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Abstract

When attending to many spatially distributed visual stimuli, attention is reweighted rhythmically at
4-8 Hz. The probability of detection depends on the phase at which a stimulus is deployed relative to
this intrinsic rhythm. The reweighting oscillations can be observed both electrophysiologically and
behaviorally, and appear to be regulated by the pulvinar. Based on these findings, we considered the
computational consequences of allowing feedback to shape the distribution of inhibitory oscillations
from the thalamus, as measured by a local field potential (LFP) phases in the 8 Hz low alpha-
band, across laterally-connected regions of the visual cortex. We constructed a population activity
model with lateral and feedforward connections. In agreement with prior models, we found that
the sign of the lateral phase difference in the inhibitory low-frequency oscillations regulated the
direction of communication between the laterally-connected regions. Furthermore, the phase difference
induced periodicity in the dynamics of a downstream winner-takes-all attractor network such that
periodic switching between states was observed. We finally simulated a simple spatial attention
task. We found rhythmic 8 Hz sampling between two regions when a lateral phase difference was
present—an effect that disappeared when the lateral phase difference was zero. These findings are in
agreement with spatial attention literature and suggest that lateral phase differences are essential for
manifesting communicational asymmetries in laterally-connected visual cortices. Our model predicts
that population-specific phase differences are critical for sampling the spatial extent of stimuli.

Author summary

We conducted a computational study of the effects of lateral phase differences in a simulated model
of the visual cortex. Lateral phase differences are defined to be when the phase of an intrinsic
low-frequency inhibitory oscillation varies consistently across populations in the same cortical area.
For example, our model was intended to capture the dynamics of a retinotopic cortex where feedback
from the frotoparietal areas via the pulvinar nucleus assigned laterally-connected regions of the visual
cortex different phases. We found that the sign of the phase differences influenced the direction of
lateral communication. Furthermore, the phase differences introduced rhythmicity in the downstream
areas, thus allowing us to simulate rhythmic spatial selection of stimuli. Prior to the current study,
the influence of inter-areal phase differences in feedforward models had been well characterized.
Our model provides new insights into the dynamics of population-specific lateral phase differences
and predicts that the development of phase differences across the visual cortex are critical for the
allocation of attention in space.
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Introduction 1

Neural oscillations in the visual system are capable of facilitating a vast array of computational 2

functions. Models of visual computation must take into account oscillatory interactions across space 3

and among a broad distribution of frequencies. The theory of Communication Through Coherence 4

(CTC) [1] was developed to explain how temporal windows of interregional communication develop 5

in the presence of oscillations. CTC predicts rapid synchronization in the bottom-up gamma band 6

is regulated by top-down alpha frequency rhythms [2]. Furthermore, neural oscillations have been 7

implicated in rhythmic spatial attention via low-frequency theta and alpha oscillations coordinated 8

by the frontoparietal regions [3–6]. This growing body of literature suggests rhythmicity is essential 9

for the allocation of resources to, and the processing of, relevant visual signals. 10

The interactions between low- and high-frequency bands shape communication in the visual 11

system. The main effector of low-frequency band feedback seems to be the broadly-projecting 12

pulvinar nucleus (PN) of the thalamus [7, 8], whereas gamma-band oscillations may emerge from the 13

coupled excitatory-inhibitory interactions between pyramidal cells and interneurons in the cortex 14

(for a review, see [9]). The phase of low-frequency cortical oscillations, potentially organized by the 15

thalamus [10], regulate windows of communication, excitability, and directionality of transmission in 16

the high-frequency bands [11–15]. 17

Provocative questions emerge when considering the evidence for retinotopic distribution of low 18

alpha-band activity in the visual cortex. It has been demonstrated with magnetoencephalogram 19

recordings during a spatial attention task that task-relevant changes in alpha power correspond to 20

the cortical retinotopic map [16]. Furthermore, stimulus cross-correlation analysis against occipital 21

electroencephalogram traces has shown that stimulus-induced 10 Hz perceptual echoes emerge across 22

the cortex as traveling-waves [17]. Given this evidence, it is clear that the spatial extent of the 23

phase of low alpha-band oscillations is of critical importance for neural encoding schemes of visual 24

space [18]. 25

What are the computational consequences for a neural system with low-frequency phases differen- 26

tially distributed over the retinotopic map? What is the effect on the transmission through lateral 27

