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Abstract 12 

Summary statistics from genome-wide association studies (GWAS) have facilitated the 13 

development of various summary data-based methods, which typically require a reference 14 

sample for linkage disequilibrium (LD) estimation. Analyses using these methods may be biased 15 

by errors in GWAS summary data and heterogeneity between GWAS and LD reference. Here we 16 

propose a quality control method, DENTIST, that leverages LD among genetic variants to detect 17 

and eliminate errors in GWAS or LD reference and heterogeneity between the two. Through 18 

simulations, we demonstrate that DENTIST substantially reduces false-positive rate (FPR) in 19 

detecting secondary signals in the summary-data-based conditional and joint (COJO) association 20 

analysis, especially for imputed rare variants (FPR reduced from >28% to <2% in the presence 21 

of ancestral difference between GWAS and LD reference). We further show that DENTIST can 22 

improve other summary-data-based analyses such as LD score regression analysis, and 23 

integrative analysis of GWAS and expression quantitative trait locus data. 24 

25 
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Introduction 26 

Genome-wide association studies (GWASs) have been extraordinarily successful in uncovering 27 

genetic variants associated with complex human traits and diseases1,2. Summary statistics 28 

available from GWASs have facilitated the development of various summary-data-based 29 

methods3 such as those for fine-mapping4-9, imputing summary statistics at untyped variants10,11, 30 

estimating SNP-based heritability12-14, assessing causal or genetic relationship between traits15-31 

17, prioritizing candidate causal genes for a trait18-21, and polygenetic risk prediction8,22,23. Most of 32 

the summary-data-based methods require linkage disequilibrium (LD) structure of the variants 33 

used, which are not available in the summary data but can be estimated from a reference cohort 34 

with individual-level genotypes assuming a homogeneous LD structure between the GWAS and 35 

reference cohorts. Hence, summary-data-based analyses can be affected by not only errors in the 36 

GWAS and LD reference data sets but also differences between them for the following reasons. 37 

First, there are often errors in GWAS summary statistics resulting from the data generation and 38 

analysis processes (e.g., genotyping/imputation errors and genetic variants with mis-specified 39 

effect alleles)24,25, some of which are not easy to detect, even if individual-level data are 40 

available. Second, there is often heterogeneity between data sets (e.g., between the discovery 41 

GWAS and LD reference) because of differences in ancestry, and genotyping platform, analysis 42 

pipeline. Although the recommended practice is to use an ancestry-matched reference cohort, 43 

samples with similar ancestries, such as populations of European ancestry, can still have 44 

discernable differences in LD structure26, and the effects of such differences on summary-data-45 

based analyses are largely unexplored. To the best of our knowledge, there is no existing method 46 

specifically designed to detect data heterogeneity that affect summary data-based analyses.  47 

 48 

In this study, we propose a quality control (QC) method to identify errors in GWAS summary 49 

data and heterogeneity between summary data and LD reference by testing the difference 50 

between the observed z-score of each variant and its predicted value from the surrounding 51 

variants. The method has been implemented in a software tool named DENTIST (detecting 52 

errors in analyses of summary statistics). We show by simulation that DENTIST can effectively 53 

detect simulated errors of several kinds. We then demonstrate the utility of DENTIST as a QC 54 

step for multiple, frequently-used, summary data-based methods, including the conditional and 55 

joint analysis (COJO)6 of summary statistics, LD score regression12, and heterogeneity in 56 

dependent instruments (HEIDI) test21. 57 

 58 

Results 59 

Overview of the DENTIST method 60 
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Details of the methodology can be found in the Methods section. In brief, we first use a sliding 61 

window approach to divide the variants into 2Mb segments with a 500kb overlap between two 62 

adjacent segments. Within each segment, we randomly partition variants into two subsets, S1 63 

and S2, with an equal number of variants, and apply the statistic below to test the difference 64 

between the observed z-score of a variant i (𝑧𝑖) in S1 and its predicted value (𝑧̃𝑖) based on z-65 

scores of an array of variants t in S2 (Methods). 66 

𝑇𝑑(𝑖) =
(𝑧𝑖− 𝑧̃𝑖)2

𝟏−𝐑𝑖𝒕𝐑𝒕𝒕
−1𝐑𝑖𝒕

′  with 𝑧̃𝑖 = 𝐑𝑖𝒕𝐑𝒕𝒕
−1 𝒛𝒕                                                             (1) 67 

where 𝒛𝒕 is a vector of z-scores of variants t in S2, and R is the LD correlation matrix calculated 68 

from a reference sample with 𝐑𝒕𝒕 to denote the LD between variants t and 𝐑𝑖𝒕 to denote the LD 69 

between variant i and variants t. 𝑇𝑑 follows approximately a χ2 distribution with 1 degree of 70 

freedom. Note that methods that leverage LD to predict GWAS test-statistic of a variant (i.e., 𝑧̃𝑖) 71 

from test-statistics of its adjacent variants (i.e., 𝒛𝒕) have been developed in prior work10,11. A 72 

significant difference between the observed and predicted z-scores indicates errors in the 73 

discovery GWAS or LD reference, or heterogeneity between them. If the difference between 𝑧𝑖  74 

and 𝑧̃𝑖  is due to error in 𝑧𝑖 , the power of 𝑇𝑑 depends on how 𝑧𝑖  deviates from its true value and 75 

how well variant i is tagged by variants t. We conduct a truncated singular value decomposition 76 

(SVD) on 𝐑𝒕𝒕 to mitigate the sampling noise in LD estimated from the reference that is often 77 

independent from the discovery GWAS and to perform a pseudo inverse when 𝐑𝒕𝒕 is singular13 78 

(see Methods).  79 

 80 

One challenge for the DENTIST method is that errors can be present in both S1 and S2, and 81 

errors in S2 can inflate 𝑇𝑑 statistics of the variants in S1. To mitigate this issue, we propose an 82 

iterative partitioning approach. In each iteration, we partition the variants at random into two 83 

subsets (S1 and S2) and remove variants with PDENTIST < 5×10-8 (capped at 0.5% variants with the 84 

smallest P-values). This step is to create a more reliable set of variants for the next iteration. The 85 

problematic variants are prioritized and filtered out in the first few iterations so that the 86 

prediction of 𝑧̃𝑖  (Equation 1) becomes more accurate in the following iterations. We set the 87 

number of iterations to 10 in practice. All variants with PDENTIST < 5×10-8 are removed in the final 88 

step. 89 

 90 

Detecting simulated errors in GWAS data 91 

To assess the performance of DENTIST in detecting errors, we simulated GWAS data with 92 

genotyping errors and allelic errors (i.e., variants with the effect allele mis-labelled) using whole 93 

genome sequence (WGS) data of chromosome 22 on 3,642 unrelated individuals from the 94 

UK10K project27,28 (denoted by UK10K-WGS). A descriptive summary of all the data sets used in 95 
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this study can be found in Supplementary Table 1 and the Methods section. We simulated a 96 

trait affected by 50 common, causal variants with effects drawn from 𝑁(0,1), which together 97 

explained 20% of the phenotypic variation (proportion of variance explained by a causal variant, 98 

denoted by q2, was 0.4%, on average). Prior to the simulations with errors, we showed by a 99 

simulation under the null (i.e., simulating a scenario without errors and applying DENTIST using 100 

the discovery GWAS as the reference) that the DENTIST test-statistics were well calibrated, 101 

meaning that DENTIST will only remove a very small proportion of variants if there are no 102 

errors and heterogeneity in the data (Supplementary Figure 1). We then simulated genotyping 103 

and allelic errors at 0.5% randomly selected variants respectively. Genotyping errors of each of 104 

these variants were simulated by altering the genotypes of a certain proportion (ferror = 0.05, 0.1 105 

or 0.15) of randomly selected individuals, and allelic error of each of the variants was introduced 106 

by swapping the effect allele by the other allele. The simulation was repeated 200 times with the 107 

causal and erroneous variants re-sampled in each simulation. We then ran DENTIST using 108 

