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Abstract

Background:  As antibiotic resistance is becoming a major problem nowadays in a treatment of

infections, bacteriophages (also known as phages) seem to be an alternative. However, to be used in

a therapy, their life cycle should be strictly lytic. With the growing popularity of Next Generation

Sequencing (NGS) technology, it is possible to gain such information from the genome sequence. A

number of tools are available  which help to define phage life  cycle.  However,  there is still  no

unanimous way to deal with this problem, especially in the absence of well-defined open reading

frames. To overcome this limitation, a new tool is definitely needed. 

Results:  We developed  a  novel  tool,  called  PhageAI,  that  allows  to  access  more  than  10 000

publicly available bacteriophages and differentiate between their major types of life cycles: lytic

and  lysogenic.  The  tool  included  life  cycle  classifier  which  achieved  98.90%  accuracy  on  a

validation  set  and  97.18%  average  accuracy  on  a  test  set.  We  adopted  nucleotide  sequences

embedding based on the Word2Vec with Ship-gram model and linear Support Vector Machine with

10-fold cross-validation for supervised classification. PhageAI is free of charge and it is available at

https://phage.ai/. PhageAI is a REST web service and available as Python package.

Conclusions:  Machine learning and Natural  Language Processing allows to extract  information

from bacteriophages nucleotide sequences for lifecycle prediction tasks. The PhageAI tool classifies

phages  into  either  virulent  or temperate  with a  higher  accuracy than any existing methods and

shares interactive 3D visualization to help interpreting model classification results.
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Background

We are might soon be living in a post-antibiotic era and there is a need to find an alternative to treat

microbial diseases, especially because of growing resistance of pathogens. One of the solutions that

brings much scientific attention during recent years is phage therapy [1]. Bacteriophages are defined

as viruses that target, infect, and replicate within bacteria, having high specificity restricted to one

bacterial genus or even certain strains. They are among the most abundant entities on Earth - it is

estimated that there are 1031 phages worldwide [2,3].

After their discovery at the beginning of the 20th century, phages suddenly lost popularity because

antibiotics were discovered in parallel. Therefore, there are still many gaps  in a knowledge of their

biology. One of the problems that still needs to be addressed and investigated is a differentiation

between the phage life cycles: lytic or lysogenic [3].) A virulent phage exhibits a strictly lytic life

cycle in which after a phage attachment to a host cell,  a nucleic acid is injected in order to use

bacterial metabolism, replicate its genome and synthesize new virions. As a result, bacterium is

lysed and bacteriophages are released to the environment. In contrast, a temperate phage carries a

lysogenic cycle in which its genome might be inserted into a bacterial  chromosome and form a

prophage, a state in which it can last for many generations. However, when such a phage is induced

with a certain stress factor, it can also enter a lytic cycle [3,4].

There is a need to define a life cycle of a phage especially when choosing phages for therapeutic

purposes, as temperate phages are known to take part in a horizontal gene transfer (HTG). Since

they can integrate into bacterial genomes, they can transfer undesirable features such as virulence
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factors  or  antibiotic  resistance  genes  into  subsequent  bacterial  generations.  On the  other  hand,

virulent phages are considered safe and are approved for use in phage therapy [2,5].

So far, there is no unambiguous and indisputable way to define a bacteriophage life cycle. There is

a traditional experimental method based on clearance or turbidity of plaques, however, it is not of

much use nowadays [5]. As NGS sequencing is less and less expensive, it becomes available for

research units to gain information from bacteriophages’ sequences. In Andrew Millard lab webpage

there  is  a  plot  presenting  a  cumulative  number  of  phage  genomes  over  the  years  (Figure  1).

However, the analysis of phage sequences is still a struggle for the scientific community because of

a low availability of reference genomes, mistakes in Open Reading Frames (ORFs) sizes done with

automatic annotation programs and little knowledge about protein function of an analysed phage.

Therefore,  there are various approaches to define a phage life cycle [6,7]. It often starts with a

search of reference sequences in Basic Local Alignment Search Tool (BLAST) and both automatic

and manual annotation of genomes (e.g.in DNAMaster, University of Pittsburgh). Then, careful

analysis of ORFs is done looking not only for sequence homology, but also for a structural one

e.g.in  HHpred  and  search  for  domains  is  performed  in  InterPro  [8,9].  As  a  complement,

phylogenetic analysis e.g., in MEGAX [10] and analysis of termini of phages in PhageTerm [11]

are prepared.

Currently, there is only one automatic tool called PHACTS in which a prediction of a phage life

cycle is generated based on amino acid sequences of the analyzed phages. However, it requires an

amino acid sequence based on annotation which can be imperfect and, moreover, it  gives quite

often averaged probability of results around 0.5 – 0.6 which is not satisfactory [12].

