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Abstract

Individuals with psychiatric disorders perform differently in school compared to the
general population. Both genetic and environmental factors contribute to such
differences. Existing studies on the association of educational attainment polygenic score
(EA-PGS) with school performance were based on individuals from the general
population and it is unclear if the results can be generalized to individuals with
psychiatric disorders. We studied the association of EA-PGS with school performance in
30,982 individuals of whom ~60% were diagnosed with at least one major psychiatric
disorder. Comparing the results between individuals with and without psychiatric
disorders, we found that the associations of EA-PGS with school performance were
weaker in individuals with psychiatric disorders than in those without the disorders; the
largest differences were seen in attention deficit hyperactivity disorder (ADHD) and
autism spectrum disorder (ASD). We further studied the associations of family
socio-economic variables (parents’ education and employment) with school performance
and found weaker associations in individuals with psychiatric disorders than in those
without the disorders. Overall our analyses suggest that results from studies on the
associations of genetic and environmental factors with school performance in the general
population cannot be fully generalized to individuals with psychiatric disorders.

Introduction

The highest level of education attained by an individual, referred to as educational
attainment (EA), is a strong determinant of a range of life outcomes including physical
health, mental health, socioeconomic and behavioral outcomes.1 Individuals differ
widely in their EA. Much of these differences are due to genetic and environmental
factors, and the interplay between the two.2

EA is moderately heritable2 and the heritability estimates vary widely; twin studies based
estimate is around 40%.3 Some of the largest GWASs (> 1 million) conducted to date
include that of EA and they have demonstrated that EA is highly polygenic and
thousands of variants together contribute to the heritability of EA.4–6 The effects of the
these variants can be combined in to a single score, referred to as polygenic score (PGS).
EA-PGS has been shown to associate strongly with EA in independent samples,
explaining up to 12.7% of the phenotypic variance in EA3.4 Likewise, EA-PGS has also
been shown to associate strongly with school performance at around 16 years of age,
explaining up to 14% of the phenotypic variance in school grades.7–9

Although EA-PGS strongly associates with school grades, its association is influenced by
numerous factors such as ancestry,10 environmental factors11 and indirect genetic effects
such as genetic nurture12 and social genetic effects.13 Existing GWASs of EA have been
conducted in individuals from European ancestries.4–6 Hence, EA-PGS associates with EA
poorly in individuals from non-European ancestries such as African-American
ancestries.4,14 Several environmental factors such as family socioeconomic status, access
to education as well influence EA strongly and therefore the strength of the association of
EA-PGS with EA reduces when variations in the environmental factors increase.15

Moreover, the strength of the association of EA-PGS with EA drops substantially when
analyzing siblings than when analyzing unrelated individuals, indicating that a large
proportion of EA-PGS’s association with EA is mediated through family environment.16

Individuals with—or those at risk for—psychiatric disorders often score lower than
individuals without psychiatric disorders in school.17,18 Although genetic factors related
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to cognition partly explain this association,19 other factors such as family socioeconomic
status (SES) might contribute to this association as well, for example, individuals with
psychiatric disorders such as schizophrenia and ADHD often have low SES compared to
general population.20–22 Additionally, there is a significant sharing of genetic risk
variants between psychiatric disorders and cognitive phenotypes such as EA23 and
intelligence.24 Given these backgrounds, it can be hypothesized that the EA-PGS might
influence EA differently in individuals with psychiatric disorders than in the general
population. However, this has not been evaluated so far.

The aim of the current study is to evaluate if the association between EA-PGS and school
performance differ between individuals with and without psychiatric disorders. To do
this, we studied the association of EA-PGS with school performance in 30,982 individuals
from the Danish iPSYCH25 and ANGI26 cohorts, 60% of whom were diagnosed with one
or more of six major psychiatric disorders—ADHD, ASD, schizophrenia (SCZ), bipolar
disorder (BD), major depressive disorder (MDD) and anorexia nervosa (AN). Through an
analysis involving the full cohort we first confirmed that EA-PGS strongly associate with
school performance. Then we proceeded with subgroup analysis where we tested if there
are any differences in the association of EA-PGS with school performance across six
psychiatric groups and controls (i.e. those without any of the six disorders). Additionally,
we also explored the differences in the association of some of the known environmental
predictors of school grades (parental education and employment status) across the six
psychiatric disorder groups and controls. We then compared the results with that of
EA-PGS to infer how genetic and environmental influences of school performance
differed across the six psychiatric disorder groups and controls.

