first calculated the Spearman correlation between the DNA 544 
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methylation levels and the sample phenotype of interest, cancer stage. This resulted in a correlation 545 

coefficient for each CpG. We then applied the COCOA algorithm on the absolute correlation coefficients.  546 

Validation and survival analysis 547 

After running COCOA on 2/3 of the samples, we did validation analyses on the remaining 1/3 of samples. 548 

First, we tested whether each patient’s average DNA methylation level in the top EZH2 region set from 549 

COCOA was correlated with cancer stage, using the ‘cor.test’ R function
[58]

 and Spearman correlation. To 550 

calculate correlation p-values for the null hypothesis that the correlation was zero, we used an 551 

asymptotic t approximation, the default method used by the ‘cor.test’ function. To calculate the average 552 

methylation, we first separately averaged DNA methylation within each EZH2 region, then averaged all 553 

the region averages. We also tested whether average DNA methylation in EZH2 regions was related to 554 

overall patient survival. We created Kaplan-Meier curves with two groups: the 25% of validation samples 555 

with highest DNA methylation in EZH2 regions and the 25% of samples with the lowest DNA 556 

methylation. We used a log-rank test from the ‘survminer’ R package’s ‘ggsurvplot’ function
[59]

 to get a 557 

p-value for the Kaplan-Meier curves. We created a Cox proportional hazards model with all validation 558 

samples, relating average DNA methylation in EZH2 regions to patient survival and correcting for age, 559 

gender, and average genome methylation level. We also tested the two highest scoring TF region sets 560 

from the COCOA analysis – JUND and TCF7L2 -- for association with cancer stage and survival using the 561 

methods described above. We tested whether variables satisfied the proportional hazards assumption 562 

using the ‘cox.zph’ function in R
[60-62]

 (Additional file 1: Table S6), considering variables with p < 0.05 as 563 

not satisfying the assumption. The JUND validation model did not meet the assumption for the variable 564 

of interest (average DNA methylation in EZH2/SUZ12-binding regions) and therefore was not 565 

considered. 566 

Pan-cancer EZH2 analysis 567 

In this analysis, we tested whether average DNA methylation level in EZH2-binding regions would be 568 

associated with cancer stage and patient survival in other cancer types than KIRC. We combined regions 569 

from the top group of 11 EZH2 and SUZ12 region sets from the KIRC analysis (Fig. 5A, Supplementary 570 

Data) to make a single “master” EZH2/SUZ12 region set (referred to as EZH2-binding regions). We took 571 

the union of all regions and merged regions that overlapped. We downloaded DNA methylation 572 

microarray data for 33 TCGA cancer types using the curatedTCGAData R package
[57]

. Then, for each 573 

sample, we calculated the average DNA methylation level in EZH2-binding regions. For each cancer type 574 
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for which we had cancer stage information (21/33), we calculated the Spearman correlation between 575 

average EZH2-binding region DNA methylation and cancer stage, using the ‘cor.test’ R function
[58]

. To 576 

calculate correlation p-values for the null hypothesis that the correlation was zero, we used an 577 

asymptotic t approximation, the default method used by the ‘cor.test’ function. Next, for each cancer 578 

type, we used a Cox proportional hazards model to test the association of average EZH2-binding region 579 

DNA methylation with survival, with the covariates patient age, sex, and average microarray-wide DNA 580 

methylation level as available. We tested whether variables satisfied the proportional hazards 581 

assumption using the ‘cox.zph’ function in R
[60-62]

 (Additional file 1: Table S9). We considered variables 582 

with p < 0.01 as not satisfying the assumption, picking a more stringent cutoff because more models 583 

were tested. Models that did not meet the assumption for the variable of interest (average DNA 584 

methylation in EZH2/SUZ12-binding regions) were removed, in our case only one cancer type– low grade 585 

glioma (LGG). We corrected Spearman and Cox p-values for multiple testing using the Holm-Bonferroni 586 

method
[63]

.  587 
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Supplementary file 1: Supplementary Methods and Information 629 

The power of covariation in analysis of epigenetic heterogeneity 630 

Covariation of the epigenetic signal in different regions is an important principle in epigenetic analysis 631 

but is not fully taken advantage of by many epigenetic analysis methods. There are two common 632 

limitations of analysis methods. First, relying on differential signals between discrete sample groups 633 

loses information about the differences among samples within a group. For instance, in a health-related 634 

differential analysis, patients in the “disease” group are considered equal for the analysis when there 635 

may actually be differences between patients in the severity of their disease. Although some variation 636 

can be effectively summarized by discrete groups, in some cases, it is often more appropriate to 637 

consider variation along a continuous spectrum
[64]

. Using a continuous spectrum for samples based on 638 

physical or molecular phenotype instead of discrete groups could provide greater resolution for 639 

identifying epigenetic features that covary with sample status. Second, the use of discrete cutoffs for 640 

identifying significant epigenetic differences between samples loses information about the strength of 641 

covariation between epigenetic features and sample status. For example, epigenetic differences 642 

between samples are often determined using a discrete threshold that places epigenetic features into 643 

two groups – significantly different or not significantly different – as is done when finding differentially 644 

methylated or differentially accessible regions. Then the significant regions can be annotated with 645 

reference region sets through region set enrichment testing to aid interpretation
[1, 8, 65-68]

. However, 646 

while this is a flexible approach, converting continuous epigenetic signals to a binary classification -- 647 

significant or not significant -- results in the loss of covariation information that could be valuable for the 648 

region set enrichment analysis. This choice is a trade-off between the computational efficiency that 649 

comes from a simplified representation of the epigenetic signal and the potential gains that could come 650 

from having higher resolution data and most region set enrichment tools choose the simpler approach. 651 

Selection of immune cell-specific ATAC-seq region sets 652 

We retrieved an ATAC-seq count matrix (GSE74912_ATACseq_All_Counts.txt.gz) from Gene Expression 653 

Omnibus with hematopoietic ATAC-seq data from Corces et al.
[69]

. We normalized each sample with 654 

quantile normalization first then GC normalization with the cqn R package
[70]

, according to the 655 

normalization done by Corces et al.
[69]

. When there were multiple samples of a given cell type from a 656 

single individual, we calculated the mean of each region to combine them into a consensus count vector. 657 

From the counts for a given cell type from various individuals, we calculated the mean in each region to 658 
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create a consensus set of counts for that cell type. To get custom hematopoietic region sets, we did a 659 

series of comparisons between cell type count profiles to determine regions that were open in one or a 660 

specific group of cell types and closed in another cell type or group of cell types. We counted regions as 661 

specific when they were in the top 10% of regions in the chosen cell type/s and in the bottom 50% of the 662 

other compared cell type/s. The code for creating these region sets is available in the 0-663 