Consequently, there is a need to develop a fast and reliable tool which will be based on a phage

genome analysis itself and which will not be dependent on hypothetical functions of potential ORFs
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which is very often the case for bacteriophage genomes with no reference. This is why we decided

to apply solutions from the Artificial Intelligence (AI) domain that focuses on statistical models and

algorithms allowing computer systems to solve a particular problem or perform a specific task with

or without explicit expert rules and programmed instructions. While historically somewhat niche,

increasingly  better  hardware  and  recent  developments  in  the  Deep  Learning  algorithms  enable

Machine Learning (ML) models and natural Language Processing (NLP) to achieve human-like

performance on various tasks from multiple fields such as computer vision or knowledge extraction

from the data.  ML is applied to an increasingly wide range of domains.  Every scientist  has an

opportunity to integrate it into his operations to become more competitive by gaining predictive

insights and the potential to automate numerous tasks. Today's AI frameworks are already mature

and effective enough to be powerful tools not only for researchers but also for practical application

developers.

In this  paper,  we present  a  novel  approach based on Machine  Learning and Natural  Language

Processing to classify phages into virulent or temperate based on their nucleotide sequences. Our

tool is available online at https://phage.ai/.

Figure 1. Number of sequenced phage genomes over the years.
Published within author permission [13].
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Results

This  work  was  focused  on  constructing  a  novel  Machine  Learning  and  Natural  Language

Processing pipeline  for  bacteriophages’  life  cycle  classification.  For  this  research  we used 278

virulent and 174 temperate phage genomes in FASTA format.

We  applied  common  NLP  techniques  for  efficient  DNA  word  embedding  by  k-mer  structure

(contiguous subsequence of k letters) with sliding window approach using constant  k = 6 and the

Word2Vec algorithm with the Skip-gram model. It allowed us to extract vocabulary size V = 4,096

used to represent each phage. The word embedding model was trained using sparse DNA 6-mers

and  produced  dense  embedding  vectors  consisting  of  300  fixed-size  numeric  vector  space.  To

maximize the performance of the algorithm we trained 20 iterations (epochs) and optimized neural

network with negative sampling instead of hierarchy softmax function.  The Word2Vec training

setup parameters that we have used: {size = 300, window = 5, min_count = 1, sample = 1e-3, sg =

1, hs = 0, iterations = 20, negative = 5, word_ngrams = 1, random_state = 42}.

The final step for feature engineering was their selection. 150 nominal features were empirically

chosen from a total  of 300 vector  size (Figure 2) by feature selection algorithm called Feature

ranking  with  recursive  feature  elimination  and cross-validated  selection  of  the  best  number  of

features (RFECV) [14] using Support Vector Machine (SVM) estimator.
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Figure 2. Optimal number of features for ROC AUC scoring

This number of features allowed us to train and tune 11 supervised ML classifiers (see Table 1). For

tuning models hyperparameters, Bayesian optimization was applied with 10 fold cross-validation

and F1-weighted scoring. The best result was achieved with a Support Vector Machine classifier

with a linear kernel which resulted in an average accuracy of 98.90%  on the validation sets (Table

2).  The  SVM training  setup  parameters  that  we have  used  after  final  tuning procedure:  {C =

1340.98, cache_size = 4000, class_weight = 'balanced', degree = 100, gamma = 1000, kernel =

'linear', probability = True, shrinking = False, random_state = 42}.

Table 1. Bacteriophages life cycle prediction benchmark for 11 supervised ML 
tuned classifiers with 10-fold cross-validation

MultinomialNB 83.53 80.79 0.85 0.84 0.82

SGDClassifier 87.06 89.01 0.88 0.87 0.87

MLPClassifier 92.35 94.40 0.93 0.92 0.92

LogisticRegression 92.94 94.53 0.93 0.93 0.93

RandomForestClassifier 92.35 97.42 0.92 0.92 0.92
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Support Vector 
Classification

98.90 99.84 0.99 0.99 0.99

KNeighborsClassifier 95.44 96.18 0.94 0.95 0.95

GradientBoostingClassifier 87.06 88.36 0.87 0.87 0.87

XGBoost 97.80 98.90 0.98 0.98 0.98

CatBoostClassifier 91.18 96.03 0.91 0.91 0.91

LightGBM 96.90 97.68 0.97 0.97 0.97

Classifier 
implementation name

Accuracy
(%)

AUC
(%)

Precision Recall
F1-

score

In-depth evaluation of the Support Vector Machine includes accuracy, precision, recall, F1-score

and  Area  Under  the  Receiver  Operating  Characteristic  (AUC)  metrics  as  well  as  three  plots:

learning curve (Figure 3) which determines cross-validated training and test scores for different

training set sizes, confusion matrix (Figure 4) for classification evaluation accuracy by computing

the confusion matrix with each row corresponding to the true class and ROC AUC (Figure 5) which

illustrates  the  diagnostic  ability  of  a  binary  classifier  system as  its  discrimination  threshold  is

varied.

