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Abstract		

Machine	 intelligence	 methods,	 including	 natural	 language	 processing,	 computer	 vision,	

machine	 vision,	 artificial	 intelligence,	 and	 deep	 learning	 approaches,	 are	 rapidly	 evolving	

and	 play	 an	 essential	 role	 in	 biomedicine.	 Machine	 intelligence	 methods	 could	 help	 to	

accelerate	image	analyses	aid	in	building	complex	models	capable	of	interpretation	beyond	

cognitive	 limitations	 and	 statistical	 assumptions	 in	 biomedicine.	However,	 irrespective	 of	

the	democratization	via	accessible	computing	and	software	modules,	machine	 intelligence	

handiness	is	scarce	in	the	setting	of	a	traditional	biomedical	research	laboratory.	In	such	a	

context,	collaborations	with	bioinformatics	and	computational	biologists	may	help.	Further,	

the	 biomedical	 diaspora	 could	 also	 seek	 help	 from	 the	 expert	 communities	 using	 a	

crowdsourcing	website	that	hosts	machine	 intelligence	competitions.	Machine	 intelligence	

competitions	offer	a	vast	pool	of	seasoned	data	scientists	and	machine	intelligence	experts	

to	 develop	 solutions	 through	 competition	 portals.	 An	 alternate	 approach	 to	 improve	 the	

adoption	 of	 machine	 intelligence	 in	 biomedicine	 is	 to	 offer	 machine	 intelligence	

competitions	 as	 part	 of	 scientific	 meetings.	 In	 this	 paper,	 we	 discuss	 a	 structured	

methodology	 employed	 to	 develop	 the	 machine	 intelligence	 competition	 as	 part	 of	 an	

international	 bioinformatics	 conference.	 The	 competition	 leads	 to	 developing	 a	 novel	

method	through	crowdsourcing	to	solve	a	challenging	problem	in	biomedicine	–	predicting	

probabilities	 of	 proteins	 that	 undergo	 3D	 domain	 swapping.	 As	 a	 biomedical	 science	

conference	 focused	 on	 computational	methods,	 the	 competition	 received	multiple	 entries	

that	 ultimately	 helped	 improve	 the	 predictive	 modeling	 of	 3D	 domain	 swapping	 using	

sequence	information.	
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Background	

The	 rapid	 advent	 of	 advanced	 molecular	 profiling	 and	 experimental	 methods,	

including	 sequencing,	 gene-editing,	 and	 multi-omics	 technologies	 during	 the	 last	

decade,	 has	 enabled	 biology	 to	 enter	 the	 era	 of	 ‘Big	 Data.’(1-8).	 However,	 the	

computational	 efficiency	 of	 analyzing	 and	 interpreting	 petabyte-scale	 data	 has	

become	 a	 bottleneck.	 Although	 significant	 “interpretation	 gap”	 in	 biomedicine	

where	extensive,	multi-scale	data	on	various	disease	modalities	exist,	the	collective	

impact	 of	 defining	 such	 datasets	 remain	 limited.	 In	 this	 regard,	 bioinformatics	

approaches	 have	 uprooted	 wherein	 robust	 statistical	 learning	 and	 reproducible	

machine	 intelligence	methods	are	evolving	 to	play	a	crucial	 role	 in	addressing	 the	

inference	challenges.		

	

In	 this	 era	 of	 smart	 algorithms	 and	 artificial-intelligence	 driven	 knowledge	

banks,	bioinformatics	applications	could	make	an	immediate	impact	in	the	setting	of	

molecular	medicine,	drug	development,	crop	improvement,	gene	therapy,	microbial	

genome	 annotation,	 and	 assembly,	 etc.	 Integrating	 the	 complexity	 of	 biomedicine	

data	 with	 modern	 machine	 intelligence	 methods	 followed	 by	 orthogonal	 and	

experimental	 validations	 could	 lead	 to	 uncovering	 new	 biological	 themes	 and	

ultimately	 aid	 in	 discovery.	 The	 recent	 advances	 in	 different	 areas	 of	 machine	

intelligence,	 including	 deep	 learning,	 reinforcement	 learning,	 and	 growth	 towards	

developing	general	intelligence,	would	eventually	enable	such	methods	as	a	pivotal	

part	of	biomedical	discovery	research(7,9-11).	
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Challenges	in	democratizing	machine	intelligence	for	biomedicine		

Machine	 intelligence	 methods	 are	 currently	 going	 through	 an	 “AI	 Spring”	 with	

extensive	 focus	 on	 developing	 new	 techniques.	 Industry	 sectors	 across	 different	

verticals,	 including	 healthcare,	 life	 science,	 biotech,	 pharma,	 and	 medical	 device	

technology	 is	 making	 significant	 investments	 to	 improve	 data	 access	 along	 with	

design,	 development,	 and	 deployment	 of	 machine	 intelligence	 methods(12-14).	

Design	 development	 and	 implementation	 of	 reproducible	 machine	 intelligence	

approaches	 need	 substantial	 investment	 to	 acquire	 diverse	 talent,	 computing	

resources,	and	deployment	infrastructure.		