UK10K-WGS or an independent sample (UKB-8K-1KGP) as the LD reference after standard QCs 109 

of the discovery GWAS: removing variants with a Hardy-Weinberg Equilibrium (HWE) P-value < 110 

10-6 using the individual-level data or ∆AF > 0.1 with ∆AF being the difference in allele frequency 111 

(AF) between the summary data and reference sample. The independent sample UKB-8K-1KGP 112 

is referred to as a set of 8000 unrelated individuals from the UK Biobank29 (UKB) with variants 113 

imputed from the 1000 Genomes Project (1KGP). The statistical power (sensitivity) was 114 

measured by the proportion of erroneous variants in the data that can be detected from QC. We 115 

also computed the fold enrichment in probability of an erroneous variant being detected from 116 

QC compared to a random guess (i.e., the ratio of the percentage of true erroneous variants in 117 

the variants detected by DENTIST to that in all variants). 118 

 119 

When using UKB-8K-1KGP as the reference, ~45% of the genotyping and ~95% of the allelic 120 

errors could be removed by the standard QCs (Supplementary Table 2). However, the ∆AF 121 

approach performed poorly for the very common variants, e.g., the power was ~16% for 122 

variants with MAF > 0.45. After the standard QCs, DENTIST was able to detect ~42% of the 123 

remaining genotyping and ~78% of the remaining allelic errors (Figure 1 and Supplementary 124 

Table 3), with only ~0.3% variants being removed in total (Supplementary Table 4). The fold 125 

enrichment was 212 for allelic errors and of 112 for genotyping errors (Supplementary Table 126 

5), showing good specificity of DENTIST in detecting the simulated errors. Notably, the power to 127 

detect allelic errors was ~78% for variants with MAF > 0.45, compensating the low power of the 128 

∆AF approach in this MAF range (note: another shortcoming of the ∆AF approach is that the 129 

threshold is heavily sample size dependent, and currently there is no consensus guidance on the 130 

choice of a ∆AF threshold in practice). When restricted to variants passing the genome-wide 131 
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significance level (i.e., p < 5×10-8), the DENTIST detection power increased to ~87% for the 132 

genotyping errors and ~84% for the allelic errors (Supplementary Table 3). The power also 133 

varied with the genotyping error rate (ferror), e.g., the power in the ferror=0.05 scenario was, on 134 

average, lower than that for ferror=0.15 (Figure 1c and Supplementary Table 3). When using 135 

UK10K-WGS as the reference (mimicking the application of DENTIST in a scenario where 136 

individual-level data of the discovery GWAS are available), the power remained similar, but the 137 

fold enrichment was much higher compared to that using UKB-8K-1KGP (Supplementary 138 

Tables 5 and 6). In addition, using this same simulation setting, we explored the choice of the 139 

parameter 𝜃𝑘 (i.e., the proportion of eigenvectors retained in SVD; see Methods for details) and 140 

reference sample size (nref), and the results suggested a choice of 𝜃𝑘=0.5 and 𝑛ref ≥ 5000 in 141 

practice (Supplementary Figure 2). Together, these results demonstrate the power of DENTIST 142 

to identify allelic and genotyping errors even after the standard QCs, suggesting that DENTIST 143 

can complement existing QC filters for either individual- or summary-level GWAS data. On the 144 

other hand, DENTIST was parsimonious in data filtering, with ~0.3% of the variants being 145 

removed in total across all the simulation scenarios (Supplementary Table 4). Nevertheless, 146 

we acknowledge that this simulation did not cover the full complexity of real case scenarios, 147 

which may involve multiple independent samples with heterogeneous LD structures caused by 148 

several factors, such as imputation errors or ancestry mismatches (Supplementary Figure 3). 149 

These cases are difficult to mimic in this simulation but will be assessed in the following 150 

analyses. 151 

 152 

Applying DENTIST to COJO with simulated phenotypes 153 

COJO6 is a method that uses summary data from a GWAS or meta-analysis and LD data from a 154 

reference sample to run a conditional and joint multi-SNP regression analysis. We used 155 

simulations to assess the performance of COJO in the presence of heterogeneity between 156 

discovery GWAS and LD reference before and after DENTIST filtering. To mimic the reality that 157 

causal signals are often not perfectly captured by imputed variants, we simulated a phenotype 158 

affected by one or two sequenced variants using WGS data (i.e., UK10K-WGS) and performed 159 

association analyses using imputed data of the same individuals (imputing 312,264 variants, in 160 

common with those on an SNP array, to the 1KGP28,30; denoted by UK10K-1KG). More 161 

specifically, we first randomly selected one or two variants from two MAF bins as causal 162 

variants, i.e., variants with MAF≥0.01 (denoted by common-causal) and 0.01>MAF≥0.001 163 

(denoted by rare-causal) to generate a phenotype (note: MAF > 0.001 is equivalent to minor 164 

allele count > 7 in this sample). The causal variant q2 was set to 2% to achieve similar power to a 165 

scenario with q2 = 0.03% and n = 250,000 (note: the mean q2 of 697 height variants discovered 166 

in Wood et al.31 is 0.03%) because the power of GWAS is determined by 𝑛𝑞2/(1 − 𝑞2). Then, we 167 
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ran a GWAS using UK10K-1KGP and performed COJO analyses using multiple LD references, 168 

including the discovery GWAS sample, UKB-8K-1KGP, the Health Retirement Study (HRS)32, and 169 

the Atherosclerosis Risk In Communities (ARIC) study33, with different degrees of ancestral 170 

differences with UK10K-1KGP (Supplementary Figure 4). For a fair comparison, only the 171 

variants shared between these reference samples were included. We repeated the simulation 172 

100 times for each autosome and computed the false positive rate (FPR, i.e., the frequency of 173 

observing two COJO signals in the scenario where there was only one causal variant) and power 174 

(the frequency of observing two COJO signals in the scenario where there were two distinct 175 

causal variants with LD r2 <0.1 between them). It should be noted that the false positive COJO 176 

signals defined here are not false associations but falsely claimed as jointly associated (also 177 

known as quasi-independent) signals. 178 

 179 

When using the discovery GWAS sample as the LD reference, the FPR of COJO was 0.1% for 180 

common-causal and 0.2% for rare-causal (Figure 2; Table 1), which can be regarded as a 181 

baseline for comparison as there was no data heterogeneity in this case. The FPRs were higher 182 

than the expected values because the causal variants were not perfectly tagged by the imputed 183 

variants (Supplementary Table 7). When using UKB-8K-1KGP (i.e., 1KGP-imputed data of 8000 184 

UKB participants with similar ancestry to the UK10K participants as shown in Supplementary 185 

Figure 4) as the LD reference, the FPR was close to the benchmark for common-causal (1%) and 186 

slightly inflated for rare-causal (2.7%) (Figure 2). After DENTIST filtering (using UKB-8K-1KGP 187 

as the LD reference), the FPR for rare-causal decreased to 1.3%. Moreover, when using LD 188 

computed from European-American individuals in HRS or ARIC, the FPR of COJO was strongly 189 

inflated in the whole MAF range: >7% for common-causal and >28% for rare-causal, likely 190 

because of the difference in ancestry between HRS/ARIC and UK10K-1KGP. DENTIST can 191 

effectively control the FPR of COJO to <1% for common-causal and <2% for rare-causal (Figure 192 

2). Taken together, the FPR of COJO was reasonably well controlled for common variants but 193 

substantially inflated for rare variants especially when there was a difference in ancestry 194 

between the GWAS and LD reference samples, and most of the false positive COJO signals could 195 

be removed by DENTIST. 196 

 197 

The power of COJO (without DENTIST) using in-sample LD from UK10K-1KGP or out-of-sample 198 

LD from the other references were similar: 77-81% for common-causal and 26-30% for rare-199 

causal (Table 1). The low power for rare-causal was because they were poorly captured by 200 

imputation (Supplementary Table 7). DENTIST filtering caused a <2% loss of power for 201 

common-causal, and 5-10% for rare-causal (Table 1). Hence, the control of FPR of COJO by 202 
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DENTIST was to some extent at the expense of power although the reduction in FPR was larger 203 

than that in power. 204 

 205 

We also examined the effect of imputation INFO score-based QC on the FPR and power of COJO. 206 

