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ABSTRACT  
 
To  describe  a  living  organism  it  is  o�en  said  that  “the  whole  is  greater  than  the  sum  of  its  parts”.  In                      
gene�cs,  we  may  also  think  that  the  effect  of  mul�ple  muta�ons  on  an  organism  is  greater  than                  
their  addi�ve  individual  effect,  a  phenomenon  called  epistasis  or  mul�plicity.  Despite  the  last              
decade’s  discovery  that  many  disease-  and  fitness-related  traits  are  polygenic,  or  controlled  by              
many  gene�c  variants,  it  is  s�ll  debated  whether  the  effects  of  individual  genes  combine  addi�vely                
or  not.  Here  we  develop  a  flexible  likelihood  framework  for  genome-wide  associa�ons  to  fit               
complex  traits  such  as  fitness  under  both  addi�ve  and  non-addi�ve  polygenic  architectures.             
Analyses  of  simulated  datasets  under  different  true  addi�ve,  mul�plica�ve,  or  other  epista�c             
models,  confirm  that  our  method  can  iden�fy  global  non-addi�ve  selec�on.  Applying  the  model  to               
experimental  datasets  of  wild  type  lines  of Arabidopsis  thaliana , Drosophila  melanogaster ,  and             
Saccharomyces  cerevisiae ,  we  find  that  fitness  is  o�en  best  explained  with  non-addi�ve  polygenic              
models.  Instead,  a  mul�plica�ve  polygenic  model  appears  to  be�er  explain  fitness  in  some              
experimental  environments.  The  sta�s�cal  models  presented  here  have  the  poten�al  to  improve             
predic�on  of  phenotypes,  such  as  disease  suscep�bility,  over  the  standard  methods  for  calcula�ng              
polygenic   scores   which   assume   addi�vity.   
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Over  a  decade  of  Genome-Wide  Associa�on  (GWA)  studies  has  confirmed  what  quan�ta�ve             
gene�cists  have  long  suspected  -  that  many  complex  and  con�nuous  traits,  including  human  health               
traits (1)  and  experimentally  measured  fitness  in  plants (2)  and  animals (3) ,  are  controlled  by                
hundreds  if  not  thousands  of  muta�ons (1) .  These  observa�ons  suggest  that  adapta�on  might              
generally  occur  in  a  polygenic  fashion,  where  mul�ple  alleles  in  the  genome  are  under  selec�on,                
rather  than  through  single  selec�ve  sweeps,  where  a  single  allele  contributes  most  of  the  heritability                
and  has  a  large  fitness  effect (4) .  There  are  many  possible  ways  in  which  mul�ple  muta�ons  can                  
combine  or  interact  to  determine  a  trait.  S�ll,  the  vast  majority  of  polygenic  models  used  for  gene�c                  
mapping  of  traits  exclusively  consider  addi�ve  effects,  in  which  muta�ons  are  assumed  to  act               
independently  on  a  trait,  without  any  interac�on.  Considering  the  complex  nature  of  biological              
systems (5) ,  this  is  a  counterintui�ve  assump�on,  which  has  generated  controversy  in  quan�ta�ve              
and   popula�on   gene�cs    (6–8) .   
 

Quan�ta�ve  gene�cs,  the  branch  of  evolu�onary  gene�cs  focused  on  understanding  the            
gene�c  contribu�on  of  traits,  has  GWA  as  one  of  its  core  tools.  When  conduc�ng  GWA  using  fitness                  
or  a  fitness  proxy  as  the  trait  of  interest,  one  implicitly  assumes  selec�on  is  addi�ve  (i.e.  fitness                  

,  with  being  the  selec�on  coefficients  or  rela�ve  fitness  effects  of  a              
given  variant).  The  jus�fica�on  for  this  assump�on  is  mostly  sta�s�cal,  and  rooted  in  the  origin  of                 
the  field  of  quan�ta�ve  gene�cs  and  the  infinitesimal  model (9) ,  which  posits  that  when  many  loci                 
affect  a  trait  in  small  quan��es,  even  if  there  are  interac�ons,  the  addi�ve  model  is  a  good                  
approxima�on  —  a  theore�cal  no�on  which  has  been  backed  up  by  prac�cal  successes  in  ar�ficial                
selec�on   for   breeding   plant   and   animals    (10–13) .  