ClusterHemaATAC.R file. 664 

Creation of simulated data 665 

To create simulated data to test COCOA, we first calculated an aggregate healthy DNA methylation 666 

profile by averaging the DNA methylation profiles of 160 TCGA healthy kidney samples. To get a true 667 

positive region set, we selected an arbitrary region set (ER) and set the DNA methylation of all CpGs that 668 

overlapped that region set to zero in the healthy sample. For our analysis, we used 10 replicates of the 669 

healthy sample. We created 10 artificial disease samples by changing the DNA methylation of the CpGs 670 

in the region set of interest to between 0.0125 and 0.25, depending on the sample, with all CpGs in a 671 

given sample being assigned the same DNA methylation level. This results in covariation of the DNA 672 

methylation level of CpGs in the region of interest across samples and in differential methylation 673 

between healthy and disease samples. Finally, we added Gaussian noise to each CpG for each sample to 674 

create variation between samples, keeping methylation in the 0-1 range. We created two sample sets 675 

with different noise levels: low noise (mu=0, sd=0.025) and high noise (mu=0, sd=0.05). 676 

To create region sets with a range of p-values, we made a set of region sets that had varied proportions 677 

of true positive regions and random loci sampled from the simulated data DNA methylation coordinates. 678 

Each random locus was expanded from the center to be 500 bp. To assign p-values to the region sets, 679 

we performed PCA on the high noise simulated data then ran COCOA on PC1 and PC2 with our region 680 

sets as the region set database. We calculated 100,000 permutations to determine empirical p-values 681 

for each region set. For further analysis in gamma approximation simulations, we selected region sets 682 

with empirical p-values across a range of orders of magnitude. 683 

How to choose a method for quantifying variation 684 

The choice of method for quantifying variation depends on the data and how well that method can 685 

prioritize features that covary with each other or with a sample phenotype of interest. The decision to 686 

use covariation or correlation depends on whether the epigenetic data is proportion-based, such as for 687 
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bisulfite sequencing, or count-based and unbounded, such as for ATAC-seq. This decision is not expected 688 

to greatly affect the analysis but using correlation might give greater weight to epigenetic features with 689 

very small absolute changes across samples that actually represent noise and not real signal. Using 690 

covariation may be better for proportion-based data, such as for bisulfite sequencing, and correlation 691 

may be better for count-based data, such as for ATAC-seq. Since the concept of COCOA is based on the 692 

covariation of epigenetic features across samples, COCOA will work best with methods that prioritize 693 

covarying/correlated features and do not give lower scores or coefficients to correlated features. For 694 

instance, a simple regression gives coefficients to input variables based on their association with a 695 

dependent variable. However, if two input variables are correlated, regression will give a lower 696 

coefficient to one of two variables. PCA, on the other hand, can give a high loading value to both 697 

correlated variables. An assumption of our method is that a single regulatory signal will be related to 698 

multiple regions that are regulated in a coordinated way and therefore covary across samples. For 699 

example, we would expect that the epigenetic signal in cell type-specific regions would covary across 700 

samples depending on how much of each sample corresponded to that cell type. Therefore, we expect 701 

that COCOA would work best with methods that do not lower the coefficients or scores of variables that 702 

covary. While we generally used linear metrics for quantifying variation in this study, we expect that 703 

nonlinear metrics such as feature importance scores from machine learning models would also work for 704 

quantifying epigenetic variation if they meet the criteria described above. 705 

Some readers may notice that we use covariation or correlation instead of simply using the PCA loadings 706 

as feature contribution scores for unsupervised COCOA. Since the principal component loadings also 707 

represent the contribution of each feature to the respective principal component, we could have used 708 

those as the feature scores. However, this would have required us to recompute the PCA for each 709 

COCOA permutation to get new loadings. Instead, for each permutation, we shuffle the PC scores and 710 

calculate the covariance or correlation between the shuffled PC scores and the epigenetic data. This 711 

allows us to get new feature scores for each permutation without recalculating the PCA for every 712 

permutation, which would be computationally expensive. 713 

Gamma distribution p-value approximation 714 

We used simulated data to compare empirical p-values from COCOA to the p-values derived from a 715 

gamma approximation. As mentioned earlier, we created simulated DNA methylation data with 716 

variation in the regions of a specific region set. We also created a collection of region sets that had 717 
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varied similarity to the true positive region set and calculated their empirical p-values with 100,000 718 

permutations of COCOA. To evaluate the accuracy of the gamma distribution approximation, we 719 

subsampled from the 100,000 permutations and used the subsampled COCOA runs to create gamma p-720 

values. We did this for three subsample sizes: 300, 1000, and 10,000. For each subsample size, we 721 

sampled 500,000 times, calculating the gamma p-values each time.  As seen in Fig. S12, the median 722 

gamma p-value is fairly close for high p-values but tends to be lower than the empirical p-values as the 723 

p-value decreases. Increasing the number of permutations from 300 to 10,000 reduced the variance of 724 

the gamma p-values but did not cause them to converge to the empirical p-values (Fig. S12). Because of 725 

this, we recommend caution when interpreting gamma p-values, with the reminder that it is an 726 

approximation. The main benefit of the gamma p-value approximation is to screen out region sets that 727 

are not significant, which are the region sets whose p-values fall in the range where the gamma p-value 728 

approximation is more accurate.  729 

Considerations when choosing a region set database 730 

The choice of region set database depends partially on the goals of the analysis but a broad database 731 

with region sets from a variety of transcription factors and cell types should be sufficient for most 732 

exploratory analyses. Along those lines, the region sets we used from ENCODE, Roadmap Epigenomics, 733 

and other sources provide a reasonably broad sampling of transcription factors and histone modification 734 

regions for a variety of cell lines and tissue types. However, any similar source of region sets could be 735 

used. The curation of region set databases is an active research area. Additionally, new region sets are 736 

continually being made available to the public. The user would benefit from any source of region sets 737 

that is relevant to their experimental question. This includes region sets derived from a cell or tissue 738 

type that is similar to the samples being studied, especially because transcription factor binding and 739 

many epigenetic marks including DNA methylation can be cell type-specific. If the user is asking a very 740 

targeted question about a specific transcription factor or cell type, the user may want to find a 741 

published region set through a source such as the Gene Expression Omnibus and use that region set 742 

alongside a broader region set database. While the database we used is not comprehensive, it is a rich 743 

starting point that can be expanded in the future. 744 

 745 

 746 
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Other COCOA parameters 747 