cortical projections, and between subsequent downstream cortical areas with analogous representa- 28

tions of retinotopic space? We hypothesize that the spatial distribution of phases of low-frequency 29

rhythms are essential to process the spatial extent of stimuli. 30

Previous models of encoding have made similar predictions that the phase of intrinsic rhythms is 31

critical to encode space. For example, an interpretation of hippocampal theta phase precession in 32

rodents proposes that phase coding facilitates a neural representation of the world by a sequence of 33

events without invoking space or time [19]. Another model of encoding in the visual system predicts 34

that, in principle, a visual stimulus can be encoded and decoded reliably by neuron-specific phase 35

shifts in high-frequency oscillations [20]. These studies support the notion that population-specific 36

phases are utilized by the brain to represent space. We seek to extend this body of understanding by 37

elucidating how assigning spatial specificity to lateral phase differences in the low alpha-band shape 38

the dynamics of spatial attention. 39

We choose to investigate how population-specific retinotopic distributions of the low alpha phase 40

temporally segment gamma-band transmission and promote temporal scansion [21] between stimuli. 41

In this proposed model system, functional communicational asymmetries in lateral communication 42

within the same cortical area modulate the selectivity of downstream cortical regions via temporal 43

multiplexing. We assume that the decision to attend to or process a stimulus is governed by a 44

winner-takes-all attractor [22–25], and that competition through mutual inhibition allows for the 45

rhythmic processing of multiple stimuli [26]. We also investigate how the rhythmic selection of 46

stimuli based on the phase difference across lateral connections in our attractor model may extend 47

the findings in the literature on the nature of rhythmic spatial attention. 48
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Materials and methods 49

Model architecture and dynamics 50

To investigate the excitatory-inhibitory dynamics of the visual cortex, we used a non-linear mean 51

field population activity model inspired by the Wilson-Cowan equations [27,28]. 52

τe
dAe
dt

= −Ae(t) + (1− re)F
(
JeeAe(t) + JeiAi(t) + Iexte (t) +

√
τeηe(t)

)
τi
dAi
dt

= −Ai(t) + (1− re)F
(
JiiAe(t) + JieAi(t) + Iexti (t) +

√
τiηi(t)

)
(1)

An describes the dimensionless activity, or mean firing rate, of a population of n-type neurons 53

where n ∈ [e, i]. The subscript e, i denotes whether the population is excitatory or inhibitory. The 54

coefficients re,i describe the proportion of neurons in the absolute refractory period for a given time 55

step, and were given relatively small values of 2
1000 and 1

1000 , respectively. The matrices Jnm describe 56

the connection strengths between population m projecting to population n. Ae and Ai were further 57

decomposed into vectors of length 4 and 3, respectively, to encode the activity (and their derivatives) 58

of subpopulations E1-4 and I1-3 (Fig. 1). 59

Ae =


E1
E2
E3
E4

 , Ai =

I1
I2
I3


To couple the subpopulations described by these activity vectors and their derivatives, matrices were 60

used to represent the sign and strength of connections between and within the subpopulations. They 61

were defined as follows: 62

Jee = kee


0 1

5 0 0
1
5 0 0 0
1 0 0 0
0 1 0 0

 , Jie = kie

1 0 0 0
0 1 0 0
0 0 1

2
1
2



Jii = kii

1 0 0
0 1 0
0 0 1

 , Jei = kei


1 0 0
0 1 0
0 0 1
0 0 1

 .
The scalar coefficients in front of each matrix took values of kee = 1.5, kie = 3.5, kii = −2.5, 63

kei = −3.25 a.u. (arbitrary unit amplitude) in order to replicate the frequency spectrum of activity 64

in layers 2/3 of the cortex [12]. 65

τn describes the membrane time constants of the population n (6 ms for n = e and 15 ms for 66

n = i), Iexti describes the external driving current, and ηn describes the Gaussian white noise that 67

the population received with variance σ2
n = 0.09. We define F (x) to be a rectified linear activiation 68

function: 69

F (x) =

{
0 for x ≤ 0

x for x > 0.
(2)

