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          Abstract 

 In recent years the volume of biological data has soared. Parallel to this growth, the need 

for developing data mining strategies has not met sufficiently. Here we applied data mining 

techniques on genomic, literature and signaling databases to obtain the required 

information for  pathway inference. An R script was developed in R that discovers pathways 

using edge information in different signaling databases. We explain how to distinguish more 

valid pathways from the invalid ones using molecular information in the papers and genomic 

data analysis. We performed this pathway discovery approach on proto-oncogene c-Src to 

identify new pathways containing Src and genes that their expression were affected by Src 
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overactivation. This integrative method uses three sources of information which help 

bioinformaticians who work with gene regulatory network when they want to infer causal 

relationships between components of a biological system. In addition, some potential 

positive and negative feedbacks along with predicted pathways were proposed based on the 

gene expression results. In fact, this flowchart will open new insights into the interactions 

between cellular components and help biologists look for new possible molecular 

relationships that have not been reported neither in signaling databases nor as a pathway. 

 

Author summary:  

 Since biological systems are an extraordinary complex, the volume of biological data has 

been soaring exponentially. There are important biological information hidden in the ocean 

of big data that is achieved by recognizing the true relationships between different sources 

of data. Since human mind is very limited to find the important molecular relationships, we 

integrated data mining methods to find new connections between different cellular and 

molecular components. We illustrated how to utilize genomic data analysis and literature-

based study to infer causal relationships between components of a new discovered pathway 

and distinguish possible true relationships from the false ones. The importance of this 

method is determined once a researcher intends to develop a large gene regulatory network 

and this flowchart will help them to firstly, save time and energy secondly, look for any 

possible relationships. This approach could be useful In complex diseases like cancer and 

aims to detect new genetic targets to avoid disease enhancement. 
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         Introduction 

     Data mining tools like programming languages have become an urgent need in the era of 

big data. Many Biological databases are available for free for the users, but how researchers 

utilize these repositories depends largely on their computational techniques. Among these 

repositories, databases in NCBI are of great interest. Pubmed literature database and GEO 

(Gene Expression Omnibus) (1) and SRA (Sequence Read Archive) (2) genomic databases 

are among the popular ones. 

Different statistical models and machine learning algorithms have been developed to 

construct a gene regulatory network (GRN) from different genomic and epigenomic data (3, 

4). One of the simplest mining approaches to configure a regulatory network is using 

molecular information in the literature while other researchers use information in genomic 

repositories for this aim. Many biologists obtain information they need from signaling 

databases such as KEGG, STRING, OmniPath and so on without considering where this 

information comes from. In addition, boolean relationships between cellular components 

suffer from too much simplicity regarding the complex identity of molecular interactions.  In 

our previous work, we demonstrated that there is a week coherency between the gene 

expression profiles at mRNA level and the sign of interactions coming from signaling 

databases (5) . A few researchers try to support data they find using different sources of 

information. Furthermore, many papers illustrate paradox results because of the possible 

technical biases and type of biological samples. As a result, a deep insight into the type of 

biological context is needed to infer the correct relationships between cellular components.  
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     In this study we integrated information coming from literature and genomic data analysis 

for some sets of constructed pathways. The focus of this study is on the proto-oncogene c-

Src which has been implicated in progression and metastatic behavior of human carcinoma 

and adenocarcinoma (6-9). This gene is engaged in a process called Epithelial to 

Mesenchymal Transition (EMT) in which epithelial cells lose their cell-cell junction and 

acquire motility (10). Moreover, it is a target of many anti-cancer drugs, so revealing the new 

mechanisms that trigger cells to go under EMT would help design more potent drugs for 

different malignant tumors (11). Two time series transcriptomic datasets were obtained 

from different technologies, microarray and NGS, in which MCF10A normal human adherent 

breast cell lines were equipped with ER-Src system. These cells were treated with tamoxifen 

to witness the overactivation of Src. Gene expression pattern in different time points were 

analyzed for these cell lines. We tried to find firstly the most affected genes in these cells, 

secondly all possible connections between Src and DEGs (Differentially Expressed Genes).  

To be more precise in the analyses, only common DEGs in two datasets were considered. 

Furthermore, edges information in KEGG and OmniPath databases was used to construct 

pathways from Src to DEGs and between DEGs themselves. Finally , information in the 

expression results and the literature were utilized to select the possible correct pathways. 

