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Abstract 

The Notch signal transduction pathway is pivotal for various physiological processes including 

immune responses, and has been implicated in the pathogenesis of many diseases including T-

cell acute lymphoblastic leukemia. Various targeted drugs are available that inhibit Notch 

pathway signaling, but their effectiveness varies due to variable Notch pathway activity among 

individual patients. Quantitative measurement of Notch pathway activity is therefore essential to 

identify patients who could benefit from targeted treatment. We here describe a new assay that 

infers a quantitative Notch pathway activity score from mRNA levels of conserved direct NOTCH 

target genes. Following biological validation, we assessed Notch pathway activity in a cohort of T-

ALL patient samples and related it to biological and clinical parameters including outcome. High 

Notch pathway activity was not limited to T-ALL samples harbouring strong NOTCH1 mutations, 

including juxtamembrane domain mutations or hetero-dimerization combined with PEST-domain 

or FBXW7 mutations, indicating that additional mechanisms may activate NOTCH signaling. The 

measured Notch pathway activity related to intracellular NOTCH levels, indicating that the 

pathway activity score more accurately reflects Notch pathway activity than predicted on the 

basis of NOTCH1 mutations. Importantly, patients with low Notch pathway activity had a 

significantly shorter event-free survival compared to patients showing higher activity. 

 

Introduction 

An increasing number of precision drugs is becoming available for clinical medicine, and many 

more are in development. These targeted drugs are intended for personalized medicine and aim 

at targeting pathophysiological defects underlying specific diseases in individual patients. For 

cancer, but also for many other diseases including auto-immune or immune-mediated diseases, 

patient samples may display a similar histopathology while significant pathophysiological 

variations can be found at the cellular level 1, 2. Such variations may be the reason that only part 

of all patients with a specific disease responds to a targeted drug. Matching the right drug to the 

right patient has therefore become an increasingly important issue. However, developing a 

diagnostic approach to reliably predict therapy responses has proven difficult. The prime example 

is oncology, where efforts in predicting patient responses to targeted drugs based on cancer 

genome mutations have generally been disappointing despite exceptions in select cases 3-5 6, 7. To 

improve clinical decision-making regarding targeted treatment and therefore to improve clinical 

outcome, assays are needed that accurately characterize and quantify the underlying 
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pathophysiological processes in individual patient samples 1, 8-17. Cellular signal transduction 

pathways are evolutionary conserved and control fundamental cellular processes like cell division, 

differentiation, migration, and metabolism 1, 18-20. They include nuclear receptor pathways (e.g. 

androgen and estrogen receptor pathways), developmental pathways (Wnt, Hedgehog, TGFβ and 

Notch), the highly complex growth factor- and cytokine-regulated signaling pathway network 

including JAK-STAT, PI3K-AKT-mTOR and MAPK pathways, and the inflammatory NFκB pathway 18, 

21. Measurement of the functional activity of these pathways in tumor biopsies from individual 

patients is expected to improve the prediction of therapy response.  We have previously 

described a novel approach to quantitatively measure activity levels of individual signal 

transduction pathways in various cell and tissue types 22-25. In addition to development of assays 

to measure activity of the estrogen and androgen receptor pathways, the PI3K, JAK-STAT3, Wnt, 

Hedgehog, TGFβ, NFκB and JAK-STAT1/2 pathways, we now report the development and 

biological validation of a quantitative Notch pathway activity assay. The human Notch pathway is 

an evolutionary highly conserved developmental signaling pathway, activated by the interaction 

of one of four NOTCH transmembrane receptors with Jagged or Delta-like Canonical Notch ligands 

on neighboring cells 16. Upon ligand binding, the receptor is cleaved by two consecutive protease 

steps that include an ADAM (a disintegrin and metalloprotease domain containing) protease and 

the gamma-secretase complex. The resulting cleaved intracellular NOTCH (ICN) migrates to the 

nucleus where it forms a transcription factor complex with DNA binding factor RBPJ 

(recombination signal binding protein for immunoglobulin kappa J region) and coactivators of the 

MAML (Mastermind-like) family and activates transcription of its target genes. The Notch 

pathway plays a role in multiple diseases including T-cell acute lymphoblastic leukemia (T-ALL) 16, 

26. Notch pathway inhibitors have been developed for multiple potential clinical applications, but 

their use has generally been associated with severe side effects 27-32. In addition, NOTCH inducers 

have been developed, e.g. for small cell lung cancer 33. A major clinical challenge is to minimize 

side effects and identify patients who benefit from Notch pathway modifying drugs. 