 
Despite  this  success  of  the  addi�ve  model,  much  classic  and  modern  gene�c  research              

supports  the  existence  of  epistasis (14) ,  encouraging  researchers  to  explore  this  biological             
phenomenon  in  genome-wide  or  polygenic  approaches.  Some  models  in  quan�ta�ve  gene�cs  have             
extended  a  linear  model  to  include  pairwise  epista�c  interac�ons  include  pairwise  epista�c             
interac�ons  ( ) (15,  16) .  Extending  the  pairwise  epistasis  model  to           
genome-wide  approaches,  for  a  dataset  of  SNPs,  one  would  have  to  infer  main  effects  and                   
interac�on  terms,  which  likely  is  many  more  parameters  than  current  datasets  have  the  power  to                
detect (16) .  Furthermore,  admi�ng  pairwise  epistasis  immediately  leads  to  the  ques�on  of             
higher-order   epistasis,   such   as   trios   or   quartets   of   interac�ng   loci    (17) .   

 
The  pairwise  epista�c  model  is  only  one  of  many  non-addi�ve  models  proposed  in  the               

broader  field  of  evolu�onary  gene�cs  (reviewed  and  discussed  in (18)  and (19) ).  Other  important  and                
commonly  assumed  models  are:  The  “mul�plica�ve  model”  ( ),  where  fitness           
increases  in  a  geometric  fashion  with  the  number  of  alleles  affec�ng  fitness  (a  pairwise  version  of                 
which  also  exist (20) ).  The  “synergis�c  or  posi�ve  epistasis  model”,  where  fitness  increases  or               
decreases  faster  than  a  geometric  func�on (21) ,  and  the  “diminishing  returns  or  nega�ve  epistasis               
model”,  where  fitness  gains  are  less  than  expected  from  the  combina�on  of  adap�ve  muta�ons  and                
ul�mately   plateauing   ( Fig.   1C )    (21,   22) .   

 
The  choice  of  func�on  for  combining  muta�on  effects  is  not  merely  a  mathema�cal  triviality               

but  rather  represents  a  hypothesis  on  how  molecular  processes  affect  the  development  of  a  trait  and                 
how  these,  in  turn,  are  jointly  affec�ng  fitness (18) .  For  instance,  the  choice  of  a  mul�plica�ve  model                  
of  fitness  made  by  many  theore�cal  popula�on  gene�cists  can  be  jus�fied  by  assuming  that               
muta�ons  decrease  survivorship  by  a  certain  frac�on,  independently  of  each  other.  On  the  other               
hand,  quan�ta�ve  gene�cists  tradi�onally  consider  traits  such  as  height,  and  thus  may  choose  a               
model  where  muta�ons  ac�vate  or  repress  independent  growth  pathways  and  may  compensate  one              
one  another  addi�vely.  The  addi�ve  and  mul�plica�ve  models  are  approximately  iden�cal  when             
effect  sizes  (i.e.  selec�on  coefficients  if  the  trait  is  fitness)  are  small,  as  the  product  terms  of  the                   
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effect  sizes  vanish,  but  can  differ  more  substan�ally  when  there  are  muta�ons  of  moderate  or  large                 
effects,   par�cularly   in   the   tails   of   the   distribu�on.  

 
Despite  recent  conceptual  efforts  to  connect  GWA  results  and  popula�on  gene�cs  and             

natural  selec�on  concepts (23) ,  a  common  GWA  framework  to  directly  test  different  global  addi�ve,               
mul�plica�ve,  or  epista�c  models  is  s�ll  lacking  (but  see (24) ).  Here  we  developed  NAPs               
(Non-Addi�ve  Polygenic  models)  for  joint  inference  of  effect  sizes  for  loci  together  with               
parameters  modeling  how  the  effects  of  loci  combine  (addi�ve,  mul�plica�ve,  etc.).  These  models              
are  so-called  global  epistasis  models  because  they  do  not  parameterize  interac�ons  between             
individual  loci  directly,  but  rather  model  the  interac�on  as  a  func�on  of  the  total  combined  effect  of                  
all   alleles   in   all   loci    (25)    ( Fig.   1C ).  
 