	

To	 illustrate	 the	complexity	of	one	 factor:	 computing	resourcing–	extensive	

evaluations	 are	 often	 required	 to	 leverage	 in-house,	 cloud,	 or	 hybrid	 mode	 of	

computing	 infrastructure(15).	 Depending	 on	 the	 nature	 of	 the	 problem	 to	 solve,	

computing	 infrastructure	 and	 software	 systems	 could	 be	 selected.	 For	 example,	

cloud	computing	vendors	like	Microsoft	Azure,	Google,	Amazon	Web	Services	offers	

a	 wide	 variety	 of	 operating	 systems,	 database	 solutions,	 operating	 systems,	 and	

machine	 learning	 frameworks	 along	 with	 a	 custom	 framework	 for	 rapid	 design,	

development,	and	deployment	of	machine	learning	solutions.	Ultimately,	the	choices	

and	 decisions	 in	 every	 step	 could	 influence	 the	 cost	 of	 computing	 and	 the	

development	of	machine	 intelligence	solutions.	 	Delivery	of	a	machine	 intelligence	

solution	requires	a	team	that	comprises	a	domain	expert	to	curate	and	interpret	the	

data,	data	engineer	to	clean	and	compile	data	sets	and	data	scientists	to	develop	the	

model.	 Often	 the	 implementation	 needs	 solution	 architectures	 and	 software	
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engineers	to	build	web	service,	client-server	architecture,	and	endpoints	as	web	or	

mobile	applications(16).		

	

Crowdsourcing,	Online	Competitions	and	Innovation	Contests:	Past,	Present	

and	Emerging	Trends:		

Online	 coding	 competitions,	 such	 as	 Kaggle	 data	 competitions,	 Netflix	 data	

competitions,	Google	Code	 Jam,	 all	 help	participants	practice	 critical	 thinking,	 fast	

and	 efficient	 coding,	 and	 the	 ability	 to	 design	 and	 then	 implement	 algorithms	 in	

code.	 These	 competitions	 allow	 for	 coders	 to	 learn	 new	 technologies	 that	 they	

would	not	have	learned	otherwise.	These	new	technologies	and	techniques	can	then	

be	 brought	 back	 to	 the	 coder’s	 daily	 lives	 at	 work	 for	 improvements	 and	 to	

overcome	obstacles	in	a	unique,	refreshing	manner.	These	competitions	are	grounds	

for	 new	 and	 different	 approaches	 to	 solving	 a	 common	 problem,	 by	 experiencing	

more	ways	to	tackle	a	problem,	participants	can	 learn	coding	standards	and	adapt	

methods	 proposed	 by	 creative	 coders,	with	more	 tools	 at	 hand.	 Furthermore,	 the	

issues	at	various	online	coding	competitions	are	modeled	after	real-world	problems.	

For	 example,	 Kaggle,	 a	 highly	 popular	 site	 that	 hosts	 data	 science	 and	 machine	

learning	 competitions,	 provides	 data	 sets	 that	 expose	 participants	 to	 forecasting,	

sentiment	analysis,	natural	language	processing,	and	image	classification	problems.	

These	topics	are	very	applicable	to	real-life	problems	and	are	also	at	the	forefront	of	

current	 technology.	Although	 there	 is	 a	wide	 range	of	 topics,	 each	question	 that	 a	

participant	 picks	 forces	 them	 to	 learn	 about	 the	 context	 of	 the	 problem,	 the	 data,	
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and	the	approach	to	the	problem.	Of	course,	this	will	spawn	many	nuanced	different	

techniques	that	everyone	can	view	and	glean	information	from.	

	

Competitions	 at	 their	 heart	 compare	 the	 outputs	 of	 different	 teams,	 and	 a	

ranking	 system	spurs	on	 coders	 to	become	better,	more	efficient,	 and	 they	are	an	

excellent	 way	 for	 a	 bioinformatician,	 data	 scientist,	 data	 engineer	 or	 software	

developer	collectively	called	as	a	coder	to	test	themselves	based	on	the	population.	

With	official	online	competitions,	participants	have	to	work	efficiently	and	on-time,	

while	making	sure	their	solutions	are	time	and	memory	efficient.		With	competition,	

there	is	a	constant	need	for	the	participant	to	improve	their	code	and	look	for	ways	

to	separate	themselves	from	the	pack.	If	everyone	has	the	same	data	and	access	to	

algorithms,	 coders	 are	 forced	 to	 find	ways	 to	push	 their	 code	 forward,	which	will	

lead	 to	 innovations.	While	people	 find	 success	 in	 these	online	 competitions,	 other	

coders	that	are	looking	to	begin	participating	in	coding	competitions	can	look	up	to	

top	performers	as	role	models,	and	experts	in	the	respective	fields	will	guide	them	

by	following	the	winning	code.	The	desire	to	win	a	competition,	will	create	changes	

in	the	field	of	study,	push	the	previously	established	limits	of	performance,	and	also	

connect	 like-minded	or	different-minded	people	 to	 form	communities	 that	will	 be	

able	to	tackle	the	problem	in	many	different	ways.		