To illustrate the potential utility of the Notch pathway assay for clinical decision-making, Notch 

pathway activity analysis was performed in a large cohort of diagnostic samples from pediatric T-

ALL patients with a known genetic background and mutation status. Activating mutations in the 

NOTCH1 pathway including mutations in NOTCH1 and/or FBXW7—that encodes for a ubiquitin 

ligase involved in the degradation of active intracellular NOTCH1 (ICN1)—are found in 

approximately 60% of T-ALL patients 34, 35. Publications on patient outcome in T-ALL report 
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different prognostic significances for NOTCH1-activating mutations alone 36. We present evidence 

that patients with active Notch pathway signaling have a more favorable long-term outcome on 

high intensity combination treatment protocols 37-39. 

 

Methods 

Development of the Notch pathway assay  

The mathematical approach to develop Bayesian network models for the measurement of signal 

transduction pathway activities based on mRNA expression analysis has been described in detail 

before 24. In brief, a causal computational network model for the Notch signal transduction 

pathway was generated that calculates the probability that NOTCH transcription factors are active 

based on the expression levels of direct target genes (Fig. 1). The Bayesian network describes the 

causal relation between up- or downregulation of NOTCH target genes and the presence of an 

active or inactive NOTCH transcription complex. Parameters that describe this relationship are 

based on literature evidence, and are calibrated on patient samples with known Notch pathway 

activity. Target genes for the Notch pathway assay were selected according to the same principles 

as described before, using available scientific literature 22, 24. The probesets of direct target genes 

from publicly available Affymetrix (Santa Clara, USA) HG-U133Plus2.0 microarray datasets were 

selected using the Bioconductor package hgu133plus2.db available in the statistical environment 

R and manually curated using GRCh38/hg38 available on the UCSC Genome Browser 

(www.genome.ucsc.edu, last access 2-17-2020) 26, 28, 32, 40, 41. Probesets representing intronic 

sequences, probesets on opposite strands or other chromosomal sequences than the respective 

target gene were excluded. Probesets that were missing in Bioconductor were added. 

 

Calibration and validation of the Notch pathway activity model 

The Notch pathway Bayesian model, intended for generic use across different cell and tissue 

types, was calibrated on a single public dataset containing data from normal (low Notch pathway 

activity) and high grade serous ovarian cancer (high Notch pathway activity) tissue samples 42. 

Following calibration, model parameters were frozen. Upon entering new mRNA probeset 

measurements into the model, Bayesian inference is used to calculate a linear scale log2 odds 

pathway activity score, as described 22, 23. The log2odds scale allows for high resolution detection 

of differences in signaling pathway activity. The model-based Notch pathway assay was validated 
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using multiple independent Affymetrix datasets containing gene expression data from samples 

with known Notch pathway activity. 

 

Microarray data source and quality control 

Affymetrix HG-U133Plus2.0 datasets used for Notch pathway model calibration, validation, and 

for Notch pathway analysis of T-ALL (GSE26713), are available at the GEO website 

(www.ncbi.nlm.nih.gov/geo, last access 2-17-2020). GEO datasets have been listed with 

associated publications in the figure legends. Before using the microarray data, extensive quality 

control was performed on Affymetrix data from each individual sample based on 12 different 

quality parameters according to Affymetrix’s recommendations and previously published 

literature 22, 43, 44 and then further preprocessed in the statistical environment R using frozen RMA 
45 with ‘robust weighted average’ summarization. 