A schematic diagram of the circuit diagram can be seen in Fig. 1. An attractor network was 70

constructed from two excitatory populations competing through shared inhibition (Fig. 1A). We 71

assume this attractor is representative of higher order visual areas responsible for the selection of 72

relevant stimuli [25]. We feed this attractor with input from a highly simplified retinotopic cortex, 73

representative of cortical columns on V1, in which only two populations exist, each selective to a 74

different stimulus location (Fig. 1B). In this low-order region, only Regions 1 and 2, each with 75
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Fig 1. Schematic of model network with lateral phase gradient. Excitatory subpopulations
E1-4 and inhibitory subpopulations I1-3 are colored red and blue respectively, with connections
represented by arrows. (A) E3 and E4 share inhibition with I3, which is responsible for establishing
competition between the excitatory subpopulations leading to attractor dynamics [22]. (B) E1 and
E2 project in a feedforward manner to E3 and E4. E1 and E2 share reciprocal lateral connections
where the activity in I1 and I2 is modulated by sinusoidal oscillations with phases φ1,2.

subpopulation of excitatory (E) and inhibitory (I) cells, received a direct-current injection of either 76

0.5 (“low” condition) or 1.5 (“high” condition) a.u. to the E cells, and an alternating-current (AC) 77

to the I cells to simulate a coherent 8 Hz inhibitory input from the pulvinar (Fig. 1B) [15]. We 78

assume that the phase of synchronized inhibitory activity from the pulvinar can be measured by the 79

local field potential in the region in question and is also reflected in the cortical activity modulation. 80

Of note is that feedforward, recurrent, and lateral connections were all considered in this model. The 81

dynamics of the system were studied for when the phase of the AC currents was different across the 82

lateral regions, i.e. when the relative phases shifts were of −π2 , 0, or π
2 radians. 83

Simulated inhibitory oscillations 84

We investigated the model responses when the AC input to subpopulation n, IextAC,n, was the sum of
sine components of different frequencies with the respective magnitudes MAC,i. The AC components
were used to drive the inhibitory populations with a low-frequency alpha rhythm assumed to originate
from the pulvinar nucleus (PN) of the thalamus [13,15] to simulate an oscillation of coherent inhibitory
activity with a mean frequency of ∼8 Hz. To capture a realistic qualitative amplitude distribution
of frequency components, the oscillations were constructed from the sum of sine waves where the
amplitudes were governed by a 1

fα distribution summed with a Gaussian centered on 8 Hz.

MAC,i(fi) =
1

fαi
+ 0.3

A

2
√
πσ

e

(
fi−8

2σ

)2

IextAC,n(t) = 0.1

∣∣∣∣∣∑
i

MAC,i[sin(2πfit− φi)]

∣∣∣∣∣ (3)

The value A was set to have a value of 10, σ was 0.5 Hz, and the range of frequency components 85

fi considered was 0.1− 200 Hz. The parameter α was chosen to be 0.4 to give more weight to the 86
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high frequencies to serve as noise (Fig. S1). The phase of each frequency component, φi was drawn 87

from a uniform distribution of [−π, π]. In order to calculate a phase shift of ∆θ with some jitter, the 88

original phase components φi were shifted by the rule φi − (0.3ζ + ∆θ). ζ was a random number 89

drawn from a uniform distribution of [−π, π] radians, then rescaled by a factor of 0.3 to introduce 90

jitter. However, if a phase shift of exactly ∆θ = 0 was to be considered, the jitter coefficient was set 91

to 0. 92

Before the oscillations were injected into an inhibitory population, the amplitude was rescaled to 93

have a maximum value of 1 a.u., indicated by the absolute value bars in Eq. 3, then multiplied by 94

an amplitude value of 0.1 a.u. (however, for Fig. 2 and 3C, it was 1.0 a.u.). All simulations were 95

run with a time step of ∆t = 0.1 ms and numerically integrated with Euler’s method (except during 96

Coherence and Granger Causality analysis, where ∆t = 1.0 ms). 97

Coherence analysis 98

The multi-taper coherence between the Ae continuous time series for Regions 1 and 2 (E1 and E2) was 99

calculated using the CHRONUX toolbox for MATLAB [29,30]. From 30 trials where the oscillations 100

were re-drawn for each trial, jackknife error bars were calculated, assuming a significance level of 101

α = 0.01. The fast Fourier transform (FFT) was padded with the setting of “1”. K = 5 tapers used 102

were defined to have a time-bandwidth product of TW = 3. The sampling frequency was set to be 1 103

kHz based on the time step, ∆t = 1.0 ms, used for numerical integration of the simulation. 104