Absolute value of FCS 748 

After generating the feature contribution scores (FCS), the COCOA user has the option of taking the 749 

absolute value of those scores before scoring the region sets. This choice depends on whether all 750 

regions in a region set are expected to be regulated in the same way or not (i.e. all regions activated/all 751 

regions repressed or some regions activated and some regions repressed). For cases where regions in a 752 

region set are regulated in the same direction (all activated or all repressed), it would be better to not 753 

take the absolute value. Since the FCS for important regions should all have the same sign in this case, 754 

the relevant signal will be preserved during the COCOA aggregation step while the noise from irrelevant 755 

epigenetic features, which should have arbitrary FCS signs, will cancel out. For example, a TF might 756 

activate all regions where it binds and we would expect that the epigenetic signal in these regions would 757 

generally change in the same direction and have FCS with the same sign. For cases where regions in a 758 

region set are regulated in opposite directions (some activated and some repressed), the absolute value 759 

should be taken. Since the relevant signal may have some positive and some negative FCS, aggregating 760 

FCS without taking the absolute value would partially cancel out and diminish the signal. For example, a 761 

TF might activate some regions but repress others depending on what other proteins are binding with it 762 

at a given region. In this case, the epigenetic signal in regions bound by the TF might change in opposite 763 

directions, leading to FCS with opposite signs. When taking the absolute value, it is still possible to 764 

identify region sets where regions all change in the same direction. However, FCS that represent noise 765 

will not cancel out, potentially reducing the ability to discriminate between true signal and noise. In this 766 

study, we took the absolute value of the FCS when running COCOA since there may have been some 767 

region sets in our database with regions that are regulated in opposite directions. 768 

Scoring based on mean versus median 769 

COCOA offers the option to score based on the median region set FCS instead of the mean FCS. To 770 

compare the median scoring method to the mean scoring method which was used in the main text, we 771 

performed COCOA with the median scoring method on the TCGA breast cancer DNA methylation data. 772 

We see that the overall trends are similar, with ER-related region sets found to be highly ranked for PC1 773 

and PC3 and polycomb-related region sets highly ranked for PC4 (Fig. S11A, Additional File 1: Table S14). 774 

Additionally, the meta-region profiles for top region sets from the mean scoring method also have peaks 775 

for the median scoring method (Fig. S11B). Consistent with these observations, the region set scores for 776 
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the first 4 PCs have very high Spearman correlation between scoring methods, all with at least 0.95 777 

correlation (Fig. S11C).  778 

Discussion of EZH2 results in comparison to previous findings 779 

Several trends present in our EZH2/SUZ12-binding region analysis contrast with previous results. First, 780 

we found a significant positive correlation between EZH2-binding region DNA methylation and cancer 781 

stage in testicular germ cell tumors (TGCT), whereas previous studies did not identify an association 782 

between EZH2 expression and cancer stage
[71]

 and suggested that EZH2 activity is decreased during 783 

cancer progression
[71]

 and in chemotherapy resistance
[72]

. Second, we found a negative correlation 784 

between EZH2-binding region methylation and cancer stage in UVM that trended toward significance 785 

(uncorrected p<0.05) while a previous study suggested that increased expression of EZH2 was positively 786 

associated with higher risk of metastasis
[30]

. Third, our finding that higher DNA methylation in EZH2-787 

binding regions trended toward significance (uncorrected p<0.05) for association with lower risk of 788 

death in GBM contrasts with reports suggesting that EZH2 expression promotes proliferation and 789 

tumorigenesis in glioblastoma
[73, 74]

. These trends could be due in part to the context-dependent effects 790 

of EZH2
[31, 36, 37]

. Further studies would be valuable to clarify the role of EZH2 in these cancer types.  791 

Comparison of COCOA to other region set or covariation-based methods 792 

We are not aware of any other tool designed for DNA methylation data that identifies region sets based 793 

on DNA methylation variation across samples. However, since COCOA is broadly applicable to epigenetic 794 

data, we provide a comparison between COCOA and tools designed for chromatin accessibility data with 795 

which COCOA shares some important concepts. We also compare COCOA to tools that were not 796 

designed for epigenetic data but have some conceptual similarity to COCOA. Finally, we mention a tool 797 

designed for DNA methylation data that has superficial similarity to COCOA but actually performs a very 798 

different function. COCOA is unique in that it provides a class of DNA methylation heterogeneity analysis 799 

that was not previously available but also provides a framework to apply the same method to other 800 

epigenetic data types. 801 

Tools for chromatin accessibility data 802 

ChromVAR. ChromVAR is an R package that quantifies the variability of chromatin accessibility signal in 803 

motif regions or region sets
[2]

. For a given set of motif regions, each sample is given a score for how 804 
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much it deviates from the expected chromatin accessibility of those motif regions. Each motif region set 805 

is also given a score for how variable it is across samples. ChromVAR has a few major differences from 806 

COCOA. First, as mentioned previously, COCOA works with DNA methylation data or chromatin 807 

accessibility data, while chromVAR was designed for chromatin accessibility data. Second, COCOA can 808 

use multiple metrics to quantify epigenetic variation across samples while chromVAR only uses a single 809 

unsupervised way of quantifying variation (bias-corrected z-score for each sample, region set 810 

combination). Among COCOA’s multiple options, COCOA can use PCA to more easily separate and 811 

annotate biological signals. COCOA also supports supervised analysis, adding the ability to do a range of 812 

new analyses not supported by chromVAR. Third, a smaller point, COCOA includes additional data 813 

analysis and visualization functions such as for meta-region profiles to further understand inter-sample 814 

variation. While chromVAR’s utility is attested to by the many papers citing it, COCOA adds meaningful 815 

value to the epigenetics field that is not captured by the chromVAR package. 816 

BROCKMAN. BROCKMAN is a tool designed primarily for single cell chromatin accessibility data that 817 

uses variation in the frequency of k-mers in reads to identify gene regulatory variation across cells
[9]

. 818 

While BROCKMAN and COCOA share some conceptual foundations, specifically that covariation of 819 

regulatory signals across cells or samples can be used to understand gene regulatory differences 820 

between the cells, there are some important differences. First, the BROCKMAN tool is for chromatin 821 

accessibility data, not DNA methylation, while COCOA has a generalized framework that works for both 822 

data types. Second, BROCKMAN aggregates epigenetic signal by category (k-mer) before doing 823 

dimensionality reduction while COCOA first does dimensionality reduction (or other quantification 824 

method) then aggregates epigenetic signal by category (region set). Aggregating before dimensionality 825 

reduction is well suited to single cell data, as has been done for single cell DNA methylation data 
[75]