Take the analysis with HRS as an example. By removing variants with INFO-scores < 0.9 from the 207 

HRS data, the FPR of COJO decreased to 2.3% for common-causal and 6% for rare-causal 208 

(Supplementary Table 8), both of which were higher than those using DENTIST (FPR = 0.5% 209 

for common-causal and 1.7% for rare-causal) (Table 1). Meanwhile, the power of COJO after the 210 

INFO score-based QC decreased to 70% for common-causal and 12% for rare-causal 211 

(Supplementary Table 8), both of which were lower than those using DENTIST (power = 81% 212 

for common-causal and 27% rare-causal). The other less stringent INFO-score threshold were 213 

even less effective, and the results from analyses using the other references were similar 214 

(Supplementary Table 8). These results suggest that filtering variants by imputation INFO is 215 

less effectively than that by DENTIST. 216 

 217 

Applying DENTIST to COJO for real phenotypes 218 

Having assessed the performance of DENTIST in COJO analyses by simulation, we then applied it 219 

to COJO analyses for height in the UKB. The height GWAS summary statistics (n = 328,577) were 220 

generated from a GWAS analysis of all the unrelated individuals of European ancestry in the UKB 221 

(denoted by UKBv3-329K) except 20,000 individuals (denoted by UKBv3-20K), which were used 222 

as a non-overlapping LD reference. Genotype imputation of the UKB data was performed by the 223 

UKB team with most of the variants imputed from the Haplotype Reference Consortium (HRC)34. 224 

We performed COJO analyses with a host of references: overlapping in-sample references with 225 

sample sizes (nref) varying from 10,000 to 150,000, non-overlapping in-sample references 226 

including UKBv3-8K (n = 8,000) and UKBv3-20K (containing UKBv3-8k), and out-of-sample 227 

references including ARIC and HRS (Supplementary Table 1). We excluded from the analysis 228 

variants with MAF < 0.001 to ensure sufficient number of minor alleles for rare variants in 229 

reference samples with nref < 10k. We first performed a COJO analysis using the actual GWAS 230 

sample as the reference and identified 1,279 signals from variants with MAFs >0.01, and 1310 231 

signals from variants with MAFs > 0.001 (Table 2). These results can be regarded as a 232 

benchmark. When using the overlapping in-sample LD references, the number of COJO signals 233 

first decreased as nref increased and then started to stabilize when nref exceeded 30,000 234 

(Supplementary Figure 5). The results from using the two non-overlapping in-sample 235 

references (UKBv3-8K and UKBv3-20K) were comparable to those from using the overlapping 236 

in-sample references with similar sample sizes (Table 2 and Supplementary Table 9) because 237 

the non-overlapping in-sample references, despite being excluded from the GWAS, were 238 
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consistent with the GWAS sample with respect to ancestry, data collection, and analysis 239 

procedures. 240 

 241 

When using LD from an out-of-sample reference (either HRS or ARIC), there was substantial 242 

inflation in the number of COJO signals compared to the benchmark (by 15.5-16.1% for common 243 

variants and 18.7-25.6% for all variants), with a few variants in weak LD with those identified 244 

from the benchmark analysis (Supplementary Figure 6). The results from using the two out-of-245 

sample references became more consistent with the benchmark after DENTIST filtering, with the 246 

inflation reduced to 4.6-5.8% for common variants and 2.7-6.7% for all variants, comparable to 247 

the results using an in-sample LD reference with a similar sample size (Table 2). Polygenic score 248 

analysis shows that the reduction in the number of COJO signals owing to DENTIST QC had 249 

almost no effect on the accuracy of using the COJO signals to predict height in HRS 250 

(Supplementary Table 10), suggesting the redundancy of the COJO signals removed by 251 

DENTIST. We further found that compared to using the imputed data from ARIC or HRS, using 252 

UK10K-WGS (n=3,642) as the reference showed lower inflation (10% for common variants and 253 

<12.4% for all variants) before DENTIST QC but larger inflation after DENTIST QC (Table 2), 254 

suggesting a large reference sample size is essential even for WGS data. In all the DENTIST 255 

analyses above, the total number of removed variants varied from 0.05% to 0.98% 256 

(Supplementary Table 11). All these results are consistent with what we observed from 257 

simulations, demonstrating the effectiveness of DENTIST in eliminating heterogeneity between 258 

GWAS and LD reference samples.  259 

 260 

We further applied DENTIST to Educational Attainment (EA), Coronary Artery Disease (CAD), 261 

Type 2 Diabetes(T2D), Crohn's Disease (CD), Major Depressive Disorder (MDD), Schizophrenia 262 

(SCZ), Ovarian Cancer (OC), Breast Cancer (BC), Height and Body Mass Index (BMI) using GWAS 263 

summary data from the public domain35-43 (Supplementary Table 12) and three LD reference 264 

samples (i.e., ARIC, HRS, and UKBv3-8K). Since these published studies focus on common 265 

variants (rare variants are not available in most of the data sets), we used a MAF threshold of 266 

0.01 in this analysis. When using ARIC as the LD reference, the proportion of variants removed 267 

by DENTIST QC ranged from 0.02% (BMI) to 0.94% (CAD) with a median of 0.28% 268 

(Supplementary Table 13), and the reduction in the number of COJO signals for common 269 

variants ranged from 0% (OC and MDD) to 11.9% (CAD) with a median of 1.5% 270 

(Supplementary Table 14). The results from using the other two references are similar 271 

(Supplementary Table 13 and 14).  272 

 273 

Improved HEIDI test with DENTIST 274 
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The summary data-based Mendelian randomization (SMR) is a method that integrates summary-275 

level data from a GWAS and an expression quantitative trait loci (eQTL) study to test pleiotropic 276 

associations between a trait and expression levels of genes21. It features the HEIDI test that 277 

utilizes multiple cis-eQTL variants at a locus to distinguish pleiotropy (the trait and expression 278 

level of a gene are affected by the same causal variants) from linkage (causal variants for the 279 

trait are in LD with a distinct set of causal variants affecting gene expression). The HEIDI test 280 

uses summary data from two studies and LD from a reference so that any errors in and 281 

heterogeneity between the GWAS, eQTL and reference samples can cause inflated HEIDI test 282 

statistics, giving rise to more SMR associations being rejected than expected by chance21,44. Here, 283 

we performed simulations to assess the effect of data heterogeneity on HEIDI and sought to 284 

mitigate it using DENTIST. We first generated a trait based on a causal variant (q2 = 1%) 285 

randomly sampled from the variants on chromosome 22 in the ARIC data. To simulate a 286 

pleiotropic model, we used the same causal variant to simulate the expression level of a gene in a 287 

subset of the HRS data (n = 3,000; denoted by HRS-3K) with q2 for the gene expression level 288 

randomly sampled from the eQTL q2 distribution reported by the Consortium for the 289 

Architecture of Gene Expression (CAGE)45. To simulate a linkage model, a second causal variant 290 

in LD (r2 > 0.25) with the trait causal variant was selected to generate the gene expression level, 291 

again with the eQTL q2 value sampled from the CAGE. In addition to the two-sample scenario 292 

above, we also simulated a one-sample scenario in which both the trait and gene expression 293 

level were generated in the HRS-3K sample. The UKB-8K-1KGP sample was used as the LD 294 

reference for both the SMR-HEIDI and DENTIST analyses. For each scenario, the simulation was 295 

repeated 4000 times with the causal variants re-sampled in each replicate. The FPR of the HEIDI 296 

test was calculated as the proportion of pleiotropic models detected with PHEIDI < 0.05, and the 297 

power was defined as the proportion of linkage models detected with PHEIDI < 0.05. 298 

 299 

We found that the FPR of HEIDI was close to the expected value (5%) in the one-sample scenario 300 

(5.8%) but inflated (9.8%) in the two-sample scenario (Figures 3a and 3b, and Supplementary 301 