 
Figure  1  |  Modeling  non-addi�ve  polygenic  fitness ( A )  Variance  and  skewness  of  rela�ve  offspring               
number  (fitness)  distribu�ons  of  three  species:  Arabidopsis  thaliana,  Drosophila  melanogaster,  and            
Saccharomyces  cerevisiae,  and  simulated  datasets.  (Upper-right)  Three  examples  of  highly-skewed           
and  zero-inflated  distribu�ons  were  chosen,  characterized  by  long  tails  and  a  variance  that              
increases  with  the  mean.  (Lower-right)  Four  examples  of  almost-symmetric  distribu�ons  are            
shown.  ( B )  A  cartoon  depic�on  of  the  likelihood  model,  which  expects  each  genotype  to  be  drawn                 
from  a  different  underlying  Normal  sampling  distribu�on  (grey)  with  a  specific  mean  and  variance               
that  is  dependent  on  a  genotype’s  gene�c  variants,  the  selec�on  coefficients  of  those,  and  the                
addi�ve  or  epista�c  model  combining  those  (C).  Observa�ons  can  be  zero  with  a  certain  probability                
(zero  infla�on),  and  the  offspring  number  is  scaled  to  be  rela�ve  to  the  mean  of  the  overall                  
distribu�on  of  genotypes  in  a  popula�on.  ( C )  Cartoon  depic�ng  how  the  mean  rela�ve  offspring               
number  of  a  genotype  would  theore�cally  vary  depending  on  the  number  of  posi�ve  and  nega�ve                
muta�ons  it  carries  under  different  addi�ve  or  epista�c  models  of  combining  effects.  Six  different               
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global  epista�c  models  can  be  used  to  combine  the  effects  of  those  muta�ons:  base  addi�ve  or                 
mul�plica�ve,  and  combina�ons  of  those  with  synergis�c,  diminishing  returns,  and  no  epistasis.             
Gray   area   indicates   nega�ve   values,   which   have   no   meaning   for   fitness.  

 
Our  aim  was  to  develop  a  flexible  GWA-like  model  that  could  explain  individual  trait  varia�on                

as  a  func�on  of  genomic  varia�on  using  both  addi�ve  and  non-addi�ve  func�ons  commonly  used  in                
evolu�onary  gene�cs.  Much  of  the  theory  on  epistasis  models  in  popula�on  and  quan�ta�ve              
gene�cs  deals  with  fitness  and  natural  selec�on,  so  we  developed  the  NAP  models  to  be  especially                 
suited  for  fitness  traits  (or  proxies  thereof).  Fitness  is  a  complex  trait  that  is  of  special  interest                  
(natural  selec�on  is  defined  as  gene�c  varia�on  in  fitness),  but  o�en  is  non-Normally  distributed               
and,  therefore,  requires  careful  modeling (26) .  Here,  we  define  the  rela�ve  fitness  of  an  organism  as                 
the  expected  total  number  of  offspring  produced  in  a  life�me  divided  by  the  popula�on  mean                
number  of  offspring.  Rela�ve  fitness  is  then  bounded  between  zero  and N ,  with  mean=1.  The                
number  of  offspring  of  an  individual  can  be  thought  of  as  arising  from  the  convolu�on  of  a  Bernoulli                   
represen�ng  viability  and  a  Poisson  describing  the  offspring  number,  which  is  poorly  approximated              
by  a  normal  distribu�on  even  a�er  various  normaliza�ons (26)  ( Fig.  1A ).  In  par�cular,  modeling  of                
offspring  number  is  o�en  challenged  by  the  infla�on  of  zeros  present  in  the  dataset  ( Fig.  1B ),  which                  
cannot  be  easily  modeled  by  trunca�ng  the  nega�ve  side  of  a  normal  distribu�on  and  allowing  a                 
point  mass  at  zero  equal  to  the  CDF  of  the  normal  distribu�on  at  this  point.  We  therefore  model  the                    
normalized  number  of  offspring  from  individual with  genotype  as  being  drawn  from  a  mixture                
distribu�on:  ( Fig.  1B );  where  represents  the  unobserved          
true  fitness  of  a  given  genotype  in  a  popula�on,  were  different  genotypes  have  different  fitness                 
(e.g.  distribu�on  means  in Fig.  2B  vary  for  different  genotypes);  and  are  constants  that  allow                  
either  for  homoscedas�c  Gaussian  variance,  when ,  or  for  variance  to  increase  with  the  mean,                