	

For	 example,	 the	 ImageNet	 challenge	 is	 an	example	 that	 revolutionized	 the	

domain	of	deep	learning	applied	to	computer	vision(17).	ImageNet	challenge,	which	

revolutionized	 the	 field	 of	 deep	 learning	 and	 applied	 computer	 vision.	 ImageNet	
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Large	Scale	Visual	Recognition	Challenge	(ILSVRC)	started	in	2010	with	a	dedicated	

database	 for	 visual	 recognition	 called	 ImageNet	 dataset,	 which	 is	 also	 a	 result	 of	

crowdsourcing.	 The	 image-level	 annotation	 of	 the	 database	 is	 done	 by	

crowdsourcing	 with	 more	 than	 14	 million	 annotated	 images	 for	 visual/	 object	

recognition.	 It	 was	 in	 2012,	 Alex	 Krizhevsky	 came	 up	 with	 a	 model	 named	

AlexNet(18),	which	performed	incredibly	in	the	contest	with	a	top-5	error	of	15.3%	

and	 the	 manuscript	 “Imagenet	 classification	 with	 deep	 convolutional	 neural	

networks”	has	got	more	than	forty	thousand	citations	till	date.	AlexNet	 introduced	

many	 new	 methods,	 including	 the	 GPU	 utilized	 training,	 which	 fueled	 the	 deep	

learning	and	computer	vision	revolution.	After	AlexNet,	it	was	a	rally	of	algorithms	

and	architectures	with	better	performance	in	the	followed	years’	contests,	including	

Microsoft’s	ResNet(19)	and	inception	by	Google.	Several	other	machine	learning	and	

deep	learning	contests	and	challenges	emerged	from	the	inspiration	of	the	Imagenet	

problem	in	recent	years.	And	all	of	them,	students,	and	researchers	across	the	globe	

are	contributing	to	the	community	in	association	with	these	challenges.	

	

Crowdsourcing	machine	learning	solutions	in	biomedicine	

Crowdsourcing	is	the	practice	of	engaging	a	‘crowd’	or	group	for	a	common	goal	to	

innovate,	 design,	 solving	 a	 problem(1,20).	 With	 a	 lot	 of	 unsolved	 problems	 in	

biology,	 the	 use	 of	 crowdsourcing	 to	 solve	 important	 but	 complex	 problems	 in	

biomedical	 and	 clinical	 sciences	 is	 growing	 and	 encompasses	 a	 wide	 variety	 of	

approaches	which	include	data	mining	crowd-generated	data	in	healthcare	or	open	

source	 platforms	 [4].	 To	 democratize	 machine	 intelligence	 and	 familiarize	 the	
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research	 community	 with	 machine	 intelligence	 methods,	 crowdsourcing	

competitions	 could	 be	 an	 ideal	 solution.	 Crowdsourcing	 is	 emerging	 as	 a	 recent	

trend	in	biomedical	science	that	aims	to	tap	into	the	skills	not	immediately	available	

in	 a	 laboratory	 setting	 due	 to	 specialtyor	 scalability	 of	 a	 task.One	 of	 the	 classical	

examples	of	crowdsourcing	in	biomedicine	includes	Folding	@Home,	which	aim	to	

use	 idle	 computing	 time	 from	 registered	 users	 to	 perform	 computationally	

expensive	 protein	 folding	 classification.	 Further,	 biomedical	 applications	 that	

benefitted	 from	 crowdsourcing	 includes	 genomic	 variant	 curation,	 bioinformatics	

research,	 health	 surveillance,	 protein	 folding	 research,	 proteomics,	 environmental	

research,	 stem	cell	 biology	 research,	 public	health	 research	 and	data	 visualization	

(See	Table:	1)(21-42).	Recent	examples	including	classification	of	acoustic	datasets,	

identification	 of	 chemical	 induced	 diseases,	 clinical	 trial	 result	 summarization,	

therapeutic	 area-specific	 knowledge	 assimilation	 in	 the	 area	 of	 dermatology	 and	

plant	 phenomics	 (43-47).	 A	 conceptual	 framework	 for	 crowdsourcing	 an	 ideation	

contest	is	given	in	Figure:	1.		

	

3D	Domain	Swapping		

3D	domain	swapping	is	a	mechanism	by	which	two	or	more	protein	chains	form	a	

dimer	or	higher	oligomer	by	exchanging	an	identical	structural	element.	While	the	

mechanism	was	first	observed	in	1964	and	conceptualized	in	1994(48-51).	Proteins,	

including	 antibody	 fragments,	 human	 prion	 protein,	 crystallins,	 growth	 factors,	

cytokines,	 etc.	 are	 involved	 in	 3D	 domain	 swapping.	 The	 precise	 roles	 of	 domain	

swapping	as	a	causal	factor	of	different	disease	pathways,	including	conformational	
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and	deposition	diseases,	to	remain	elusive(52).	However,	experimental	studies	have	

suggested	 that	 change	 in	 environment	 (low	 pH,	 temperature,	 denaturants)	 or	

genetic	predisposition	may	lead	to	3D	domain	swapping.	A	systematic	survey	of	293	

proteins	with	swapped	conformation	revealed	several	biological	clues	including	the	

functional	landscape,	disease	associations	and	pathways	that	are	driven	by	proteins	

in	 swapped	 conformation(53).	 Biophysical	 impact,	 including	 the	 kinetic	 effect	