Table 15). To mitigate the inflation, we performed DENTIST in both the GWAS and eQTL 302 

summary data using UKB-8K-1KGP as the reference. After DENTIST filtering, the FPR of HEIDI in 303 

the two-sample scenario decreased to 7.6%; the decrease was small but statistically significant 304 

(Pdifference = 0.002). The results remained similar when the discovery GWAS sample (i.e., HRS-3K) 305 

was used as the reference (Supplementary Table 15). These results suggest that the HEIDI test 306 

statistic was inflated in the two-sample scenario likely because of LD heterogeneity between the 307 

GWAS and eQTL samples. The power of HEIDI to detect the linkage model remained almost the 308 

same before and after DENTIST filtering (Figure 3c and Supplementary Table 15). To further 309 

validate if the inflation of HEIDI FPR was due to heterogeneity between the GWAS and eQTL 310 
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samples, we increased the difference in ancestry between the two discovery samples by 311 

simulating GWAS and eQTL data from UKB-8K-1KGP and HRS-3K, respectively, and performed 312 

the HEIDI analysis using ARIC as the reference. In this case, the FPR of HEIDI increased to 12.0% 313 

before and to 9.1% after DENTIST filtering (Supplementary Table 15). All these results suggest 314 

that DENTIST slightly improved the FPR of HEIDI in the presence of data heterogeneity at almost 315 

no expense of power and that in the presence of ancestry difference between the GWAS and 316 

eQTL samples, HEIDI tends to be conservative (rejecting more SMR associations than expected 317 

by chance) even after DENTIST filtering. 318 

 319 

Improved LD score regression analysis with DENTIST 320 

LD score regression (LDSC) is an approach which was originally developed to distinguish 321 

polygenicity from population stratification in GWAS summary data set by a weighted regression 322 

of GWAS χ2 statistics against LD scores computed from a reference12 but has often been used to 323 

estimate the SNP-based heritability (ℎ𝑆𝑁𝑃
2 ). We investigated the impact of DENTIST on LDSC 324 

using the height GWAS summary data generated using the UKBv3-329K sample along with 325 

several reference samples including four imputation-based samples (i.e., the discovery GWAS 326 

sample, HRS, ARIC and UKB-8K-1KGP) and two WGS-based samples (i.e., UK10K-WGS and the 327 

European individuals from the 1KGP (1KGP-EUR)). We performed the one- and two-step LDSC 328 

analyses using LD scores of the variants, in common with those in the HapMap3, computed from 329 

each of the references before and after DENTIST-based QC. Note that DENTIST was performed 330 

for all common variants but only those overlapped with HapMap3 were included in the LDSC 331 

analyses. 332 

 333 

Using the discovery GWAS sample as the reference, the estimates of ℎ𝑆𝑁𝑃
2  and regression 334 

intercept from the one-step LDSC were 46% (SE = 0.02) and 1.13 (SE = 0.04) respectively (Table 335 

3). When using the other reference samples, the results were very close to the benchmark except 336 

for a noticeably larger estimate of regression intercept using HRS (1.24, SE = 0.04). After 337 

DENTIST filtering, the intercept estimate using HRS decreased to 1.15 (SE = 0.04) with little 338 

difference in ℎ̂𝑆𝑁𝑃
2  (increased from 45% to 46%) (Table 3). To better understand the effect of 339 

DENTIST QC on LDSC using HRS, we plotted the mean χ2-statistic against the mean LD score 340 

across the LD score bins. We found that the GWAS mean χ2-statistic in the bin with the smallest 341 

mean LD score deviated from the value expected from a linear relationship between the LD 342 

score and χ2-statistic (Figure 4a), and the deviation was removed by filtering out a small 343 

proportion of variants with very small LD scores but large χ2-statistic by DENTIST 344 

(Supplementary Figure 7). These results show how the quality of LD reference can impact the 345 

LDSC analysis, but such effect is typically unknown a priori and varied across different reference 346 
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samples. We also re-ran the analyses using the two-step LDSC, where the intercept was 347 

estimated using the variants with χ2 values < 30 in the first step and constrained in the second 348 

step to estimate ℎ𝑆𝑁𝑃
2  using all the variants. Compared to the one-step approach, the two-step 349 

approach provides larger estimates of the intercepts and smaller estimates of ℎ𝑆𝑁𝑃
2  either before 350 

or after DENTIST filtering. It is noteworthy that when using 1KGP-EUR as the LD reference, 351 

DENTIST suggested many more variants for removal compared to that using the other 352 

references, which caused a substantially smaller estimate of ℎ𝑆𝑁𝑃
2  (Table 3). This is because LD 353 

correlations computed from references of small sample size are noisy due to sampling variation, 354 

which cause inflated test-statistic and thereby elevated FPR of DENTIST (Supplementary 355 

Figure 2). This result cautions the use of DENTIST with LD references with small sample sizes 356 

(e.g., 𝑛 < 5000). In addition, we applied LDSC to the 10 published GWAS data sets mentioned 357 

above (Supplementary Table 12) using ARIC and UKBv3-8K as the reference. The 358 

improvement of LDSC by DENTIST QC was small particularly for traits whose LDSC intercepts 359 

were close to 1 before DENTIST QC (Supplementary Table 16), demonstrating the robustness 360 

of LDSC to data heterogeneity and errors. 361 

 362 

Discussion 363 

In this study, we developed DENTIST, an QC tool for summary data-based analyses, which 364 

leverages LD from a reference sample to detect and filter out problematic variants by testing the 365 

difference between the observed z-score of a variant and a predicted z-score from the 366 

neighboring variants. From simulations and real data analyses, we show that some of the 367 

commonly-used analyses including the COJO, SMR-HEIDI and LDSC, can be biased to various 368 

extents in the presence of data heterogeneity, e.g., inflated number of COJO signals, elevated rate 369 

of rejecting pleiotropic models for SMR-HEIDI, or biased estimates of regression intercept and 370 

ℎ𝑆𝑁𝑃
2  for LDSC. For most of these analyses, DENTIST-based QC can substantially mitigate the 371 

biases. 372 

 373 

Our results suggest that summary-data-based analyses are generally well calibrated in the 374 

absence of data heterogeneity but biased otherwise. For example, we showed that the mismatch 375 

in ancestry between the discovery GWAS and LD reference (e.g., European vs. British ancestry) 376 

caused inflated FPRs of both COJO and SMR-HEIDI analyses (Table 2 and Supplementary Table 377 

15). Also, we found that the FPR of COJO for rare variants was much higher than that for 378 

common variants likely because rare variants are more difficult to impute such that they are 379 

more likely to have discrepancy in LD between two imputed data sets. It should be clarified that 380 

the false-positive COJO signals as defined here are not false associations but falsely claimed as 381 

jointly significant associations. DENTIST substantially reduced false-positive detections from 382 
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COJO analyses especially for rare variants even when there was a difference in ancestry between 383 

the GWAS and LD reference samples. This extends the utility of COJO, which was originally 384 

developed for common variants, to rare variants. This message is important for the field because 385 

more and more GWASs and meta-analyses have started included rare variants from imputation. 386 

The FPR of HEIDI was only marginally reduced by DENTIST but at almost no cost of power. It 387 

should also be clarified again that the inflated HEIDI test-statistics would not lead to false 388 

discoveries because higher HEIDI test-statistics correspond to higher probability of rejecting 389 

SMR associations rather than tending to claim more significant associations. Among all the 390 

methods tested, LDSC was least affected by errors or data heterogeneity, but in one case where 391 