 (e.g.  distribu�on  widths  in Fig.  1B  vary  for  different  genotypes).  Finally,  independent  of  the                
genotype,  the  model  allows  for  a  frac�on, ,  of  stochas�c  zeroes,  o�en  observed  in  real  offspring                 
distribu�on  data  and  fitness  assays  (e.g.  frac�on  at  zero  in Fig.  1B ).  This  framework  is  flexible  enough                  
to  accommodate  a  wide  array  of  sampling  distribu�ons  ( Fig.  1A ).  Also,  in  the  data  sets  we  will                  
consider,  the  number  of  offspring  per  individual  is  rela�vely  large  so  the  normal  distribu�on  of                
offspring  per  genotype  should  approximate  the  Poisson  quite  well.  Each  genotype, ,  is              
assumed  to  have  a  fitness  that  is  a  func�on  of  the  genotypic  state  in  the genome-wide                  
muta�ons  affec�ng  fitness.  The  func�ons  we  will  use  to  describe  the  combined  effects  of  muta�ons                
can   be   addi�ve:   

;  
or   mul�plica�ve:  

,  
Here  encodes  the  genotypes  of  biallelic  SNPs,  with  alterna�ve  allele  dosages:  0,1,2;  assuming              
individuals  are  diploid,  and  is  the  fitness  of  a  hypothe�cal  reference  genotype  (with =0  in  all                  
loci).  Both  addi�ve  and  mul�plica�ve  func�ons  can  have  different  func�onal  forms  that  make  them               
depart  from  linear  or  geometric  func�ons  when .  Specifically,  when ,  the  genotype-trait              
architecture  is  said  to  have  synergis�c  epistasis.  When ,  it  has  diminishing  returns  epistasis.  In                
total,  six  combina�ons  of  model  architectures  can  be  tested:  purely  addi�ve,  addi�ve  synergis�c,              
addi�ve  with  diminishing  returns,  purely  mul�plica�ve,  mul�plica�ve  synergis�c,  and  mul�plica�ve           
with  diminishing  returns  ( Fig.  1C ).  Given  the  above  sampling  distribu�on  per  genotype  and              
parameters,   the   likelihood   of   observing   rela�ve   offspring   number     of   a   genotype     is:   
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And   the   log-likelihood   of   all   observa�ons   is   the   sum   over   all   log-likelihoods   per   genotype:   

.  
The  key  predictor  in  our  NAP  model  is  the  vector  of  rela�ve  fitness  devia�ons  or  selec�on                 

coefficients  on  gene�c  variants, .  Following (27) ,  we  define  a  selec�on  coefficient  as              
the  rela�ve  fitness  advantage  or  disadvantage  of  a  minor  allele  with  respect  to  the  fitness  of  a                  
reference   haplotype   (the   theore�cal   haplotype   with   all   major   alleles).   
 

To  infer  the  vector  and  the  model  hyperparameters,  we  use  the  mul�variate              
quasi-Newtonian  op�miza�on  algorithm  Spectral  Projected  Gradient  (SPG) (28) .  Although  this           
procedure  has  been  developed  for  large-scale  mul�variate  op�miza�on  and  is  implemented  in  C++              
( h�ps://github.com/MoisesExpositoAlonso/napspg ),  conduc�ng  these  analyses  with  millions  of  SNPs         
is  computa�onally-demanding  and  �me-consuming.  Hence,  we  instead  first  run  a  Bayesian  Sparse             
Linear  Mixed  Model  (BSLMM,  implemented  in  GEMMA) (12) ,  a  polygenic  addi�ve  GWA  model  for               
which  efficient  op�miza�ons  have  been  implemented.  Using  BSLMM,  we  can  pre-select  a  set  of  top                
associated  SNPs  with  the  trait  for  which  we  then  run  our  likelihood  op�miza�on.  The  SPG                
op�miza�on  was  run  un�l  convergence  or  for  2,500  itera�ons.  To  assess  goodness-of-fit  and  avoid               
overfi�ng,  we  use  a  cross-valida�on  approach,  where  90%  of  the  data  is  used  for  training  and  10%  is                   
used  for  tes�ng.  Accuracy  is  measured  using  Spearman’s  rank  correla�on  (r)  between  predicted  and               
measured   values   of   rela�ve   offspring   number   of   individuals.  

