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Summary 74 

The human metabolome has remained largely unknown, with most studies annotating ~10% of 75 

features. In nucleic acid sequencing, annotating transcripts by source has proven essential for 76 

understanding gene function. Here we generalize this concept to stool, plasma, urine and other 77 

human metabolomes, discovering that food-based annotations increase the interpreted fraction 78 

of molecular features 7-fold, providing a general framework for expanding the interpretability of 79 

human metabolomic “dark matter.” 80 

 81 

 82 
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Introduction 83 

In 2016, typical MS/MS-based untargeted metabolomics studies annotated only ~2% of 84 

molecules based on matches against spectral libraries, leaving the rest of the sample as 85 

metabolomic “dark matter.” The capture of community knowledge, accumulating public reference 86 

MS/MS spectra over the past four years, has increased this baseline ~2.5-fold within the global 87 

natural product social molecular networking (GNPS) infrastructure (Wang et al., 2016). This 88 

growth has been even more dramatic for data from commonly-studied specimen types such as 89 

human stool and plasma: 10.1 +/- 4.4% of MS/MS features now match to a reference MS/MS 90 

spectrum [1% FDR (Scheubert et al., 2017), n = 30, average number of unique MS/MS spectra is 91 

12,889/dataset]. However, despite these advances, the vast majority of detectable spectra lack 92 

any annotation. 93 

This situation for MS/MS spectra is in sharp contrast to the interpretability of 94 

uncharacterized portions of the human genome. For example, reference data sets for gene 95 

expression, such as expressed sequence tags (an early form of RNASeq), enable the sequencing 96 

of “dark matter,” as opposed to monitoring the expression of a single curated gene. Such methods 97 

have significantly improved interpretation by annotating genes not directly by function, but rather 98 

by source (developmental stage, tissue location, organism-level, phenotype, etc.) (Bono, 2020; 99 

Ono et al., 2017). Interpretation based on source has been very important for metagenomics and 100 

metatranscriptomics, increasing our understanding of the structure and function of complex 101 

communities by leveraging matches between genes or transcripts of known and unknown origin 102 

via publicly available databases.  103 

Annotation of chemicals, based on their source within publicly available complex reference 104 

samples that use controlled metadata vocabularies, has not been applied to metabolomics for 105 

several reasons. First, standards for annotation of molecules that are used to create spectral 106 

libraries have been based on availability of individual pure, typically commercially available, 107 

standards, and structural considerations such as presence of specific moieties. Many molecules 108 

are observed as multiple different ion forms, such as adducts, in-source fragments, and 109 

multimers. Current spectral libraries do not contain all possible ion forms of those molecules, and 110 

typically only the protonated form (Schmid et al., 2020; Vinaixa et al., 2016), because reference 111 

standards that run in a highly purified state that biases towards detection extraction of only specific 112 

data on specific ion forms. These forms are often different from the ions associated with the same 113 

molecule present in an extract from a biological matrix (e.g. proton vs sodium or even multiple 114 

sodium and potassium adducts), which then cannot be matched because the relevant spectra are 115 

not in the database. Second, on average, 5–10% of untargeted metabolomics data can be 116 

annotated from spectral libraries: the remaining 90+% are unassignable “dark matter” in 117 

metabolomics, especially when obtained from complex matrices such as human samples. Third, 118 

large databases of untargeted metabolomics data with consistently annotated provenance with 119 

controlled vocabularies have been neither available nor possible to effectively reuse. We recently 120 

addressed this latter problem via GNPS (Wang et al., 2016), ReDU (Jarmusch et al., 2019), 121 

importing data from MetaboLights into GNPS (Haug et al., 2020), with ReDU-compatible 122 

metadata conversion. Finally, the availability of robust scalable analysis infrastructures and 123 

algorithms, such as molecular networking, that enable the functional equivalent of reporting of 124 
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expressed sequence tag/RNASeq analysis, have only recently been introduced for mass 125 

spectrometry (Wang et al., 2016; Watrous et al., 2012). 126 

To improve interpretation of otherwise unannotated data from untargeted mass 127 

spectrometry experiments, we leverage entire reference data sets with curated ontologies to 128 

complement existing spectral libraries of individual molecules. Due to lack of a better term we 129 

refer to this approach as interpretive metabolomics in this manuscript, and demonstrate its 130 

potential by leveraging the Global FoodOmics MS/MS spectral database, which we have made 131 

publicly available on MassIVE. This food reference data set will be key for enabling future insights 132 

into human health given the importance of diet and the urgent need to develop additional methods 133 

for empirical nutrient and diet assessments to understand acute and chronic human disease 134 

(Barabási et al., 2020). We demonstrate that interpretive metabolomics can address these types 135 

of knowledge gaps by showing that it not only massively expands the fraction of the data that can 136 

be interpreted, but that these new insights can lead to an improved understanding of the diets 137 

consumed upon co-analysis of human and food/beverage mass spectral data.  138 

Results/Discussion 139 

We conjectured that a major source of chemicals detected by metabolomics in human samples 140 

originates from foods and beverages. We created “Global FoodOmics” 141 

(http://www.globalfoodomics.org) in 2017, which now contains 3,579 food and beverage samples 142 

contributed by the community, as outlined in the methods, following in the footsteps of the 143 

American Gut and the Earth Microbiome Projects (McDonald et al., 2018; Thompson et al., 2017). 144 

The majority of samples were photographed, and a subset were subjected to 16S rRNA profiling 145 

(1,511 samples) to characterize the microbial composition, as well as providing information about 146 

mitochondria and chloroplast sequences matched by the same primers. Foods were manually 147 

classified according to the Earth Microbiome Project Ontology, the USDA Food Composition 148 

Database and a modification of the Food and Nutrient Database for Dietary Studies (Johnson et 149 

al., 2019; Thompson et al., 2017) (https://ndb.nal.usda.gov/) to allow cross-study compatibility. In 150 

total, we report 157 metadata categories that further include a six-level food ontology, as well as 151 

fermentation or organic status, land or aquatic origin, country of origin, etc. (Table S1). Foods 152 

and beverages in Global FoodOmics consist of a range of items, from simple ingredients to 153 

prepared meals, as well as animal feed.  154 

A key benefit of interpretive metabolomics is that we consider all different ion forms 155 

encountered while collecting the Global FoodOmics dataset. The millions of MS/MS spectra in 156 

Global FoodOmics inherently include MS/MS spectra of different ion forms of both known and 157 

unknown molecules, and can, therefore, be matched in human biospecimens via direct matching 158 

of the MS/MS spectra or by more sophisticated approaches. The similar complexity of the 159 

reference and experimental data includes many chemicals that may have uncharacterized 160 

behavior, such as unexpected adducts or even multimers made up of different molecules. For the 161 

MS/MS spectra that do have annotations, it is possible to leverage GNPS tags to test whether the 162 

spectral matches make sense in the context of Global FoodOmics.  163 

Within the GNPS environment, the community can also add tags to each reference 164 

spectrum in the spectral library using a controlled vocabulary, including multiple per structure. An 165 

InChIKey was included for 4586 of 5455 spectral matches against the reference libraries (~5% 166 
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annotation rate at 1% FDR), which yielded 1492 unique structures upon consideration of planar 167 

structures. There were 415/1492 structures that had lifestyle tags and “food consumption” is the 168 

most frequently reported with 357 entries (86%) (Figure S1a) (Bouslimani et al., 2016). Brief 169 

descriptive tags provide more detail about the annotation itself, and 1131/1492 structures were 170 

annotated with such tags. The most common descriptive tags were in order: “natural product” 171 

(790/1131), “food” (576/1131), “human”, “plant”, “natural product_plant”, “plant_angiospermae”, 172 

and “drug” (Figure S1b). Some of these associations with the category “human” may also be of 173 

food origin, such as arachidonoyl carnitine, which is currently only tagged as “human,” but may 174 

have a variety of animal-product based food sources. Similarly, the tag “drug” includes 175 

annotations such as the antimicrobial agent monensin, which is not tagged as a food molecule, 176 

but is consumed with animal products from animals raised using monensin as a growth promoter. 177 

Thus the Global FoodOmics reference data capture not only inherently food-derived molecules, 178 

but also food-sourced exogenous compounds such as preservatives, growth enhancing 179 

substances, antimicrobials, pesticides, and packaging materials. However, because the 180 

annotation rate remains low, most of the data remains unused despite the informative tags.  181 

In addition to annotating molecules based on matches to library spectra, spectral matches 182 

to the food reference data can be obtained and visualized using MS/MS based molecular 183 

networking. When applying this method to both foods and biospecimens in an experimental sleep 184 

restriction and circadian misalignment study we observed connectivity of nodes within molecular 185 

families representing MS/MS spectra (Figure 1a,b). Using spectral libraries the tomatidine 186 

molecular family was shown to contain both annotated nodes (level 2 or 3, according to the 2007 187 

metabolomics standards initiative (Sumner et al., 2007) e.g, tomatidine, solasodine and 188 

sarsasapogenin (Figure 1b), as well as unannotated nodes, which are also observed with 189 

molecules occurring within Nightshade (Solanaceae) samples from the Global FoodOmics data 190 

set (Figure 1c). Sarsasapogenin (Figure 1c, node 1) is found in food as well as stool data while 191 

the +15.996 Da, the addition of the atom “O”, is only observed in stool data. However, numerous 192 

other molecular families (such as Figure 1c, node 10) contain no annotation, but do have spectral 193 

matches between plasma and foods — in this case features also observed in grape and fermented 194 

grape samples. In other cases, a plasma metabolite is annotated and connected to unannotated 195 

compounds found within the food reference samples (Figure 1c, nodes 11-14). These examples 196 

highlight how molecular networking can be used to propagate potential metabolism. How potential 197 

metabolism can be inferred with molecular networking is explained in (Quinn et al., 2017) and 198 

(Aron et al., 2020).  199 

A critical aspect of being able to leverage the food reference data, akin to expressed 200 

sequence tags, is that the associated metadata can be retrieved and organized. We leverage the 201 

Global FoodOmics ontology to identify different food categories in which MS/MS spectra are 202 

observed. These food counts can be summarized for a dataset and then visualized as a flow chart 203 

(Figure 1d). Due to the controlled research diets of the participants of the sleep and circadian 204 

study in Figure 1d, we were able to report if a given food category was consumed during the 205 

study. Of the 15 categories observed at level 5 of the food ontology, 8 represented direct matches, 206 

3 represented fermented counterparts of consumed foods (such as yogurt and fermented grapes 207 

when milk and grapes were consumed), and 4 categories were not documented to be consumed, 208 

while coffee and tea were not provided to participants during this study. By and large, consistent 209 

with the lack of consumption of caffeinated beverages, evidence of coffee or tea consumption 210 
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was only observed in two individuals. In one individual, caffeine was only detected in the first 48 211 

hrs, and in the other volunteer, caffeine was observed in a single time point in the later part of the 212 

study (second to last time point). Spectral matches to caffeine were not detected in any of the 213 

other participants. Thus, the empirically-recovered food ontology information from metabolomics 214 

data demonstrates that these matches are consistent with the food that was consumed in this 215 

study. 216 

 217 

 218 
Figure 1. The concept of interpretive metabolomics leveraging reference data sets. a. A schematic 219 

overview of human data and reference data (e.g. data from food items) as molecular families from 220 

independent data sets that are used in b. b. A schematic representation when reference data is co-221 

networked with human metabolomics data. Each node represents a unique MS/MS spectrum. c. 222 

Experimentally observed molecular families (sub-networks) generated from the co-analysis of stool (light 223 

blue) and plasma (magenta) data from a sleep restriction and circadian misalignment study with the Global 224 