(closed	 interface)	 or	 dynamic	 effect	 (open	 interface),	 has	 also	 been	 suggested.	 A	

curated	 knowledgebase	 of	 proteins	 involved	 in	 3D	domain	 swapping	 “3DSwap”	 is	

available	 in	 the	 public	 domainfrom	 http://caps.ncbs.res.in/3dswap/based	 on	 the	

graduate	research	by	one	of	the		Ideation	contest	developer	(KS)	and	supervised	by	

the	 Ideation	 contest	 evaluator	 (RS)(54).	 Data	 compiled	 in	 3DSwap	 database	 was	

used	 to	 establish	 first	 prediction	 algorithms	 using	machine	 learning	 and	 artificial	

intelligence	 approaches	 including	 support	 vector	machines	 (SVM;	model	 accuracy	

63.8%)	 and	 RandomForest	 (RF;	 model	 accuracy:	 73.81%)	 models(55,56).	 These	

models	can	perform	prediction,	instead	of	experimental	characterization	of	domain	

swapping.	Where	the	latter	is	expensive	and	time-consuming,	prediction	algorithms	

were	applied	to	human	proteome	and	identified	new	proteins	to	be	associated	with	

features	of	swapping.	

	

Crowdsourcing	to	Improve	Prediction	of	3D	Domain	Swapping	from	Sequence	

Information:		

Indian	 Conference	 on	Bioinformatics	 (Inbix’17)	 held	 at	 Birla	 Institute	 of	 Scientific	

Research.	 Jaipur,	 India.	The	 Inbix’17	program	had	a	participation	of	190	delegates	
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besides	keynote	speakers,	invited	speakers,	oral	and	poster,	and	ideation	challenge	

presenters.	We	asked	the	Inbix	’17	conference	attendees	to	improve	this	sequence-

based	 model	 published	 in	 2010/2011	 and	 provide	 a	 higher	 accuracy	 model	 by	

adopting	 new	 feature	 engineering	 strategies	 and	 novel	 machine	 learning	

approaches,	 including	 deep	 learning.	 The	 model	 with	 better	 accuracy	 and	

biologically	relevant	feature	engineering	approached	was	highly	encouraged	as	part	

of	the	results	submission.	

	

Guidelines	for	contest	to	improve	prediction	of	3D	domain	swapping:	

Problem	definition	 (See	 Supplemental	Material	 for	 Ideation	 Challenge	 notice)	 and	

link	 to	 access	 data	 set	 (See	 Supplemental	 Material	 for	 positive	 and	 negative	

datasets)	was	given	to	the	participants	of	the	conferences	using	the	website	of	the	

meeting.	Conference	organizers	used	social	media	and	other	outlets	to	publicize	the	

contest	across	the	world.	No	additional	guidelines	were	given	to	generate	features	

or	 the	 selection	of	machine	 learning,	 as	 this	may	hinder	novel	 contributions	 from	

the	 community.	 The	 results	 were	 compiled	 using	 an	 evaluation	 framework	 by	 a	

team	 of	 researchers.	 Models	 were	 evaluated	 for	 innovation,	 feature	 engineering	

strategy,	algorithm	applied	to	develop	predictive	model,	the	robustness	of	validation	

method,	and	net	improvement	in	the	prediction	of	3D	domain	swapping	compared	

to	the	model	published	earlier.	

	

Proposed	solutions:		
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Each	of	the	three	predictive	models	proposed	approached	the	problem	in	different	

ways	 (Also	 See	 Table:	 2).	 Preprocessing	 techniques	 like	 feature	 extraction	 and	

feature	selection	are	way	different,	and	a	variety	of	model	optimization	methods	are	

tried	 to	 get	 a	 more	 accurate	 prediction	 model	 possible.	 A	 brief	 description	 and	

critical	appraisal	of	the	models	are	given	below	for	brevity.	A	fourth	submission	was	

a	conceptual	overview	to	address	the	biological	knowledge	gap	in	the	setting	of	3D	

domain	 swapping.	 The	 original	 version	 of	 the	 submission	 of	 the	 solution	 for	

different	solutions	and	all	associated	data	and	code	is	available	in	the	Supplemental	

Materials	(Also	see	Figure:	2).	