 
Using  the  NAP  model,  we  analyzed  real  fitness  datasets  and  tested  which  polygenic              

architecture  model  best  fits  the  data.  We  used  datasets  from  three  model  organisms: Arabidopsis               
thaliana  (part  of  the  1001  Genomes  Project (2) ), Drosophila  melanogaster (part  of  the  Drosophila               
Gene�c  Reference  Panel  (DGRP2) (3,  29) ),  and Saccharomyces  cerevisiae  (part  of  a  >1000  genomes               
effort (30) ).  For A.  thaliana,  we  analyze  a  total  of  eight  experimental  datasets,  515  natural  lines,  and                  
4,438,427  biallelic  SNPs.  For D.  melanogaster ,  we  use  one  dataset,  205  natural  lines,  and  4.5  million                 
biallelic  SNPs.  For S.  cerevisiae ,  we  use  35  datasets,  1011  natural  lines,  and  83,794  biallelic  SNPs.                 
BSLMM  Genome-Wide  Associa�ons  for  the  three  species  confirmed  the  results  from  the  original              
publica�on  that  fitness  traits  were  polygenic,  with  the  highest  es�mated  number  of  causal  loci  ( )                
for  any  of  the  analyzed  environments  (mode  of  1,000  MCMC  steps)  being:  63  for Drosophila,  261  for                  
Arabidopsis, and  271  for  Saccharomyces. None  of  the  previous  publica�ons  tested  whether  these              
polygenic  traits  were  addi�ve  or  not.  For  each  of  these  44  datasets  we  applied  the  likelihood  method                  
to  the  1,000  SNPs  with  highest  posterior  probability  in  BSLMM,  for  different  (non-)addi�ve              
architectures,   and   selected   the   best   models   based   on   cross-valida�on   accuracy   ( Fig.   2 ).  
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Figure  2  |  Significant  non-addi�ve  selec�on  in Arabidopsis , Drosophila  and Saccharomyces            
experiments  (A)  Cross-valida�on  predic�on  accuracy  using  Non-Addi�ve  Polygenic  (NAP)  models           
in  44  fitness  datasets  in  D.  melanogaster  (acronym  D.),  A.  thaliana  and  S.  cerevisiae.  Accuracy  was                 
evaluated  by  Spearman’s  r  correla�on  coefficient  between  the  actual  and  predicted  value  of              
rela�ve  fitness  from  the  test  set  of  individuals  in  each  dataset.  Fitness  predic�ons  were  generated                
combining  inferred  selec�on  coefficients  for  1,000  SNPs  using  addi�ve,  mul�plica�ve,  or  other             
non-addi�ve  func�ons. For  reference,  the  predic�on  accuracy  using  state-of-the-art  BSLMM           
Genome-Wide  Associa�on  (GWA)  (17)  is  also  shown,  along  with  the  magnitude  of  accuracy              
improvement  ( Δr) . (B)  Percentage  of  the  44  datasets  that  were  best  predicted  (highest  r)  by  each  of                  
the  six  tested  models. (C) Cross-valida�on  predic�ons  of  rela�ve  offspring  number  in  A.  thaliana               
(experiment  code  “mli”,  random  test  set  n=52),  with  an  example  of  the  addi�ve  and  the                
mul�plica�ve  models,  and  the  comparison  of  predictability  with  BSLMM  GWA  model  with  all  and               
the  top  1,000  SNPs  (random  test  set  n=52).  ( D-E )  Cross-valida�on  predic�on  accuracy  plots  of  96                
simulated  datasets  under  a  mul�plica�ve  (orange)  or  addi�ve  (black)  polygenic  model.  Grey             
crosses  indicate  simulated  mul�plica�ve  datasets  for  which  the  best  model  (highest  r)  was              
addi�ve.  ( D )  Each  simulated  dataset’s  cross-valida�on  accuracy  improvement  using  NAP  over            
BSLMM  GWA,  plo�ed  against  the  fitness  variance  of  each  simulated  dataset.  ( E )  Each  simulated               
dataset’s  cross-valida�on  accuracy  difference  between  the  true  model  (fi�ng  NAP  with  the  known              
parameters  used  to  simulate  the  dataset),  and  the  best  model  (NAP  run  with  the  parameters  that                 
maximized  r).  ( F )  A  Random  Forest  was  used  to  explain  the  accuracy  difference  between  NAP  and                 
GWA  based  on  the  hyperparameters  used  to  simulate  datasets  (n= 96 ).  Variable  importance  shows              
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which  simula�on  parameters  lead  to  the  largest  changes  in  accuracy  improvement.  The             
parameters  are:  model  type  addi�ve/mul�plica�ve,  selec�on  strength,  Poisson  noise,  Gaussian           
noise,  random  zeroes,  synergis�c/diminishing  global  epistasis  (see  text  for  explana�on).  ( G )  A             
Random  Forest  was  used  to  explain  which  parameters  (see  F)  characterize  the  simulated              
mul�plica�ve   datasets   where   the   best   model   was   addi�ve   (n= 32 ).  