FoodOmics reference dataset (green). Annotations are level 2/3 according to the 2007 metabolomics 225 

standards initiative (Sumner et al., 2007). Nodes 1-9: Tomatidine molecular family. Molecular family 10: a 226 

molecular family identified based on overlap of grape and fermented grape samples with plasma samples; 227 

multiple nodes contain spectral matches, however there is no library annotation and would otherwise remain 228 

completely uncharacterized. d. Summary of the spectra observed in plasma at each of the five food 229 

ontology levels. As this cohort received controlled diets, food categories observed in plasma samples were 230 
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matched with the known foods consumed. Solid circles represent MS/MS matches to foods consumed 231 

during the study, while grey circles represent MS/MS matches to fermented versions of foods consumed, 232 

indicating possible byproducts of digestion. Open white circle indicates consumption was not recorded in 233 

this study.  234 

 235 

To illustrate the broad utility of the Global FoodOmics reference data in enhancing the 236 

information gained from untargeted metabolomics, we co-analyzed the Global FoodOmics 237 

dataset with 27 human datasets (Table S2; at 1% FDR spectral matching), with the inclusion of 238 

additional study specific foods (SSF) where applicable (Figure 1a). These datasets contained 239 

between 5 and 2123 samples, represented multiple different biofluids and tissues, and included 240 

both adult and pediatric subjects, in conditions ranging from extremely long lived, such as a 241 

centenarian-enriched population in the Cilento Blue Zone in Italy, to inflammatory bowel disease, 242 

the healthy young adults undergoing experimental sleep restriction and circadian misalignment 243 

highlighted in Figure 1 (Sprecher et al. 2019), children with medical complexity, adults with 244 

Alzheimer's disease, and Covid-19 infections in Brazil (Table S2). 245 

Spectral matching to food reference data, observed as overlaps between datasets from 246 

molecular networking, increased the interpretable fraction by 5.1 +/- 3.3 fold, even when 247 

compared to the library of all 150,633 public reference spectra that are used by the GNPS analysis 248 

infrastructure for annotation of public data which presently includes 29 spectral libraries, including 249 

from the three MassBanks (Japan, EU and North America) (Horai et al., 2010), HMDB (Wishart 250 

et al., 2018), ReSpect (Sawada et al., 2012), NIH natural product libraries (Huang et al., 2019), 251 

PNNL lipid library (Kyle et al., 2017), Bruker/Sumner, FDA libraries, Gates Malaria library, EMBL 252 

library, as well as many other GNPS contributed libraries 253 

(https://gnps.ucsd.edu/ProteoSAFe/libraries.jsp) and the commercial NIST17 library (CID portion 254 

only). Adding in additional information from molecular network connectivity, which can capture 255 

metabolized versions of molecules, the fold change of interpretable data increased further to 6.8 256 

+/- 3.5 fold (Figure 2). The Global FoodOmics reference samples significantly increased the 257 

interpretation of various human metabolome samples above the initial annotation rate by 26.8+/-258 

3.3% for stool data (P = 2.8e-16, Games-Howell test), 27.5 +/- 5.2% for plasma data (P = 0.0040, 259 

Games-Howell test) and 41 +/- 4.6% for other human data (P = 0.00020, Games-Howell test). 260 

Further inclusion of connected nodes, representing potential metabolism via molecular 261 

transformations, results in a total increase of 43.7 +/- 3.1% (fecal; P = 6.9e-10, Games-Howell 262 

test), 51.2 +/- 6.9% (plasma; P = 2.8e-06, Games-Howell test), and 58.0 +/- 4.2% (human other; 263 

P = 1.4e-06, Games-Howell test) percent of MS/MS spectra that can now be leveraged as 264 

potentially a direct empirical readout of diet. 265 

For 14 of the public datasets, food samples of the region or exact dietary items frequently 266 

or exclusively eaten by that particular population were also collected (study specific foods; SSF). 267 

SSF and Global FoodOmics reference samples were separately (SSF; GFOP) and jointly (SSF & 268 

GFOP) evaluated for changes to the interpretable fraction of MS/MS spectra (Figure 2). For 269 

example, adding SSF (n=38) alone increased the percent of interpreted spectra for the 270 

centenarian stool data from an initial 5.4% annotation rate against spectral libraries to 20.0% 271 

interpreted (Figure 2a) and 4.9% initial to 24.4% for plasma samples (Figure 2b), and adding 272 

Global FoodOmics further expanded this to 49.0% (55.0% in plasma). For the sleep restriction 273 

and circadian misalignment study highlighted in Figure 1, the interpreted fraction also increased 274 

from an initial 7.2% to 27.8% (n=197 food samples; 45 of which are pooled meal samples), with 275 
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a further increase to 46.3% when using the Global FoodOmics reference data set (7.8% to 38.9% 276 

and with Global FoodOmics up to 54% for plasma). Overall, the inclusion of SSF significantly 277 

contributed to the increase in dietary spectral matches in plasma (Figure 2b; P = 0.0028, Games-278 

Howell test). In addition, in some cohorts the interpreted spectral rate reaches almost 80% after 279 

expansion with molecular networking (Figure 2c).  280 

To further demonstrate that spectral matching using reference matching reflects dietary 281 

components, we performed a crossover study to test whether a mismatched SSF inventory would 282 

yield similar results to the increases observed across studies with SSF (e.g. centenarian foods 283 

for the sleep and circadian study cohort). Crossover revealed that the reciprocal tests 284 

interpretation rates were only a few percent (5–6%) in comparison to when the correct SSF were 285 

used (15–30%) (Figure 2d).  286 

 287 
Figure 2. Increases of MS/MS spectral match rates when using interpretive metabolomics at the 288 

data set level. Spectral match rates of molecular features due to library match, food reference data, and 289 

molecular networking in a. stool data. Significant differences are determined by Welch’s F-Test. Library 290 

spectral matches (initial), spectral matches to study specific foods (SSF), spectral matches to Global 291 

FoodOmics project (GFOP) data, both (SSF & GFOP), expansion with molecular networking (Total). b. 292 

plasma data, and c. other human biospecimens. d. A crossover experiment between the centenarian data 293 

from Italy and the sleep and circadian study from the US, for both fecal and plasma samples. Study specific 294 

foods consumed by those individuals (yes) vs a different set of study specific foods (no), (Welch’s t-test).  295 

 296 

As the Global FoodOmics reference database expands with regionally-specific foods 297 

through a continued community effort, the interpreted fraction will likely increase. For example, 298 

when legume food data (15 files; SSF) similar to legumes supplemented in an infant malnutrition 299 
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study were included in addition to the Global FoodOmics data, the number of spectral counts for 300 

legumes went from 105 to 2430 unique MS/MS spectra that matched, while other food categories 301 

such as dairy and meats remained constant (level 3 food ontology; Legume supplementation, 302 

urine). Regional specificity was also directly evident for plasma samples collected in Brazil for a 303 

Covid-19 study, which displayed more spectral matches to a locally collected set of 60 Brazilian 304 

food samples with ~35% increase than to the entire Global FoodOmics reference dataset, that is 305 

dominated by US food, which only gave an ~20% increase in spectral matches (Figure 2b). Thus, 306 

although there is some overlap among the data from different foods, and even overlap among 307 

human-derived metabolites and the food data (e.g. many primary metabolites or those common 308 

in vertebrates), a large proportion are sufficiently unique to reveal, at least in part, the dietary 309 

composition in the study.    310 

 311 
Figure 3. Using interpretive metabolomics to assess dietary recommendations at the study level. a. 312 

Food ontologies of a rheumatoid arthritis cohort before and after a specific dietary recommendation of a 313 

low inflammatory diet. Plasma data are used. Food categories indicated as ‘with restrictions’ encompass 314 

foods where different types are encouraged and others discouraged (green vs. black tea) or foods that were 315 

supposed to be minimized (such as limiting egg consumption to 2 eggs per week). Food categories 316 

indicated as ‘not specified’ could not be matched to the suggested diet. b. Comparison of interpretive 317 

metabolomics results in the recommended diet and self-reported diet intake. Diet diaries were tabulated as 318 

consumption or no consumption of >200 food categories over the 28 days of the study and matched to the 319 

MS food categories, as possible. Matches to 16S rRNA gene sequence data are based on Bayesian source 320 

tracking proportions from the bacterial community, with food types as sources and rheumatoid arthritis fecal 321 

samples as sinks. The increase or decrease in the proportion of food source contribution pre and post 322 

dietary intervention (y-axis) is colored according to dietary recommendations. 323 
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 324 

To assess if interpretive metabolomics could be used to empirically establish adherence 325 

to dietary recommendations using MS/MS data, we analyzed a data set from rheumatoid arthritis 326 

patients (RA) asked to follow an anti-inflammatory diet (ITIS diet) (Bustamante et al., 2020). We 327 

compared the per sample extracted food counts with the recommended diet alteration as well as 328 

self-reported diet diary entries. The recommended diet included some foods to be avoided (such 329 

as coffee, refined sugars and milk), some foods to be restricted (minimize red meat and egg 330 

consumption) and some foods to be frequently consumed (such as fruits/vegetables, and plain 331 

unsweetened yogurt). In total, 47 foods and beverages were observed in this project with 332 

interpretive metabolomics (Figure 3a). By and large, most adhered to the recommended diet, as 333 

food counts of recommended foods increased, and those of foods to avoid decreased. Although 334 

there are instances when the mass spectrometry based observations did not match the 335 

recommended diet regime, the self-reported dietary records matched the empirically determined 336 

foods better than the recommended dietary information (Figure 3b). We further validated these 337 

matches using source tracking with 16S rRNA gene amplicon data collected on ~1500 samples 338 

of the Global FoodOmics foods, to predict food source contribution to the RA study stool samples. 339 

We observed a highly significant correlation in the proportion change of food sources predicted in 340 

the stool samples and metabolites in the plasma before and after dietary intervention (Pearson 341 

r = 0.57, p-value = 0.003; Figure S2). The empirically recovered food ontology information from 342 

interpretive metabolomics, in conjunction with validation with DNA sequence data, demonstrates 343 

the ability to recapitulate dietary readouts from human biospecimens and assess diet adherence. 344 

Interpretive metabolomics comes with several caveats to consider. We are not yet able to 345 

capture a complete picture of the human diet: for example, in the RA study, the participant diet 346 

diaries contained foods not yet captured in the FoodOmics database, potentially leading to an 347 

underestimation of food types observed. Community expansion of the Global FoodOmics 348 

database with specific foods and food ingredients will ultimately eliminate this issue.  349 

Another consideration is similar to what is observed with expressed sequence 350 

tags/RNASeq, where it is common to observe that there are multiple sample types, tissue 351 

locations or conditions that result in misinterpretation because the same sequence occurs in 352 

multiple locations. By analogy, a molecule could be produced by humans but also be part of 353 

different diet sources (i.e. cholesterol produced by the human body versus consumed). However, 354 

such matches still enable one to formulate a hypothesis that the observed MS/MS features from 355 

the human data might originate from the reference data as source, in this case food, especially 356 

when there are hundreds or thousands of signatures that point to specific foods or food groups 357 

that overlap. 358 

As we saw in many of the above datasets, it is not atypical to observe small numbers of 359 

spectral matches to insects, rodents, fungi and worms within diet read-outs. Although data on 360 

fungi, tarantula, crickets, and black ants, meant for human consumption, are included, most of 361 

these samples that match human data sets are from a Global FoodOmics sampling effort at the 362 

San Diego Zoo. While there is likely some overlap with molecules from these less common foods 363 

to those that humans more commonly consume (e.g. certain acylcarnitines might be found in beef 364 

and mice), the FDA food contamination guidelines allow for insect, fungal, worm, rodent parts and 365 

fecal matter to be present in food in quantities that surprise many non-specialists (Center for Food 366 