Table 2. The SVM model classification results on validation set

Training set score 99.17%

Validation set score 98.90%

AUC 99.63%

virulent 1.00 0.98 0.99 112

temperate 0.97 1.00 0.99 70

accuracy 0.99 182

macro avg 0.99 0.99 0.99 182

weighted avg 0.99 0.99 0.99 182

precision recall f1-score phages
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Figure 3. Learning curve with 10-fold CV for SVM on training dataset

Figure 4. Confusion matrix for SVM on validation dataset
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Figure 5. ROC AUC for SVM on validation dataset

The life cycles of all unseen bacteriophages from the testing dataset (54 virulent and 30 temperate

phages from different species and families) were predicted correctly by the best SVM model, with

97.18% average accuracy across all classifiers. To confirm the model’s ability to generalize new

data, we also tested it on a not publicly available dataset provided by the Proteon Pharmaceuticals

S.A. company. All of 61 bacteriophages (49 virulent, 12 temperate) achieved correct prediction by

the model, according to manual lifecycle prediction.

Discussion

This study demonstrated that the PhageAI tool can automate bacteriophages life cycle classification.

Nucleotide sequences in FASTA format are the only requirement to classify phages into virulent

and  temperate  with  accurate  results.  The  PhageAI  tool  is  free  of  charge,  is  available  at

https://phage.ai/ and can be adopted as a part of other custom bioinformatic pipelines using the

available  REST API.  The PhageAI pipeline  is  flexible  and susceptible  to  modification  by new

strategies,  setups  and  frameworks  on  each  of  five  existing  steps  (Figure  6)  which  opens  up

possibilities for custom adjustments.
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Figure 6. The PhageAI pipeline: proposed methodology for Bacteriophages life cycle recognition

research

Limitations and future directions

Interpretation of the SVM model is difficult given the multidimensional context of the data as well

as  the  embedding  used  to  get  numeric  vector  space.  Therefore,  in  the  PhageAI  tool  we  have

prepared an interactive 3D visualization to help interpreting model classification results (Figure 7).
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Figure 7. Virulent and temperate bacteriophages visualization via dimensionality reduction by

UMAP.

The  application  of  Uniform Manifold  Approximation  and  Projection  for  Dimension  Reduction

(UMAP) [15] allowed us to separate between virulent and temperate phages and group a significant

part of them into clusters and subgroups represented by the same life cycle. Therefore, as the next

step of our research we intend to investigate this and rather look for a correlation between them.

The PhageAI tool is in active development. We also shared dedicated Python programming package

phageai  [16] and scheduled next life cycle classifier  re-training sessions including new samples

from  different  families  and  species  and  extended  chronic  infection  prediction  for  filamentous

bacteriophages.

Review of existing solutions

Before developing the PhageAI tool, we have reviewed the existing solutions for bacteriophage life

cycle classification. Namely, we focused on the tool that is currently the most popular and widely

used for phage research: PHACTS [12]. It uses an ensemble of Random Forest classifiers trained on

samples from the PHANTOME database [17]. The models use protein-based features representing
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calculated similarities to the analyzed genomes. However, since the proteins used by the classifiers

are chosen mostly at random, the results vary greatly during practical tests, with the same phages

classified  as  both  virulent  and  temperate  on  multiple  runs.  By  analyzing  the  entire  nucleotide

sequences  and using techniques  such as  the reverse  complement  described in  the  methodology

section, our approach yields much more stable results.

We also tested Virus Identification By iteRative ANnoTation (VIBRANT v1.2.1) software [18].

The tool utilizes a hybrid Machine Learning and protein similarity approach that is not reliant on

sequence  features  for  automated  recovery  and  annotation  of  viruses,  determination  of  genome

quality and completeness, and characterization of virome function from metagenomic assemblies.

VIBRANT uses supervised neural network Multi-layer Perceptron classifier  (MLP) with protein

signatures  and  a  custom  v-score  metric  that  circumvents  traditional  boundaries  to  maximize

identification of lytic  viral  genomes and integrated proviruses, including highly diverse viruses.