Results

Sample characteristics

Our study individuals comprised of 18,495 with one or more of six major psychiatric
disorders (ADHD=5,238, ASD=3,859, SCZ=1,356, MDD=9,719, BPD=839 and
AN=1,680) and 12,487 without any of these six disorders19 (Table 1). We assessed the
school performance based on six different school grades (Danish written, oral and
grammar, English oral, and mathematics written and oral, or problem solving with and
without aids; Methods). The school grades were from the exit exam given at the end of
compulsory schooling in Denmark. The students were on average 15.7 years old
(SD=0.42) when they sat for their exit exams. It is important to note that among those
with psychiatric disorders we studied, many received their psychiatric diagnoses only
after they sat for the exams (Table 1). Yet their school performance differed significantly
from the controls, which we have reported previously.19 Hence, we considered everyone
with a psychiatric diagnosis in the register (as of Dec 2016) as cases irrespective of when
they received their diagnoses. The sample characteristics within each disorder group and
controls are summarized in Table 1.

Derivation of a proxy variable for overall school performance

All the six grades that we analyzed were strongly correlated with each other suggesting
that those who performed well in one subject performed well in others as well19

(Supplementary Fig. 1). To measure the overall performance, we therefore did a
principal component analysis (PCA) and extracted the first principal component, PC1
(hereafter, E1), that explained maximum variance in all the subject grades
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Table 1. Sample characteristics

SCZ BD MDD ADHD ASD AN Controls
Sample size 1356 839 9719 5238 3859 1680 12487
Females
N 668 561 6836 1748 1017 1568 6327
% 49.3% 66.9% 70.3% 33.4% 26.4% 93.3% 50.7%
Age
Mean 26.1 26.8 26.2 22.9 22.1 24.8 23.4
SD 2.9 2.8 3.3 4.1 3.9 3.7 4.2
Exam age
Mean 15.7 15.6 15.6 15.8 15.8 15.6 15.6
SD 0.4 0.4 0.4 0.4 0.5 0.4 0.4
Age at first diagnosis
Mean 21.15 21.86 18.9 14.8 12.8 16.3 -
SD 2.9 3.2 3.3 5.6 5.0 3.3 -
Diagnosed before exam
N 38 17 1655 3025 2880 819 -
% 2.8% 2.1% 17.1% 57.8% 74.6% 48.9% -
School grades
Mean 6.0 6.8 6.4 5.3 6.7 8.0 6.9
SD 2.2 2.3 2.3 2.2 2.3 2.3 2.4

SCZ - Schizophrenia; BD - Bipolar disorder; MDD - Major depressive disorder; ADHD - Attention

deficit/hyperactivity disorder; ASD - Autism spectrum disorder; AN - Anorexia nervosa

Age of the individuals on December 2016

Exam age is the age of the individuals when they sat for the exit exam.

The age at first diagnosis was calculated based on the first time the diagnosis was recorded in the register.

The date of first diagnosis and the date of exit exam were compared to identify if the individual has received

the diagnosis before they sat for the exam.

The mean value was calculated across all the grades: Danish written, oral and grammar and English oral and

mathematics written and oral (if exam year ≤ 2006) or problem solving with and without help (if exam year

> 2006); The lowest and highest mean values observed were -1.7 and 12.

(Supplementary Fig 2). This is equivalent to extracting a general cognitive ability factor
(g) from a PCA of multiple cognitive test scores.27 We have previously reported the
genetic architecture of E1 by performing a genome-wide association study (GWAS) and
showed that there is an almost complete genetic overlap between E1 and EA19 (rg
=0.90; SE=0.01; P=4.8x10−198). Hence, here we used E1 as a proxy phenotype for EA
and studied its association with EA-PGS across the six psychiatric disorder groups and
controls.

Overall association of EA-PGS with E1

First, we studied the association of EA-PGS with E1 in the full sample (N=30,982) that
included both individuals with and without psychiatric disorders. We constructed
EA-PGS for our study individuals at ten P value thresholds using the variant effect sizes
reported in the recent largest GWAS of EA5 (Methods). We included exam age (age at
the time of examination), sex and psychiatric diagnoses as covariates along with others
in the analyses (Methods). EA-PGS at all ten thresholds associated significantly with E1
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and explained substantial proportion of variances in E1 (Supplementary Table 1).
EA-PGS at threshold P<0.05 explained the maximum variance (R2 =8.4%) and so we
used this threshold for further analysis.