Safety and Nutrition, 2019) For example, peanut butter is allowed to have 30 or more insect 367 
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fragments and one rodent hair per 100 grams, and apple butter is allowed to have “5 or more 368 

whole or equivalent insects (not counting mites, aphids, thrips, or scale insects) per 100 grams of 369 

apple butter.” As long as these dietary “additives” are added to the reference data set, they too 370 

will be observed. Thus, interpretive metabolomics can provide empirical support for dietary 371 

compliance in nutritional content, including in clinical studies, and capture information that would 372 

otherwise remain hidden. 373 

Conclusion 374 

Here we show that well-curated reference datasets can be leveraged to provide a deeper 375 

understanding of untargeted metabolomics. Adding food-based spectral matches improves our 376 

ability to interpret molecular features 2 to 14-fold, and further improves to 3 to 17-fold by 377 

incorporating connections from molecular networking, providing a deeper insight of the 378 

metabolomic “dark matter.” Our results indicate that a direct empirical readout of diet adherence 379 

is within our reach using interpretive metabolomics, by combining structural, source, and chemical 380 

similarity measures.  381 

Although we demonstrated the power of interpretive metabolomics with food data as 382 

reference, any individual reference data set or combination of multiple data sets could be used in 383 

this fashion. We envision the broad application of such an approach. Generating databases for 384 

environmental allergens, medications, illegal substances, food ingredients and personal care 385 

products can inform within those research areas on potential exposures and food adulteration. 386 

Further, such investigations may also have far reaching impacts to understand commonalities 387 

that underlie different diseases. Over time, as metabolomics data repositories begin to control 388 

metadata vocabularies, most public data could be leveraged and reused as a reference data set 389 

on its own. This will significantly improve the interpretability of all metabolomics data, be it from 390 

environmental, animal, or human sources. 391 
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Lead Contact 458 

Further information and requests for resources should be directed to and will be fulfilled by the 459 

Lead Contact, Pieter Dorrestein (pdorrestein@health.ucsd.edu). 460 

Materials Availability 461 

This study did not generate new unique reagents. 462 

Data and Code Availability 463 

The code generated during this study is available on GitHub at 464 

https://github.com/DorresteinLaboratory/GlobalFoodomics. 465 

Raw and processed 16S rRNA amplicon sequencing data is available at Qiita study 466 

#11442  and raw sequence data has been deposited at  EBI accession ERP122648. 467 

GNPS task ID of analysis used for tag generation: f1a1f3a61aca416a9b3687d72488da7f 468 

The following files are available in addition to the Global FoodOmics mzXML files on 469 

massive.ucsd.edu under MSV000084900: metadata as a .txt; an image repository with between 470 

1 and 6 images per food; table of FDR-based parameters; raw food count data for RA study; full 471 

size PDF of sleep restriction and circadian misalignment study - GFOP3500 molecular network 472 

(excerpts found in Figure 1). 473 

Metadata dictionary: 474 

https://docs.google.com/spreadsheets/d/1Ebn-475 

TgMWEkd_7KOw9TCRvHGPsE7dGjVCr7dg28pwbmM/edit#gid=727944641 476 

 477 

The GNPS analyses used in this study can be accessed on-line at the following links:  478 

● Sleep study (MSV000083759; 479 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=e0bf255bcb2e492bb0be3be1a691b5fb; 480 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=6fe434761daf4f9da540cf1fd90b3985; 481 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=9a90bd12f51e453e968656e6458e0da4) 482 
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● Centenarian (MSV000084591; 483 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=8895b6e3445546c4a5bc3a726a920227; 484 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=981c9a7d39f742bda296d52f856981e5) 485 

● Impact of diet on RA (MSV000084556; 486 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=0794151fce2c4c18a7a0aa3a09140169) 487 

● LP Infant (MSV000083462; MSV000083463; 488 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=a7b222466ef844e69cdbd9835d2f6c39; 489 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=c756a9dfb5c34a2a8655f88114edf0a8; 490 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=4a322e640bb644068030949267fb4ea9) 491 

● Children with Medical Complexity (MSV000084610; 492 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=df24423835a341969342c2086b46275a) 493 

● American Gut (MSV000081981; 494 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=4884483bcffe4f269819858c3fd4faef) 495 

● Fermented food consumption (MSV000081171; 496 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=5cca39e0ebab4066a56e41ded48b4466) 497 

● Malawi legume supplement (MSV000081486; 498 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=93ba727aa9234727a73ae7860b2af3ca) 499 

● Rotarix vaccine response (MSV000084218; 500 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=08e9b9e048f04ac4b416e574a073e8e6) 501 

● IBD_1 (MSV000082431; 502 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=ec08eed8f186430d893c63111409baf4) 503 

● IBD_individual (MSV000079115; 504 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=fad746939afd4184975a296436aebfb7) 505 

● IBD_seed (MSV000082221; 506 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=907f2e0b7878417dbdb4c83f0df0e83a) 507 

● IBD_biobank (MSV000079777; 508 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=a79fbd4c96124209adfd0ef84cb56dec) 509 

● IBD_2 (MSV000084775; 510 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=07f855658c5342458045032ea70fc526) 511 

● IBD_200 (MSV000084908; 512 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=55bef02250d744eb97c6040c379cbfb4) 513 

● Alzheimer's disease (MSV000085256; 514 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=aac78e9d23b84194ab2f768cb685c636) 515 

● Covid-19 (MSV000085505; MSV000085537; 516 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=9cbcb6b46fe24826bc56c9e893d0bd2b) 517 

● IBD_biopsy (MSV000082220; 518 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=a83a279dad154f9ca7b549d40ce117ba) 519 

● Gout (MSV000084908; 520 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=55bef02250d744eb97c6040c379cbfb4) 521 

● Adult Saliva (MSV000083049; 522 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=6dd6e5b1cf454d67b8a2b3c151c18f4a) 523 

● Legume supplementation (MSV000084663; 524 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=93ba727aa9234727a73ae7860b2af3ca) 525 

 526 
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Networking parameters were set based on the MOLECULAR-LIBRARYSEARCH-FDR workflow 527 

on GNPS with the following task IDs: 528 

● GFOP3500: a7bf6cc3f91d466bab923f2268d6f4fc 529 

● Sleep deprivation: b55ab4004ed342d7b4ed1c488e935998 530 

● Sleep study: 78bbfed8574748d1a77dc7c2f1a44d39 531 

● Sleep study_SSF_test: b55ab4004ed342d7b4ed1c488e935998 532 

● Centenarian: 265a9553c69e47499cca3de056b43178 533 

● Centenarian_SSF_test: 265a9553c69e47499cca3de056b43178 534 

● American Gut: aee5dde3b2f84079a264e68ec981487e 535 

● Fermented food consumption: a44d1b2e1b9d4612974d0b85021675a7 536 

● Malawi legume supplement: de7b55f8adaa4ad9b2a8430e30435bf3 537 

● Children with Medical Complexity: f27243af071b43ab90d846bda959fc1c 538 

● Rotarix vaccine response: a2e02e3f97a54ca08e3866cc60f8d42b 539 

● Impact of diet on RA: 62b8754e761549f3b94ffae83d7ab95a 540 

● LP infant: 532aba2ad3644fadba0e6e7ea063c7ee 541 

● IBD_1: bb10b1ce90a24f3a9cef1e85e88c3882 542 

● IBD_biopsy: c4cfda90933b4842a7154f5f2def139d 543 

● IBD_individual: 3ce8cc636ae944848b4ada322aaf12fe 544 

● IBD_seed: ebbb715fc605457ba5f7e910b79d6177 545 

● IBD_biobank: 9465c34cf5444e12b89318b1fb363714 546 

● IBD_2: 983fa9271136404fb5743b44a6a109f0 547 

● IBD_200: e5acf5726722486caa897b2b07d402e8 548 

● Impact of diet on RA: 62b8754e761549f3b94ffae83d7ab95a 549 

● Alzheimer's disease: 658103164325425981c097cecba840b0 550 

● Gout: a478f419ae824378aa02e5e1b310cad2 551 

● Adulta saliva: 32980f95dbd5437aaa9e15d05c7246bb 552 

● LP infant: 8bfbdc1bf38c418fb223306cd42af897 553 

● LP infant: 3e414e13a4394bb78c07f7ca7f4d1be3 554 

● Legume supplementation: 2ca007303b9c4bb3820f392b996eba27 555 

● Alzheimer's disease: 658103164325425981c097cecba840b0 556 

● Covid-19 Brazil: d16eb32276c84bdb9c35c5872e97a986 557 

Methods 558 

IRB information for the human datasets used in this study, made public on MassIVE 559 

Sleep study (MSV000083759; IRB 15-0282), centenarian (MSV000084591; IRB 180478), Impact 560 

of diet on RA (MSV000084556; IRB 161474 ), LP Infant (MSV000083462; MSV000083463; IRB 561 

151713 UCSD),  Children with Medical Complexity (MSV000084610; IRB 161948 UCSD), 562 

American Gut (MSV000081981; IRB 141853 UCSD), Fermented food consumption 563 

(MSV000081171; IRB 141853 UCSD / published), Malawi legume supplement (MSV000081486; 564 

IRB ID #201503171; Washington University Human Studies Committee), Rotarix vaccine 565 

response (MSV000084218; IRB is PR-10060 from University of Virginia), IBD_1 566 

(MSV000082431; IRB # 150675), IBD_individual (MSV000079115; IRB # 150675), IBD_seed 567 
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(MSV000082221; UCSD HRRP 131487), IBD_biobank (MSV000079777; UCSD HRRP 131487); 568 

IBD_2 (MSV000084775; IRB # 150675), IBD_200 (MSV000084908; IRB # 150675), Alzheimer's 569 

disease (MSV000085256; UCSD IRB # 170957), Covid-19 (MSV000085505; MSV000085537; 570 

IRB approval number is 30248420.9.0000.5440 (University of São Paulo, Brazil), IBD_biopsy 571 

(MSV000082220; IRB number is 120025), Gout (MSV000084908; IRB Project #160768X), Adult 572 

Saliva (MSV000083049; IRB 150275 UCSD), Legume supplementation (MSV000084663; IRB ID 573 

#201905103). 574 

Global FoodOmics 575 

Sample Collection 576 

Sampling methodology was developed in order to facilitate sample collection in any environment, 577 

from the home, a restaurant, a festival, or in the lab. Initial samples were collected in a consistent 578 

manner, between April 2017 and March 2018. Additional sets of samples were added through 579 

Fall 2019. Each sample was assigned a unique number identifier upon sampling, which was used 580 

to trace the origin of the sample, and to organize descriptive information about the sample. In 581 

addition, when possible samples were photographed by the participant to create a photographic 582 

archive of all samples (uploaded to MassIVE MSV000084900; >4000 images representing 67% 583 

of the samples (2399/3579)). Primarily for the initial data set these images were used as the first 584 

point of reference for the collection of ancillary information about the different samples (termed 585 

metadata, described in more detail below). The image archive was critical, because as the project 586 

evolved and the breadth of sample types increased, new categories were added to the metadata, 587 

which were then filled in weeks or even months after sample collection. 588 

Samples were frozen at -80oC within 24 h of sample collection, unless otherwise noted in 589 

the metadata. Two samples were collected for each food or beverage included in the study. One 590 

sample was collected as an archive and directly frozen, and a second sample was collected for 591 

extraction. Food samples were collected in a tube prefilled with 1 ml 95% ethanol (Ethyl alcohol 592 

(Sigma- Aldrich) and Invitrogen UltraPureTM Distilled Water), as high ethanol concentrations are 593 

efficacious at preserving the sample for both DNA and metabolite analyses (Song et al., 2016). 594 

Samples were collected into 2 ml round bottom microcentrifuge tubes (Qiagen) and weighed prior 595 

to freezing. The pre-sample and post-sample weights as well as the weight differences were 596 

recorded in the metadata. It was not possible to collect all samples at a given concentration of 597 

extraction solvent (ethanol), because sampling was performed in many different environments 598 

and is meant to be consistent with future crowd-based community science participation. 599 

Therefore, the data can be compared qualitatively and not quantitatively, however for certain 600 

subsets 50 mg of material was collected consistently.   601 

Additional sets of food samples were added to the core set using the same methods as 602 

outlined above when possible. Samples from Venezuela were collected whole in absolute ethanol 603 

>=99.8% (Sigma Aldrich) and the extract was processed directly.  604 

The experimental protocol for the sleep restriction and circadian misalignment study has 605 

been described previously (Sprecher et al., 2019). Meals and food samples were prepared by the 606 