HRS was used as the LD reference for the analysis of the UKB height summary data, the 392 

estimates were biased but could be corrected by DENTIST (Figure 4a). DENTIST has the unique 393 

feature to detect heterogeneity between a GWAS summary data set and an LD reference. The 394 

benefit of using DENTIST as a QC tool has been demonstrated in the three case studies above, 395 

but we believe that it can potentially be applied to all GWAS summary data-based analyses that 396 

require a LD reference such as fine mapping methods7,9,46 and joint modeling of all variants for 397 

polygenic risk prediction22,23,47 . We have also shown by simulation that DENTIST can even add 398 

value to the standard GWAS QC process in a single-cohort-based GWAS to detect 399 

genotyping/imputation errors. 400 

 401 

Given that a QC step can potentially remove true signals, we make sure that DENTIST is 402 

conservative in filtering variants. We show by simulation that in the absence of errors and data 403 

heterogeneity, the DENTIST test-statistics were not inflated, and on average, only <0.05% 404 

variants were filtered out by DENTIST (Supplementary Figure 1). In practice, we implemented 405 

two strategies to avoid widespread inflation of the DENTIST statistics in the presence of data 406 

errors or heterogeneity: 1) we used the SVD truncation method to control for sampling variation 407 

in LD estimated from the reference; 2) we applied an iterative approach to prioritize the 408 

elimination of larger outliers in earlier iterations (Methods). We optimized the parameters 409 

related to these two steps through simulations (Supplementary Figure 2). Throughout all the 410 

analyses performed in this study, we found in no cases DENTIST degraded the results, and 411 

DENTIST often only needed to remove a very small proportion of the variants to correct or 412 

alleviate the biases (Table 3 and Supplementary Tables 4, 11, 13). To the contrary, filtering 413 

variants based on imputation INFO score48 caused significant loss of power in the COJO analysis 414 

when a stringent INFO score threshold was used to achieve a similar level of FPR as that using 415 

DENTIST. 416 

 417 
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Our method is an early attempt at QC for summary-data-based analyses. To avoid misuse, we 418 

summarize the usages and limitations, in addition to the features mentioned above. Firstly, 419 

DENTIST is a QC method for detecting not only errors in summary-data but also heterogeneity 420 

between discovery and reference data. As shown from our simulation, DENTIST does not 421 

guarantee the filtering of all the errors but most of them with large GWAS z-scores and a large 422 

proportion of them with small z-scores. Secondly, DENTIST can identify errors that passed the 423 

standard QC approaches (such as HWE test and allelic frequency checking), which makes it a 424 

good complementary method to existing QC filters. We suggest that DENTIST-based QC should 425 

be applied after the standard QC as DENTIST is more powerful when the proportion of errors is 426 

smaller (Supplementary Table 3). DENTIST can also be used as a method for checking 427 

summary data sanity by running it with a reliable LD reference sample. Thirdly, regarding the 428 

choice of a reference sample, DENTIST expects unrelated individuals from a closely matched 429 

ancestry, with a large sample size (n > 5,000). From simulations, we found that small reference 430 

sample size biased the DENTIST test statistics leading to significantly elevated FPR 431 

(Supplementary Figure 2). Lastly, DENTIST assumes the test statistics of different variants 432 

have similar sample sizes; violation of this assumption will lead to variants with significantly 433 

smaller or larger sample sizes being mistakenly recognized as problematic variants by DENTIST. 434 

 435 

In summary, we have proposed a new QC approach to improve summary-data-based analyses 436 

that are potentially affected by the errors in summary data or heterogeneity between data sets. 437 

This method has been implemented in a user-friendly software tool DENTIST. The software tool 438 

is multi-threaded so that it is computationally efficient when enough computing resources are 439 

available. For example, when running each chromosome in parallel, it took <1h to run DENTIST 440 

for all variants with MAF > 1% and <5h for all variants with MAF > 0.01% on each chromosome 441 

(Supplementary Table 16). 442 

443 
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Methods 444 

The DENTIST test-statistic 445 

Given an ancestrally homogeneous sample and a genotype matrix X consisting of n unrelated 446 

individuals genotyped/imputed at m variants, an association study is carried out at each variant 447 

by performing a linear regression between the variant and a phenotype of interest. This 448 

provides a set of summary data that include the estimate of variant effect, the corresponding 449 

standard error, and thereby the z-statistic. Under the null hypothesis of no association, the z-450 

scores of m variants follow a multivariate normal distribution, 𝒁~𝑀𝑉𝑁(𝟎, 𝜮) with 𝒁 =451 

(𝑍1, 𝑍2, … , 𝑍𝑚), with 𝜮 a LD correlation matrix of the variants. 452 

 453 

The aim of this method is to test the difference between the z-statistic of a variant and that 454 

predicted from adjacent variants. To do this, we use a sliding window approach to divide 455 

genome into 2Mb segments with a 500kb overlap between one another and randomly partition 456 

the variants in a segment into two subsets, S1 and S2, with similar numbers of variants. We then 457 

use variants in S2 to predict those in S1 and vice versa. According to previous studies10,11 , the 458 

distribution of z-statistic of a variant i from S1, conditional on the observed z-scores of a set of 459 

variants from S2 is 460 

𝑍𝑖|𝐙𝒕 = 𝐳𝒕 ~ 𝑁(𝚺𝑖𝒕𝚺𝒕𝒕
−1 𝐳𝒕, 𝛴𝑖𝑖 − 𝚺𝑖𝒕𝚺𝒕𝒕

−1𝚺𝑖𝒕
′ )                                     (1), 461 

where 𝚺𝑖𝒕 denotes the correlation of z-scores between variant i from S1 and variants t from S2, 462 

and 𝚺𝒕𝒕 is the correlation matrix of variants t. We use the correlation matrix calculated from an 463 

ancestry-matched reference sample (denoted by R) to replace that in the discovery sample if 464 

individual-level genotypes of in the discovery GWAS are unavailable. In this case, Equation 1 465 

can be rewritten as  466 

𝑍𝑖|𝐳𝒕 ~ 𝑁(𝐑𝑖𝒕𝐑𝒕𝒕
−1 𝒛𝒕, 𝟏 − 𝐑𝑖𝒕𝐑𝒕𝒕

−1𝐑𝑖𝒕
′ )                                                 (2). 467 

We can use 𝐸(𝑍𝑖|𝐳𝒕) as a predictor of 𝑍𝑖 , i.e., 𝑧̃𝑖 = 𝐑𝑖𝒕𝐑𝒕𝒕
−1 𝒛𝒕, and can therefore use the test-468 

statistic below to test the difference between the observed and predicted z-scores  469 

𝑇𝑑(𝑖) = (𝑧𝑖 − 𝐑𝑖𝒕𝐑𝒕𝒕
−1 𝒛𝒕)2/(𝟏 − 𝐑𝑖𝒕𝐑𝒕𝒕

−1𝐑𝑖𝒕
′ )                                       (3) 470 

which approximately follows a χ2 distribution with 1 degree of freedom. A deviation of 𝑇𝑑(𝑖) from 471 

𝜒1
2 can be attributed to 1) errors in the summary data; 2) errors in the reference data; or 3) 472 

heterogeneity between the two data sets. Using Equation 3, the test statistic 𝑇𝑑 can be 473 

calculated for each variant in S1 given z-scores from S2. As in previous studies10,11, the method is 474 

derived under the null hypothesis of no association, but the test-statistics are well calibrated in 475 

the presence of true association signals (Supplementary Figure 2). 476 

 477 

The iterative partitioning approach 478 
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One challenge of using Equation 3 is that errors in zt or discrepancy between 𝐑𝑖𝒕 and 𝚺𝑖𝒕 can 479 

affect the accuracy of predicting 𝑧̃𝑖 . To mitigate this, we use an iterative partitioning approach. 480 

That is, in each iteration, we randomly partition the variants into two sets, S1 and S2, predict the 481 

z-statistic of each variant in S1 using its adjacent variants in S2 and vice versa, and run the 𝑇𝑑 482 

test to remove a small fraction of variants with PDENTIST < 5×10-8 (capped at 0.5% variants with 483 

the smallest PDENTIST if more than 0.5% of the variants exceeding this threshold). The default 484 

number of iterations is set to 10. In this iterative process, variants with very large errors or LD 485 

heterogeneity between the discovery and LD reference samples are prioritized for removal in 486 

the first few iterations so that the prediction accuracy increases in the following iterations. After 487 

the iterations are completed, any SNPs with PDENTIST < 5×10-8 are removed in the final step. 488 