 

Description of the T-ALL pediatric patient cohort  

Affymetrix HG-U133Plus2.0 gene expression profiles (GSE26713) from diagnostic biopsies of 117 

T-ALL patients who were treated according to the German co-operative study group for 

childhood ALL-97 protocol (COALL-97) or the Dutch Childhood Oncology Group (DCOG) protocols 

ALL-7,-8 or -9 were used in this study 46. The patient data used in this study was obtained with 

informed consent from the subjects’ guardians and in accordance with the Declaration of 

Helsinki. 

 

Statistics 

For the validations of the Notch pathway model, two-sided Wilcoxon signed-rank statistical tests 

were performed. Other used statistical methods that are more appropriate due to the content of 

a specific dataset are indicated in figure legends. For pathway correlation statistics, both Pearson 

correlation and Spearman rank correlation tests were performed; since the results were similar, 

only the Pearson correlation coefficient and associated p-value are reported. For outcome 

analysis, Kaplan-Meier survival curves were calculated together with associated p-value using the 

log-rank test. 

 

Results 

Development of the Notch pathway assay and selection of NOTCH target genes 
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For the development of the Notch pathway assay, we selected high evidence direct target genes 

of NOTCH. This selection is based on (i) the presence of minimally one binding element in the 

promoter region, (ii) functionality of these binding elements that have been assessed for instance 

by gene promoter-reporter studies, (iii) binding of ICN to the respective response/enhancer 

element using ChIP and/or Electrophoretic Mobility Shift Assay, (iv) their differential expression 

upon pathway activation and/or inhibition, and (v) consistency of evidence as reported by 

multiple research groups for multiple cell/tissue types. Based on such accumulated experimental 

evidence as described before 22-24, we selected 18 direct target genes CD44, DTX1, EPHB3, HES1, 

HES4, HES5, HES7, HEY1, HEY2, HEYL, MYC, NFKB2, NOX1, NRARP, PBX1, PIN1, PLXND1, SOX9 

(Supplemental Table S1)47-89. This number is sufficient for robust and sensitive prediction of the 

pathway activity while comprising only high evidence target genes that enable maximal 

specificity over multiple cell types. 

 

Calibration and validation of the Notch pathway activity assay 

We calibrated the Notch pathway assay using data from high-grade serous (HGS) ovarian cancer 

samples with high Notch pathway activity and normal ovarian tissue samples with low Notch 

pathway activity (Fig. 2A). While in healthy ovarian tissue samples the Notch pathway is inactive, 

HGS ovarian cancer is associated with an active Notch pathway and activating NOTCH3 gene 

mutations or amplifications in about two third of the patients 42, 90-92. Following freezing of the 

Notch pathway model, it was validated on various independent datasets from cells of different 

tissue origins with Notch pathway-activated or gamma-secretase inhibited conditions, including 

cell types from ectodermal (neuroblastoma) and endodermal (lung cancer cells) origin in contrast 

to the mesodermal origin of the ovarian cancer samples the model had been calibrated on (Figs. 

2B-I). Two independent clones of a neuroblastoma cell line transfected with ICN3 show a rapid 

and persistent quantitative increase in Notch pathway activity score starting within 4 hrs and 

reaching a plateau activity at 12 hours after transfection (Fig. 2B). In leukemia, the AF1Q-MLLT11 

fusion protein confers sensitivity to ligand-induced Notch pathway signaling 93, 94. Hematopoietic 

progenitor cells (CD34+CD45RA-Lin-) from umbilical cord blood were transduced with the A2M 

mutant version of this fusion product that sequesters it in the nucleus. Following a three-day 

exposure to immobilized NOTCH ligand Delta1ext-IgG at two different dose levels, high Notch 

pathway activity scores were measured for both mock and A2M transduced cells (Fig. 2C). As 

expected, Notch pathway activity scores are higher for A2M-transduced cells than control cells. 
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This result provides additional evidence for the ability of the Notch pathway assay to quantify 

small differences in Notch pathway activity. In other experimental designs in which Notch 

pathway activity was inhibited by exposure to gamma-secretase inhibitors (GSIs), the robustness 

of the assay in various additional cell types was validated. A549 lung cancer cells exposed to the 

GSI RO4929097 for 6 or 24 hours scored a significantly lower Notch pathway activity than control 