Granger Causality (GC) and Directed Asymmetry Index (DAI) 105

The pairwise conditioned Granger causality (PWCGC) between the Ae continuous time series for 106

Regions 1 and 2 (E1 and E2) was calculated using the Multivariate Granger Causality toolbox for 107

MATLAB [31]. The PWCGC was calculated by a bootstrap method, sampled from 30 trials where 108

the oscillations were re-drawn for each trial, to find the conditioned spectral Granger causality (GC) 109

from an estimated auto-covariance matrix. The number of lags used was set to be 5, approximately 110

the value found by the Bayesian Information Criterion model estimation. The PWCGC function 111

returned the GC interaction strengths for both the E1→E2 and E2→E1 directions. To reduce 112

computation times, the numerical integration was performed with ∆t = 1 ms, and to match the 113

unimodal shape of the GC distributions in prior literature [12,15], the amplitude of the inhibitory 114

oscillation was increased to 1.0 a.u. from the usual 0.1 a.u. 115

From the GC in the two different directions for a given frequency component, the Directed 116

Asymmetry Index (DAI) [12,32] was calculated along the E1→E2 direction: 117

DAIE1→E2 = GCE1→E2−GCE2→E1

GCE1→E2+GCE2→E1
. (4)

The mean and standard deviation of the GC and DAI for each frequency component across the 30 118

trials were calculated. 119

Phase-Amplitude Coupling (PAC) 120

The phase-amplitude coupling (PAC) for the instantaneous phase of the low-frequency oscillation, 121

φLF (t), and the envelope, aHF,i(t), of a given high-frequency component, fi, was quantified using a 122

modulation index (MI) [33,34]: 123

MIHF,i = 1
T

∣∣∣∑T
t aHF,i(t)e

iφLF (t)
∣∣∣ . (5)

φLF (t) was extracted from the instantaneous phase of the analytical signal of the low-frequency 124

oscillation found by the Hilbert transform. The envelopes of the Ae signals, aHF,i(t), were recovered 125

from the absolute value of the narrowband signal with frequency fi, found by the continuous wavelet 126

July 11, 2020 5/16

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 12, 2020. ; https://doi.org/10.1101/2020.07.11.198820doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.11.198820
http://creativecommons.org/licenses/by-nc/4.0/


transform (CWT) in MATLAB. The CWT used 48 voices per octave. The PAC was evaluated for 127

low-frequency oscillations and HFs within and across Regions 1 and 2. 128

Simulated Spatial Attention Task 129

A spatial attention task [4] was given to the model network. To simulate this task, the two Regions 130

1 and 2 were assumed to encode different locations in space. A relative phase difference of −π2 , 0, 131

or π
2 radians was assigned to Regions 1 and 2. Only for when the network had a 0 radian phase 132

difference, we set the phase shift jitter value ζ = 0 in order for the phase difference to exactly be 133

zero. We considered the network to be in the “correct” state to “see” a stimulus at time t when the 134

instantaneous activity was E3 > E4 for a given t=300-1100 ms. This definition of only considering 135

E3 > E4 is valid because the network could not “predict” where the stimulus would appear based on 136

prior trials, so presenting the stimulus repeated at the same “spatial” location (i.e. testing for only 137

E3 > E4) was equivalent to if the stimulus position was varied randomly (as would be the case in a 138

real psychophysical test). 139

The network was stimulated at t > 300 ms with a value of low 0.5 a.u. (high 1.5 a.u. was tested 140

in Fig. S2). This stimulation is not to be thought of as the stimulus presentation, but rather the 141

network being “cued” or “primed” to rhythmically search the spatial location via covert attention. 142

The time to sample the state of the network was selected in 20 ms intervals, and 30 repetitions 143

were conducted for each sampling time. The simulated inhibitory oscillations were kept constant 144

across sets of 30 repetitions and only changed when the different phase differences were tested. To 145

quantify the rhythmicity of target selection, the FFT of the detrended time series of the proportion 146

of “correct” trials was calculated. 147

To test whether or not the amplitude of an observed rhythmic fluctuation in the proportion of 148

“correct” trials was significant, a bootstrap statistical test of significance was conducted [4]. 1,000 149

random permutations of the proportion of “correct” v.s. “incorrect” trials across all 30 trials and all 150

times tested were configured and converted into 1,000 detrended time series of proportions. From this 151

bootstrapped sampling distribution of time series, the FFTs were calculated and for each frequency 152

bin, the 95-percentile amplitude was figured and used as the boundary for significant amplitude. 153