	

Summary	and	Critical	evaluation	of	Models:		

Model	1:	The	 first	model	coded	entirely	 in	R	 language,	uses	R	 library	packages	 for	

both	 feature	 engineering	 and	model	design.	The	preprocessing	 is	 a	 crucial	 part	 of	

machine	 learning,	 which	 includes	 data	 cleaning,	 feature	 extraction,	 and	 feature	

selection.	 R	 package	 named	 “peptides”	 (See:	 https://cran.r-

project.org/web/packages/Peptides/index.html)	is	doing	all	the	feature	generation	

jobs	in	this	model.	Peptides	package	has	several	useful	functions	to	calculate	indices	

and	physicochemical	properties	of	protein	sequences.	Boruta	package	in	R	was	used	

for	feature	selection	(57),	which	is	the	process	of	selecting	only	the	relevant	features	

which	affect	domain	swapping,	and	652	features	are	finally	confirmed.	Boruta	uses	

Random	 Forest	 by	 default	 to	 search	 for	 relevant	 features	 by	 comparing	 primary	

attribute	 importance	 with	 importance	 achievable	 in	 random,	 subtracting	 the	

irrelevant	 features	 to	 stabilize	 the	 needed	 features.	 Even	 though	 time-consuming,	
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the	boruta	method	outputs	enough,	and	efficient	data	for	the	model	to	 learn,	gives	

the	 best	 model	 accuracy	 and	 avoids	 the	 problem	 of	 overfitting.	 The	 final	 dataset	

with	total	samples	of	1185	is	split	cleverly	into	80%:	20%	for	training	and	testing,	

respectively.	This	data	 is	 trained	on	a	 random	 forest	algorithm	with	a	 set	of	well-

tuned	parameters.	Successful	optimization	for	parameters	like	the	number	of	tress	

and	mtry	 gives	 a	 final	 result	 of	 91.03%	 training	 accuracy,	 91.22%	 accuracy	 after	

five-fold	 cross-validation,	 and	 90.29%	 testing	 accuracy	 with	 3000	 trees	 and	 656	

mtry.	The	R	package	Boruta	was	used	for	feature	extraction.	The	modelers	split	that	

into	the	ratio	of	80:20	for	training	and	test	set.	No	validation	set	was	provided.	The	

submitters	used	the	training	set	to	select	models,	which	are	slightly	flawed	as	there	

may	 be	 a	 possibility	 of	 the	 model	 overfitting	 on	 the	 training	 set	 and	 them	 not	

knowing	until	they	do	their	final	test	on	the	test	set.	Note	that	a	shallow	neural	net	

and	 various	 R	 neural	 net	 packages	 did	 not	 perform	 as	well	 as	 the	 random	 forest	

model	 used	by	 the	 earlier	model.	 This	may	be	due	 to	 the	nature	of	 the	data,	 data	

preprocessing,	not	enough	resources	or	time	to	train	a	massive	neural	net,	or	just	a	

flawed	 implementation	 of	 the	 correct	 network	 structure.	 The	 group	 achieved	 a	

somewhat	high	training	and	validation	accuracy	of	around	90%,	much	higher	than	

the	other	groups.		

	

Model-2:	The	second	model	proposes	a	method	called	ensemble	modeling	in	which	

soft	 voting	 is	 carried	 out	 between	 two	 classifiers	 after	 feature	 engineering.	 In	 the	

feature	engineering	part,	efficient	data	cleaning	is	done	as	the	redundant	sequences	

are	entirely	dropped.	Concentrating	more	on	data	cleaning	and	feature	engineering,	
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this	model	uses	different	library	packages	for	feature	extraction	like	modlAMP	(See:	

https://modlamp.org/),	etc.	Feature	selection	is	carried	out	by	using	python’s	scikit-

learn’s	simple	but	powerful	feature	selection	library	called	selectKbest,	which	uses	

mutual	 information	 gain	 for	 selecting	 top	 features(58,59).	 An	 ensemble	 model	 is	

proposed	 in	 which	 soft	 voting	 is	 carried	 out	 between	 two	 simple	 and	 accurate	

predicting	 algorithms,	 AdaBoost	 and	 XGBoost(60).	 Both	 the	 algorithms	 are	 fine-

tuned	to	get	 the	best	parameter	possible	with	the	data.	The	fine-tuned	models	are	

put	 in	a	Voting	Classifier	with	a	weight	of	4:6	with	a	majority	 in	 favor	of	XGBoost	

Classifier.	 A	 better	 performance	 was	 observed	 with	 an	 accuracy	 of	 75.63%	 after	

five-fold	cross-validation.		

	

Model-3:	While	 the	 first	 two	models	 focus	 on	 solving	 the	 problem	 using	 classical	

machine	 learning	 algorithms,	 the	 third	 model	 uses	 an	 artificial	 neural	 network	

algorithm,	 which	 comes	 under	 the	 deep	 learning	 approaches.	 Standardization	 is	

done	on	the	features	to	make	all	the	features	on	a	common	scale	with	zero	mean	and	

unit	variance.	This	ensures	less	computation	time	and	removal	of	data	overfitting	by	

bringing	 the	 range	 and	 scale	 of	 the	 feature	 variables	 to	 a	 standard	 measure.	

Especially	 in	multi-layer	 perceptron	 (MLP(61))	models,	 standardization	 is	 usually	

done	on	the	data	to	decrease	the	time	taken	by	the	model	for	weight	optimization.	