A549 cells (Fig. 2D). Similar findings were found for the GSI-exposed Mantle B-cell lymphoma cell 

line SP-49 and the NOTCH mutant Rec-1 line 95 (Fig. 2E), and for the T-cell lymphoma and 

leukemia cell lines CUTLL1 and MOLT4 (Figs. 2F,G). In CUTLL1 cells, wash-out of the GSI resulted 

in reactivation the Notch pathway, which was accurately quantified (Fig. 2H). Furthermore, a 

dominant-negative form of the NOTCH cofactor MAML1 (DNMAML1) synergized with GSI and 

resulted in the lowest Notch pathway activity score. Interestingly, in this study the removal of GSI 

was performed both in the absence or presence of the protein translation inhibitor 

cycloheximide to exclude any feedback or secondary effects from NOTCH induced gene products. 

The measured Notch pathway activity scores were independent of protein translation, 

confirming that all genes that are part of the computational Notch pathway model are indeed 

direct target genes (Supplemental Fig. S1). In summary, these results demonstrate that the 

ovarian cancer-calibrated Notch pathway assay can be used to measure Notch pathway activity 

levels in T-cells, while the limited results available on other cell types suggest that the assay may 

also be usable in cell types of endodermal and ectodermal origin. 

 

Notch pathway activities in pediatric T-ALL patient samples 

Following biological validation of the Notch pathway assay, we measured Notch pathway activity 

scores in diagnostic samples from 117 pediatric T-ALL patients. This dataset has been previously 

used to distinguish four main T-ALL subgroups (ETP-ALL/immature, TLX, Proliferative and 

TALLMO) based on their differential gene expression profiles that strongly correlate with unique 

oncogenic rearrangements 46. Notch pathway activity scores ranged from -8.59 to 7.45 on the 

linear log2 odds scale. To investigate these scores in relation to the presence of specific types of 

Notch pathway-activating mutations, we categorized NOTCH1 mutations into weak or strong 

activating mutations as done before 35, 96, 97: weak NOTCH1 activating mutations are considered 

mutations in the NOTCH1 heterodimerization domain (HD), PEST domain, or inactivating 

mutations in FBXW7. Strong NOTCH1-activating mutations are mutations in the juxtamembrane 

domain or HD-mutations combined with PEST domain or FBXW7 mutations. Based on this 
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division, the median Notch pathway activity score was lowest for the patient samples without 

NOTCH-activating mutations and highest for the samples with the strong NOTCH1-activating 

mutations (p<0.001; Fig. 3A). Still, there is considerable overlap in activity scores among these 

groups. To investigate a potential effect of differences in genetic backgrounds among patients, 

we compared Notch pathway activity levels between the four T-ALL subtypes. The TLX subtype 

had the highest Notch pathway activity scores compared to the other subtypes and included 10 

out of 23 patient samples with strong NOTCH mutations (Fig. 3B). Various TLX samples without or 

with only weak NOTCH-activating mutations also had high Notch pathway activity scores, further 

supporting the previous observation that alternative Notch pathway-activating mechanisms may 

exist. We then related activity scores to intracellular NOTCH1 (ICN1) levels as measured using 

reverse-phase protein array for 62 patient samples 35. We observed a significant relationship 

between ICN1 levels and the absence or presence of NOTCH1-activating mutations (Fig. 3C) and 

between ICN1 levels and the Notch pathway activity scores (Fig. 3D). The significance of the 

correlation between ICN1 levels and Notch pathway activity was mainly attributed to the strong 

NOTCH1-activating mutations, as the significance was lost for patient samples without or with 

only weak NOTCH1-activating mutations (Supplemental Fig. S2). This raised the question 

whether those samples could harbor other Notch pathway-activating mechanisms. For this, we 

assessed NOTCH3 protein levels as an alternative Notch pathway-activating mechanism for 

various NOTCH1/FBXW7 non-mutated T-ALL patient samples with low ICN1 levels but high Notch 

pathway activity scores. We did not find expression of NOTCH3 protein in these and other T-ALL 

samples tested (not shown). We then excluded an influence of bone marrow or peripheral blood 

origin of the T-ALL samples on Notch pathway activity scores (not shown). Therefore, the 

incidental discrepancy between ICN and Notch pathway activity scores remains unclear. In 

conclusion, the results show that the Notch pathway assay quantitatively measures Notch 

pathway activity not only in cell line systems, but also in a cohort of primary T-ALL patient 

samples. 