. 826 

However, aggregating epigenetic signal after dimensionality reduction allows more flexibility in 827 

applications and allows genome-wide variability to be captured in a more unbiased way. For example, 828 

COCOA could be used with multi-omic dimensionality reduction as shown in Figure 4 with minimal 829 

changes to the COCOA algorithm. Aggregating signal within region sets first might miss inter-sample 830 

epigenetic variability that is not contained within any tested region sets. COCOA shares some ideas with 831 

BROCKMAN but applies them in a generalized framework that can apply to new epigenetic data types, 832 

including DNA methylation. 833 

 834 
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Gene-centric methods with conceptual similarity to COCOA 835 

The next three methods have some conceptual overlap with COCOA but are gene-centric rather than 836 

region-centric. As mentioned in the paper introduction, region-based approaches are more appropriate 837 

for epigenetic data, for reasons including that it can be difficult to link epigenetic marks to genes. 838 

PCGSE. Principal component gene set enrichment (PCGSE) is a method to annotate principal 839 

components that are derived from gene expression data with gene sets
[10]

. COCOA derived conceptual 840 

foundations from this method but extends them to apply to epigenetic data and region sets. COCOA also 841 

extends beyond PCA to include other analyses including supervised analysis. 842 

MOGSA. Multi-omics gene set analysis (MOGSA) uses matrix factorization on multi-omics data from the 843 

same samples to integrate the data and reduce its dimensionality then does gene set analysis
[12]

. This 844 

method is gene-centric and not tailored to epigenetic data. As shown with MOFA in Fig. 4, multi-omics 845 

dimensionality reduction techniques could benefit from including a region-centric method such as 846 

COCOA to annotate the epigenetic component of inter-sample variation in addition to using gene set 847 

analysis  848 

PathwayPCA. PathwayPCA can do pathway analysis in a variety of scenarios using supervised PCA and 849 

Adaptive Elastic-net Sparse PCA
[13]

. This method is gene-centric and is focused on pathways. As such, it 850 

has a different focus than COCOA. 851 

Method for DNA methylation that uses local covariation 852 

CoMethDMR. CoMethDMR is a tool to identify differentially methylated regions (DMRs)
[76]

. To boost 853 

statistical power, coMethDMR takes into account local covariation of DNA methylation within a given 854 

region. Unlike coMethDMR which uses covariation of the epigenetic signal only locally, COCOA uses 855 

covariation of the epigenetic signal on the genome-scale. While coMethDMR and COCOA may have 856 

superficial similarities, their goals are different. The output of coMethDMR is a set of differentially 857 

methylated regions while the output of COCOA is a list of region sets associated with a target variable. 858 

Comparison of COCOA to chromVAR 859 

We compared COCOA and chromVAR with two main comparisons with the breast cancer ATAC-seq data: 860 

both tools applied with the main database of region sets used for this paper and both tools applied with 861 
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the curated motif database used in the chromVAR paper. For the first comparison, both methods rank 862 

ER and ER-related region sets highly although COCOA did this to a greater extent (Fig. S9A), perhaps 863 

because the use of PCA for COCOA allowed it to separate epigenetic signals more clearly. The median 864 

rank for ER region sets was 45 for PC1 of COCOA and 607 for chromVAR, with 31 ER region sets in the 865 

database. ChromVAR also did not rank hematopoietic transcription factors highly, as PC2 of COCOA did 866 

(Fig. S9A), but many of the highest scoring region sets for chromVAR were region sets for histone 867 

modifications or chromatin accessibility in immune cells. It is possible that COCOA and chromVAR are 868 

uncovering the same underlying signal but in different ways. For the second comparison, ER motifs were 869 

not ranked highly for PC1 of COCOA or for chromVAR (Fig. S9B), which may be due to differences 870 

between ER motif regions and ER ChIP-seq data, although chromVAR ranked ER motifs higher than 871 

COCOA. The median rank for ER motifs was 1309 for PC1 of COCOA and 216 for chromVAR, with 3 ER 872 

motifs in the database. Both chromVAR and PC1 of COCOA identified FOXA1 as the highest scoring ER-873 

related motif (Fig. S9B). Both chromVAR and COCOA also identified many other FOX motifs as top results 874 

(Fig. S9C), presumably because of their similarity to FOXA1. Some of chromVAR’s highest scoring motifs 875 

were for AP1 components. AP1 colocalizes with ER and may be a tethering factor for ER
[77, 78]

. While PC1 876 

of COCOA does not rank AP1-related motifs highly, PCs 3 and 4 do rank them highly (Fig. S9C). COCOA 877 

did not rank motifs for hematopoietic TFs highly for PC2 as it did for the region sets for hematopoietic 878 

TFs, although some hematopoietic TF motifs do have high scores for PC4 (Fig. S9C), which is more 879 

consistent with the region set results. This may once again be due to the difference between motifs and 880 

ChIP-seq region sets.  881 

We observe that both COCOA and chromVAR achieved higher maximum scores for experimental region 882 

sets (Fig. S9A) than for motifs (Fig. S9B, S9C) although this trend could depend on the cutoff for 883 

determining motif matches (default parameters were used). For instance, the COCOA score (average 884 

absolute correlation) for PC1 for the highest ranking and median ER region sets were 0.52 and 0.40 885 

while the scores for the highest ranking and median ER motifs were both 0.33. The chromVAR scores 886 

(standard deviation of samples’ z-scores) for the highest ranking and median ER region sets were 47.11 887 

and 28.14 while the scores for the highest ranking and median ER motifs were 14.23 and 13.52. Because 888 

the region set database performed better for both methods, we argue that the results using the region 889 

set database are more relevant for comparing the methods. Overall, our results demonstrate that both 890 

methods can discover relevant biological insights but COCOA can separate biological signals to a greater 891 

extent than chromVAR since COCOA’s flexible framework allows the use of PCA.  892 
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Comparison of COCOA to LOLA 893 

We compared COCOA to a generic region set enrichment method that does not consider covariation, 894 

LOLA
[1]

, which is a previous method associated with our lab. We performed two comparisons of COCOA 895 

and LOLA with simulated data: one in which we added a low level of noise to our samples and one in 896 

which we added a higher level of noise (Fig. S9A). Since LOLA requires a set of regions as input, we used 897 

the bumphunter R package
[79]

 to find differentially methylated regions (DMRs) between healthy and 898 

disease samples. Then, we used LOLA to test the DMRs for enrichment against our region set database. 899 

For COCOA, we performed PCA on the simulated samples then identified region sets associated with PC1 900 

and PC2. For the comparison with a low level of noise, both methods were able to identify the region set 901 

of interest (Fig. S9B, Additional file 1: Tables S10, S11). However, with a higher level of noise, 902 

bumphunter did not identify any significant DMRs (FDR < 0.05) and we were therefore unable to run 903 