 489 

Accounting for sampling noise in LD 490 

A simple replacement of the LD correlation matrix Σ by R introduces additional noises, which 491 

can inflate 𝑇𝑑, because the sampling variations in R differ from those Σ. Therefore, we adopt a 492 

truncated singular value decomposition (SVD) approach used in a previous study13 to suppress 493 

the sampling noises. The essential idea was to remove variance components of 𝐑𝒕𝒕 that 494 

corresponded to the smallest singular values in SVD, as these variance components were likely 495 

to be induced by sampling noises. Given the equivalence between SVD and eigen decomposition 496 

of 𝐑𝒕𝒕, we perform pseudoinverse of 𝐑𝒕𝒕 using eigen decomposition, set small eigen values to 0, 497 

and retain only k components with large eigen values. 498 

𝐑𝑖𝒕𝐑𝒕𝒕
−1 𝒛𝒕 = 𝐑𝑖𝒕𝐑𝒕𝒕

+  𝒛𝒕 = ∑ 1/𝑤𝑘(𝐑𝑖𝒕𝒗𝑘)(𝒗𝑘
′ 𝒛𝒕)𝟏..𝒌                                               (4) 499 

𝐑𝑖𝒕𝐑𝒕𝒕
−1𝐑𝑖𝒕

′ = 𝐑𝑖𝒕𝐑𝒕𝒕
+ 𝐑𝒊𝒕

′ = ∑ 1/𝑤𝑘(𝐑𝑖𝒕𝒗𝑘)2
𝟏..𝒌                                                    (5) 500 

𝐑𝒕𝒕
+  denotes the pseudo inversion of 𝐑𝒕𝒕. The scalars w1,…wk correspond to the largest k 501 

eigenvalues, and vectors v1…vk are the corresponding k eigenvectors. Given q = rank (𝐑𝒕𝒕), the 502 

suggested value of k is k ≪ q. Let 𝜃𝑘 = 𝑘/𝑞. We show by simulation that 𝜃𝑘 = 0.5 appears to be a 503 

good choice meanwhile a large reference sample size (e.g., 𝑛ref ≥ 5000) is need 504 

(Supplementary Figure 2). This pseudoinverse also prevents the problem of rank deficiency 505 

due to strongly correlated variants when computing 𝐑𝒕𝒕
−1. 506 

 507 

According to the term 𝐑𝒊𝒕𝐑𝒕𝒕
−1 𝒛𝒕 in Equation 3, which is a weighted sum of multiple z-scores, a 508 

variant displaying a strong correlation with i can overrule the information from the rest of the 509 

variants in S2. This would affect the robustness of our method. Therefore, we prune the variants 510 

for LD with an r2 threshold of 0.95 (note: we do not actually remove variants in this case). For a 511 

set of variants in high LD (r2 > 0.95), variants pruned out by this pruning process are assigned 512 

with the same 𝑇𝑑 value as that of the variant retained. 513 

 514 
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 515 

Genotype data sets 516 

This study is approved by the University of Queensland Human Research Ethics Committee 517 

(approval number: 2011001173). A summary of the genotype data sets used in this study as well 518 

as their relevant information can be found in Supplementary Table 1. These data are from four 519 

GWAS cohorts of European descendants, including the Health Retirement Study (HRS)32, 520 

Atherosclerosis Risk in Communities (ARIC) study33, UK10K27, and UK Biobank (UKB)29. The 521 

samples were genotyped using either WGS or SNP array technology (Supplementary Table 1). 522 

Imputation of the UKB data had been performed in a previous study49 using the Haplotype 523 

Reference Consortium (HRC)34 and UK10K reference panels29,50. We used different subsets of the 524 

imputed UKB data as the LD reference in this study, denoted with the prefix “UKBv3”, such as 525 

UKBv3-unrel (all the unrelated individuals of European ancestry, n = 348,577), UKBv3-329K (a 526 

subset of 328,577 individuals of UKBv3-unrel), UKBv3-20K (another subset of 20,000 individuals 527 

of UKBv3-unrel, independent of UKBv3-392K) and UKBv3-8K (a subset of 8,000 individuals of 528 

UKBv3-20K). HRS, ARIC and UK10K cohorts were  imputed to the 1KGP reference panel in prior 529 

studies28,30, and a subset of 8000 unrelated individuals from UKB were imputed to the 1KGP 530 

reference panel in this study (referred to as UKB-8K-1KGP). The UK10K variants in common with 531 

those on an Illumina CoreExome array were used for 1KGP imputation30. The imputation dosage 532 

values were converted to best-guess genotypes in all the data sets except for UKBv3-all, in which 533 

the hard-called genotypes were converted from the imputation dosage values using PLINK2 --534 

hard-call-threshold 0.1 (Ref51). For all the data set, standard QCs were performed to remove 535 

variants with HWE test P-value < 10-6, imputation INFO score <0.3, or MAF < 0.001. Since the hard-536 

called genotypes had missing values, in UKBv3 and its subsets, we further removed variants with 537 

missingness rate > 0.05.  538 

 539 

Genome-wide association analysis for height using the UKB data 540 

We performed a genome-wide association analysis for height using the genotype data of UKBv3-541 

329K, i.e., all the unrelated individuals of European ancestry in the UKB (n=328,577) except for 542 

20000 individuals randomly selected to create a non-overlapping reference sample (i.e., UKBv3-543 

20K). The height phenotype was pre-adjusted for sex and age. We conducted the association 544 

analysis using the simple linear regression model in fastGWA52 with the first 10 principle 545 

components (PCs) fitted as covariates.  546 

 547 

Data availability 548 

All the data sets used in this study are available in the public domain (Supplementary Table 12). 549 

 550 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 12, 2020. ; https://doi.org/10.1101/2020.07.09.196535doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.09.196535
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
 

17 

Code availability 551 

The software tool DENTIST was written in C++ as a command-line tool. The source code and 552 

pre-compiled executable for 64-bit Linux distributions are available at https://github.com/Yves-553 

CHEN/DENTIST/. 554 

 555 

Acknowledgements 556 

We are very grateful for constructive comments from Naomi Wray, Loic Yengo, Ying Wang and 557 

Jian Zeng and technical supports from Allan McRae, Julia Sidorenko, and Futao Zhang. This 558 

research was supported by the Australian Research Council (FT180100186, FL180100072), the 559 

Australian National Health and Medical Research Council (1113400 1107258), and the Sylvia & 560 

Charles Viertel Charitable Foundation.  561 

 562 

Author Contributions 563 

JY conceived and supervised the study. WC, ZZh and JY developed the method. WC, YW, ZZh, and 564 

JY designed the experiment. WC performed the simulations and data analyses under the 565 

assistance and guidance from YW, ZZl, TQ, PMV, ZZh and JY. WC developed the software tool. 566 

PMV and JY contributed funding and resources. WC and JY wrote the manuscript with the 567 

participation of all authors. All authors reviewed and approved the final manuscript. 568 

 569 

Competing Interests 570 

The authors declare no competing interests. 571 

 572 

References 573 

1. Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association 574 
studies, targeted arrays and summary statistics 2019. Nucleic Acids Res 47, D1005-D1012 575 
(2019). 576 

2. Visscher, P.M. et al. 10 Years of GWAS Discovery: Biology, Function, and Translation. Am J 577 
Hum Genet 101, 5-22 (2017). 578 

3. Pasaniuc, B. & Price, A.L. Dissecting the genetics of complex traits using summary 579 
association statistics. Nat Rev Genet 18, 117-127 (2017). 580 

4. Schaid, D.J., Chen, W. & Larson, N.B. From genome-wide associations to candidate causal 581 
variants by statistical fine-mapping. Nat Rev Genet 19, 491-504 (2018). 582 

5. Dadaev, T. et al. Fine-mapping of prostate cancer susceptibility loci in a large meta-583 
analysis identifies candidate causal variants. Nat Commun 9, 2256 (2018). 584 

6. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics 585 
identifies additional variants influencing complex traits. Nat Genet 44, 369-75, S1-3 586 
(2012). 587 

7. Chen, W. et al. Fine mapping causal variants with an approximate Bayesian method using 588 
marginal test statistics. Genetics 200, 719-736 (2015). 589 