Surprisingly, during testing of Enterobacteria phage Mu (NC_000929.1), which is a model example

of phage integrating into a host genome using the transposition process [19], the program indicated

that it has a virulent character. Therefore, one has to be cautious when relaying on the life cycle

assessment presented by the program. At the same time, this program is an ideal tool for rapid

annotation of the viral genome, which allows manual review of the program’s indications.

Conclusions

In this paper, we have shown that it is possible to capture and extract knowledge from hundreds of

bacteriophages sequences to classify their life cycles with a high accuracy and immediate result.

The PhageAI tool needs only DNA nucleotide sequence in FASTA format to make a prediction,

which is to our best knowledge a novel approach.

The application of Machine Learning and Natural Language Processing for bacteriophage research
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allowed  to  distinguish between  the  two  major  types  of  their  life  cycles:  lytic  and  lysogenic.

Furthermore, it achieved accurate results on unknown phages which was double tested on unseen

data.

Currently adopted methodology opens up opportunities for further research in the field of phage

classification. Extending  the PhageAI tool with DNA word embedding like transfer-learning or

context-based bidirectional models might increase sequence-based classification performance for

other issues such as predicting proteins features, distinguishing bacteriophages taxonomy or phage

host  range  identification.  Deep Learning approach  is  becoming  more  justified  in  the  next  step

because the PhageAI repository has already collected more than 10,000 phages’ sequences.

PhageAI was released as a free web platform, REST API service and open sourced Python package

which should allow other researchers to include our tool in their pipelines.

Methods

In our study we have used more than 600 genomic sequences of bacteriophages from ACLAME

[20] and PhagesDB [21] with information about their life cycle.  We manually verified predictions

for  the  purpose  of  this  study.  In  order  to  standardize  the  annotation,  all  phage genomes  were

annotated  by  using  DNAMaster  (a  tool  developed  by Dr.  Jeffrey  Lawrence,  the  University  of

Pittsburgh, v5.23.3) with its auto annotations option which combines Glimmer [22] and GenMarkS

[23] algorithms. Then, all detected  ORF were analyzed to find proteins that may be involved in

bacteriophage integration into the host genome. For this purpose, HMMscan [24] and InterPro ([9]

access: 07.2019) software were used, which allow for detection of characteristic domains in the

protein sequence.  Additionally,  Hhpred ([8] access:  07.2019) was run to find remote homologs

based on the modeled 3D structure. In the case when none of lysogenic factors was found or a

phage was unable to maintain the lysogeny, the phage sequence was marked as virulent, otherwise
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it was temperate. The phages for which the life cycle could not be predicted or was unclear were

discarded from further processing.

Moreover, amino acid sequences of phages were analyzed in the PHACTS tool to compare the

predictions obtained manually.

Datasets

Final training dataset  after  manual  editing consisted of 278 virulent and 174 temperate  phages.

Additionally, we selected a testing dataset of 54 virulent and 30 temperate phages from different

species and families (Figure 8, Figure 9, Figure 10).

Figure 8. Training dataset family distribution for virulent phages

Figure 9. Training dataset family distribution for temperate phages
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Figure 10. Testing dataset family distribution for virulent and temperate phages

All bacteriophages sequences with NCBI accession numbers are available in the Availability of

Data and Materials section.

The PhageAI pipeline 

The PhageAI pipeline uses open source Python libraries: Biopython v1.76 [25], gensim v3.8.1 [26], 

scikit-learn v0.22.1 [27], xgboost v1.0.1 [28], catboost v0.22 [29], lightgbm v2.3.1 [30], scikit-

optimize v0.7.4 [31] and matplotlib v3.2.0 [32].

The PhageAI pipeline covers 5 steps (Figure 6):

1. Train-validation-test split

2. Reverse complement augmentation

3. Efficient DNA word embedding

4. Classification with Machine Learning:

a. Efficient feature selection

b. Supervised learning

      5. Model evaluation
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Train-validation-test split

To control how much a ML model is learning from the data, a well-established practice is to split 

samples to evaluate the future classifier with different bacteriophages. To train and evaluate the 

results we have chosen the following approaches:

 Cross-validation: stratified shuffle with 10-folds and 80% - 20% train-validation proportions

was used to find the optimal hyperparameters and evaluate the results during training. For

data stratification we used life cycles as well as bacteriophages families values to preserve

the percentage of samples for each class.

 Holdout validation: a dataset of 84 unseen samples was designated as the testing set. It was

not  used  in  the  training  process  directly,  but  it  was  employed  to  compare  the  model’s

metrics after training.

 Additional holdout validation: the second dataset delivered by Proteon Pharmaceuticals S.A.

company,  containing  61 samples  unavailable  to  the  models  during training  was used  to

estimate the final metrics.