The	 feature	 selection	 part	 removes	 redundant	 features	 and	 reduces	 the	

dimensionality	of	the	dataset	to	ensure	reasonable	accuracy	and	an	improved	result.	

Feature	selection	model	selected	top	15	features	out	of	66	features	extracted	from	

the	training	and	testing	phase	of	 the	modeling.	The	conventional	 train	 test	split	of	
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70:30	is	done	on	the	sample	of	size	426,	which	gives	300	examples	for	training	and	

126	samples	for	testing.	The	train-	test	data	is	well-balanced	such	that	both	of	them	

consist	of	half	of	the	samples	from	every	two	classes.	That	is,	300	training	samples	

have	 150	 samples	 from	 positive	 class	 and	 150	 from	 negative	 class	 in	 it,	 to	 avoid	

class	 imbalance.	 The	 data	 is	 then	 fed	 into	 an	 MLP,	 which	 is	 an	 artificial	 neural	

network	 classifier	 that	 uses	 back	 propagation	 algorithm	 for	 learning	 and	 error	

correction.	The	model	follows	simple	multi-layer	neural	network	architecture	with	

five	neurons	 in	the	first	hidden	layer	and	two	neurons	 in	the	second	hidden	layer.	

Hyperparameters	like	a	number	of	hidden	layers,	activation	function,	and	solver	are	

optimized	and	fine-tuned	to	reach	out	to	the	best	result	of	76.67%	accuracy	in	10-

fold	 cross-validation	 and	 test	 accuracy	 of	 72.5%.	The	 coding	part	 is	 supported	by	

several	 python-machine	 learning	 library	 modules	 from	 scikit-learn	 such	 as	

SelectKbest	 for	 feature	 selection,	MLP,	 StandardScaler	 for	data	normalization,	 and	

other	modules	for	metrics	and	cross-validation.	These	packages	help	to	implement	a	

useful	 model	 in	 a	 few	 lines	 of	 code.	 One	 problem	 may	 be	 the	 lack	 of	 training	

examples;	only	150	positive	and	150	negative	data	points	were	used.	The	network	

was	 not	 very	 deep	 as	 it	 was	 two	 layers	 deep	 with	 five	 and	 then	 two	 units,	

respectively	considering	limited	training	data	set.	This	was	an	interesting	approach	

as	 it	 attempted	 to	 use	 a	 neural	 network	 to	 approximate	 a	 nonlinear	 function.	

However,	many	questions	arise	from	this	implementation:	including	the	need	for	a	

deep	 learning	approach	 is	necessary	or	overengineering	 the	problem.	 It	 is	unclear	

whether	 the	 proposed	 layers	 are	 enough	 or	 more	 hidden	 layers,	 and	 units	 are	
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needed	 to	 learn	 a	 machine	 problem	 with	 a	 limited	 dataset.	 Alternate	 network	

structures	that	could	work	better	than	a	feed-forward	network	was	not	addressed.		

	

From	domain	swapping	to	drug	targeting:	pushing	the	boundaries	on	

targeting	domains	of	unknown	function	

The	3D	swap	database	has	a	couple	of	domains	of	unknown	function	(DUF),	which	

we	would	like	to	consider	a	case	study	to	infer	the	role	of	aptamers.	Assuming	that	

the	 functions	 of	 DUFs	 and	 hypothetical	 proteins	 (HP)	 can	 leverage	 as	 targets	 for	

diagnostics,	 the	most	 common	entity	 used	 are	 antibodies	which	 could	 circumvent	

the	 effect/targets.	 While	 the	 experimental	 characterization	 of	 antibodies	 is	

cumbersome,	it	is	assumed	that	aptamer-protein	prediction	methods	may	serve	as	a	

benchmark	 besides	 providing	 cost-effective	 measures(62-64).	 In	 this	 ideation	

example,	we	propose	a	hypothesis	whether	the	aptamer	is	bound	in	the	setting	of	a	

3D	domain-swapped	conformation.	If	so,	could	it	be	applied	for	domains	caused	due	

to	extensive	multimerization	as	well?	To	answer	this,	we	have	considered	the	DUFs	

with	 a	 PDB	 entry	 2A9U	 (http://caps.ncbs.res.in/cgi-

bin/mini/databases/3Dswap/3dswap_entry.cgi?id=2A9U	and	Figure	2).	As	there	is	

a	dimer	interface	communicated	to	the	catalytic	domain	of	2A9U,	we	assumed	that	

the	aptamers	specific	to	this	variable	fragment	could	be	used		.	With	this	approach,	

we	expect	that	through	the	antigen-binding	capacity	of	aptamer	with	the	molecule,	a	

vast	 number	 of	 HPs	 or	 DUFs	 can	 be	 targeted,	 which	 could	 be	 associated	 with	

diseases.	Thus,	authors	hope	active	conformation	and	aptamers	as	small	molecules	

for	 therapies	 could	 prove	 to	 be	 very	 useful	 in	 the	 development	 of	 treatment	 for	
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several	 diseases	where	3D	domain	 swapping	 is	 a	 known	pathological	mechanism.	