Fig 1 illustrates the summary of whole experimental procedure. 
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Fig 1: visualization of different datamining steps from genomic and signaling databases to reach signaling 

pathways. KEGG and OmniPath edgelists were constructed from human KEGG signaling networks containing 

proto-oncogene c-Src and all human UniProt gene pairs archived in OmniPath database. Two time series gene 

expression datasets were obtained from GEO and SRA databases and common DEGs were identified in the two 

datasets between tamoxifen treated samples and ethanol treated samples.  Next, a script was developed to 

recognize all shortest pathways from Src to the DEGs highly affected by Src overactivation. Using time series 

analysis of DEGs and molecular data about target DEGs in the PubMed, possible valid pathways were 

distinguished from the false pathways.   
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Methods  

        Database Searching and recognizing pertinent experiments 

     Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) and Sequence Read 

Archive (https://www.ncbi.nlm.nih.gov/sra) databases were searched to detect 

experiments containing high-quality transcriptomic samples concordance to the study 

design. Homo sapiens, SRC, overexpression, and overactivation were the keywords used in 

the search. Microarray raw data with accession number GSE17941 was downloaded from 

GEO database. RNAseq fastq files with SRP054971 (GSE65885 GEO ID) accession number 

was downloaded from SRA database. In both studies MCF10A cell lines containing ER-Src 

system were treated either with tamoxifen to overactivate Src or ethanol as control. 

 

      Microarray Data Analysis.  

     R software version 3.6 was used to import and analyze the data. The preprocessing step 

involving background correction and probe summarization was done using RMA method in 

“affy” package (12). Absent probesets were also identified using “mas5calls” function in this 

package. If a probeset contained more than two absent values, that one was regarded as 

absent and removed from the expression matrix. Besides, outlier samples were identified 

and removed using PCA and hierarchical clustering approaches. Employing Quantile 

normalization method, data were normalized. Many to Many problem which is mapping 

multiple probesets to the same gene symbol, was resolved using nsFilter function in 

genefilter package (13). This function selects the probeset with the largest interquartile 

range (IQR) to be representative of other probesets mapping to the same gene symbol. After 
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that, “limma” R package was utilized to identify differentially expressed genes between 

tamoxifen treated and ethanol treated cells (14). 

 

        RNA-seq Data Analysis 

     Seven samples of RNAseq study useful for the aim of our research were selected and their 

SRA IDs were from SRX876039 to SRX876045 (15). Bash shell commands were used to reach 

from fastq files to the counted expression files. Quality control step was done on each sample 

separately using “fastqc” function in “FastQC” module (16). Next, “Trimmomatic” software 

was used to trim reads (17). 10 bases from the reads head were cut and bases with quality 

less than 30 were removed and reads with the length of larger than 36 base pair were kept. 

Then, trimmed files were aligned to the hg38 standard FASTA reference sequence using 

“HISAT2” software to create SAM files (18). SAM files converted into BAM files using 

“Samtools” package (19). In the last step, BAM files and a GTF file containing human genome 

annotation were given to “featureCounts” program to create counted files (20). After that, 

files were imported into R software (v3.6) and all samples were attached together to 

construct an expression matrix with 59,412 variables and seven samples. Rows with sum 

values less than 7 were removed from the expression matrix and RPKM method in edger R 

package was used to normalize the rest of the rows (21). In order to identify DEGs, “limma” 

R package was used (14). Finally, correlation-based hierarchical clustering was done using 

“factoextra” R package [14]. 
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      Pathway Construction from Signaling Databases 

     25 human KEGG signaling networks containing Src element were downloaded from KEGG 

signaling database (22). Pathways were imported into R using “KEGGgraph” package (23) 

and using programming techniques, all the pathways were combined together. Loops were 

omitted and only directed inhibition and activation edges were selected so a large KEGG 

edgelist was constructed. In addition, a very large edgelist containing all literature curated 

mammalian signaling pathways were constructed from OmniPath database (24). To do 

pathway discovery, a script was developed in R using igraph package (25) by which a 

function was created with four arguments. The first argument accepted an edgelist, second 

argument was a vector of source genes, third argument was a vector of target genes and forth 

argument received a maximum length of pathways.  