Clinical and Translational Research Center Nutrition Core of the Colorado Clinical and 607 

Translational Sciences Institute. Food was transported to the research site and refrigerated for 608 

the duration of the in-patient study. Individual meals were sampled and stored frozen in ziploc 609 
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bags. They were stored at -80oC prior to subsampling and LC-MS/MS analysis. Images are 610 

contained in a separate Sleep Study folder (MSV000084900). 611 

For several of the human studies we collected data on associated foods, which were 612 

processed according to the same methods as the Global FoodOmics samples. The number of 613 

SSF samples per cohort are outlined here: experimental sleep deprivation (197 samples; 45 are 614 

pooled); centenarian (38 individual samples); malawi legume supplement (14; 2 sample types, 615 

several extraction types); children with medical complexity (24 formula samples; 11 exact 616 

overlap); RA diet samples (20 individual sample; 2 samples types (stool, plasma), 2 time points)); 617 

mother’s milk (58 milk samples); legume supplements (15 individual legume samples; 6 different 618 

types). 619 

Community-based science collection 620 

The first sample collected was a carrot from a home garden. The participant was interested in 621 

how the soil conditions from prior tenants would impact the chemistry of the carrot, since the 622 

gardening practices of the prior tenant were unknown (organic or not, pesticide usage, etc.). In 623 

addition, home grown foods often taste different than store bought, likely reflected in the food 624 

metabolome. 625 

During the course of sampling, samples were received from over 50 different individuals 626 

in California as well as from different states as well as countries (such as Venezuela, Italy and 627 

most recently Brazil). Contributions from individuals ranged from produce from home gardens, 628 

home fermented products (yogurt, kombucha, sauerkraut), meat and dairy from private farms, to 629 

items individuals had purchased that were of interest to them.  630 

We were also directly invited to sample at local stores and organizations, including 631 

Venissimo cheese, Good Neighbor Gardens, and the San Diego Zoo and San Diego Zoo Safari 632 

Park, as well as local supermarkets such as Sprouts Farmers Market, Whole Foods Market, and 633 

Ralphs. We were invited by San Diego Fermenter’s Club founder Austin Durant to the San Diego 634 

Fermenter’s Club meeting and sampled from multiple vendors at both the Oregon Fermentation 635 

Festival in 2017 as well as the San Diego Fermentation Festival in 2018. We also received citrus 636 

samples from a farm at the US-Mexico border, with visibly dark skin due to air pollution, a 637 

particular concern of the farmer. Other sampling occurred in conjunction with study design, as 638 

was the case for the Rheumatoid arthritis cohort and the Covid-19 study. In total we engaged with 639 

a broad range of individuals, organizations, businesses and scientists, to generate this dataset of 640 

3579 samples (for future use this is already expanded beyond this number due to the collection 641 

of sets of SSF). A predominance of foods included in this initial dataset were sampled and/or 642 

purchased in California, leaving room for much further expansion and the inclusion of a crowd-643 

sourced community science initiative to expand the array of samples. 644 

The sample set contains a broad set of simple foods including fruits, vegetables, grains, 645 

as well as raw meat and fish, which build the foundation of many food products. In addition, we 646 

have 1133 fermented samples. This subcategorization of foods is made possible by the metadata 647 

collected on these samples, described in the Metadata Curation section. The breadth of samples 648 

included in the dataset necessitated careful collation and a range of information about the 649 

samples, resulting in 157 different metadata categories to describe various aspects of these food 650 

and beverage samples. 651 
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Samples originate from over 50 different identified countries of origin (Argentina, Australia, 652 

Austria, Belgium, Bolivia, Brazil, Canada, Chile, China, Columbia, Croatia, Ecuador, England, 653 

Ethiopia, France, Germany, Greece, Guatemala, Haiti, Holland/Netherlands, India, Indonesia, 654 

Ireland, Israel, Italy/Sardinia, Japan, Kenya, Korea, Madagascar, Malawi, Mexico, New Zealand, 655 

Nilgiri, Peru, Philippines, Poland, Serbia, Portugal, Russia, Scotland, South Africa, Spain, 656 

Switzerland, Taiwan, Thailand, Trinidad & Tobago, Turkey, UK, USA/Puerto Rico, Vietnam, 657 

Venezuela; EU, South America not included separately). 658 

Metadata Curation 659 

General organization 660 

Detailed information about each sample was captured in the form of metadata. The metadata are 661 

in the form of an array, where each row represents one sample and each column captures unique 662 

information about the sample (See Supplementary Information for Metadata File, as well as 663 

updates on Massive MSV000084900). This matrix allows for the categorization of foods by 664 

various different attributes and links these attributes to the sample numbers, the data files 665 

(.mzXML filename), as well as the 16S sequence information on Qiita (sample_name). The initial 666 

metadata categories captured included sample description, sample number, location sample was 667 

collected, the weight of the sample (pre-sample, post-sample, sample weight), the day it was 668 

collected, and whether an image had been taken and renamed to match the sample number and 669 

archived in the image repository. The initial 9 categories captured minimal information and 670 

allowed tracking of information about the sample.  671 

During the process of sample collection, the diversity of the samples being collected 672 

necessitated the addition of columns to capture more information about the samples and to be 673 

able to categorize them and compare different attributes. These columns grew to capture highly 674 

detailed information about each sample, for example whether the sample was organic, if it was 675 

raw or cooked, if it was washed before sampling, or for cheese samples whether it is the rind or 676 

the curd, etc. As columns were added, the initial columns and the image repository were used to 677 

trace back information.  678 

Classification scheme 679 

Various classifiers are used to describe foods, however we were unable to find an established 680 

scheme able to capture the diversity of samples, as well as distill the metadata down into a 681 

manageable number of categories to distinguish differences between the metabolomes of 682 

different food classes. We therefore categorized the foods by sample_type, which captured 683 

whether the sample was a food, beverage, or other item (for example supplements) and then 684 

expanded and shaped a unique categorization which takes into account the species and botanical 685 

definitions of foods. The sample_type categories range from sample_type_land_aquatic, to 686 

differentiate items sourced from different physical environments, sample_type_common, which 687 

allows for representation of a particular food group which was not otherwise captured in the 688 

metadata, such as zoo food or candy. The sample_type groups also include a hierarchy from 689 

group1 to group6 (Levels 1 through 5 are referenced in this manuscript), specific to foods and 690 

groupB1 through groupB3 which contain beverage specific information (alcoholic [binary], 691 

carbonated [binary], type of beverage [such as red wine, kefir, soda, etc.]). 692 
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Complex samples 693 

The above classification scheme gave sufficiently detailed information about simple foods (ones 694 

that have only one ingredient and could thus be filled out to the last group level, such as red cherry 695 

tomato). Complex foods contain not only multiple ingredients, but include highly processed foods 696 

purchased with ingredient lists as well as home cooked or restaurant meals. These foods have a 697 

higher variability of information known about them. The top 6 ingredients are captured in individual 698 

metadata categories, with a seventh ingredient field which contains the remainder of the 699 

ingredients (if known). However, the order of ingredients does not always clearly reflect the type 700 

of food and some constituents that may be of interest, such as tree nuts which may only be found 701 

in trace quantities. The sample_type_common category captured some of the information about 702 

the type of sample (candy), however to have a tangible classification of different ingredient types, 703 

we generated a specific complex food ontology based on the known presence of common 704 

categories (corn, dairy*, egg*, fruit, fungi, fish*, shellfish*, meat, peanut*, seaweed, soy*, tree nut*, 705 

vegetable/herb, wheat* (*designates known food allergen)). These categories reflect the main 706 

food groups and some of the most common allergens (US FDA Food Allergen Labeling And 707 

Consumer Protection Act of 2004) (Sicherer and Sampson, 2006), items which are of interest 708 

when correlating food metabolome data with other datasets, such as human fecal material (where 709 

the foods eaten are known or unknown).  710 

Fermented foods 711 

Preservation and processing method are included in the metadata. However, due to the potential 712 

importance of fermentation in the alteration of the food metabolome, and the potential health 713 

benefits that have been ascribed to fermented foods, several categories were included to highlight 714 

this feature: fermented or not, whether it contains live active cultures, whether it contains 715 

chocolate (which then was cross checked with the fermented category, as chocolate is a 716 

fermented food). The list of fermented foods crosses many of our sample types as it includes 717 

fermented dairy (yogurt, cheese), fermented meat/fish (salami, fish sauce), fermented vegetables 718 

(kimchi, sauerkraut), fermented fruit (chocolate, coffee), and fermented grains/legumes (bread, 719 

tempeh).  720 

Food specific categories 721 

Certain individual food categories also necessitated creation of specific categorization. For 722 

example, cheeses have the specific categories cheese_part (curd vs. rind), cheese_type 723 

(washed, blue, etc), and cheese_texture (soft, semi-soft, semi-hard, hard). Particularly for raw 724 

plant products, such as fruits, vegetables, grains which form the basis for many food ingredients, 725 

we captured botanical information: botanical_anatomy (fruit, leaf, tuber, seed, etc.), 726 

botanical_genus, and botanical_genus_species (when known). Tea samples have tea quality and 727 

tea type as distinct categories.  728 

Metadata for Cross-study Comparison 729 

To facilitate cross study comparison, we included the Earth Microbiome Project ontology: empo_1 730 

(level 1: Free-living, Host-associated, Control, or Unknown), empo_2 (level 2: Saline, Non-saline, 731 

Animal, Plant, or Fungus), and empo_3 (level 3: most specific habitat name) 732 

[http://www.earthmicrobiome.org/protocols-and-standards/empo/]. Wherever possible we linked 733 
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foods to food identifiers or created identifiers and categories that built upon the existing framework 734 

as defined by the U.S. Department of Agriculture's Food and Nutrient Database for Dietary 735 

Studies 2011-2012 (FNDDS) food grouping scheme (Martin et al., 2012). 736 

Sample Preparation 737 

A sterile stainless steel bead was added to each sample collected in ethanol and the samples 738 

were thawed on ice for 30 min. Samples were homogenized at 25–30 Hz for 5 min using a tissue 739 

homogenizer (QIAGEN TissueLyzer II, Hilden, Germany). Samples were swabbed with sterile 740 

dual tip swabs (BD swubes) and frozen immediately at -80°C until DNA extraction.  741 

DNA Extraction and 16S rRNA gene amplicon sequencing 742 

DNA extraction and 16S rRNA gene amplicon sequencing were performed using Earth 743 

Microbiome Project (EMP) standard protocols (http://www.earthmicrobiome.org/protocols-and-744 

standards/16s) (Thompson et al., 2017). DNA was extracted with the Qiagen MagAttract 745 

PowerSoil DNA kit as previously described (Marotz et al 2017). Amplicon PCR was performed on 746 

the V4 region of the 16S rRNA gene using the primer pair 515f-806r with Golay error-correcting 747 

barcodes on the reverse primer. Amplicons were barcoded and pooled in equal concentrations 748 

for sequencing. The amplicon pool was purified with the MO BIO UltraClean PCR cleanup kit and 749 

sequenced on the Illumina MiSeq sequencing platform. Raw sequence data were uploaded to 750 

Qiita for pre-analysis processing (Qiita study ID: 11442) (Gonzalez et al., 2018). In Qiita, raw 751 

sequence data were demultiplexed and minimally quality-filtered using the QIIME 1.9.1 script 752 

split_libraries_fastq.py, with a Phred quality threshold of 3, allowing for reverse complemented 753 

barcodes and mapping barcodes, and default parameters. Demultiplexed, quality-filtered 754 

sequence data were then trimmed to a read length of 150-bp, denoised with Deblur v1.1.0 (Amir 755 

et al., 2017) using default parameters, and subject to fragment insertion with SATéEnabled 756 

Phylogenetic Placement (Janssen et al., 2018) into the GreenGenes 13.8 reference phylogeny 757 