 
Our  results  show  that  non-addi�ve  polygenic  (NAP)  models  in  general  tend  to  provide  higher               

predic�on  accuracy  than  standard  addi�ve  models  ( Fig.  2A-B ).  The  most  common  architectures  were              
either  addi�ve  with  diminishing  global  epistasis  or  addi�ve  with  synergis�c  global  epistasis,  and  a               
significant  15%  frac�on  were  also  best  fit  under  a  mul�plica�ve  model  in  at  least  one  environment                 
for   each   of   the   three   species .  
 

As  expected  due  to  the  zero-infla�on  and  long  tails  in  these  datasets  ( Fig.  1A ),  the                
state-of-the-art  Genome-Wide  Associa�ons  had  a  lower  predic�on  accuracy  than  the  NAP  models             
( Fig.  2A-C )  for  almost  all  data  sets.  The  NAP  model  improved  cross-valida�on  accuracy  over  GWA  by                 
an  average  of  r=0.216  (2.5-97.5%  quan�les:  0.0729,  0.592).  This  was  more  pronounced  when  the               
best  model  was  mul�plica�ve  (Δr=0.32  mul�plica�ve,  Δr=0.35  mul�plica�ve  with  diminishing           
returns)  compared  to  addi�ve  (Δr=0.21  for  addi�ve,  Δr=0.16  for  addi�ve  diminishing,  Δr=0.23  for              
addi�ve  synergis�c).  To  exclude  that  these  improvements  were  due  to  the  winner’s  curse,  we  re-ran                
the  GWA  with  the  top  1,000  SNPs  from  the  first  GWA  run  which  were  used  to  fit  NAP  (for  comparison                     
of   the   all   SNPs   GWA   and   the   top   1,000   SNPs   GWA,   see    Fig.   2C ).   
 