154

All analysis and numerical integration of the activity models was performed using MATLAB 155

Version 2019b [35]. Shaded error bars were constructed with the shadedErrorBar function [36]. 156

Results 157

Lateral phase differences create communicational asymmetries 158

We studied our model in the case where there was a phase difference in the simulated 8 Hz inhibitory 159

oscillations between laterally-connected Regions 1 and 2 (Fig. 1). In the cases where the phase 160

difference between the regions was −π2 , 0, or π
2 radians, we noted that the coherence between the 161

regions was most prominent for the ∼8 Hz components and the 15-35 Hz components (Fig. S2). 162

Furthermore, the sign of the phase difference dictated the direction of lateral communication as 163

measured by the PWCGC and DAI (Eq. 4). For a positive phase difference, Region 2 led Region 1 in 164

frequency components <50 Hz (Fig. 2A). For a negative phase difference, the opposite directionality 165

was observed (Fig. 2C). For zero phase difference, neither Region led the other Fig. 2B). 166

Our finding that the phase of the underlying low-frequency oscillation determined the direction 167

of communication is consistent with other models of the interactions between different areas of the 168

visual system [12–15]. We also observed that the phase of the inhibitory oscillation was preferentially 169

coupled (via the MI from Eq. 5) to the amplitude of frequency components in the 20-60 Hz range 170

(Fig. 2E,F). The phase of oscillations were coupled to the high-frequency components both within 171

the same Region and across different Regions 1 and 2. We note that when the phase difference 172

was exactly zero, the high frequencies of both Regions were equally coupled to the phases of the 173
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Fig 2. Lateral phase gradients induce asymmetric lateral communication. After 30 trials
were conducted, the Granger Causality and Directed Asymmetry Indices (A-C), and the modulation
index (MI) for phase-amplitude coupling (PAC) (D-F) were calculated. The top row (A,D) was for
the condition where ∆θ = π

2 (see Materials and Methods), the middle row (B,E) was for ∆θ = 0,
and the bottom row (C,F) was for ∆θ = −π2 radians. It is evident that the sign of lateral phase
difference inverted the directionality of lateral communication. The phase of low-frequency oscillation
modulated the envelope of the 20-60 Hz frequency components most strongly (D-F). In (A-C), the
shaded error bars represent the standard deviation calculated from the bootstrapped PWCGC.

low-frequecy oscillations originating from either Region (Fig. 2E). PAC is a phenomenon observed in 174

many models of interacting neural oscillations [12–15,32–34,37]. However, our model predicts that 175

asymmetric communication and PAC is expected to be observed between laterally-connected regions 176

in the same visual area if the phases of the underlying inhibitory oscillations are population-specific. 177

Lateral phase differences promote rhythmicity in downstream attractors 178

In our model, the Regions 3 and 4 shared inhibition and thus competed. If Regions 3 and 4 were 179

driven by strong input to Regions 1 and 2 (Fig. 3A), the mean firing rates showed well-known 180
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winner-takes-all attractor dynamics where only one region was allowed to fire [22–24]. We define a 181

“State” to quantify when the activity of excitatory Region A3 exceeded that of excitatory Region A4 182

(notated as E3 > E4). 183

Fig 3. Attractor dynamics are modulated by lateral phase differences. (A) When the
stimulus supplied to E1 and E2 was equal and high (turned to 1.5 a.u. at 300 ms), the attractor
dynamics were probabilistic and exhibited winner-takes-all behavior [22], even when E1 and E2 had
a phase difference of ∆θ = π

2 . The phase planes show the two cases where E3 (left) or E4 (right)
“wins.” The dashed red line indicates x = y. Beneath the phase planes are the time series of the
activity of E3 and E4. The “State” refers to when the activity in E3 > E4. (B) When the stimuli
were low (turned to 0.5 a.u. at 300 ms), then there was weakly periodic switching of the “State” as a
function of time. (C) 100 trials were conducted for each phase difference and the probability that
the “State”= 1 was found from t > 300 ms for each trial. The magnitude of the phase difference
systematically shifted the probability that the State was E3 > E4 as a sinusoid when the oscillation
was allowed to take a larger value (1 a.u., compared to the usual 0.1 a.u. defined in the Materials
and Methods). The box-and-whisker plots show the median (dot), Q1 and Q3 (boundaries of thick
blocks), and maximum and minimum (thin tails), excluding outliers (hollow dots).
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In the high-intensity input regime (1.5 a.u.), the winner-takes-all dynamics superseded the intrinsic 184

rhythmicity of the activity of Regions 1 and 2 (Fig. 3A). However, if the input was of low-intensity 185