Reverse complement augmentation

After train-validation-test split the reverse complement bacteriophage sequences (Figure 11) were

treated  as  another  samples.  It  enabled  the  ML  model  to  automatically  learn  the  complex

relationships between the double strand DNA sequences.
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Figure 11. Reverse complement of a DNA sequence.
Published within author permission [33].

Previous  studies  [34,  35]  confirm  the  importance  of  utilizing  the  reverse  complement  DNA

sequences, which is connected with data augmentation.  This step also allowed us to double the

datasets which became ready to be vectorized.

Efficient DNA word embedding

Bacteriophages  genomic  sequences  in  FASTA format  are  represented  as  relatively  long strings

(between  5,000  -  300,000  bp)  consisting  of  nucleotides  {A,  C,  G,  T}.  This  format  of  data  is

somewhat challenging for Machine Learning algorithms, where selection of a fixed-size feature list

is the key to a robust classification model. A naive approach of transforming the whole DNA into a

N-dimensional one-hot encoding space is very memory-consuming and devoid of the relevance of

nucleotides in the genome. To build a representative vector space for bacteriophages sequences and

drastically reduce memory requirements to accelerate further classification, we adopt common NLP

techniques  based  on  distributed  representations  of  overlapping  k-mers  components  and  word

embeddings.

The k-mer structure concept is commonly employed to represent long sequences of amino acids or

nucleotides. For example, a 9-mer needs a vector of dimension 49 = 262,144. The higher k-value
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could be problematic when applying the classification models to solve problems in DNA sequence

analysis, especially since most of the ML algorithms prefer lower-dimensional continuous vectors

as input. Therefore, we tested and compared three methods (sliding window, non-overlapping and

variable-length) for k-mers extraction of length 3 <= k <= 12 and their impact on our experiment.

Additionally, all the k-mers which contain characters outside of the nucleotide alphabet  {A, C, G,

T} were  removed  before  vectorization  was  launched.  This  includes  characters  used  to  signify

uncertainties within the sequenced genome.

One of the key ideas in NLP is how to efficiently convert sequences of character or words into

numeric vectors, which then can be fed into various ML models. To obtain feature vectors of fixed

size representing the genomes, we adopted word embedding based on the Word2Vec with Ship-

gram model,  which leverages a shallow neural network with a projection layer.  The Skip-gram

model is an efficient method trained to predict the probabilities of a word being a context word for

the given target. The “context” is a set of adjacent subsequences surrounding the targeted k-mer.

Using fixed length vectors to represent the sequence, the similarity between bacteriophages can be

measured, even though each sequence can be of a different length (bp).

Finally, bacteriophages DNA were represented by the average of the k-mer embedding vectors of

words that  compose the sequences,  which means that  each genome was described by averaged

numeric values in vector space. The idea of averaged word embeddings was adopted from X et al.,

20xx where averaged word embeddings were used for document paragraphs [36].

Classification with Machine Learning

Efficient feature selection

Heterogeneous features extracted from average of the k-mer embedding vectors might reflect better

pattern information  for characterizing bacteriophages  lifecycle.  For this  purpose,  we applied an

RFECV which is an efficient feature selection method to remove irrelevant attributes and ceiling the
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generalization ability of the next step model.

Supervised learning

For this study we trained and compared results from 11 implementations of supervised ML 

algorithms:

 Bayesian models: MultinomialNB

 Support-vector machines: SVC, SGDClassifier

 Linear models: LogisticRegression

 Neural networks: MLPClassifier

 Decision trees: RandomForestClassifier

 Similarity-based algorithms: KNeighborsClassifier

 Gradient boosting: GradientBoostingClassifier, XGBoost, CatBoostClassifier, LightGBM.

For tuning models hyperparameters we discarded techniques such as Grid Search and Randomized

Search which search through the entire space of available parameter combinations in an isolated

way without improving based on the past results. Instead, we applied Bayesian Optimisation [37],

which minimizes the time spent to obtain an optimized set of model parameters. We measured the

accuracy, precision, recall, F1-score and Area Under the Receiver Operating Characteristic (AUC).

To increase the performance of gradient-based classifiers we trained them with multiple NVIDIA

GPUs usage.

List of abbreviations

 AUC - Area Under Curve

 ML - Machine Learning

 MLP - Multi-layer Perceptron classifier
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 NGS - Next Generation Sequencing

 NLP - Natural Language Processing

 RFECV - Feature ranking with recursive feature elimination and cross-validated selection of

the best number of features

 ROC AUC - area under an ROC curve

 SVM - Support Vector Machine

 UMAP - Uniform Manifold Approximation and Projection
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