 

        Results 

        Data Preprocessing and Identifying Differentially Expressed Genes 

     Almost 75% of the probesets were regarded as absent and left out from the expression 

matrix in order to avoid any technical errors. To be more precise in the preprocessing step, 

outlier sample detection was conducted using PCA (using eigenvector 1 (PC1) and 

eigenvector 2 (PC2)) and hierarchical clustering. Fig 2A illustrates the PCA plot for the 

samples in GSE17941 study. Sample GSM448818 in time point 36-hour, was far away from 

the other samples which might be an outlier sample.  In the hierarchical clustering approach, 

Pearson correlation coefficients between samples were subtracted from one for 

measurement of the distances. Then, samples were plotted based on their Number-SD. To 
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get this number for each sample, the average of whole distances was subtracted from 

average of distances in all samples, then results of these subtractions were divided by the 

standard deviation of distance averages (26). Sample GSM448818_36h with Number-SD less 

than negative two was regarded as the outlier and removed from the dataset (Fig 2B).  

     There were 21 upregulated and 3 downregulated common DEGs between the two 

datasets. Fig 3 illustrates the average expression values between two groups of tamoxifen-

treated samples and ethanol-treated samples for these common DEGs. For the RNAseq 

dataset (SRP054971) average of 4-hours, 12-hour and 24-hour time points were used (A) 

and for the microarray dataset (GSE17941) average of 12-hour and 24-hour time points 

were utilized (B). All DEGs had the absolute log fold change larger than 0.5 and p-value less 

than 0.05. Housekeeping genes are situated on the diagonal of the plot whilst all DEGs are 

located above or under the diagonal. This demonstrates that the preprocessed datasets were 

of sufficient quality for the analysis. In both datasets SERPINB3 was the most upregulated 

gene. 
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Fig 2: Outlier detection: A, is the PCA between samples in defferent time points in GSE17941 dataset. 

Replicates are in the same color. B, illustrates the numbersd value for each sample. Samples under -2 are 

regarded as outlier. The x axis represents the indices of samples.   
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Fig 3: Scatter plot for upregulated, downregulated and housekeeping genes. The average values in 

different time points in SRP054971, A, and GSE17941, B, datasets were plotted between control (ethanol 

treated) and tamoxifen treated. 

 

 Pathway Analysis  

     Because obtained common DEGs were the results of analyzing datasets from two different 

genomic technologies, there was a high probability that Src-activation influence expression 
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of these 24 genes. As a result, we continued our analysis in KEGG signaling network to find 

the Boolean relationships between Src and these genes. To this end, we developed a pathway 

mining approach which extracts all possible directed pathways between two components in 

a signaling network using “igraph” R programming tool. An R script was written to construct 

a large edgelist containing 1025 nodes and 7008 edges from 25 downloaded pathways 

containing Src (supplementary file 1). To reduce the number of pathways, only shortest 

pathways were regarded in the analysis. Just two DEGs were present in the constructed 

KEGG network namely TIAM1 and ABLIM3. Table1 shows all the pathways between Src and 

these two genes. They were two-edge distance Src targets in which their expression was 

affected by Src overactivation. TIAM1 was upregulated while ABLIM3 was down-regulated 

in Fig 3. In Pathway number 1, Src induces CDC42 and CDC42 induces TIAM1 respectively. 

Therefore, a total positive interaction is yielded from Src to TIAM1. On the one hand ABLIM3 

was down-regulated in Fig 3, but on other hand this gene could positively be induced by Src 

activation in four different ways in Table 1. We proposed that these pathways are not valid 

at mRNA level. Moreover, information in the signaling databases comes from different 

experimental sources and biological contexts. Consequently, a precise biological 

interpretation is required when combining information from different studies to predict a 

regulatory pathway.  
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Table 1: Discovered Pathways from Src gene to TIAM1 and ABLIM3 genes.  In the interaction column, “1” 

presents activation state and “-1” shows inhibition state. ID column presents the edge IDs (indexes) in the KEGG 

edgelist. Pathway column represents the pathway number. 

 

     Due to the uncertainty about the discovered pathways in KEGG, a huge human signaling 

edgelist was constructed from OmniPath database (http://omnipathdb.org/interactions) 

utilizing R programming. Constructed edgelist was composed of 20853 edges and 4783 

nodes. Fourteen DEGs were found in the edgelist eleven of them were recognized to be Src 

targets. Eleven pathways with the maximum length of three and minimum length of one were 

discovered illustrated in Table2. Unfortunately, ABLIM1 gene was not found in the edgelist 

but Tiam1 was a direct (one-edge distance) target of Src in Pathway 1. FHL2 could be induced 

or suppressed by Src based on Pathways 3 and 4 respectively. However, FHL2 was among 

the upregulated genes by Src. Therefore, the necessity of biological interpretation of each 

edge is required to discover a possible pathway. 
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Table 2: Discovered pathways from Src to the DEGs in OmniPath edgelist. In the interaction column, “1” depicts 

activation state and “-1” exhibits inhibition state. ID column presents the edge IDs (indexes) in the OmniPath 

edgelist. Pathway column represents the pathway number. 