(0.5 a.u.), then the dynamics were no longer winner-takes-all and spontaneous switching between 186

States was weakly periodic (Fig. 3B). In fact, the magnitude of the phase difference between Regions 187

1 and 2 dictated the proportion of the time that the network was in State = 1 (Fig. 3C). Over 100 188

trials for each phase difference, the median proportion of time points that State = 1 was observed 189

to varied as a sinusoid. This finding demonstrates that lateral phase differences can disrupt the 190

attractor dynamics and create a functional asymmetry where one State is sampled, on average, more 191

frequently than the other. 192

We argue the State in which the attractor network is in can be interpreted as whether the system 193

is susceptible to input at a given location in space, i.e. whether that location is sampled by attention 194

at a given time point [3,4,6,25]. Therefore, we simulated an analog of a simple spatial attention task 195

using our model network, assuming the 0.5 a.u. input drove intrinsic 8 Hz rhythmicity in the State, 196

governed by the phases of the oscillations (Fig. 4A). For our simple example, we probed only one 197

“spatial” location of the network by asking if State the network was E3 > E4 for a given time. We 198

argue that sampling the state of the network is analogous to presenting a stimulus at that time and 199

probing whether or a subject detected it. 200

In a qualitative sense, the results from our simulated attentional task agree with prior psychophys- 201

ical findings in the area of rhythmic spatial attention. We found ∼8 Hz rhythmicity in the sampling 202

between the two spatial locations. When the phase difference was π
2 (Fig. 4B) and when it was −π2 203

(Fig. 4C), the rhythmicity in the sampling between regions was of significant amplitude. However, 204

comparison across conditions of different phase differences (i.e. π
2 versus −π2 radians) was not 205

predictive of the phase relationships between sampling rhythms since the phase shift value described 206

a systematic shift on the oscillation constructed from random phase components. 207

Our model’s performance in this simulated attention task was broadly agreement with experiment. 208

A similar qualitative result, although of smaller magnitude, was observed in an analogous spatial 209

attention task with human subjects [4]. In extension of these results, we observed that if no lateral 210

phase difference was present (∆θ = 0 radians), then the rhythmic sampling disappeared (Fig. 4D). 211

The present simulated experiment demonstrates how lateral phase differences promote rhythmic 212

reweighing of spatial attention. However, we note that this solution only exists in our model for 213

low-intensity input (0.5 a.u.) to Regions 1 and 2, since high-intensity input (1.5 a.u.) led to the 214

abolishment of rhythmic sampling and return to winner-takes-all attractor dynamics (Fig. S3). 215

Discussion 216

Summary of results 217

Our simulations have elucidated several potential functions that lateral cortical phase differences in 218

low-frequency inhibitory oscillations [15] may serve. Firstly, our measurements of coherency, GC, DAI, 219

and PAC indicate that the low-frequency phase gradients across lateral cortical connections determine 220

an axis of communicational asymmetry. Along this axis, certain regions lead the others depending 221

on the sign of the phase difference (Fig. 2 and S2). The phase differences in the low-frequency 222

oscillations of each region determines the directionality of lateral communication. Secondly, the 223

phase differences affected the population dynamics of downstream attractor networks by introducing 224

weak periodicity in an otherwise winner-takes-all network (Fig. 3). Importantly, the magnitude and 225

sign of the phase difference biased the amount of time the network spent in one State (Fig. 3C). 226