  

Notch pathway activity and T-ALL patient survival 

The prognostic significance of NOTCH-activating mutations is not consistent in various patient 

studies 36. Part of this may be due to mechanisms, other than activating mutations in hotspots of 

NOTCH1 or FBXW7, that activate NOTCH signaling in T-ALL patients, and may explain the large 

overlap in Notch pathway activity levels for T-ALL patients with and without NOTCH/FBXW7 
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mutations. In order to investigate outcome in relation to Notch pathway activity, we divided the 

T-ALL patients into three groups based on their NOTCH activity scores: a group with the highest 

NOTCH activity scores (>75th percentile), a group with the lowest activity scores (<25th percentile) 

and a group with intermediate activity scores (between the 25th-75th percentiles of activity 

scores). When assessing the event-free and relapse-free survival curves, we observed that the 

patients with lowest activity scores had the shortest event-free survival compared to both other 

groups (p<0.05), while relapse-free survival showed the same trend (Figs. 4A,B).  

 

Relation between Notch pathway activity and PTEN loss 

The group with the lowest NOTCH activity scores contained patients that lacked either PTEN 

protein and/or had inactivating mutations or deletions in PTEN. We found an increased 

percentage of patients (11 out of 29, 38%) with functional PTEN loss in the group with the lowest 

Notch pathway activity, whereas only 12 out of 84 patients (14%) with intermediate and high 

Notch pathway activity scores had functional PTEN loss (p=0.006, Pearson Chi-Square, 2-sided).  

 

Discussion 

We have developed an assay to measure Notch pathway activity, consisting of a Bayesian network 

computational model which calculates a pathway activity score based on target gene expression 

levels. The set of NOTCH target genes was selected based on experimental evidence, irrespective 

of cell type or gene function 22-24. The computational model was successfully validated on a 

variety of samples from different cell types with known Notch pathway activity, i.e. brain, lung, 

hematopoietic stem cells, and T-ALL cell lines. This suggests that the assay can be used on 

multiple different cell types without model recalibration, even across cell types originating from 

different embryonic germ layers. This is to a large extent enabled by the selection of high 

evidence direct transcriptional target genes of the NOTCH transcription factor family (e.g. 

NOTCH1, NOTCH2, NOTCH3), eliminating cell type-specific influences on target gene expression 

as much as possible. In addition, the Bayesian network model is well suited to handle variations 

in input data, which presents a crucial advantage when analyzing patient samples that are 

intrinsically highly variable in gene expression regulation 22. Other RNA-based pathway analysis 

tools are available, mainly for biomarker discovery applications, and differences have been 

discussed before 22, 24, 98-100. In short, we use a knowledge-based Bayesian modelling approach as 

opposed to a more generally used data-driven approach, thus avoiding common problems with 
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data-overfitting. This approach improves specificity in measuring signaling pathway activity, and 

enables development as a diagnostic assay across multiple disease types.  

To explore clinical utility of the biologically validated Notch pathway model, we have analyzed 

diagnostic samples of 117 pediatric T-ALL patients. We found that the Notch pathway activity 

score was related to the presence of NOTCH1-activating mutations and the type of mutations, 

and correlated to the levels of ICN protein in these samples. Correspondingly, we found the 

highest Notch pathway activity scores in the TLX subgroup, a group that we described before to 

have the highest incidence of NOTCH1-activating mutations 35. Most T-ALL patients in this T-ALL 

subgroup (21 out of 30 patients) bear TLX3-BCL11B rearrangements 46. Moreover, the TLX 

subgroup is related to gamma-delta T-cell lineage development 101. Interestingly, human gamma-

delta T-cell lineage development especially depends on high Notch pathway activity levels, in 

contrast to alpha-beta T-lineage development 84. The proliferative and TALLMO subgroups that 

are associated with early and late cortical stages of the alpha-beta T-lineage, respectively, indeed 

have lower Notch pathway activity scores. Therefore, the NOTCH dependency in normal 

development mirrors that of the respective T-ALL subgroups. Remarkably, about half of the ETP-