(McDonald et al., 2012), using default parameters, to generate an inclusive phylogeny. An 758 

observation table of per-sample counts of Deblur sub-operational taxonomic units were output 759 

into BIOM format for analyses (n = 1511 samples). Outside of Qiita, we assigned taxonomy to 760 

denoised reads using QIIME2’s feature-classifier, classify-sklearn, using the GreenGenes 13.8 761 

pre-fitted sklearn-based classifier (i.e., 99% OTUs, 515f/806r region of sequences), and default 762 

parameters (Bokulich et al., 2018; Bolyen et al., 2019). 763 

 764 
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SourceTracker analyses 765 

SourceTracker 2.0.1 (http://github.com/biota/sourcetracker2) was used to predict the proportion 766 

of microbial source environment contributions to a sink using a Bayesian classification model 767 

together with Gibbs sampling (Knights et al., 2011). The Deblur 150-bp observation table 768 

consisting of 1511 food samples was used as the set of source environments and the Rheumatoid 769 

Arthritis (RA) data set consisting of 49 fecal samples was used as the sink. All source and sink 770 

samples were rarefied to 2000 sequences per sample before source-tracking and doubleton 771 

ASVs were removed. Leave-one-out cross-validation was used to predict the source samples with 772 

heterogeneity from all other food categories. After source sample filtering a total of 346 samples 773 

representing a total of 25 broad food categories were retained. Food microbial source 774 

contributions were then predicted for RA samples and the difference in food contribution before 775 

and after diet intervention was calculated and compared by diet recommendations. 776 

Metabolite Extraction 777 

Homogenized samples were incubated for 40 min at -20°C and centrifuged (Eppendorf centrifuge 778 

5418, Hamburg, Germany) at 20,000 rpm for 15 min at 4°C. 400 μL of supernatant were 779 

transferred to a 96-well deep well plate and dried by centrifugal evaporation (Labconco Acid-780 

Resistant Centrivap Concentrator, Missouri, USA). Dried extracts were reconstituted in 150 μL of 781 

resuspension solution (50% methanol with 2 μM sulfadimethoxine), then vortexed for 2 min and 782 

sonicated for 5 min in a bath water (Branson 5510, Connecticut, USA). Resuspended extracts 783 

were then centrifuged for 15 min at 20,000 rpm and 4°C (Thermo SORVALL LEGEND RT, 784 

Germany) and transferred to a 96-well shallow well plate, and diluted either 5x or 10x to avoid 785 

saturating the MS detector. 786 

Liquid Chromatography - Mass Spectrometry 787 

Food extracts were analyzed using a UltiMate 3000 UHPLC system (Thermo Scientific, Waltham, 788 

Ma) equipped with a reverse phase C18 column, prepended with a guard cartridge (Kinetex, 100 789 

x 2.1 mm, 1.7 μm particles size, 100 Å pore size; Phenomenex, Torrance, CA, USA), at a column 790 

compartment temperature of 40°C. Samples were chromatographically separated with a constant 791 

flow rate of 0.5 ml / min using the following gradient: 1.5 min isocratic at 5% B, up to 100% B in 8 792 

min, 3 min isocratic at 100% B, back to 5% B in 0.5min and then 1.5min isocratic at 5% B (A: H2O 793 

+ 0.1% formic acid; B: Acetonitrile (ACN) + 0.1% formic acid (LC-MS grade solvents, Fisher 794 

Chemical, Hampton, United States)).  795 

The UHPLC system was coupled to a Maxis Q-TOF Impact II mass spectrometer (Bruker 796 

Daltonics, Bremen, Germany) equipped with an electrospray ionization source. MS spectra were 797 

acquired in positive ionization mode using Data Dependent Acquisition (DDA) with a mass range 798 

of m/z 50–1500. The instrument was externally calibrated two times per day to 1.0 ppm mass 799 

accuracy using ESI-L Low Concentration Tuning Mix (Agilent Technologies, Waldbronn, 800 

Germany). Hexakis (m/z 622.029509; (1H, 1H, 2H difluoroethoxy)phosphazene (Synquest 801 

Laboratories, Alachua, FL)) was used for lock mass correction. MS/MS spectra were acquired for 802 

the top 5 ions in each MS1 spectrum, with active exclusion after 2 spectra (maintained for 30 803 

seconds). Known contaminants as well as lock mass values commonly used with this instrument 804 
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were added to an exclusion list (m/z values listed): 144.49–145.49; 621.00–624.10; 643.80–805 

646.00; 659.78–662.00; 921.0–925.00; 943.80–946.00; 959.80–962.00. 806 

Raw high resolution mass spectrometry data files were converted to open source .mzXML 807 

format using Bruker DataAnalysis software after lock mass correction (m/z 622.0290). Raw data 808 

files as well as converted .mzXML files were uploaded to MassIVE (publicly available under 809 

unique identifier MSV000084900) and further analyzed on Global Natural Product Social 810 

Molecular Networking (GNPS) (https://gnps.ucsd.edu), as described below.  811 

MS2 Data Processing 812 

FDR estimation 813 

False discovery rate (FDR) estimation was calculated using Passatutto analysis workflow in 814 

GNPS (Scheubert et al. 2017; Wang et al. 2016). FDR estimation was used to determine the 815 

cosine value required with a minimum of 5 matched peaks to achieve an FDR of 1%. See the 816 

Data availability section for accession information. 817 

Molecular networking using GNPS: Molecular networking analysis and library search were 818 

performed using GNPS classical molecular networking release_18 (Wang et al. 2016). 3579 819 

.mzXML data files (available at MassIVE ID MSV000084900) were included in the analysis. The 820 

data were filtered by removing all MS/MS peaks within +/- 17 m/z of the precursor m/z. MS/MS 821 

spectra were window filtered by choosing only the top 5 peaks in the +/- 50 m/z window throughout 822 

the spectrum. The data was then clustered with MS-Cluster with a parent mass tolerance of 0.02 823 

m/z and an MS/MS fragment ion tolerance of 0.02 m/z to create consensus spectra. Further, 824 

consensus spectra that contained less than 2 spectra were discarded. A network was then 825 

created where edges where filtered to have a cosine score above 0.65 (slight variation per study 826 

based on FDR calculation) and more than 5 matched peaks. Further edges between two nodes 827 

were kept in the network if and only if each of the nodes appeared in each other's respective top 828 

10 most similar nodes. The spectra in the network were then searched against the GNPS spectral 829 

libraries. The library spectra were filtered in the same manner as the input data. All matches kept 830 

between network spectra and library spectra were required to have the same cosine score and 831 

minimum matched peaks as for library search. Version release 18 was used to process all studies 832 

with the exception of the Covid-19 dataset, which was processed with identical methods and 833 

version 23. 834 

Molecular networks were visualized in the GNPS browser as well as with the freely 835 

available program Cytoscape (version 3.5.1) (Shannon et al., 2003). 836 

Interpreted spectral rate calculation 837 

The levels of interpretation are delineated as follows: A spectral match between an MS/MS 838 

spectrum from human or food data with a library spectrum constitutes a molecular ID and 839 

determines the initial percent of interpreted spectra, which is also equivalent to the annotation 840 

rate of the dataset. A spectral match between MS/MS spectra in human and reference samples 841 

(by performing molecular networking of the datasets together and identifying nodes with overlap 842 

between the two groups) indicates a potential source. Matches between human and food data 843 

therefore implicate food as the potential source of the molecule. Food reference data are referred 844 

to in two main categories: the Global FoodOmics dataset (GFOP; broad range of foods and 845 
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beverages) and study specific food (SSF; foods and/or beverages known to be consumed by 846 

some participants). The last level of interpretation is based on connectivity within a molecular 847 

family, which allows us to infer structural relatedness or possible metabolism of food derived 848 

compounds.  849 

Food reference data and human data were organized into separate groups in the 850 

molecular networking analysis. The annotation and interpreted spectral rates were calculated 851 

using R (3.6.3) and the tidyr and dplyr packages. We first calculated percent annotation rate, or 852 

molecular ID, for all studies (stool, plasma, etc.) (i.e. # of stool nodes with a molecular ID / total # 853 

of stool nodes). Spectral matches between food reference data and human MS data (overlap 854 

between the two groups) provides the next level of information, referred to as the interpreted 855 

spectral rate (i.e. # of nodes found in food and stool data / total # of stool nodes), indicating a 856 

potential food source. 857 

For molecules without annotations to reference libraries, we wanted to measure the 858 

potential to explain their presence using molecular networking. By removing single loops in each 859 

dataset and comparing metabolites that shared a component index with an annotated compound, 860 

we were able to identify molecules that belong to the same molecular family to infer their potential 861 

classification, and calculate the interpreted spectral rate by dividing unannotated molecules that 862 

network with annotated ones by total metabolites within each sample type. Overlap between 863 

sample types was again assessed to understand contributions due to co-networking of molecules 864 

across sample types, increasing our ability to explain unannotated molecules found in our 865 

datasets. Visualizations were generated using graphics and beeswarm packages, and significant 866 

differences were calculated using Welch’s t-tests (stats::t.test), Welch’s F-test 867 

(onewaytests::welch.test), and Games-Howell (rstatix::games_howell_test) for multiple 868 

comparisons, as appropriate, with multiple comparisons correction using Tukey’s method. All data 869 

are expressed as the mean ± standard error and considered significant if P < 0.05 unless 870 

otherwise stated.  871 

For example, for GNPS molecular networking analyses test datasets were consistently 872 

placed in group 1 (G1) (and G2 for paired datasets, such as stool and plasma) and Global 873 

FoodOmics data were placed in group 4 (G4). SSF were consistently placed in G3 when used. 874 

The common nodes between G1 and G4 represent the overlap and potential enhancement of 875 

information, directly from the reference dataset. The improvement is thus measured by the 876 

difference in the overlap of G1 and G4 divided by the total nodes in G1 versus the # of annotations 877 

in G1 divided by the total nodes in G1. The “propagation” refers to the counting of nodes within 878 

connected components in molecular families which capture three types of additional information: 879 

1) unannotated compounds found only in G1 that network with an annotated compound found in 880 

G4 (could be an annotated molecule observed only in G4 or in G4 and G1), 2) unannotated 881 

compounds found only in G1, but in the same molecular family with an unannotated food 882 

compound (G4), or 3) unannotated compounds found only in G1, but in the same molecular family 883 

with an annotated food compound (G4). The increase shown for Total is taking into account the 884 

# of unique nodes from the three different types of molecular connectivity. The second is the 885 

largest contributor.  886 
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Metadata inference - food count generation 887 

Food counts were calculated as the number of consensus nodes in the molecular networking 888 

results that match to food samples. Consensus nodes were required to match to all of the relevant 889 

experiment groups (sample type, GFOP, optionally SSF) and not match to any of the other 890 

experiment groups. All source file names corresponding to the filtered consensus nodes were 891 

matched to the GFOP file names and metadata to derive counts of the foods at different levels of 892 

the food hierarchy. Infrequent food types that occurred less often than water (presumed blank) 893 

were removed to filter out sporadic random matches. 894 

For the flow diagrams the food counts for the complete datasets were calculated at 895 

different levels of the metadata hierarchy. Flow diagrams were generated in Python (version 3.8) 896 

using Pandas (version 0.25.3) (McKinney, 2010), NumPy (version 1.18.1) (van der Walt et al., 897 

2011), and floweaver (version 2.0.0a5) (Lupton and Allwood, 2017). 898 

Diet validation with RA dataset 899 

The food counts at the fifth hierarchy level were extracted for each individual raw file and used to 900 

construct a feature table. The occurrences were summed across groups (diet intervention), 901 

divided by the total number of samples in each group, respectively and the difference was 902 

calculated. These differences were then compared with the ITIS diet recommendations by food 903 

category. Foods were grouped into one of four categories: avoid, include, restricted, and not 904 

specified.  905 

Diet diary entries were tabulated across over 200 categories and the closest matches to 906 

the food categories identified by MS were identified. The corresponding diet data was tabulated 907 

based on the number of times a category was reported during the three time points prior to the 908 

diet change (pre-intervention) and the three time points prior to sample collection of the final time 909 

point (post-intervention; during the intervention). The sum of the three days per diet category was 910 

then divided by the total number of samples in the pre vs. post sample group, respectively (to 911 

account for missing self-reported information). Three days were chosen as a representation of 912 

foods most likely to be detected (Johnson et al., 2019). Categories were matched as closely as 913 

possible to those in the FoodOmics ontology. 914 

Dataset descriptions 915 

All human datasets were processed by LC-MS/MS on high resolution mass spectrometers, in 916 

positive ionization mode. 917 

Data were collected for the following studies using a QTOF mass spectrometer and similar 918 

methods as those outlined above: American Gut (MSV000081981), Children with Medical 919 