To	conclude,	we	hypothesize	that	the	role	of	aptamers	over	antibody	isotypes	can	be	

inferred	 and	 based	 on	 the	 affinity	 of	 aptamers	 bound	 to	 swapped	 domains	

particular	to	HPs	or	DUFs.		

	

Discussion	

With	 the	 current	 status	 of	 poor	 outcomes	 in	 recent	 clinical	 trials	 in	 the	 setting	 of	

neurodegenerative	 diseases,	 novel	 drug	 discovery	 and	 drug	 repositioning	

approaches	are	required	to	address	the	pathological	basis	of	protein	conformation	

diseases	 like	Alzheimer’s	diseases(65-69).	Collectively,	 the	 ideation	contest	helped	

to	apply	modern	algorithms,	new	feature	engineering	and	feature	selection	methods	

to	enhance	the	prediction	of	3D-domain	swapping	–	a	key	mechanism	in	the	setting	

of	 conformational	 diseases.	 Improving	 the	 prediction	 accuracy	 of	 3D	 domain	

swapping	from	sequence	information	using	machine	learning	is	critical	to	enable	the	

rapid	characterization	of	a	novel	structural	phenomenon.	In	this	paper,	we	discuss	

about	developing	an	ideation	contest	to	improve	prediction	of	3D	domain	swapping	

from	sequence	information.	We	discuss	about	the	3D	domain	swapping	mechanism	

and	 provide	 an	 overview	 of	 model	 proposed	 by	 leveraging	 different	 machine	

learning	 approaches	 to	 predict	 whether	 a	 given	 protein	 is	 swapping	 or	 non-

swapping.	 3D	 domain	 swapping	 is	 a	 process	 through	which	 a	 protein	 oligomer	 is	

formed	from	their	monomers.		
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The	rationale	for	predict	3D	domain	swapping	from	sequence	information	is	

based	on	 the	 classical	Anfinsen’s	 dogma	postulation	 that	 the	native	 structure	 of	 a	

protein	sequence	is	determined	by	the	properties	of	the	amino	acids	of	that	protein	

sequence.	 Three	 different	 machine	 learning	 approaches	 were	 proposed	 by	 the	

ideation	contestants	for	successfully	predict	and	classify	proteins	into	swapping	or	

non-swapping	 proteins.Compared	 to	 the	 original	 models	 published	 in	 2010	 and	

2011;	 modern	 machine	 intelligence	 approaches	 helped	 to	 improve	 the	 model	

modestly.	 The	 improvement	 could	 have	 been	 much	 better	 with	 more	 data	

availability.	 Thus,	 proposing	 machine	 intelligence	 contests	 as	 part	 of	 biomedical	

conferences	may	help	to	enhance	the	discovery	of	novel	biomedical	insights.		

	

Conclusions	

Biomedical	 Data	 Scientists	 could	 design	 and	 develop	 Machine	 Intelligence-based	

informatics	 solutions	 to	 address	 challenges	 in	 biology	 and	 medicine.	 Machine	

Intelligence	 is	 evolving	 as	 a	 critical	 analytical	 theme	 in	 biomedicine	 due	 to	 the	

advent	 of	 big	 data,	 scalable	 and	 affordable	 cloud	 computing	 and	modern	machine	

learning	 toolkits.	 Leading	 biomedical	 science	 and	 informatics	 conferences	 could	

organize	 ideation	 contests,	 predictive	 modeling	 competitions	 and	 crowdsourcing	

efforts	to	improve	the	democratization	of	machine	learning	in	bioscience.	We	used	a	

machine	 learning	 ideation	competition	 to	 revisit	 the	problem	of	predicting	 the	3D	

domain	 swapping	 -	 a	 mechanistic	 basis	 of	 protein	 conformations	 in	

neurodegenerative	 diseases;	 as	 part	 of	 an	 international	 bioinformatic	 conference.	

New	 insights	 and	a	variety	of	 solutions	were	proposed	 to	 address	 the	 challenging	
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problem	of	predicting	protein	aggregation	mechanism	from	sequence	 information.	

Collectively,	 the	 crowdsourcing	 results	 from	 ideation	 competition	 could	 help	 to	

push	 the	 conceptual	 boundaries	 and	 unlock	 new	 ideas	 to	 understand	 complex	

mechanisms	like	3D	domain	swapping.	

	

Data,	Source	Code	and	Model	Availability:		

• Supplemental	 Materials	 are	 available	 from	 figshare:	

https://doi.org/10.6084/m9.figshare.8317067.v1		

Source	code	is	available	at	the	following	repositories:		

o Model-1:	https://github.com/DBT-BIF/Inbix_ideation	

o Model-2:	https://github.com/souravsingh/Ideation-Challenge		

o Model-3https://github.com/shahyash-95/ideation.challenge_inbix2017	
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Figures:		

Figure	1:	Strategic	framework	for	developing	and	organizing	an	ideation	contest		
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Figure	2:	Summary	of	machine	intelligence	strategies	used	to	improve	prediction	of	

3D-domain	swap	using	machine	intelligence	methods.	a)	Plot	between	Accuracy	and	

number	of	randomly	selected	predictors	used	for	grid	searching	in	Model-1;	b)	ROC	

curve	of	Model-2;	c)	Features	selected	v/s	cross-validation	scores	on	training	

samples	compiled	from	Model-3.	d)	Neural	network	architecture	used	in	Model-2	e)	

3D	model	of	Ubiquitin	carboxyl-terminal	hydrolase	8	–	a	human	hydrolase	enzyme.		