 

        Time Series Gene Expression Analysis 

     Src was overactivated in MCF10A (normal breast cancer cell line) cells using Tamoxifen 

treatment at the time points 0-hour, 1-hour, 4-hour and 24-hour in the RNAseq dataset and 

0-hour, 12-hour, 24-hour and 36-hour in the microarray study. The expression values for all 

upregulated genes in Src-activated samples were higher than controls in all time points in 

both datasets. The expression values for all downregulated genes in Src-activated samples 

were less than controls in all time points in both datasets. Fig 4 depicts the expression values 

for TIAM1, ABLIM3, RGS2, and SERPINB3 at these time points. RGS2 and SERPINB3 

witnessed a significant expression growth in tamoxifen-treated cells at the two datasets. The 

time-course expression patterns of all DEGs are presented in supplementary file 2.  
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Fig 4: Expression values related to the four DEGs. TIAM1 and ABLIM3 are the genes present in the KEGG 

signaling network and RGS2 and SERPINB3 are the genes highly affected by activation of Src. A, presents values 

in SRP054971 dataset. B, presents values in GSE17941 dataset. 
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        Clustering  

     We applied hierarchical clustering on expression of all DEGs just in Src over-activated 

samples. Pearson correlation coefficient was used as the distance in the clustering method. 

Clustering results were different between the two datasets, therefore, we applied this 

method only on SRP054971 Dataset (Fig 5). We hypothesized that genes in close distances 

within each cluster may have relationships with each other. Among the four DEGs in Fig 4, 

Only TIAM1 and RGS2 were present in OmniPath edgelist. As a result, pathways were 

extracted from TIAM1 and RGS2 to their cluster counterparts. All these pathways are 

presented in supplementary file 3.   

Fig 5: Pearson correlation-based hierarchical clustering. Figure shows the clustering results for expression 

of DEGs in RNA-seq dataset. Four clusters were emerged members of each are in the same color. 
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        Discussion 

     In many pathway inference methods, the necessity of valid data is required.  Our approach 

is simple, is not based on mathematical models but real evidence. This pathway inference 

flowchart would demonstrate the importance of post transcriptional data and might also 

help distinguish the components in a pathway affected at transcript level and those affected 

at post-transcriptional level. Therefore, if other types of data rather than only mRNA is 

considered, many new biological pathways would be predicted by connecting edge 

information in more signaling databases. For instance, proteomic and phospho-proteomic 

data will be needed along with a Protein-Protein Interaction Network (PPIN) if transition of 

the signals are related to the phosphorylation process (27-29). Methylation sites on both 

mRNA and protein impact cell signaling (30). Other modifications such as acetylation (31-

33), ubiquitylation (34), sumoylation (35) impact the activity of different signaling networks 

as well. As a result, different layers of gene regulation need to be implemented on each gene 

pair once inferring causal relationships between the gene pairs. 

     Analyzing the relationships between Src and all of these 24 obtained DEGs were of too 

much biological information. Therefore, we concentrated on TIAM1 and ABLIM3 (Actin 

binding LIM protein family member 3) and two highly affected genes in tamoxifen-treated 

cells namely RGS2 and SERPINB3 presented in Fig 4. More investigations are needed to be 

done on the rest of the genes to see how and why all these genes are affected by Src. That’s 

important because numerous studies have reported the role of Src implication in promoting 

EMT (36-39).  
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     TIAM is a guanine nucleotide exchange factor (GEF) that is phosphorylated in tyrosine 

residues in cells transfected with oncogenic Src (40). Therefore, it could be a direct target of 

Src which has not been reported in 25 KEGG networks but this relationship was found in 

Table 2, pathway number 1. Src induces cell transformation through both Ras-ERK and Rho 

family of GTPases dependent pathways (41, 42). Moreover, The Rho GTPase Cdc42 can be 

phosphorylated and activated by Src through epidermal growth factor (EGF) signaling  (43). 

CDC42 itself can promote activation of c-Src through EGFR signaling  (44). Therefore, a 

positive feedback might occurs between the two molecules by Src activation. Not only CDC42 

but also RAC1,2,3 GTPases are activated by Src through oncogenic growth factor receptors. 