Complexity (MSV000084610), Rotarix vaccine response (MSV000084218), Malawi legume 920 

supplement (MSV000081486), IBD_1 (MSV000082431), IBD_individual (MSV000079115), 921 

Fermented food consumption (MSV000081171) (Taylor et al., 2020). The Sleep deprivation 922 

(MSV000083759; IRB 15-0282), centenarian (MSV000084591; IRB 180478), and Legume 923 

supplementation (MSV000084663) studies were analyzed using the methods described above 924 

and described in (Gauglitz et al., 2020a). The LP Infant (MSV000083462; MSV000083463), 925 

IBD_seed (MSV000082221), IBD_biobank (MSV000079777), IBD_2 (MSV000084775), IBD_200 926 
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(MSV000084908), IBD_biopsy (MSV000082220), Gout (MSV000084908), Adult Saliva 927 

(MSV000083049) datasets were collected as described previously (Gauglitz et al., 2020b). 928 

The datasets for the impact of diet on RA (MSV000084556) and Alzheimer's disease 929 

(MSV000085256) were collected with similar methods on a Q-exactive Orbitrap mass 930 

spectrometer (Thermo Scientific). The Alzheimer samples include Alzheimer’s Disease and 931 

elderly controls, and were drawn in the early morning after fasting for at least 6 hours. 932 

The food and plasma data for the Covid-19 study (MSV000085505; MSV000085537) were 933 

collected at the University of São Paulo, Brazil, as described below: Plasma samples were 934 

collected from patients with laboratory confirmed Covid-19 who were admitted to the Special Unit 935 

for the Treatment of Infectious Diseases (UETDI) at the General Hospital of the Medical School 936 

of Ribeirão Preto (HC-FMRP-USP). Previously, clarifications to patients occurred both orally and 937 

in writing, based on the printed text of the Free and Informed Consent Form, which contained the 938 

general proposal of the study, the procedures for obtaining the samples, the risks and benefits. 939 

In addition, they were assured about confidentiality of their name, personal data and the possibility 940 

of giving up their participation at any time. Following the signature, patients received a copy of 941 

the informed consent form. The following were included: 1) Patients diagnosed with Covid-19 in 942 

moderate, severe or critical forms and in need of hospital treatment; 2) Over 18 years old; 3) At 943 

least 50 kg of body weight; 4) Admission electrocardiogram without changes in rhythm and with 944 

QT interval <450 ms; 5) normal serum levels of Ca2+ and K+; 6) If a woman, between 18 and 50 945 

years old, negative β-HCG test on admission. Patients were excluded who: 1) have the mild forms 946 

of SARS-CoV-2; 2) pregnant; 3) unable to understand the information contained in the Free and 947 

Informed Consent Form (ICF). 948 

Sample preparation: For the Covid-19 plasma samples, aliquots of 20 μL were transferred 949 

to eppendorf tubes and 120 μL of cold extracting solution, MeOH: MeCN (1: 1, v/v) was added. 950 

After orbital shaking for 1 min (Gehaka AV-2 Shaker, São Paulo, Brazil), the samples were left at 951 

-20 oC for 30 minutes and then centrifuged for 10 min at 20000 × g at 4 oC (Centrifuge Boeco 952 

Germany M-240R, Germany). An aliquot of the organic phase (120 μL) was transferred to another 953 

eppendorf tube and evaporated to dryness in a rotary vacuum concentrator for 60 min, at 30 oC 954 

(Analitica, Christ RVC2-18, São Paulo). The residues were resuspended in 80 μL of H2O and 955 

centrifuged (10 min, 5000 ×g, 4 oC), an aliquot of 5 μL was injected. 956 

Mass spectrometry data collection plasma sample extracts were chromatographically 957 

separated with anHPLC (Shimadzu, Tokyo, Japan), coupled with a micrOTOF-Q II mass 958 

spectrometer (Bruker Daltonics, Boston, MA, USA) equipped with an ESI source and a 959 

quadrupole-time of flight analyzer (qTOF, Bruker Daltonics Inc., Billerica, MA, USA). For 960 

chromatographic analyses, we employed a Kinetex C18 column (1.7 µm, 100 × 2.1 mm) 961 

(Phenomenex, Torrance, CA, USA) kept at 40 oC, with a flow rate of 0.3 mL/min. A linear gradient 962 

was applied: 0-1.5 min isocratic at 5% B, 1.5-9.5 min 100% B, 9.5-12 min isocratic at 100% B, 963 

12-12.5 min 5% B, 12.5-14 min 5% B; where mobile phase A is water with 0.1% formic acid (v/v) 964 

and phase B is acetonitrile 0.1% formic acid (v/v) (LC-MS grade solvents). The MS data were 965 

acquired in positive mode using an MS range of m/z 50–1500. The equipment was calibrated with 966 

trifluoroacetic acid (TFA) every day, and internally during each run. The MS parameters were 967 

established as follows: end plate offset, 450 V; capillary voltage, 3500 V; nebulizer gas pressure, 968 

4.0 Bar; dry gas flow, 9 L/min; dry temperature, 220 oC. 969 
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For data dependent acquisition the five most abundant ions per MS1 scan were 970 

fragmented and the spectra collected. MS/MS active exclusion was set after 2 spectra and 971 

released after 30 seconds. A fragmentation exclusion list was set: m/z 144.49-145.49; 621.00-972 

624.10; 643.80- 646.00; 659.78-662.00; 921.0-925.00; 943.80-946.00; 959.80-962.00 to exclude 973 

known contaminants and infused lock mass compounds. A process blank was run every 5 974 

samples; 5 µL of a standard mix [Paclitaxel 1 mg L-1, and Diazepam 1 mg L-1] (Sigma-Aldrich, 975 

Saint Louis, Missouri, US) in 50% MeOH (LC-MS grade solvents) was injected every 5 samples. 976 

All MS data were analyzed with Bruker Compass DataAnalysis 4.3 software (Bruker Daltonics, 977 

Boston, MA, USA). 978 

A metadata file was created grouping all available clinical information from patients with 979 

laboratory confirmed Covid-19 and essential analysis specifications. The MS/MS data were 980 

calibrated with an internal standard (TFA), converted to mzXML files using MSConvert from the 981 

ProteoWizard software (Chambers et al., 2012) and then uploaded into the Global Natural 982 

Products Social Molecular Networking web-platform (https://gnps.ucsd.edu/). All MS data 983 

(.mzXML files) and metadata (.txt file) are publically available via GNPS/MassIVE 984 

(https://massive.ucsd.edu/) under accession number MSV000085373. 985 

  986 
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Supplement 987 

Table S1. Metadata [available also on MassIVE under ID MSV000084900] 988 

Table S2. Overview of public studies used in analysis. Each sample type represents an individual 989 

dataset.  990 

Study Sample Type SSF Num samples Massive ID 

GFOP3500 Food N/A 3527 MSV000084900 

Sleep study 

Fecal; 

Plasma yes (197) 98 (F); 371 (P) MSV000083759 

Centenarian 

Fecal; 

Plasma yes (38) 91 (F); 50 (P) MSV000084591 

Impact of diet on RA 

Fecal; 

Plasma yes (12) 51 (F); 60 (P) MSV000084556 

LP Infant 

Fecal; Oral; 

Skin yes (58) 

492(F); 461(O); 

461(S) 

MSV000083462; 

MSV000083463 

Children with Medical 

Complexity Fecal yes (24) 95 MSV000084610 

American Gut Fecal  2123 MSV000081981 

Fermented food 

consumption Fecal  276 MSV000081171 

Malawi legume supplement Fecal yes (14) 1131 MSV000081486 

Rotarix vaccine response Fecal  118 MSV000084218 

IBD_1 Fecal  40 MSV000082431 

IBD_individual Fecal  5 MSV000079115 

IBD_seed Fecal  334 MSV000082221 

IBD_biobank Fecal  95 MSV000079777 

IBD_2 Fecal  206 MSV000084775 

IBD_200 Fecal  203 MSV000084908 

Alzheimer's disease Plasma; CSF  

78 (P);  

116 (CSF) MSV000085256 

Covid-19 Brazil Plasma yes (60) 46 

MSV000085505; 

MSV000085537 

IBD_biopsy Tissue  135 MSV000082220 

Gout Serum  39 MSV000084908 

Adult saliva Saliva  89 MSV000083049 
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Legume supplementation Urine yes (15) 5 MSV000084663 

 991 

 992 

 993 
Figure S1. GNPS tag and GNPS Lifestyle Tag distribution for the Global FoodOmics reference 994 

data set (GNPS task ID: f1a1f3a61aca416a9b3687d72488da7f). Annotated MS/MS spectra were 995 

assigned planar InChIKeys, and at least one tag. Spectra can be assigned multiple tags, 996 

indicating multiple potential sources. 1131 total unique planar InChIKeys with at least one GNPS 997 

tag. a. Lifestyle tags and b. GNPS tags. 998 

 999 
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 1004 
Figure S2. Linear regression scatter plot of difference in food contributions for metabolite spectral 1005 

match (x-axis) and microbes by source tracking prediction (y-axis) before vs. after diet intervention 1006 

compared by diet recommendation of avoid (orange) or include (blue). Correlation evaluated by 1007 

Pearson correlation coefficient.  1008 

References 1009 

Amir, A., McDonald, D., Navas-Molina, J.A., Kopylova, E., Morton, J.T., Zech Xu, Z., Kightley, 1010 
E.P., Thompson, L.R., Hyde, E.R., Gonzalez, A., et al. (2017). Deblur Rapidly Resolves Single-1011 
Nucleotide Community Sequence Patterns. mSystems 2. 1012 

Aron, A.T., Gentry, E.C., McPhail, K.L., Nothias, L.-F., Nothias-Esposito, M., Bouslimani, A., 1013 
Petras, D., Gauglitz, J.M., Sikora, N., Vargas, F., et al. (2020). Reproducible molecular 1014 
networking of untargeted mass spectrometry data using GNPS. Nat. Protoc. 15, 1954–1991. 1015 

Barabási, A.-L., Menichetti, G., and Loscalzo, J. (2020). The unmapped chemical complexity of 1016 
our diet. Nature Food 1, 33–37. 1017 

Bokulich, N.A., Kaehler, B.D., Rideout, J.R., Dillon, M., Bolyen, E., Knight, R., Huttley, G.A., and 1018 
Gregory Caporaso, J. (2018). Optimizing taxonomic classification of marker-gene amplicon 1019 
sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6. 1020 

Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, 1021 
H., Alm, E.J., Arumugam, M., Asnicar, F., et al. (2019). Reproducible, interactive, scalable and 1022 
extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. 1023 

Bono, H. (2020). All of gene expression (AOE): An integrated index for public gene expression 1024 
databases. PLoS One 15, e0227076. 1025 