ALL patients seem to have an activated Notch signaling pathway based on measured activity 

scores, despite their overall lower incidence of NOTCH-activating mutations 102. We observed that 

various samples without or with weak NOTCH-activating mutations still have high Notch pathway 

activity scores 35. This is especially evident for patients from the TLX subgroup and points to 

other, yet unidentified, mutations outside the present hotspot regions or other mechanisms that 

may activate the Notch pathway in T-ALL.  

Patients with a Notch pathway activity score in the lowest 25th percentile had the worst event-

free and relapse-free survival. Interestingly, NOTCH mutations in this cohort were not associated 

with beneficial outcome as reported before 35 while other studies identified activating NOTCH 

mutations as a favorable prognostic factor 37-39. This result suggests that scoring the Notch 

pathway activity might be a more reliable method to determine prognosis than identifying 

NOTCH-activating mutations. In addition, the Notch pathway test has the potential to improve 

stratification of patients to novel therapies targeting the Notch pathway.  

Patients with the lowest Notch pathway activity scores were more likely to have functional PTEN 

loss, indicating that Notch pathway activation and PTEN inactivation reflect two distinct T-ALL 

entities as we and others reported before 97, 103. PTEN aberrancies are often found in the TALLMO 

T-ALL subgroup in which they occur mutually exclusive with strong NOTCH1 mutations 97. 
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Moreover, patients with PTEN aberrancies have been shown to have an inferior survival 97, 103. The 

finding that PTEN aberrancies occurred more often in the patients with the lowest Notch pathway 

activity helps explain the inferior event-free/relapse-free survival of this group.  

Overall, our results indicate that Notch pathway activity cannot be deduced from the presence of 

activating mutations only, which may provide an explanation for the differences in the prognostic 

significance of NOTCH-activating mutations in various pediatric and adult patient cohorts 36.  

While the here described Notch pathway assay is expected to be of value for a broad range of 

diseases as well as for preclinical research and drug development, the first envisioned clinical 

application is therapy response prediction, e.g. to NOTCH inhibitors, for T-ALL, small cell lung 

cancer, and other malignancies. To enable use of the Notch pathway activity assay on formalin 

fixed paraffin embedded tissue samples that are the standard in pathology diagnostics, the here 

described Affymetrix-based Notch pathway activity test has been converted to an RT-qPCR based 

test; to enable determination of Notch pathway activity on RNA sequencing data, the assay has 

been converted to an RNAseq-based assay (www.philips.com/oncosignal). The conversion 

procedure has been described before, and does not involve addition of new target genes 

104.These assays will be used in future clinical validation studies. 
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Figure Legends 

 

Figure 1. Bayesian model for the Notch signal transduction pathway. 

The structure of the Bayesian network used to model the transcriptional program of signaling 

pathways. The transcription complex refers to the transcription factor associated with a specific 

signal transduction pathway, which can be present in an inactive or in an active gene transcribing 

state; target genes refers to direct target genes of the transcription complex; probesets refer to 

probesets for the respective target gene present on Affymetrix HG-U133 Plus 2.0 microarray.  

With permission, 24. 

 

Figure 2.  Calibration and biological validation of the Notch pathway model.  

(A) Calibration of the Notch pathway model.  GSE7307, GSE18520 105, GSE29450 106, GSE36668 
107, normal ovarian tissue samples (inactive pathway); GSE2109, GSE9891 108, high grade serous 

ovarian cancer samples (active pathway). 

(B-G) Validation of the model on independent GEO datasets from different cell lines. *p<0.05, 

**p<0.01, ***p<0.001. 

(B) GSE16477.109 Two clones (c6 and c8) of the IMR32 neuroblastoma cell line at different times 

(0-120 hours) after induction of active intracellular NOTCH3.  