To  test  the  robustness  of  our  conclusions,  we  ran  the  same  set  of  analyses  in  96  simulated                  
datasets  ( Fig.  1A ).  The  fitness  of  1,500  individuals  was  simulated  using  10,000  biallelic  SNPs  in  500                 
causal  loci,  each  randomly  assigned  a  selec�on  coefficient  assuming ;  with            
variance  either  0.01  (weak  selec�on)  or  0.1  (stronger  selec�on).  The  strength  of  selec�on  can  also  be                 
interpreted  as  the  polygenicity  of  the  trait,  as  in  the  weak  selec�on  case  only  ~30%  of  SNPs  have                   
selec�on  coefficients  >  1%,  while  in  the  strong  selec�on  case  >90%  of  the  500  loci  have  selec�on                  
coefficients  >  1%.  Individual-level  fitness  is  then  calculated  as  a  combina�on  of  all  genome-wide               
selec�on  coefficients  using  an  addi�ve  or  mul�plica�ve  formula  (see  above),  and  in  all  combina�ons               
with  or  without  synergis�c  and  diminishing  returns  epista�c  parameters  (using  a  grid  of  parameter               
values  from  0.8  to  1.2  in  0.1  increments).  Finally,  we  added  different  degrees  and  types  of  sampling                  
noise,  either  0%  or  20%  zero-infla�on  of  random  zeroes,  a  basal  Gaussian  noise  of  0.01  or  0.5  ( ),                   
and  variance  increased  in  propor�on  to  the  mean  of  0.01  or  0.5  ( );  and  all  combina�ons  of  the                   
above  (n=96),  crea�ng  an  array  of  fitness  distribu�on  shapes.  The  hyperparameter  values  were              
manually  selected  to  create  realis�c  fitness  distribu�ons  similar  to  those  observed  in A.  thaliana, D.                
melanogaster    and    S.   cerevisiae    datasets   ( Fig.   1A) .   

 
Using  the  same  approach  as  with  the  experimental  data,  we  conducted  a  pre-selec�on  of  the                

top  SNPs  using  BSLMM,  ran  our  NAP  models  with  1,000  SNPs  under  different  addi�ve  and                
mul�plica�ve  architectures  and  a  grid  of  values  of  the  epista�c  parameter,  and  then  selected  the                
best  models  based  on  cross-valida�on  accuracy.  As  before,  we  found  that  our  best  model  had  an                 
average  cross-valida�on  predictability  of  r=0.50,  while  GWA  had  an  average  accuracy  of  r=0.21.  The               
improvement  in  accuracy  of  NAP  over  GWA  increased  as  the  fitness  distribu�on  became  more               
complex,  that  is,  heavy-tailed  (skewness,  Pearson’s  r=0.41, P= 3.64x10 -5 )  and  broad  (variance,             
r=0.24,    P=    1.89x10 -2 )   ( Fig.   2D ).  
 

Because  the  true  underlying  genome  architecture  is  known  for  the  simulated  datasets,  we              
could  study  the  performance  of  our  likelihood  op�miza�on  and  cross-valida�on  approaches,  and             
compare  them  with  the  BSLMM  GWA  baseline.  We  found  that  98%  of  all  addi�ve  simulated  datasets                 
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had  the  highest  predic�on  accuracy  under  an  addi�ve  model.  Fi�ng  different  global  epista�c               
parameters  (0.8-1.2  in  0.05  increments)  in  these  addi�ve  models  and  selec�ng  the  model  with               
highest  predic�on  accuracy,  we  nevertheless  iden�fied  the  correct  simulated  epista�c  parameter            
20%  of  the  �me,  close  to  the  random  expecta�on  10%.  This  may  be  caused  by  the  minor  influence  of                    
this  global  epistasis  parameter  in  shaping  fitness  (see Fig.  2  F ),  or  due  to  op�miza�on  issues  and/or                  
our   coarse   grid   search   approach.  

 
Mul�plica�ve  architectures  did  not  tend  to  improve  predic�on  accuracy  even  when  the  true              