Bouslimani, A., Melnik, A.V., Xu, Z., Amir, A., da Silva, R.R., Wang, M., Bandeira, N., 1026 
Alexandrov, T., Knight, R., and Dorrestein, P.C. (2016). Lifestyle chemistries from phones for 1027 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 11, 2020. ; https://doi.org/10.1101/2020.07.08.194159doi: bioRxiv preprint 

http://paperpile.com/b/QA4eWy/v01C
http://paperpile.com/b/QA4eWy/v01C
http://paperpile.com/b/QA4eWy/v01C
http://paperpile.com/b/QA4eWy/v01C
http://paperpile.com/b/QA4eWy/v01C
http://paperpile.com/b/QA4eWy/jPKJ
http://paperpile.com/b/QA4eWy/jPKJ
http://paperpile.com/b/QA4eWy/jPKJ
http://paperpile.com/b/QA4eWy/jPKJ
http://paperpile.com/b/QA4eWy/jPKJ
http://paperpile.com/b/QA4eWy/bHY3
http://paperpile.com/b/QA4eWy/bHY3
http://paperpile.com/b/QA4eWy/bHY3
http://paperpile.com/b/QA4eWy/bHY3
http://paperpile.com/b/QA4eWy/ewB9
http://paperpile.com/b/QA4eWy/ewB9
http://paperpile.com/b/QA4eWy/ewB9
http://paperpile.com/b/QA4eWy/ewB9
http://paperpile.com/b/QA4eWy/ewB9
http://paperpile.com/b/QA4eWy/I40T
http://paperpile.com/b/QA4eWy/I40T
http://paperpile.com/b/QA4eWy/I40T
http://paperpile.com/b/QA4eWy/I40T
http://paperpile.com/b/QA4eWy/I40T
http://paperpile.com/b/QA4eWy/Oem5
http://paperpile.com/b/QA4eWy/Oem5
http://paperpile.com/b/QA4eWy/Oem5
http://paperpile.com/b/QA4eWy/Oem5
http://paperpile.com/b/QA4eWy/LlwN
http://paperpile.com/b/QA4eWy/LlwN
https://doi.org/10.1101/2020.07.08.194159
http://creativecommons.org/licenses/by/4.0/


30/33 
 

individual profiling. Proc. Natl. Acad. Sci. U. S. A. 113, E7645–E7654. 1028 

Bustamante, M.F., Agustín-Perez, M., Cedola, F., Coras, R., Narasimhan, R., Golshan, S., and 1029 
Guma, M. (2020). Design of an anti-inflammatory diet (ITIS diet) for patients with rheumatoid 1030 
arthritis. Contemp Clin Trials Commun 17, 100524. 1031 

Center for Food Safety, and Nutrition, A. (2019). Food Defect Levels Handbook. 1032 

Chambers, M.C., Maclean, B., Burke, R., Amodei, D., Ruderman, D.L., Neumann, S., Gatto, L., 1033 
Fischer, B., Pratt, B., Egertson, J., et al. (2012). A cross-platform toolkit for mass spectrometry 1034 
and proteomics. Nat. Biotechnol. 30, 918–920. 1035 

Gauglitz, J.M., Aceves, C.M., Aksenov, A.A., Aleti, G., Almaliti, J., Bouslimani, A., Brown, E.A., 1036 
Campeau, A., Caraballo-Rodríguez, A.M., Chaar, R., et al. (2020a). Untargeted mass 1037 
spectrometry-based metabolomics approach unveils molecular changes in raw and processed 1038 
foods and beverages. Food Chem. 302, 125290. 1039 

Gauglitz, J.M., Morton, J.T., Tripathi, A., Hansen, S., Gaffney, M., Carpenter, C., Weldon, K.C., 1040 
Shah, R., Parampil, A., Fidgett, A.L., et al. (2020b). Metabolome-Informed Microbiome Analysis 1041 
Refines Metadata Classifications and Reveals Unexpected Medication Transfer in Captive 1042 
Cheetahs. mSystems 5. 1043 

Gonzalez, A., Navas-Molina, J.A., Kosciolek, T., McDonald, D., Vázquez-Baeza, Y., 1044 
Ackermann, G., DeReus, J., Janssen, S., Swafford, A.D., Orchanian, S.B., et al. (2018). Qiita: 1045 
rapid, web-enabled microbiome meta-analysis. Nat. Methods 15, 796–798. 1046 

Haug, K., Cochrane, K., Nainala, V.C., Williams, M., Chang, J., Jayaseelan, K.V., and 1047 
O’Donovan, C. (2020). MetaboLights: a resource evolving in response to the needs of its 1048 
scientific community. Nucleic Acids Res. 48, D440–D444. 1049 

Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., Ojima, Y., Tanaka, K., Tanaka, 1050 
S., Aoshima, K., et al. (2010). MassBank: a public repository for sharing mass spectral data for 1051 
life sciences. J. Mass Spectrom. 45, 703–714. 1052 

Huang, R., Zhu, H., Shinn, P., Ngan, D., Ye, L., Thakur, A., Grewal, G., Zhao, T., Southall, N., 1053 
Hall, M.D., et al. (2019). The NCATS Pharmaceutical Collection: a 10-year update. Drug Discov. 1054 
Today 24, 2341–2349. 1055 

Janssen, S., McDonald, D., Gonzalez, A., Navas-Molina, J.A., Jiang, L., Xu, Z.Z., Winker, K., 1056 
Kado, D.M., Orwoll, E., Manary, M., et al. (2018). Phylogenetic Placement of Exact Amplicon 1057 
Sequences Improves Associations with Clinical Information. mSystems 3. 1058 

Jarmusch, A.K., Wang, M., Aceves, C.M., Advani, R.S., Aguire, S., Aksenov, A.A., Aleti, G., 1059 
Aron, A.T., Bauermeister, A., Bolleddu, S., et al. (2019). Repository-scale Co- and Re-analysis 1060 
of Tandem Mass Spectrometry Data. 1061 

Johnson, A.J., Vangay, P., Al-Ghalith, G.A., Hillmann, B.M., Ward, T.L., Shields-Cutler, R.R., 1062 
Kim, A.D., Shmagel, A.K., Syed, A.N., Personalized Microbiome Class Students, et al. (2019). 1063 
Daily Sampling Reveals Personalized Diet-Microbiome Associations in Humans. Cell Host 1064 
Microbe 25, 789–802.e5. 1065 

Knights, D., Kuczynski, J., Charlson, E.S., Zaneveld, J., Mozer, M.C., Collman, R.G., Bushman, 1066 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 11, 2020. ; https://doi.org/10.1101/2020.07.08.194159doi: bioRxiv preprint 

http://paperpile.com/b/QA4eWy/LlwN
http://paperpile.com/b/QA4eWy/LlwN
http://paperpile.com/b/QA4eWy/LlwN
http://paperpile.com/b/QA4eWy/O5Ur
http://paperpile.com/b/QA4eWy/O5Ur
http://paperpile.com/b/QA4eWy/O5Ur
http://paperpile.com/b/QA4eWy/O5Ur
http://paperpile.com/b/QA4eWy/O5Ur
http://paperpile.com/b/QA4eWy/i5yE
http://paperpile.com/b/QA4eWy/P0IW
http://paperpile.com/b/QA4eWy/P0IW
http://paperpile.com/b/QA4eWy/P0IW
http://paperpile.com/b/QA4eWy/P0IW
http://paperpile.com/b/QA4eWy/P0IW
http://paperpile.com/b/QA4eWy/v0g3
http://paperpile.com/b/QA4eWy/v0g3
http://paperpile.com/b/QA4eWy/v0g3
http://paperpile.com/b/QA4eWy/v0g3
http://paperpile.com/b/QA4eWy/v0g3
http://paperpile.com/b/QA4eWy/v0g3
http://paperpile.com/b/QA4eWy/V9fs
http://paperpile.com/b/QA4eWy/V9fs
http://paperpile.com/b/QA4eWy/V9fs
http://paperpile.com/b/QA4eWy/V9fs
http://paperpile.com/b/QA4eWy/V9fs
http://paperpile.com/b/QA4eWy/V9fs
http://paperpile.com/b/QA4eWy/pF5K
http://paperpile.com/b/QA4eWy/pF5K
http://paperpile.com/b/QA4eWy/pF5K
http://paperpile.com/b/QA4eWy/pF5K
http://paperpile.com/b/QA4eWy/pF5K
http://paperpile.com/b/QA4eWy/84Rg
http://paperpile.com/b/QA4eWy/84Rg
http://paperpile.com/b/QA4eWy/84Rg
http://paperpile.com/b/QA4eWy/84Rg
http://paperpile.com/b/QA4eWy/84Rg
http://paperpile.com/b/QA4eWy/zwCe
http://paperpile.com/b/QA4eWy/zwCe
http://paperpile.com/b/QA4eWy/zwCe
http://paperpile.com/b/QA4eWy/zwCe
http://paperpile.com/b/QA4eWy/zwCe
http://paperpile.com/b/QA4eWy/fBrX
http://paperpile.com/b/QA4eWy/fBrX
http://paperpile.com/b/QA4eWy/fBrX
http://paperpile.com/b/QA4eWy/fBrX
http://paperpile.com/b/QA4eWy/fBrX
http://paperpile.com/b/QA4eWy/n44c
http://paperpile.com/b/QA4eWy/n44c
http://paperpile.com/b/QA4eWy/n44c
http://paperpile.com/b/QA4eWy/n44c
http://paperpile.com/b/QA4eWy/n44c
http://paperpile.com/b/QA4eWy/tmrN7
http://paperpile.com/b/QA4eWy/tmrN7
http://paperpile.com/b/QA4eWy/tmrN7
http://paperpile.com/b/QA4eWy/xXIpp
http://paperpile.com/b/QA4eWy/xXIpp
http://paperpile.com/b/QA4eWy/xXIpp
http://paperpile.com/b/QA4eWy/xXIpp
http://paperpile.com/b/QA4eWy/xXIpp
http://paperpile.com/b/QA4eWy/xXIpp
http://paperpile.com/b/QA4eWy/XwBg
https://doi.org/10.1101/2020.07.08.194159
http://creativecommons.org/licenses/by/4.0/


31/33 
 

F.D., Knight, R., and Kelley, S.T. (2011). Bayesian community-wide culture-independent 1067 
microbial source tracking. Nat. Methods 8, 761–763. 1068 

Kyle, J.E., Crowell, K.L., Casey, C.P., Fujimoto, G.M., Kim, S., Dautel, S.E., Smith, R.D., Payne, 1069 
S.H., and Metz, T.O. (2017). LIQUID: an-open source software for identifying lipids in LC-1070 
MS/MS-based lipidomics data. Bioinformatics 33, 1744–1746. 1071 

Lupton, R.C., and Allwood, J.M. (2017). Hybrid Sankey diagrams: Visual analysis of 1072 
multidimensional data for understanding resource use. Resour. Conserv. Recycl. 124, 141–151. 1073 

Martin, C.L., Montville, J.B., Steinfeldt, L.C., Omolewa-Tomobi, G., Heendeniya, K.Y., Adler, 1074 
M.E., and Moshfegh, A.J. (2012). USDA Food and Nutrient Database for Dietary Studies 2011--1075 
2012: Documentation and User Guide. Beltsville, MD: US Department of Agriculture. 1076 
Agricultural Research Service, USDA Food Surveys Research Group. 1077 

McDonald, D., Price, M.N., Goodrich, J., Nawrocki, E.P., DeSantis, T.Z., Probst, A., Andersen, 1078 
G.L., Knight, R., and Hugenholtz, P. (2012). An improved Greengenes taxonomy with explicit 1079 
ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618. 1080 

McDonald, D., Hyde, E., Debelius, J.W., Morton, J.T., Gonzalez, A., Ackermann, G., Aksenov, 1081 
A.A., Behsaz, B., Brennan, C., Chen, Y., et al. (2018). American Gut: an Open Platform for 1082 
Citizen Science Microbiome Research. mSystems 3. 1083 

McKinney, W. (2010). Data Structures for Statistical Computing in Python. In Proceedings of the 1084 
9th Python in Science Conference, (SciPy), pp. 56–61. 1085 

Ono, H., Ogasawara, O., Okubo, K., and Bono, H. (2017). RefEx, a reference gene expression 1086 
dataset as a web tool for the functional analysis of genes. Sci Data 4, 170105. 1087 