(C) GSE29524. A2M (+ symbol) or control vector transfected CD34+CD45RA-Lin- hematopoietic 

progenitor cells from umbilical cord blood were cultured for 72hrs on a surface with 0, 2 or 5µg 

plastic-immobilized NOTCH ligand Delta1ext-IgG. A2M is a nuclear-trapped mutant of 

AF1q/MLLT11. 

(D) GSE36176.110 A549 lung cancer cell line subjected to vehicle control or gamma secretase 

inhibitor (GSI) RO4929097 for 6 or 24 hours. 

(E) GSE34602.95 Rec-1 (containing an activating NOTCH1 mutation) and SP49 Mantle cell 

lymphoma cell lines subjected to vehicle control or GSI compound E for 24hrs. SP49 cells harbor 

an activating NOTCH4 rearrangement. 

(F) GSE33562.111 Duplicate samples of the CUTLL1 T-cell lymphoma cell line were subjected to 

vehicle control or the GSI PF-03084014 (1µM) for 48hrs. 

(G) GSE6495.112 MOLT4 T-cell acute lymphoblastic leukemia cell line before and 48 hours after 

addition of the GSI DAPT (5µM); three independent experiments. 
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(H) GSE29544.113 CUTLL1 T-cell lymphoblastic lymphoma cells subjected to GSI compound E 

(1µM) for 3 days. From left to right: DMSO control; 3 grouped conditions: GSI without or with 2 

or 4 hours mock washout; 4 grouped conditions: GSI followed by 2 or 4 hours GSI washout in the 

presence or absence of cycloheximide; GSI in presence of a control viral transcript MigR1; 2 

grouped conditions: GSI in the presence of a control viral transcript MigR1 with 2 or 4 hours 

washout; GSI in the presence of viral transcript DNMAML1; 2 grouped conditions: GSI in the 

presence of viral transcript DNMAML1 with 2 or 4 hours washout. 

The activity score is calculated as log2odds. Two-sided Wilcoxon signed-rank statistical tests were 

performed, p-values are indicated in de figures. In case fewer than 3 samples were needed for 

presentation, bar plots are used instead of dot plots. 

 

Figure 3. Notch pathway activity in T-ALL. 

(A-D) GSE26713.46 No NOTCH activating mutations (blue symbols), weak NOTCH1 activating 

mutations (NOTCH1 heterodimerization domain, PEST domain or in FBXW7) (white symbols) and 

strong NOTCH1 activating mutations (juxtamembrane domain or more than one NOTCH1 

activating mutation) (red symbols) are indicated. P-values are indicated. (A-C) Kruskal-Wallis 

statistical test. Medians are indicated by the red lines. (D) Linear regression test.  

(A) Notch pathway activity of T-ALL samples (n=112) per NOTCH1/FBXW7 mutation status group. 

(B) Notch pathway activity per T-ALL subgroup (n=117). Five samples have an unknown 

NOTCH1/FBXW7 mutation status (grey symbols). 

(C) Active intracellular NOTCH1 (ICN1) protein level measured in relative intensity units using 

reverse-phase protein array (RPPA), indicated per NOTCH1/FBXW7 mutation status group (n=69). 

(D) Correlation of active intracellular NOTCH1 (ICN1) protein level and Notch pathway activity 

(n=62). 

 

Figure 4. Relapse-free and event-free survival of T-ALL patients in three different Notch 

pathway activity groups. 

Three different Notch pathway activity groups were separated based on the lowest 25% Notch 

pathway activity (blue line), the highest 25% Notch pathway activity (red line), and the remaining 

50% termed ‘middle’ Notch pathway activity (orange line). Relapse-free (A) and event-free (B) 

survival is plotted for T-ALL pediatric patients treated on the DCOG ALL-7, -8, and -9 and COALL-
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97 protocols. p=NS (not significant) (A) and p<0.05 (B) (log-rank test). Events include relapse, 

non-responsiveness to induction or maintenance therapy, change of treatment or death due to 

infection, toxicity or other causes. 
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Figure 4. Relapse-free and event-free survival of T-ALL patients 
in three different Notch pathway activity groups.
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