These activations are transduced to GEF proteins such as TIAM1 which in turn regulate Rho-

like GTPases GDP/GTP exchange so keep GTPases in their active form (45, 46). Therefore, by 

following the track of information in pathway number one in Tables 1 and 2, firstly a 

consistency in the flow of information is emerged secondly, the validity of pathways were 

demonstrated. Furthermore, Expression induction of TIAM1 in Fig 4 would explain how c-

Src bolsters its cooperation with TIAM1 in order to keep Rho family of GTPases active leading 

to formation of membrane ruffles in vivo (40). 

ABLIM3 is a component of adherent junctions (AJ) that interacts with actin filaments in 

epithelial cells and hepatocytes. Its downregulation in Fig 4 leads to the weakening of cell-

cell junctions (47). Information flow for pathways targeting ABLIM3 is contrary to the results 

in Fig 4, therefore literature should be investigated carefully and probably post-

transcriptional data is required to be analyzed, so we can predict that pathways numbers 2 

to 5 in Table 1 are invalid during EMT in MCF10A cell lines.   
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     SERPINB3 is a serine protease inhibitor that is overexpressed in epithelial tumors to 

inhibit apoptosis. This gene induces deregulation of cellular junctions by suppression of E-

cadherin and enhancement of cytosolic B-catenin (48). In the Hypoxic environment of 

hepatic tumors, SERPINB3 is upregulated by HIF-2α and this upregulation requires 

intracellular generation of ROS (49). Moreover, there is a positive feedback between 

SERPINB3 and HIF-1α and -2α in liver cancer cells (50). Therefore, these positive 

mechanisms would help cancer cells to augment invasiveness properties and proliferation. 

Unfortunately, this gene did not exist neither in OmniPath nor in KEGG edgelists. Its 

significant expression induction and its effects in promoting metastasis would explain one 

of the mechanisms that Src triggers invasive behaviors in cancer cells. 

     RGS2 is a GTPase activating protein (GAP) for the alpha subunit of heterotrimeric G 

proteins (51). Although this gene was highly upregulated in Src-overexpressed cells, its 

expression has been found to be reduced in different cancers such as prostate and colorectal 

cancer (52, 53). This might overcomplicate the oncogenic effects of Src on promoting cancer. 

Pathway number 7 connects Src to RGS2 in Table 2. To infer pathway 7, ErbB2-mediated 

cancer cell invasion in breast cancer happens through direct interaction and activation of 

PRKCA/PKCα by Src (54). PKG1/PRKG1 is phosphorylated and activated by PKCα following 

phorbol 12-myristate 13-acetate (PMA) treatment (55). PRKG1 is a serine-threonine kinase 

activated through GMP binding. Inhibition of phosphoinositide (PI) hydrolysis in smooth 

muscles is done via phosphorylation of RGS2 by PRKG and its association with Gα-GTP 

subunit of G proteins. In fact, PRKG over-activates RGS2 to accelerate Gα-GTPase activity and 

enhance Gαβγ (complete G protein) trimer formation (56). Consequently, there would be a 

possibility that Src can induce RGS2 protein activity regarding the edge information in 
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pathway 7. Src overactivation significantly induced expression of RGS2 in Fig 4. Therefore, 

there should be another pathway that increase the expression of RGS2 or maybe this 

upregulation is mediated by the mentioned components. Furthermore, RGS2 activates the 

GTPase activity of G proteins, so the upregulation of RGS2 by Src help  to activate G proteins 

and promotion of cellular transformation.  

     SERPINB3 and ABLIM3 were not present in the OmniPath edgelist, so we conducted 

pathway mining from TIAM1 and RGS2 to their cluster counterparts and between TIAM1 

and RGS2 (supplementary file 3). The results show that there would be a possible 

relationship between PNRC1, ETS2 and FATP toward RGS2. All these relationships were set 

by PRKCA and PRKG genes at the end of pathways. Nevertheless, PNCR1 made shorter 

pathways and is worth more investigation. JUNB and PDP1 make a relationship with TIAM1. 

The discovered pathway from JUNB to TIAM1 was mediated by EGFR and SRC demonstrating 

that SRC could induce its expression by induction of JUNB. Moreover, there were two 

pathways from TIAM1 to RGS2 and from RGS2 to TIAM1 with the same length which are 

worth more investigation. 

     In summary, Pathway mining is not just looking for direct pathways. Many hidden 

relationships will be unfolded once all findings and results in different databases around a 

specific component come together to reach a target component. Likewise we discovered 

possible new arrange of relationships between Src and Tiam1, between Src and RGS2 and 

between DEGs themselves.  
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