Quinn, R.A., Nothias, L.-F., Vining, O., Meehan, M., Esquenazi, E., and Dorrestein, P.C. (2017). 1088 
Molecular Networking As a Drug Discovery, Drug Metabolism, and Precision Medicine Strategy. 1089 
Trends Pharmacol. Sci. 38, 143–154. 1090 

Sawada, Y., Nakabayashi, R., Yamada, Y., Suzuki, M., Sato, M., Sakata, A., Akiyama, K., 1091 
Sakurai, T., Matsuda, F., Aoki, T., et al. (2012). RIKEN tandem mass spectral database 1092 
(ReSpect) for phytochemicals: a plant-specific MS/MS-based data resource and database. 1093 
Phytochemistry 82, 38–45. 1094 

Scheubert, K., Hufsky, F., Petras, D., Wang, M., Nothias, L.-F., Dührkop, K., Bandeira, N., 1095 
Dorrestein, P.C., and Böcker, S. (2017). Significance estimation for large scale metabolomics 1096 
annotations by spectral matching. Nat. Commun. 8, 1494. 1097 

Schmid, R., Petras, D., Nothias, L.-F., Wang, M., Aron, A.T., Jagels, A., Tsugawa, H., Rainer, 1098 
J., Garcia-Aloy, M., Dührkop, K., et al. (2020). Ion Identity Molecular Networking in the GNPS 1099 
Environment. 1100 

Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., 1101 
Schwikowski, B., and Ideker, T. (2003). Cytoscape: a software environment for integrated 1102 
models of biomolecular interaction networks. Genome Res. 13, 2498–2504. 1103 

Sicherer, S.H., and Sampson, H.A. (2006). 9. Food allergy. J. Allergy Clin. Immunol. 117, S470–1104 
S475. 1105 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 11, 2020. ; https://doi.org/10.1101/2020.07.08.194159doi: bioRxiv preprint 

http://paperpile.com/b/QA4eWy/XwBg
http://paperpile.com/b/QA4eWy/XwBg
http://paperpile.com/b/QA4eWy/XwBg
http://paperpile.com/b/QA4eWy/XwBg
http://paperpile.com/b/QA4eWy/AKm9
http://paperpile.com/b/QA4eWy/AKm9
http://paperpile.com/b/QA4eWy/AKm9
http://paperpile.com/b/QA4eWy/AKm9
http://paperpile.com/b/QA4eWy/AKm9
http://paperpile.com/b/QA4eWy/LYRc
http://paperpile.com/b/QA4eWy/LYRc
http://paperpile.com/b/QA4eWy/LYRc
http://paperpile.com/b/QA4eWy/LYRc
http://paperpile.com/b/QA4eWy/WoWD
http://paperpile.com/b/QA4eWy/WoWD
http://paperpile.com/b/QA4eWy/WoWD
http://paperpile.com/b/QA4eWy/WoWD
http://paperpile.com/b/QA4eWy/CQcw
http://paperpile.com/b/QA4eWy/CQcw
http://paperpile.com/b/QA4eWy/CQcw
http://paperpile.com/b/QA4eWy/CQcw
http://paperpile.com/b/QA4eWy/CQcw
http://paperpile.com/b/QA4eWy/Ay0nx
http://paperpile.com/b/QA4eWy/Ay0nx
http://paperpile.com/b/QA4eWy/Ay0nx
http://paperpile.com/b/QA4eWy/Ay0nx
http://paperpile.com/b/QA4eWy/Ay0nx
http://paperpile.com/b/QA4eWy/Q8Hu
http://paperpile.com/b/QA4eWy/Q8Hu
http://paperpile.com/b/QA4eWy/IyO3
http://paperpile.com/b/QA4eWy/IyO3
http://paperpile.com/b/QA4eWy/IyO3
http://paperpile.com/b/QA4eWy/IyO3
http://paperpile.com/b/QA4eWy/rQmL
http://paperpile.com/b/QA4eWy/rQmL
http://paperpile.com/b/QA4eWy/rQmL
http://paperpile.com/b/QA4eWy/rQmL
http://paperpile.com/b/QA4eWy/rQmL
http://paperpile.com/b/QA4eWy/rYP8
http://paperpile.com/b/QA4eWy/rYP8
http://paperpile.com/b/QA4eWy/rYP8
http://paperpile.com/b/QA4eWy/rYP8
http://paperpile.com/b/QA4eWy/rYP8
http://paperpile.com/b/QA4eWy/rYP8
http://paperpile.com/b/QA4eWy/2jCE
http://paperpile.com/b/QA4eWy/2jCE
http://paperpile.com/b/QA4eWy/2jCE
http://paperpile.com/b/QA4eWy/2jCE
http://paperpile.com/b/QA4eWy/2jCE
http://paperpile.com/b/QA4eWy/h97W
http://paperpile.com/b/QA4eWy/h97W
http://paperpile.com/b/QA4eWy/h97W
http://paperpile.com/b/QA4eWy/yjcQ
http://paperpile.com/b/QA4eWy/yjcQ
http://paperpile.com/b/QA4eWy/yjcQ
http://paperpile.com/b/QA4eWy/yjcQ
http://paperpile.com/b/QA4eWy/yjcQ
http://paperpile.com/b/QA4eWy/qne1
http://paperpile.com/b/QA4eWy/qne1
http://paperpile.com/b/QA4eWy/qne1
http://paperpile.com/b/QA4eWy/qne1
https://doi.org/10.1101/2020.07.08.194159
http://creativecommons.org/licenses/by/4.0/


32/33 
 

Song, S.J., Amir, A., Metcalf, J.L., Amato, K.R., Xu, Z.Z., Humphrey, G., and Knight, R. (2016). 1106 
Preservation Methods Differ in Fecal Microbiome Stability, Affecting Suitability for Field Studies. 1107 
mSystems 1. 1108 

Sprecher, K.E., Ritchie, H.K., Burke, T.M., Depner, C.M., Smits, A.N., Dorrestein, P.C., 1109 
Fleshner, M., Knight, R., Lowry, C.A., Turek, F.W., et al. (2019). Trait-like vulnerability of higher-1110 
order cognition and ability to maintain wakefulness during combined sleep restriction and 1111 
circadian misalignment. Sleep 42. 1112 

Sumner, L.W., Amberg, A., Barrett, D., Beale, M.H., Beger, R., Daykin, C.A., Fan, T.W.-M., 1113 
Fiehn, O., Goodacre, R., Griffin, J.L., et al. (2007). Proposed minimum reporting standards for 1114 
chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards 1115 
Initiative (MSI). Metabolomics 3, 211–221. 1116 

Taylor, B.C., Lejzerowicz, F., Poirel, M., Shaffer, J.P., Jiang, L., Aksenov, A., Litwin, N., 1117 
Humphrey, G., Martino, C., Miller-Montgomery, S., et al. (2020). Consumption of Fermented 1118 
Foods Is Associated with Systematic Differences in the Gut Microbiome and Metabolome. 1119 
mSystems 5. 1120 

Thompson, L.R., Sanders, J.G., McDonald, D., Amir, A., Ladau, J., Locey, K.J., Prill, R.J., 1121 
Tripathi, A., Gibbons, S.M., Ackermann, G., et al. (2017). A communal catalogue reveals Earth’s 1122 
multiscale microbial diversity. Nature 551, 457–463. 1123 

Vinaixa, M., Schymanski, E.L., Neumann, S., Navarro, M., Salek, R.M., and Yanes, O. (2016). 1124 
Mass spectral databases for LC/MS- and GC/MS-based metabolomics: State of the field and 1125 
future prospects. Trends Analyt. Chem. 78, 23–35. 1126 

van der Walt, S., Colbert, S.C., and Varoquaux, G. (2011). The NumPy Array: A Structure for 1127 
Efficient Numerical Computation. Computing in Science Engineering 13, 22–30. 1128 

Wang, M., Carver, J.J., Phelan, V.V., Sanchez, L.M., Garg, N., Peng, Y., Nguyen, D.D., 1129 
Watrous, J., Kapono, C.A., Luzzatto-Knaan, T., et al. (2016). Sharing and community curation of 1130 
mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. 1131 
Biotechnol. 34, 828–837. 1132 

Watrous, J., Roach, P., Alexandrov, T., Heath, B.S., Yang, J.Y., Kersten, R.D., van der Voort, 1133 
M., Pogliano, K., Gross, H., Raaijmakers, J.M., et al. (2012). Mass spectral molecular 1134 
networking of living microbial colonies. Proc. Natl. Acad. Sci. U. S. A. 109, E1743–E1752. 1135 

Wishart, D.S., Feunang, Y.D., Marcu, A., Guo, A.C., Liang, K., Vázquez-Fresno, R., Sajed, T., 1136 
Johnson, D., Li, C., Karu, N., et al. (2018). HMDB 4.0: the human metabolome database for 1137 
2018. Nucleic Acids Res. 46, D608–D617. 1138 

 1139 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 11, 2020. ; https://doi.org/10.1101/2020.07.08.194159doi: bioRxiv preprint 

http://paperpile.com/b/QA4eWy/IhIW
http://paperpile.com/b/QA4eWy/IhIW
http://paperpile.com/b/QA4eWy/IhIW
http://paperpile.com/b/QA4eWy/IhIW
http://paperpile.com/b/QA4eWy/IhIW
http://paperpile.com/b/QA4eWy/M1BN
http://paperpile.com/b/QA4eWy/M1BN
http://paperpile.com/b/QA4eWy/M1BN
http://paperpile.com/b/QA4eWy/M1BN
http://paperpile.com/b/QA4eWy/M1BN
http://paperpile.com/b/QA4eWy/M1BN
http://paperpile.com/b/QA4eWy/SsVy
http://paperpile.com/b/QA4eWy/SsVy
http://paperpile.com/b/QA4eWy/SsVy
http://paperpile.com/b/QA4eWy/SsVy
http://paperpile.com/b/QA4eWy/SsVy
http://paperpile.com/b/QA4eWy/SsVy
http://paperpile.com/b/QA4eWy/kDVKW
http://paperpile.com/b/QA4eWy/kDVKW
http://paperpile.com/b/QA4eWy/kDVKW
http://paperpile.com/b/QA4eWy/kDVKW
http://paperpile.com/b/QA4eWy/kDVKW
http://paperpile.com/b/QA4eWy/kDVKW
http://paperpile.com/b/QA4eWy/NrHfG
http://paperpile.com/b/QA4eWy/NrHfG
http://paperpile.com/b/QA4eWy/NrHfG
http://paperpile.com/b/QA4eWy/NrHfG
http://paperpile.com/b/QA4eWy/NrHfG
http://paperpile.com/b/QA4eWy/Cwwl
http://paperpile.com/b/QA4eWy/Cwwl
http://paperpile.com/b/QA4eWy/Cwwl
http://paperpile.com/b/QA4eWy/Cwwl
http://paperpile.com/b/QA4eWy/Cwwl
http://paperpile.com/b/QA4eWy/AYL8
http://paperpile.com/b/QA4eWy/AYL8
http://paperpile.com/b/QA4eWy/AYL8
http://paperpile.com/b/QA4eWy/AYL8
http://paperpile.com/b/QA4eWy/61D7
http://paperpile.com/b/QA4eWy/61D7
http://paperpile.com/b/QA4eWy/61D7
http://paperpile.com/b/QA4eWy/61D7
http://paperpile.com/b/QA4eWy/61D7
http://paperpile.com/b/QA4eWy/61D7
http://paperpile.com/b/QA4eWy/7OGC
http://paperpile.com/b/QA4eWy/7OGC
http://paperpile.com/b/QA4eWy/7OGC
http://paperpile.com/b/QA4eWy/7OGC
http://paperpile.com/b/QA4eWy/7OGC
http://paperpile.com/b/QA4eWy/tsJ1
http://paperpile.com/b/QA4eWy/tsJ1
http://paperpile.com/b/QA4eWy/tsJ1
http://paperpile.com/b/QA4eWy/tsJ1
http://paperpile.com/b/QA4eWy/tsJ1
https://doi.org/10.1101/2020.07.08.194159
http://creativecommons.org/licenses/by/4.0/