	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 12, 2020. ; https://doi.org/10.1101/2020.07.12.199398doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.12.199398
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tables:  
 
Table 1:  Competitions, Ideations, Conferences and Platforms for crowdsourcing in 
biomedicine  
Name Description URL 
Platforms for Conducting Crowdsourcing  
CodaLab 
Competitions  

Open source framework for running 
competitions that involve result or code 
submission including several biomedical 
challenges and competitions  

https://competitions.codal
ab.org/competitions/ 

Driven Data Platform for hosting social challenges 
including multiple biomedicine 
challenges  

https://www.drivendata.or
g/competitions/ 

Innocentive Global platform for crowdsourced 
innovation 

https://www.innocentive.c
om/ 

Kaggle Community of data scientists and 
machine learners with multiple 
biomedicine challenges  

https://www.kaggle.com/ 

Machine Intelligence Competitions in Biomedicine  
Artificial 
Intelligence 
(AI) Health 
Outcomes 
Challenge 

Hosted by Centers for Medicare & 
Medicaid Services to develop 
interpretable models to predict unplanned 
hospital and senior nursing facility 
admissions and adverse events within 30 
days for Medicare beneficiaries, based on 
a data set of Medicare administrative 
claims data 
 

https://innovation.cms.gov
/initiatives/artificial-
intelligence-health-
outcomes-challenge/ 

Critical 
Assessment of 
Function 
Annotation 
(CAFA) 

Critical Assessment of protein Function 
Annotation algorithms (CAFA) is an 
experiment designed to provide a large-
scale assessment of computational 
methods dedicated to predicting protein 
function, using a time challenge 

https://biofunctionpredicti
on.org/cafa/ 

Critical 
Assessment of 
Genome 
Interpretation 
(CAGI) 

Community experiment to objectively 
assess computational methods for 
predicting phenotypic impacts of 
genomic variation and to inform future 
research directions 

https://genomeinterpretati
on.org/ 

Critical 
Assessment of 
protein 
Structure 
Prediction 
(CASP) 

Community experiment to help advance 
the methods of identifying protein 
structure from sequence 

http://predictioncenter.org/ 

Data Science Data science for social good competition https://datasciencebowl.co
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Bowl m/ 
DREAM 
Challenges  

DREAM Challenges invite participants 
to propose solutions to fundamental 
biomedical questions — fostering 
collaboration and building communities 
in the process. 

http://dreamchallenges.org
/ 

PhysioNet 
Computing in 
Cardiology 
Challenges  

Multiple contests that leverage PhysioNet 
data to develop clinical informatics 
solutions  

https://physionet.org/chall
enge/ 
 

Folding@Home Distributed computing project for disease 
research that simulates protein folding, 
computational drug design, and other 
types of molecular dynamics 

https://foldingathome.org/ 

Grand 
Challenges 

Collection of Grand Challenges in 
Biomedical Image Analysis 

https://grand-
challenge.org/ 

Partners 
HealthCare 
Biobank 
Disease 
Challenge 

Develop phenotypic algorithms that will 
aid in determining a patient’s disease 
status 

https://datachallenge.partn
ers.org/ 

Conferences with co-located machine intelligence competitions  
Inbix Ideation 
Challenge  

First edition of Inbix conference 
launched with an ideation challenge to 
predict 3D domain swapping using 
sequence information  

https://easychair.org/cfp/I
nbix19 

International 
Joint 
Conference on 
Neural 
Networks  

Multiple competitions including 
biomedical problems (for example, falls 
prediction in 2019) 

https://www.ijcnn.org/201
9-competitions 

KDD Cup  Data Mining and Knowledge Discovery 
competition organized by ACM Special 
Interest Group on Knowledge Discovery 
and Data Mining 

https://www.kdd.org/kdd-
cup 

PAC 2019  Leveraging the Photon platform to 
develop solution to solve a problem in 
the domain of neuroscience  

https://www.photon-
ai.com/pac2019 
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Table	2:		Summary	of	models	submitted	to	ideation	contest	to	improve	the	
prediction	of	3D	domain	swapping	from	sequence	information			
 

Models		 FE-Strategy	 Algorithm	 Reported	AUC	 Packages	 Features	

Model-1	 Boruta	method		 Nnet		 90.73%		

	

Boruta,	nnet,	

neuralnet		

8521	

Model-2	 Mutual	

information	gain		

	

XGBoost	 75.63%		

	

Scikit-learn,	

XGBoost		

369		

	

Model-3	

	

Selectkbest	

	

MLP	 72.5%	

	

scikit-learn		

	

66	
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