LOLA (Fig. S9C). In contrast, COCOA was still able to identify the region set of interest as relevant for PC2 904 

(Fig. S9C, Additional file 1: Table S12). In this case, the noise apparently begins to dominate the variation 905 

among samples, and noise is therefore detected in PC1. However, the signal is still present, and is now 906 

detected by COCOA in PC2. Despite the noise, COCOA can still discover the healthy vs disease signal as 907 

relevant in PC2, while the bumphunter + LOLA approach is not able to detect significant differences. This 908 

comparison demonstrates that COCOA can better leverage the covariation of epigenetic signal to 909 

annotate epigenetic variation compared to methods that do not use covariation. 910 

     911 

 912 
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  913 

Fig. S1. Region set scores for PCs 1-4 for the BRCA DNA methylation data. This figure is included with 914 

only the polycomb group marked to allow clearer visualization of the polycomb region set group in 915 

comparison to Fig. 1 where several region set groups are marked.  916 
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917 

Fig. S2. DNA methylation in some of the top scoring region sets for principal component 1. Average 918 

DNA methylation levels are shown for the 100 regions from each region set that had the highest 919 

absolute FCS for each PC. Patients are ordered by PC scores. 920 
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921 

Fig. S3. Meta-region profiles for region sets from the COCOA analysis of breast cancer DNA 922 

methylation data. A. Profiles for the highest scoring H3K9me3 and H3K27me3 region sets from PC2. B. 923 

Profiles for the two highest scoring hematopoietic TFs in PC3. A peak in the center of the meta-region 924 

profile indicates that the DNA methylation level covaries with the PC more at the region of interest than 925 

in the surrounding genome. Profiles have been normalized to the mean and standard deviation of the 926 

covariance of all cytosines for each PC. The number of regions from each region set that were covered 927 

by the epigenetic data in the COCOA analysis (Fig. 2, panel A) is indicated by “n”. 928 
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929 

Fig. S4. Hematopoietic transcription factor region sets have high scores for several of the top principal 930 

components. Region set scores for each of the first 10 principal components of the BRCA ATAC-seq data931 

0 
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932 

Fig. S5. Chromatin accessibility signal in some of the top scoring region sets from COCOA analysis of 933 

breast cancer ATAC-seq data. GATA3 and ER were the top scoring region sets for PC1 while CEBPA and 934 

ERG were the top scoring region sets for PC2. Average chromatin accessibility quantiles are shown for 935 

the 100 regions from each region set that had the highest absolute FCS for each PC. Patients are ordered936 

by PC scores. 937 
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938 

Fig. S6. Region set scores for each of the first 10 principal components of the BRCA ATAC-seq data, 939 

with polycomb region sets (EZH2/SUZ12-binding regions) indicated.  940 
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941 

Fig. S7. Association of average DNA methylation level in JUND and TCF7L2-binding regions with KIRC 942 

cancer stage and overall survival. A. The Spearman correlation of cancer stage with the average DNA 943 

methylation in JUND-binding regions. The JUND region set used is the highest scoring transcription 944 

factor region set from the KIRC COCOA analysis. The JUND Cox proportional hazards model did not meet 945 

the proportional hazards assumption and is therefore not included in the figure. B. The Spearman 946 
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correlation of cancer stage with the average DNA methylation in TCF7L2-binding regions. The TCF7L2 947 

region set used is the second highest scoring transcription factor region set from the KIRC COCOA 948 

analysis. C. Hazard ratios for Cox proportional hazards model of the association between overall patient 949 

survival and average DNA methylation in TCF7L2-binding regions. 950 

 951 

Fig. S8. Correlation between average EZH2/SUZ12-binding region DNA methylation and cancer stage. 952 

Color is based on the raw Spearman p-values and asterisks mark significant correlations after Holm-953 

Bonferroni correction to account for testing 21 cancer types.  954 
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955 

Figure S9. Comparison of COCOA and LOLA. A. The workflow for comparison of the methods. B. 956 

Association of PC scores with disease status. For low noise, PC1 is associated with disease status but for 957 

high noise, PC2 is associated with disease status (Wilcoxon rank-sum test). C. Results with a low level of 958 

noise added to samples. The COCOA score or LOLA odds ratio for each region set, ordered from highest 959 
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to lowest. C. Results with a high level of noise added to samples. The COCOA score or LOLA odds ratio 960 

for each region set, ordered from highest to lowest. There are no scores for LOLA because bumphunter 961 

did not identify any significant DMRs (FDR <= 0.05).  962 

 963 
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 964 

Fig. S10. Comparison of COCOA and chromVAR on breast cancer ATAC-seq data. A. COCOA and 965 

chromVAR scores for the region set database (see “Region set database” in methods). The chromVAR 966 

score for a region set is the standard deviation of all samples’ chromatin accessibility z-scores for that 967 
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region set. The ER-related region set group includes FOXA1, GATA3, and H3R17me2. For definition of the 968 

hematopoietic TF group, see “Region set database” in methods. B. COCOA and chromVAR scores for a 969 

curated version of the cisBP motif database. The ER-related region set group includes FOXA1 and 970 

GATA3. For the definition of the AP1-related group, see “Comparison of COCOA and chromVAR” in 971 

methods. C. The same COCOA and chromVAR scores for a curated version of the cisBP motif database 972 

but indicating FOX family motifs and hematopoietic TF motifs.  973 
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974 

Figure S11. Comparison of median and mean scoring methods. A. The COCOA score for each region set,975 

ordered from highest to lowest. The ER-related group includes GATA3, FOXA1, and H3R17me2. The 976 

polycomb group includes EZH2 and SUZ12. B.  Meta-region profiles of several of the highest scoring 977 
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region sets from the breast cancer analysis. Meta-region profiles show covariance between PC scores 978 

and the epigenetic signal in regions of the region set, centered on the regions of interest. The number of979 

regions from each region set that were covered by the epigenetic data in the COCOA analysis (panel A) is980 

indicated by “n”. The line at zero marks the mean or median respectively of the FCS for each PC. C. The 981 

relationship between region set scores for each scoring method. The Spearman correlation is shown. 982 

983 

Figure S12. Comparison of empirical p-values to gamma distribution p-value approximation. COCOA 984 

was run on PC1 and PC2 of PCA of simulated data with six region sets. The empirical p-values from 985 

100,000 permutations are shown. P-values were also calculated with a gamma distribution 986 

approximation after sampling either 300, 1000, or 10,000 permutations from the 100,000 that were 987 

calculated. 500,000 such samples were taken to get a distribution of gamma p-values for each region set988 