model  was  in  fact  mul�plica�ve.  Only  32%  of  mul�plica�ve  simula�ons  found  highest  predic�on              
accuracy  under  a  mul�plica�ve  model.  When  we  studied  which  mul�plica�ve  datasets  had  poor              
predic�on  accuracy  under  a  mul�plica�ve  model,  we  found  that  it  was  those  datasets  with  high                
noise,  leading  to  an  overall  low  accuracy  of  the  model  ( Fig.  2D-E ).  We  conducted  a  Random  Forest                  
analysis  to  quan�fy  the  simula�on  condi�ons  that  characterized  runs  where  the  wrong  model  had               
the  highest  predic�on  accuracy.  Unsurprisingly,  it  was  simula�ons  under  condi�ons  with  weak             
mul�plica�ve  selec�on  and  high  Gaussian  noise  that  were  wrongly  iden�fied  as  addi�ve  ( Fig.  2F-E ,               
crosses),  as  in  cases  where  loci  have  small  effects,  addi�ve  and  mul�plica�ve  models  are               
approximately  iden�cal.  Despite  the  fact  that  simulated  mul�plica�ve  datasets  were  consistently            
be�er  predicted  with  addi�ve  rather  than  mul�plica�ve  models,  we  found  that  addi�ve  models              
fi�ed  with  synergis�c  global  epistasis  parameter  ( ≥1.2)  had  on  average  a  6%  higher  accuracy  than                
addi�ve  models  with  diminishing  returns  parameter  ( ≤0.85)  (t-test,  t  =  2.433,  df  =  189.7,  p-value  =                 
0.0158;  Wilcoxon  rank  sum  test,  W  =  5631, P  =  0.0079).  This  shows  that  our  algorithm  may  detect                   
non-linear  mul�plica�ve-like  architectures,  but  they  appear  to  be  well  approximated  by  an  addi�ve              
model   with   synergisms   (see   the   similarity   in   mul�plica�ve   and   addi�ve-synergis�c   lines   in    Fig.   1C ).   
 

Here  we  presented  the  NAP  model,  the  first  Genome-Wide  Associa�on  pipeline  that  enables              
researchers  to  choose  a  global  non-addi�ve  architecture  in  their  associa�on  study  for  predic�on              
purposes.  Applying  NAP  to  three  diverse  species,  we  find  evidence  for  a  mul�plica�ve              
genotype-fitness  architecture  at  least  in  some  environments,  and  simula�ons  suggest  our  model             
selec�on  based  on  predic�on  accuracy  is  conserva�vely  biased  towards  addi�ve  architectures.            
Beyond  tes�ng  different  polygenic  architectures,  the  tailored  likelihood  model  behind  NAP            
accommodates  non-Normal  phenotypic  distribu�ons  and  achieves  a  higher  cross-valida�on  accuracy           
when  predic�ng  trait  values  of  genotypes  hidden  from  the  model,  which  could  have  broad               
applica�ons  both  to  study  natural  selec�on  and  fitness,  as  well  as  other  traits.  We  also  note  that  the                   
method  has  poten�al  for  improving  phenotypic  predic�on  in  human  disease  studies  and  in  other               
studies   that   rely   on   the   standard   addi�ve   polygenic   risk   score   model    (12) .   

 
Conclusions  on  global  epistasis  could  arise  due  to  non-lineari�es  in  the  measuring  scale  of  a                

trait (31) .  Fitness  has  a  natural  scale,  i.e.  the  number  of  offspring  produced  by  an  individual,  and                  
therefore  should  not  be  affected  by  this  confounding.  However,  some  proxies  for  fitness,  e.g.  growth                
rates   for   unicellular   organisms,   could   also   be   problema�c   for   measuring   selec�on    (32) .   

 
The  evidence  for  non-addi�ve  gene�c  architecture  presented  here  may  not  be  surprising             

given  the  growing  literature  of  experiments  that  require  genome-wide  epistasis  to  explain             
asymmetric  responses  to  ar�ficial  selec�on (33) ,  line-dependent  effects  of  muta�ons  in Drosophila             
(14,  34) , or significant  quan�ta�ve  trait  loci  hubs  in  yeast (35) .  This  has  sparked  recent  development                 
of  various  sta�s�cal  approaches  to  test  epistasis  more  generally,  by  studying  the  emergent  pa�erns               
of  epistasis  as  its  contribu�on  to  variance (36) ,  or  one  genotype-to-trait  map (24,  25,  31,  37,  38)  as  in                    
this  study.  Recent  systems  biology  approaches  for  crea�ng  massively-parallel  muta�ons  using            
CRISPR/Cas9  techniques (39) ,  as  recently  aimed  in  yeast  experiments (40) ,  should  further  enable              
researchers  to  test  the  underlying  addi�ve  or  epista�c  interac�ons  of  muta�ons.  The  evidence  for               
non-addi�ve  gene�c  architecture  in  three  key  model  species  iden�fied  in  this  study  will  have               
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substan�al  impact  in  our  understanding  and  predictability  of  polygenic  adapta�on  of  species (6,  41,               
42) .  
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