This bias allowed the network to qualitatively recapitulate rhythmic sampling in a simulated spatial 227

attention experiment (Fig. 4B,C). However, in order for rhythmic spatial sampling between different 228

spatial stimuli to occur, a lateral phase difference had to be present or else no sampling rhythm was 229

observed (Fig. 4D). 230
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Fig 4. Rhythmicity in attractor dynamics recapitulates rhythmic spatial attention. (A)
A schematic of a simple spatial attention task where a subject must indicate where a change in the
contrast occurs after a variable delay (compare blue versus red). We assume that there is a spatial
extent to the lateral regions of the cortex monitoring the blue or red region. To simulate an analogy
to this attentional experiment, we counted the probability that the network was in a “State” where
E3 > E4 while the network rhythmicity was activated an input of 0.5 a.u. for t > 300 ms. This
input can be thought of as the network being activated to “search” between the two states under the
direction of attention. (B) The left plot shows the probability after 30 trials, sampled for t=300-1100
ms in intervals of 20 ms, that the State was = 1 (i.e. E3 > E4). The right plot shows the fast
Fourier transform (FFT) of the selection signal. The dashed line indicates the bootstrap estimated
significant amplitude (see Materials and Methods). For a ∆θ = π

2 , the dynamics of the selection
process showed heightened selectivity with a frequency of ∼8 Hz. (C) When ∆θ = −π2 , the rhythmic
selection was also significant (B). This finding qualitatively replicates the psychophysical results of
rhythmic spatial attention, where sampling between the cued and un-cued ends of an object was
modulated at ∼8 Hz [4]. When there was no phase difference between the lateral regions, (D) no
rhythmic sampling occurred at all. Note that the cross-condition of relative phase differences here
does not necessarily govern the relative phase relationship between the sampling rhythms.

Relationship to prior models and experiments 231

Our model’s interpretation of lateral phase differences may be able to explain critical questions in 232

spatial attention research, such as providing a specific mechanism for how corticothalamocortical 233

interactions in the alpha-band regulate activity in the attention network. It is known that both 234

thalamic and cortical alpha are critical for understanding the dynamics of the attention network. 235

When the pulvinar interacts with the higher-order areas of the FEF and LIP, attentional engagement 236

has been associated with increased alpha power [7]. This implies that alpha-activity in the pulvinar 237

is important for coordinating higher-order centers of attention. Cortical alpha has also been shown 238

to be a predictor of attentional performance. For instance, several studies have demonstrated that 239

attentional enhancement is often broadly characterized by alpha-band power decrease, and attentional 240

suppression is characterized by alpha-band power enhancement with respect to the location of an 241

attentional target [38–40]. We predict that these changes in power are related to the degree of phase 242
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(de-)synchronization in the alpha/theta band. We hypothesize that a decrease in alpha power means 243

that phases at different retinotopic locations are scattered, promoting differential rhythmic sampling 244

of the spatial extent of the stimulus. An increase in alpha power would imply that sampling the 245

spatial extent of the stimulus is task-irrelevant, and thus feedback influences from the frontoparietal 246

regions [5, 6] are not deployed to adjust the phases across the retinotopic map. 247

A caveat to consider is that our model is a simplification of the attentional network. First of all, 248

we decided not to model the dynamics of the higher-order frontoparietal network [5, 6, 41] which 249

are responsible for spatial attention. Instead, we assumed that this frontoparietal network simply 250

assigned low alpha phase differences via the PN, which mapped the phases to specific regions across 251

the retinoptic map in a one-way manner. This assumption that the generators of alpha in the PN 252

are retinotopic is supported by experiment [16]. We did not model reciprocal corticothalamocortical 253

interactions with the PN either. For instance, the ventrolateral PN influences the dynamics of V4 254

and IT cells depending on attentional demands, and is required to maintain an active cortex [42]. In 255

this network, V4 leads the PN in gamma-band activity which implies the visual cortex modulates 256

the dynamics of the PN in an attention-dependent manner [42]. Furthermore, it has been shown 257

that V4 feedback onto V1 is needed to observe lateral interactions responsible for the perceptual 258

grouping of line segments, and those lateral interactions are also necessary to increase the strength of 259

feedback [43]. These reciprocal feedback dynamics were omitted in favor of the capturing solely the 260

elementary lateral cortical dynamics brought about by phase differences in the low alpha-band. 261