(outliers not shown). 989 

 990 

 991 

 992 

0 

 

f 

s 

 

t 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2020. ; https://doi.org/10.1101/2020.07.09.195289doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.09.195289
http://creativecommons.org/licenses/by/4.0/


51 

 

 

References 993 

[1] Sheffield NC, Bock C. LOLA: enrichment analysis for genomic region sets and regulatory elements in R and 994 

Bioconductor. Bioinformatics. 2015 oct;32(4):587–589. 995 

[2] Schep AN, Wu B, Buenrostro JD, Greenleaf WJ. chromVAR: inferring transcription-factor-associated 996 

accessibility from single-cell epigenomic data. Nature Methods. 2017 aug;14(10):975–978. 997 

[3] Lawson JT, Tomazou EM, Bock C, Sheffield NC. MIRA: an R package for DNA methylation-based inference 998 

of regulatory activity. Bioinformatics. 2018 mar;34(15):2649–2650. 999 

[4] McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, et al. GREAT improves functional 1000 

interpretation of cis-regulatory regions. Nature Biotechnology. 2010 may;28(5):495–501. 1001 

[5] Sheffield NC, Thurman RE, Song L, Safi A, Stamatoyannopoulos JA, Lenhard B, et al. Patterns of regulatory 1002 

activity across diverse human cell types predict tissue identity, transcription factor binding, and long-range 1003 

interactions. Genome Research. 2013 mar;23(5):777–788. 1004 

[6] Sheffield NC, Pierron G, Klughammer J, Datlinger P, Schonegger A, Schuster M, et al. DNA methylation 1005 

heterogeneity defines a disease spectrum in Ewing sarcoma. Nature Medicine. 2017 jan;23(3):386–395. 1006 

[7] Dozmorov MG. Epigenomic annotation-based interpretation of genomic data: from enrichment analysis to 1007 

machine learning. Bioinformatics. 2017 jun;33(20):3323–3330. 1008 

[8] Layer RM, Pedersen BS, DiSera T, Marth GT, Gertz J, Quinlan AR. GIGGLE: a search engine for large-scale 1009 

integrated genome analysis. Nature Methods. 2018 jan;15(2):123–126. 1010 

[9] de Boer CG, Regev A. BROCKMAN: deciphering variance in epigenomic regulators by k-mer factorization. 1011 

BMC Bioinformatics. 2018 jul;19(1). 1012 

[10] Frost HR, Li Z, Moore JH. Principal component gene set enrichment (PCGSE). BioData Mining. 2015 1013 

jun;8(1). 1014 

[11] Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment 1015 

analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the 1016 

National Academy of Sciences. 2005 sep;102(43):15545–15550. 1017 

[12] Meng C, Basunia A, Peters B, Gholami AM, Kuster B, Culhane AC. MOGSA: Integrative Single Sample Gene-1018 

set Analysis of Multiple Omics Data. Molecular & Cellular Proteomics. 2019 jun;18(8 suppl 1):S153–S168. 1019 

[13] Odom GJ, Ban Y, Liu L, Sun X, Pico AR, Zhang B, et al. pathwayPCA: an R package for integrative pathway 1020 

analysis with modern PCA methodology and gene selection. 2019 apr;. 1021 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2020. ; https://doi.org/10.1101/2020.07.09.195289doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.09.195289
http://creativecommons.org/licenses/by/4.0/


52 

 

 

[14] Ung M, Ma X, Johnson KC, Christensen BC, Cheng C. Effect of estrogen receptor alpha binding on 1022 

functional DNA methylation in breast cancer. Epigenetics. 2014 jan;9(4):523–532. 1023 

[15] Fleischer T, , Tekpli X, Mathelier A, Wang S, Nebdal D, et al. DNA methylation at enhancers identifies 1024 

distinct breast cancer lineages. Nature Communications. 2017 nov;8(1). 1025 

[16] Frietze S, Lupien M, Silver PA, Brown M. CARM1 Regulates Estrogen-Stimulated Breast Cancer Growth 1026 

through Up-regulation of E2F1. Cancer Research. 2008 jan;68(1):301–306. 1027 

[17] Guo S, Li X, Rohr J, Wang Y, Ma S, Chen P, et al. EZH2 overexpression in different immunophenotypes of 1028 

breast carcinoma and association with clinicopathologic features. Diagnostic Pathology. 2016 apr;11(1). 1029 

[18] Holm K, Grabau D, Lovgren K, Aradottir S, Gruvberger-Saal S, Howlin J, et al. Global H3K27 trimethylation 1030 

and EZH2 abundance in breast tumor subtypes. Molecular Oncology. 2012 jun;6(5):494–506. 1031 

[19] Hwang C, Giri VN, Wilkinson JC, Wright CW, Wilkinson AS, Cooney KA, et al. EZH2 regulates the 1032 

transcription of estrogen-responsive genes through association with REA, an estrogen receptor corepressor. Breast 1033 

Cancer Research and Treatment. 2007 apr;107(2):235–242. 1034 

[20] Segovia-Mendoza M, Morales-Montor J. Immune Tumor Microenvironment in Breast Cancer and the 1035 

Participation of Estrogen and Its Receptors in Cancer Physiopathology. Frontiers in Immunology. 2019 mar;10. 1036 

[21] Corces MR, Granja JM, Shams S, Louie BH, Seoane JA, Zhou W, et al. The chromatin accessibility landscape 1037 

of primary human cancers. Science. 2018 oct;362(6413):eaav1898. 1038 

[22] Dietrich S, Oles M, Lu J, Sellner L, Anders S, Velten B, et al. Drug-perturbation-based stratification of blood 1039 

cancer. Journal of Clinical Investigation. 2017 dec;128(1):427–445. 1040 

[23] Argelaguet R, Velten B, Arnol D, Dietrich S, Zenz T, Marioni JC, et al. Multi-Omics Factor Analysis-a 1041 

framework for unsupervised integration of multi-omics data sets. Molecular Systems Biology. 2018 1042 

jun;14(6):e8124. 1043 

[24] Fabbri G, Dalla-Favera R. The molecular pathogenesis of chronic lymphocytic leukaemia. Nature Reviews 1044 

Cancer. 2016 feb;16(3):145–162. 1045 

[25] Takao Y, Yokota T, Koide H. β-Catenin up-regulates Nanog expression through interaction with Oct-3/4 in 1046 

embryonic stem cells. Biochemical and Biophysical Research Communications. 2007 feb;353(3):699–705. 1047 