8. Zhu, X. & Stephens, M. Bayesian large-scale multiple regression with summary statistics 590 
from genome-wide association studies. Ann Appl Stat 11, 1561 (2017). 591 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 12, 2020. ; https://doi.org/10.1101/2020.07.09.196535doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.09.196535
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
 

18 

9. Wang, G., Sarkar, A.K., Carbonetto, P. & Stephens, M. A simple new approach to variable 592 
selection in regression, with application to genetic fine-mapping. bioRxiv, 501114 (2019). 593 

10. Pasaniuc, B. et al. Fast and accurate imputation of summary statistics enhances evidence 594 
of functional enrichment. Bioinformatics 30, 2906-14 (2014). 595 

11. Lee, D., Bigdeli, T.B., Riley, B.P., Fanous, A.H. & Bacanu, S.A. DIST: direct imputation of 596 
summary statistics for unmeasured SNPs. Bioinformatics 29, 2925-7 (2013). 597 

12. Bulik-Sullivan, B.K. et al. LD Score regression distinguishes confounding from polygenicity 598 
in genome-wide association studies. Nat Genet 47, 291-5 (2015). 599 

13. Shi, H., Kichaev, G. & Pasaniuc, B. Contrasting the Genetic Architecture of 30 Complex 600 
Traits from Summary Association Data. Am J Hum Genet 99, 139-153 (2016). 601 

14. Finucane, H.K. et al. Partitioning heritability by functional annotation using genome-wide 602 
association summary statistics. Nat Genet 47, 1228 (2015). 603 

15. Zhu, Z. et al. Causal associations between risk factors and common diseases inferred from 604 
GWAS summary data. Nat Commun 9, 224 (2018). 605 

16. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. 606 
Nat Genet 47, 1236-41 (2015). 607 

17. Hartwig, F.P., Davies, N.M., Hemani, G. & Davey Smith, G. Two-sample Mendelian 608 
randomization: avoiding the downsides of a powerful, widely applicable but potentially 609 
fallible technique. Int J Epidemiol 45, 1717-1726 (2016). 610 

18. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic 611 
association studies using summary statistics. PLoS Genet 10, e1004383 (2014). 612 

19. Gamazon, E.R. et al. A gene-based association method for mapping traits using reference 613 
transcriptome data. Nat Genet 47, 1091-8 (2015). 614 

20. Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association 615 
studies. Nat Genet 48, 245-52 (2016). 616 

21. Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex 617 
trait gene targets. Nat Genet 48, 481-7 (2016). 618 

22. Vilhjalmsson, B.J. et al. Modeling Linkage Disequilibrium Increases Accuracy of Polygenic 619 
Risk Scores. Am J Hum Genet 97, 576-92 (2015). 620 

23. Lloyd-Jones, L.R. et al. Improved polygenic prediction by Bayesian multiple regression on 621 
summary statistics. Nat Commun 10, 5086 (2019). 622 

24. Johnson, E.O. et al. Imputation across genotyping arrays for genome-wide association 623 
studies: assessment of bias and a correction strategy. Hum Genet 132, 509-22 (2013). 624 

25. Winkler, T.W. et al. Quality control and conduct of genome-wide association meta-625 
analyses. Nat Protoc 9, 1192-212 (2014). 626 

26. Novembre, J. et al. Genes mirror geography within Europe. Nature 456, 98 (2008). 627 
27. UK10K consortium. The UK10K project identifies rare variants in health and disease. 628 

Nature 526, 82-90 (2015). 629 
28. Yang, J. et al. Genetic variance estimation with imputed variants finds negligible missing 630 

heritability for human height and body mass index. Nat Genet 47, 1114-20 (2015). 631 
29. Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide 632 

range of complex diseases of middle and old age. PLoS Med 12, e1001779 (2015). 633 
30. Wu, Y., Zheng, Z., Visscher, P.M. & Yang, J. Quantifying the mapping precision of genome-634 

wide association studies using whole-genome sequencing data. Genome Biol 18, 86 635 
(2017). 636 

31. Wood, A.R. et al. Defining the role of common variation in the genomic and biological 637 
architecture of adult human height. Nat Genet 46, 1173-86 (2014). 638 

32. Sonnega, A. et al. Cohort profile: the health and retirement study (HRS). Int J Epidemiol 43, 639 
576-585 (2014). 640 

33. ARIC INVESTIGATORS. The atherosclerosis risk in communit (aric) stui) y: Design and 641 
objectwes. American Journal of Epidemiology 129, 687-702 (1989). 642 

34. McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nature 643 
genetics 48, 1279 (2016). 644 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 12, 2020. ; https://doi.org/10.1101/2020.07.09.196535doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.09.196535
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
 

19 

35. Lee, J.J. et al. Gene discovery and polygenic prediction from a genome-wide association 645 
study of educational attainment in 1.1 million individuals. Nat Genet 50, 1112-1121 646 
(2018). 647 

36. van der Harst, P. & Verweij, N. Identification of 64 Novel Genetic Loci Provides an 648 
Expanded View on the Genetic Architecture of Coronary Artery Disease. Circ Res 122, 433-649 
443 (2018). 650 

37. Mahajan, A. et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-651 
density imputation and islet-specific epigenome maps. Nat Genet 50, 1505-1513 (2018). 652 

38. Liu, J.Z. et al. Association analyses identify 38 susceptibility loci for inflammatory bowel 653 
disease and highlight shared genetic risk across populations. Nat Genet 47, 979-986 654 
(2015). 655 

39. Wray, N.R. et al. Genome-wide association analyses identify 44 risk variants and refine the 656 
genetic architecture of major depression. Nat Genet 50, 668-681 (2018). 657 

40. Pardinas, A.F. et al. Common schizophrenia alleles are enriched in mutation-intolerant 658 
genes and in regions under strong background selection. Nat Genet 50, 381-389 (2018). 659 

41. Phelan, C.M. et al. Identification of 12 new susceptibility loci for different histotypes of 660 
epithelial ovarian cancer. Nat Genet 49, 680-691 (2017). 661 

42. Michailidou, K. et al. Association analysis identifies 65 new breast cancer risk loci. Nature 662 
551, 92-94 (2017). 663 

43. Yengo, L. et al. Meta-analysis of genome-wide association studies for height and body mass 664 
index in approximately 700000 individuals of European ancestry. Hum Mol Genet 27, 665 
3641-3649 (2018). 666 

44. Wu, Y. et al. Integrative analysis of omics summary data reveals putative mechanisms 667 
underlying complex traits. Nat Commun 9, 918 (2018). 668 

45. Lloyd-Jones, L.R. et al. The Genetic Architecture of Gene Expression in Peripheral Blood. 669 
Am J Hum Genet 100, 228-237 (2017). 670 

46. Benner, C. et al. FINEMAP: efficient variable selection using summary data from genome-671 
wide association studies. Bioinformatics 32, 1493-1501 (2016). 672 

47. Robinson, M.R. et al. Genetic evidence of assortative mating in humans. Nature Human 673 
Behaviour 1(2017). 674 

48. Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint method for 675 
genome-wide association studies by imputation of genotypes. Nat Genet 39, 906-13 676 
(2007). 677 

49. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. 678 
Nature 562, 203-209 (2018). 679 

50. Huang, J. et al. Improved imputation of low-frequency and rare variants using the UK10K 680 
haplotype reference panel. Nature communications 6, 1-9 (2015). 681 

51. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based 682 
linkage analyses. The American journal of human genetics 81, 559-575 (2007). 683 

52. Jiang, L. et al. A resource-efficient tool for mixed model association analysis of large-scale 684 
data. Nature Genetics 51, 1749-1755 (2019). 685 

 686 

687 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 12, 2020. ; https://doi.org/10.1101/2020.07.09.196535doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.09.196535
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
 