Despite the aforementioned simplifications, our model still provides insight into the essential 262

dynamics of how the lateral phase influences communication across the retinotopic map. However, 263

future models certainly would benefit from expanding the architecture of our model to consider 264

how large-scale reciprocal connections between the visual cortex, PN, and frontoparietal regions 265

collectively influence the dynamics of attention. 266

Predictions and implications 267

We make a strong prediction that spatial sampling arises from lateral phase differences influencing 268

downstream attractor dynamics. An alternative explanation for rhythmic sampling between stimuli 269

is that periodic strong inhibition shared between many different “embedded” object representations 270

in the cortex causes a “resetting” of attractor dynamics, linking shifts in attention to ongoing 271

oscillations [44]. While our simulation alone can neither affirm nor rule out this possibility, we 272

argue that lateral phase differences complement the aforementioned theory of attention. Namely, in 273

addition to the predicted synchronization of attentional shifts to oscillations [44], we propose that 274

these attentional shifts should be accompanied by lateral phase differences assigned to the different 275

areas of the retinotopic map sampling the stimuli. 276

Our model predicts that asymmetries in the direction of lateral communication across the 277

retinotopic map are mediated by population-specific phase differences. One important asymmetry to 278

consider is the preferential V4 gamma synchronization observed when simultaneously stimulating 279

two sites on V1 which converge on a single V4 site [45]. Our model’s GC results suggest that this 280

preferential synchronization in the gamma-band may controlled by the sign of the low-frequency 281

phase differences between V1 sites. If one V1 site leads the other in the gamma-band, this may 282

induce the common V4 site to more strongly synchronize with the leading site. 283

In a similar vein to preferential synchronization, other perceptual phenomena may be understood 284

through the lens of lateral communicational asymmetries. For instance, rivalry in the perception of 285

different stimuli presented binocularly can be modeled by reciprocal inhibition between populations 286

of neurons selected to one stimulus or the other [46, 47]. Our model predicts that a phase difference 287

across populations selective for one stimulus or the other in a binocular rivalry may be able to explain 288

the transitions in dominance reported in these experiments. Population-specific phase differences 289

would create asymmetries in the reciprocal inhibition among populations encoding the different 290

stimuli; this asymmetry may serve as the basis for the switching and competition between the 291

percepts. Therefore, from our model, we predict that associational spatial hierarchies depend on the 292
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phase of low-frequency rhythms across the retinotopic map and that awareness of the spatial extent 293

of a stimulus will degrade if the lateral phase differences between retintopic areas are perturbed. 294

Conclusion 295

Our heuristic computational model provides new insights into how attentional feedback processes 296

can exert their influence via the phase of low-frequency inhibitory oscillations. While prior literature 297

focused on the phase differences between different areas of the hierarchical visual system [11–15], 298

we considered phase differences within the same area of the visual system. We found that the 299

phase difference between two populations is sufficient to create a functional hierarchy of lateral 300

communication. When the areas experiencing a lateral phase difference projected to downstream 301

attractors, the phase differences induced periodic sampling of the attractor’s phase plane. Our model 302

qualitatively captured the dynamics of rhythmic attention [4]. Without a lateral phase difference, 303

rhythmic spatial sampling disappeared. The results lead us to predict the phase differences across a 304

retinotopic cortex can serve as the basis for the development of rhythmic sampling. 305

Supporting information 306

307

S1 Fig. Example of simulated 8 Hz oscillation with 1
f noise profile. Simulated oscillatory 308

signals were constructed from the sum of a Gaussian and 1
f distribution. The top panel shows the 309

signals in the time domain, whereas the bottom panel is the power spectrum of each signal. The 310

relative phase difference between the two signals was π
2 radians. 311
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312

S2 Fig. Lateral communication coherence spectra. When Regions 1 and 2 were allowed to 313

communicate with phase differences of π
2 (A), 0 (B), or −π2 (C) radians, the coherence spectra 314

showed prominent peaks at ∼8 Hz and 15-35 Hz. Jackknife error bars are shown, as well as a dashed 315

line indicating the α = 0.01 significance level. 316

317

S3 Fig. 8 Hz rhythmic selection disappears in the high-stimulus limit. A simulated 318

spatial attention task, as in Fig. 4, was conducted but with the priming input to induce rhythmic 319

sampling being “high” (1.5 a.u.). Rhythmicity disappeared because the dynamics became like a 320

winner-takes-all attractor [22], outweighing the effect of the lateral phase differences across the 321

network. 322

S1 File. Minimal Data Set and MATLAB Simulation Code The data to reproduce all 323

findings and figures (provided as .csv files with README documents), as well as the MATLAB 324

code for all the simulations (provided as .m files) are at the following link: https://github.com/jd- 325

yi/Lateral-Phase-Difference-Simulations. 326
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