[26] Faunes F, Hayward P, Descalzo SM, Chatterjee SS, Balayo T, Trott J, et al. A membrane-associated β-1048 

catenin/Oct4 complex correlates with ground-state pluripotency in mouse embryonic stem cells. Development. 1049 

2013 feb;140(6):1171–1183. 1050 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2020. ; https://doi.org/10.1101/2020.07.09.195289doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.09.195289
http://creativecommons.org/licenses/by/4.0/


53 

 

 

[27] Ying L, Mills JA, French DL, Gadue P. OCT4 Coordinates with WNT Signaling to Pre-pattern Chromatin at 1051 

the SOX17 Locus during Human ES Cell Differentiation into Definitive Endoderm. Stem Cell Reports. 2015 1052 

oct;5(4):490–498. 1053 

[28] Zhang D, Yang X, Luo Q, Fu D, Li H, Li H, et al. EZH2 enhances the invasive capability of renal cell carcinoma 1054 

cells via activation of STAT3. Molecular Medicine Reports. 2017 dec;. 1055 

[29] Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, et al. The polycomb 1056 

group protein EZH2 is involved in progression of prostate cancer. Nature. 2002 oct;419(6907):624–629. 1057 

[30] Cheng Y, Li Y, Huang X, Wei W, Qu Y. Expression of EZH2 in uveal melanomas patients and associations 1058 

with prognosis. Oncotarget. 2017 jul;8(44). 1059 

[31] Kim KH, Roberts CWM. Targeting EZH2 in cancer. Nature Medicine. 2016 feb;22(2):128–134. 1060 

[32] Bachmann IM, Halvorsen OJ, Collett K, Stefansson IM, Straume O, Haukaas SA, et al. EZH2 Expression Is 1061 

Associated With High Proliferation Rate and Aggressive Tumor Subgroups in Cutaneous Melanoma and Cancers of 1062 

the Endometrium, Prostate, and Breast. Journal of Clinical Oncology. 2006 jan;24(2):268–273. 1063 

[33] Melling N, Thomsen E, Tsourlakis MC, Kluth M, Hube-Magg C, Minner S, et al. Overexpression of enhancer 1064 

of zeste homolog 2 (EZH2) characterizes an aggressive subset of prostate cancers and predicts patient prognosis 1065 

independently from pre- and postoperatively assessed clinicopathological parameters. Carcinogenesis. 2015 1066 

sep;36(11):1333–1340. 1067 

[34] Liu L, Xu Z, Zhong L, Wang H, Jiang S, Long Q, et al. Prognostic Value of EZH2 Expression and Activity in 1068 

Renal Cell Carcinoma: A Prospective Study. PLoS ONE. 2013 nov;8(11):e81484. 1069 

[35] Chen Z, Yang P, Li W, He F, Wei J, Zhang T, et al. Expression of EZH2 is associated with poor outcome in 1070 

colorectal cancer. Oncology Letters. 2017 dec;. 1071 

[36] Wang Y, Hou N, Cheng X, Zhang J, Tan X, Zhang C, et al. Ezh2 Acts as a Tumor Suppressor in Kras-driven 1072 

Lung Adenocarcinoma. International Journal of Biological Sciences. 2017;13(5):652–659. 1073 

[37] Basheer F, Giotopoulos G, Meduri E, Yun H, Mazan M, Sasca D, et al. Contrasting requirements during 1074 

disease evolution identify EZH2 as a therapeutic target in AML. The Journal of Experimental Medicine. 2019 1075 

mar;216(4):966–981. 1076 

[38] Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, et al. Orchestrating high-throughput 1077 

genomic analysis with Bioconductor. Nature Methods. 2015 jan;12(2):115–121. 1078 

[39] Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012 1079 

sep;489(7414):57–74. 1080 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2020. ; https://doi.org/10.1101/2020.07.09.195289doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.09.195289
http://creativecommons.org/licenses/by/4.0/


54 

 

 

[40] Davis CA, Hitz BC, Sloan CA, Chan ET, Davidson JM, Gabdank I, et al. The Encyclopedia of DNA elements 1081 

(ENCODE): data portal update. Nucleic Acids Research. 2017 nov;46(D1):D794–D801. 1082 

[41] Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A, et al. The NIH 1083 

Roadmap Epigenomics Mapping Consortium. Nature Biotechnology. 2010 oct;28(10):1045–1048. 1084 

[42] Kundaje A, , Meuleman W, Ernst J, Bilenky M, Yen A, et al. Integrative analysis of 111 reference human 1085 

epigenomes. Nature. 2015 feb;518(7539):317–330. 1086 

[43] Winkler AM, Ridgway GR, Douaud G, Nichols TE, Smith SM. Faster permutation inference in brain imaging. 1087 

NeuroImage. 2016 nov;141:502–516. 1088 

[44] Delignette-Muller ML, Dutang C. fitdistrplus: An R Package for Fitting Distributions. Journal of Statistical 1089 

Software. 2015;64(4). 1090 

[45] Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to 1091 

Multiple Testing. Journal of the Royal Statistical Society: Series B (Methodological). 1995 jan;57(1):289–300. 1092 

[46] Sánchez-Castillo M, Ruau D, Wilkinson AC, Ng FSL, Hannah R, Diamanti E, et al. CODEX: a next-generation 1093 

sequencing experiment database for the haematopoietic and embryonic stem cell communities. Nucleic Acids 1094 

Research. 2014 sep;43(D1):D1117–D1123. 1095 

[47] Mei S, Qin Q, Wu Q, Sun H, Zheng R, Zang C, et al. Cistrome Data Browser: a data portal for ChIP-Seq and 1096 

chromatin accessibility data in human and mouse. Nucleic Acids Research. 2016 oct;45(D1):D658–D662. 1097 

[48] Sandelin A. JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic 1098 

Acids Research. 2004 jan;32(90001):91D–94. 1099 

[49] Rosenbauer F, Tenen DG. Transcription factors in myeloid development: balancing differentiation with 1100 

transformation. Nature Reviews Immunology. 2007 feb;7(2):105–117. 1101 

[50] Somasundaram R, Prasad MAJ, UngerbÃ¤ck J, Sigvardsson M. Transcription factor networks in B-cell 1102 

differentiation link development to acute lymphoid leukemia. Blood. 2015 jul;126(2):144–152. 1103 

[51] Orkin SH. Transcription Factors and Hematopoietic Development. Journal of Biological Chemistry. 1995 1104 

mar;270(10):4955–4958. 1105 

[52] Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al. TCGAbiolinks: an R/Bioconductor 1106 

package for integrative analysis of TCGA data. Nucleic Acids Research. 2015 dec;44(8):e71–e71. 1107 