20 

 688 

Figure 1. Detecting simulated allelic and genotyping errors using DENTIST. We assessed 689 

the power of DENTIST in detecting allelic and genotyping errors. There are three levels of 690 

genotyping error rate (ferror=0.15, 0.1 or 0.05), defined as the proportion of individuals with 691 

erroneous genotypes for a variant. Panel a) is a plot of the GWAS z-scores from data with 692 

simulated errors against those from data without such errors. The gray dots in the diagonal 693 

represents z-scores of variants without errors. In panel b), the DENTIST P-values are plotted 694 

against the absolute values of the GWAS z-scores for all the variants. The horizontal dashed line 695 

corresponds to 𝑃 = 5 × 10−8. In panel c), to demonstrate the power in each |z-score| bin, we 696 

pooled the results from 200 simulations. Each bar plot (+/- s.e.) represents power computed 697 

from the pooled results.  698 
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 699 

Figure 2. FPRs of COJO with and without DENTIST. Based on simulations with one causal 700 

signal, we assessed the FPRs of COJO analyses when performed with and without DENTIST-701 

based QC (FPR is defined as the frequency of observing more than one COJO signals in the 702 

scenario in which only one causal variant was simulated). The x-axis labels indicate the LD 703 

reference samples used in the COJO analyses, and those performed after DENTIST QC are labeled 704 

with “QC” in the parentheses. The error bars correspond to the standard error of FPRs calculated 705 

from 2200 replications, each with a re-sampled causal variant.  706 
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 707 

Figure 3. FPRs and power of the HEIDI test with and without DENTIST. Shown are the 708 

results from simulations to quantify the FPR of HEIDI under a pleiotropic model (panels a and b) 709 

and the power of HEIDI under a linkage model (panel c). The two-sample pleiotropic model in 710 

panel a refers to the scenario where the eQTL and GWAS summary data were simulated based 711 

on two different samples (HRS-3K and ARIC). The one-sample scenario in panel b refers to the 712 

scenario where the GWAS and eQTL data were simulated using the same sample (HRS-3K). In 713 

both scenarios, an independent sample (UK10K-1KGP) was used as the LD reference. Pdifference is 714 

to test if the FPR after QC is significantly different that without QC. Pdifference is calculated from a 715 

posterior distribution of 𝑘1~ Binomial (𝑛, p) with p from a prior distribution of 𝑝~𝐵𝑒𝑡𝑎(𝑘2, 𝑛 −716 

𝑘2), where n is the number of simulation replicates, and 𝑘1 and 𝑘2 are the numbers of simulation 717 

replicates in which the HEIDI test correctly identified the right model with and without the 718 

DENTIST-based QC, respectively. The error bars correspond to the standard errors of the 719 

correspond metrics calculated from 4000 replications with re-sampled causal variants.  720 
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 721 

 722 

Figure 4. The effect of DENTIST-based QC on LDSC analysis of the UKB height summary 723 

data. We assessed the effect of DENTIST on LDSC when different LD references were used, 724 

including a) HRS, b) ARIC, c) UKB-8K-1KGP, and d) UK10K-WGS. For each reference sample, 725 

LDSC was performed before and after DENTIST-based QC, and the corresponding results are 726 

shown in the red and cyan text boxes, respectively, on each plot. The variants are binned by their 727 

LD scores. Each dot on the plots represents the mean LD score value of each bin on the x-axis 728 

and the mean χ2 value on the y-axis, with those before and after DENTIST-based QC in red and 729 

cyan colors respectively. In the textbox, “M” represents the number of variants, “ℎ𝑆𝑁𝑃
2 ” 730 

represents the estimate of SNP-based heritability, and “intercept” represents the LDSC intercept, 731 

with the corresponding standard errors given the parentheses. 732 
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Table 1. FPRs and power of COJO before and after DENTIST-based QC in simulations. 733 

Analysis method 
(LD reference) 

FPR (%) 
 

Power (%) 

Common-
causal 

Rare-
causal 

 Common-
causal 

Rare-
causal 

Benchmark 0.1 ± 0.11 0.2 ± 0.16 
 

78.8 ± 0.9 30.6±1.4 

COJO without DENTIST 
(UKB-8K-1KGP) 

1.0 ± 0.50 2.7 ± 0.50   
 

79.0 ± 0.9 28.6±1.9 

COJO with DENTIST  
(UKB-8K-1KGP) 

0.3 ± 0.14 1.3 ± 0.36 
 

77.3 ± 0.9 22.2±1.6 

COJO without DENTIST  
(HRS) 

7.9 ± 1.37 28.4 ± 1.37 
 

81.8±3.9 27.7±1.4 

COJO with DENTIST  
(HRS) 

0.5 ± 0.18 1.7 ± 0.40 
 

81.2±1.3 16.8±1.1 

COJO without DENTIST 
(ARIC) 

7.1 ± 1.32 28.7 ± 1.38   
 

77.6±0.9 26.7±1.7 

COJO with DENTIST 
(ARIC) 

0 ± 0.00 1.3 ± 0.36 
 

75.8 ± 0.9 17.1±1.4 

Benchmark: COJO analysis using the discovery GWAS as the reference without DENTIST. Shown 734 

are mean ± standard error. 735 

 736 

  737 
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Table 2. Numbers of COJO signals from analyses of the UKB height summary data using different 738 

LD reference samples with and without DENTIST-based QC. 739 

 Benchmark 
UKBv3-20K 
(n = 20,000) 

UKBv3-8K 
(n = 8,000) 

HRS 
(n = 8,557) 

ARIC 
(n = 7,703) 

UK10K-WGS 
(n = 3,642) 

MAF > 0.01 
Without DENTIST 

1279 1296 (1.3%) 1337 (4.5%) 1477 (15.5%) 1485 (16.1%) 1417 (10.8%) 

MAF > 0.01 
With DENTIST 

/ 1300 (1.6%) 1319 (3.1%) 1338 (4.6%) 1353 (5.8%) 1413 (10.5%) 

MAF > 0.001 
Without DENTIST 

1310 1313 (0.2%) 1337 (2.0%) 1555 (18.7%) 1645 (25.6%) 1473 (12.4%) 

MAF > 0.001 
With DENTIST 

/ 1326 (1.2%) 1326 (1.2%) 1346 (2.7%) 1398 (6.7%) 1421 (8.5%) 

Benchmark: COJO analysis using the discovery GWAS (UKBv3-329K) as the reference without 740 

DENTIST. The inflation rate as compared to the benchmark is shown in the parentheses. 741 

  742 
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Table 3. Estimates from LDSC analyses of the UKB height GWAS summary data with and without 743 

DENTIST-based QC. 744 

 
Number of 
variants 

One-step approach  Two-step approach 

𝒉𝑺𝑵𝑷
𝟐  Intercept  𝒉𝑺𝑵𝑷

𝟐  Intercept 

Reference = the discovery GWAS sample 

Benchmark 1114780 0.46 (0.023) 1.13 (0.049)  0.41(0.017) 1.34 (0.030) 

Reference = HRS 

Without DENTIST  1117600 0.45 (0.022) 1.24 (0.047)  0.42 (0.018) 1.36 (0.028) 

With DENTIST 1116249 0.46 (0.022) 1.15 (0.040)  0.41 (0.017) 1.35 (0.027) 

Reference = ARIC     

Without DENTIST  1105232 0.47 (0.025) 1.15 (0.047)  0.42 (0.018) 1.34 (0.030) 

With DENTIST 1102229 0.47 (0.024) 1.14 (0.047)  0.41 (0.018) 1.34 (0.030) 

Reference = UKB-8K-1KGP    

Without DENTIST  1114804 0.46(0.023) 1.13(0.050)  0.41 (0.017) 1.33 (0.030) 

With DENTIST 1113260 0.46(0.022) 1.12(0.048)  0.40 (0.016) 1.33 (0.030) 

Reference = UK10K-WGS    

Without DENTIST  1091973 0.48 (0.023) 1.10(0.048)  0.42 (0.018) 1.31 (0.029) 

With DENTIST 1074399 0.47 (0.022) 1.07 (0.042)  0.41 (0.016) 1.30(0.028) 

Reference = 1KGP-EUR    

Without DENTIST  1133151 0.48 (0.024) 1.15 (0.047)  0.43 (0.018) 1.33 (0.028) 

With DENTIST 1071447 0.40 (0.018) 1.03 (0.030)  0.35 (0.014) 1.22 (0.024) 

Standard errors are given in the parentheses. 745 
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