[53] Weirauch MT, Yang A, Albu M, Cote AG, Montenegro-Montero A, Drewe P, et al. Determination and 1108 

Inference of Eukaryotic Transcription Factor Sequence Specificity. Cell. 2014 sep;158(6):1431–1443. 1109 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2020. ; https://doi.org/10.1101/2020.07.09.195289doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.09.195289
http://creativecommons.org/licenses/by/4.0/


55 

 

 

[54] Schep A. motifmatchr: Fast Motif Matching in R; 2018. R package version 1.4.0. 1110 

[55] Eferl R, Wagner EF. AP-1: a double-edged sword in tumorigenesis. Nature Reviews Cancer. 2003 1111 

nov;3(11):859–868. 1112 

[56] Bioconductor Package Maintainer <Maintainer@Bioconductor Org>. ExperimentHub. Bioconductor; 2017. 1113 

[57] Marcel Ramos LW. curatedTCGAData: Curated Data From The Cancer Genome Atlas (TCGA) as 1114 

MultiAssayExperiment Objects. Bioconductor; 2017. 1115 

[58] R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria; 2018. Available 1116 

from: https://www.R-project.org/. 1117 

[59] Kassambara A, Kosinski M, Biecek P. survminer: Drawing Survival Curves using ’ggplot2’; 2019. R package 1118 

version 0.4.6. Available from: https://CRAN.R-project.org/package=survminer. 1119 

[60] Grambsch PM, Therneau TM. Proportional hazards tests and diagnostics based on weighted residuals. 1120 

Biometrika. 1994;81(3):515–526. 1121 

[61] Therneau TM. A Package for Survival Analysis in S; 2015. Version 2.38. Available from: https://CRAN.R-1122 

project.org/package=survival. 1123 

[62] Terry M Therneau, Patricia M Grambsch. Modeling Survival Data: Extending the Cox Model. New York: 1124 

Springer; 2000. 1125 

[63] Holm S. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics. 1126 

1979;6(2):65–70. 1127 

[64] Ma S, Ogino S, Parsana P, Nishihara R, Qian Z, Shen J, et al. Continuity of transcriptomes among colorectal 1128 

cancer subtypes based on meta-analysis. Genome Biology. 2018 sep;19(1). 1129 

[65] Chikina MD, Troyanskaya OG. An effective statistical evaluation of ChIPseq dataset similarity. 1130 

Bioinformatics. 2012 jan;28(5):607–613. 1131 

[66] Breeze CE, Reynolds AP, van Dongen J, Dunham I, Lazar J, Neph S, et al. eFORGE v2.0: updated analysis of 1132 

cell type-specific signal in epigenomic data. Bioinformatics. 2019 jun;. 1133 

[67] Yu G, Wang LG, He QY. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and 1134 

visualization. Bioinformatics. 2015 mar;31(14):2382–2383. 1135 

[68] Wang Z, Civelek M, Miller CL, Sheffield NC, Guertin MJ, Zang C. BART: a transcription factor prediction tool 1136 

with query gene sets or epigenomic profiles. Bioinformatics. 2018 mar;34(16):2867–2869. 1137 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2020. ; https://doi.org/10.1101/2020.07.09.195289doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.09.195289
http://creativecommons.org/licenses/by/4.0/


56 

 

 

[69] Corces MR, Buenrostro JD, Wu B, Greenside PG, Chan SM, Koenig JL, et al. Lineage-specific and single-cell 1138 

chromatin accessibility charts human hematopoiesis and leukemia evolution. Nature Genetics. 2016 1139 

aug;48(10):1193–1203. 1140 

[70] Hansen KD, Irizarry RA, WU Z. Removing technical variability in RNA-seq data using conditional quantile 1141 

normalization. Biostatistics. 2012 jan;13(2):204–216. 1142 

[71] Hinz S, Magheli A, Weikert S, Schulze W, Krause H, Schrader M, et al. Deregulation of EZH2 expression in 1143 

human spermatogenic disorders and testicular germ cell tumors. World Journal of Urology. 2009 dec;28(5):631–1144 

635. 1145 

[72] Singh R, Fazal Z, Corbet AK, Bikorimana E, Rodriguez JC, Khan EM, et al. Epigenetic Remodeling through 1146 

Downregulation of Polycomb Repressive Complex 2 Mediates Chemotherapy Resistance in Testicular Germ Cell 1147 

Tumors. Cancers. 2019 jun;11(6):796. 1148 

[73] Suva ML, Riggi N, Janiszewska M, Radovanovic I, Provero P, Stehle JC, et al. EZH2 Is Essential for 1149 

Glioblastoma Cancer Stem Cell Maintenance. Cancer Research. 2009 nov;69(24):9211–9218. 1150 

[74] Cheng T, Xu Y. Effects of Enhancer of Zeste Homolog 2 (EZH2) Expression on Brain Glioma Cell 1151 

Proliferation and Tumorigenesis. Medical Science Monitor. 2018 oct;24:7249–7255. 1152 

[75] Farlik M, Halbritter F, MÃ¼ller F, Choudry FA, Ebert P, Klughammer J, et al. DNA Methylation Dynamics of 1153 

Human Hematopoietic Stem Cell Differentiation. Cell Stem Cell. 2016 dec;19(6):808–822. 1154 

[76] Gomez L, Odom GJ, Young JI, Martin ER, Liu L, Chen X, et al. coMethDMR: accurate identification of co-1155 

methylated and differentially methylated regions in epigenome-wide association studies with continuous 1156 

phenotypes. Nucleic Acids Research. 2019 jul;47(17):e98–e98. 1157 

[77] He H, Sinha I, Fan R, Haldosen LA, Yan F, Zhao C, et al. c-Jun/AP-1 overexpression reprograms ER signaling 1158 

related to tamoxifen response in ER-positive breast cancer. Oncogene. 2018 feb;37(19):2586–2600. 1159 

[78] Miranda TB, Voss TC, Sung MH, Baek S, John S, Hawkins M, et al. Reprogramming the Chromatin 1160 

Landscape: Interplay of the Estrogen and Glucocorticoid Receptors at the Genomic Level. Cancer Research. 2013 1161 

jun;73(16):5130–5139. 1162 

[79] Jaffe AE, Murakami P, Lee H, Leek JT, Fallin MD, Feinberg AP, et al. Bump hunting to identify differentially 1163 

methylated regions in epigenetic epidemiology studies. International Journal of Epidemiology. 2012 feb;41(1):200–1164 

209. 1165 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2020. ; https://doi.org/10.1101/2020.07.09.195289doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.09.195289
http://creativecommons.org/licenses/by/4.0/