To further explore the association of EA-PGS with E1, we performed a decile analysis. We
divided the entire sample into deciles based on EA-PGS and then explored how the E1
mean scores trended from the lowest decile to the highest (Fig. 1). The E1 scores were
residualized for all the covariates and then Z-normalized to have mean zero and
standard deviation (SD) one in the whole sample. The E1 mean was lowest for decile
one (mean=-0.51; SD=0.92), which gradually increased through decile two until decile
ten, which had the highest E1 mean (0.53; SD=0.92; Fig 1a; Supplementary Table 2a).
A linear trend was observed reflecting a strong correlation between EA-PGS and E1. The
E1 mean values of deciles one to five were significantly lower than zero (i.e. the mean of
the full sample, which can be assumed as the population mean) and the E1 mean values
of deciles seven to ten were significantly higher than zero (Fig. 1a; Supplementary Table
2a). The E1 mean value of decile six was not significantly different from zero and so
decile six can be considered representative of the population. To quantify the effect sizes
of the individual deciles, we compared the E1 values of each of the deciles one to five
and deciles seven to ten against decile six using logistic regression analysis adjusted for
all the covariates. The beta values from the regression analyses trended uniformly across
the deciles similar to how the E1 mean values did (Fig. 2c; Supplementary Table 2b). As
a negative control, we repeated the above analyses using schizophrenia PGS as it had a
minimal genetic correlation with E119 (rg =0.06; SE=0.03; P=0.06;). This was done to
demonstrate how the distribution of effect sizes look if the deciles were created based on
a PGS that correlated weakly with E1 (Fig 1b, 1d; Supplementary Table 2a, 2b).

We repeated the decile analysis using only the controls and found similar results except
that the effect sizes were slightly larger (Supplementary Table 3; Supplementary Fig. 3).
Hence, including individuals with psychiatric disorders has attenuated the effect sizes
suggesting that the association of EA-PGS with E1 may not be as much stronger in
individuals with psychiatric disorders as they are in the general population. In summary,
our initial analysis confirmed that EA-PGS significantly associate with school
performance and explain a substantial proportion of variance in school grades thereby
corroborating with previous studies.7–9

Benchmarking effect sizes of polygenic deciles against ADHD

Given the strong correlation between EA-PGS and school performance, it can be expected
that school performance of those at the lower end of the EA-PGS distribution might be
comparable to the school performance of those with learning difficulties. However, to
our knowledge, this has not been objectively evaluated so far using a proper reference
group such as those with learning difficulties. In our cohort, individuals diagnosed with
ADHD scored the lowest (on average) of all the psychiatric disorder groups and controls
suggesting that many of these individuals might have learning difficulties.19 It has been
also well documented that individuals with ADHD often experience learning difficulties
in school.18,28,29 Hence, we benchmarked the effect sizes of EA-PGS deciles using the
individuals with ADHD as the reference group.

We grouped the controls into deciles based on their EA-PGS. Then we combined the
controls and those with ADHD and Z-normalized their E1 (after residualizing for
covariates) to have mean zero and SD one in the combined sample. Then we compared
the mean value of E1 in each of the ten control deciles with that of ADHD (Fig. 2;
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Figure 1 | Distribution of E1 across PGS deciles. a, Distribution of E1 across deciles
based on EA-PGS. The E1 scores are residualized for all the covariates and then the residu-
als are plotted. Centre solid line correspond to full sample mean. The left and right dotted
lines correspond to means of the first and last deciles respectively. b, Same as a, but the
deciles are created using schizophrenia PGS as a negative control. c, E1 scores of each
decile are compared against decile 6 using logistic regression adjusted for all covariates;
the betas and the standard errors are plotted. d, same as c, but the deciles are created
using schizophrenia PGS as a negative control.

Supplementary Table 4). Except the lowest decile, the mean E1 of the rest of the deciles
(two to ten) were significantly higher than the mean E1 of ADHD (Fig. 2a;
Supplementary Table 4a). The mean E1 of decile one (-0.37; SD=0.94) was similar to
the mean E1 of ADHD (-0.41; SD=0.92; P=0.19) suggesting that the school performance
of those in the lowest polygenic decile was similar to that of ADHD. We also compared
the E1 of each of the deciles against ADHD using logistic regression analysis adjusting for
all the covariates and found similar results (Fig. 2b; Supplementary Table 4b). In
summary, our analysis suggested that even among those without any apparent learning
difficulties, EA-PGS was able to identify a group of individuals whose school performance
was comparable to the school performance of those with ADHD, who were known to
have learning difficulties.

Psychiatric disorder specific association of EA-PGS with E1

Given that we have confirmed that EA-PGS strongly associate with E1, we next studied
how the association of EA-PGS with E1 varied across the psychiatric disorder groups and
controls. We performed association analysis within each psychiatric group and controls
using linear regression adjusted for all the covariates (same as the ones used in the main
analysis, except psychiatric diagnoses). The strength of the associations was assessed
based on the proportion of variance in E1 explained by EA-PGS (incremental R2 ;
Methods). We estimated standard errors for R2 by bootstrapping 1000 times and
therefore we were able to statistically test if R2 in each of the psychiatric disorder group
differed significantly from R2 in the controls (Methods).

The distributions of E1 across the disorder groups and controls are shown in
Supplementary Fig. 4 and summarized in Supplementary Table 5. The E1 distributions
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Figure 2 | Benchmarking polygenic deciles against ADHD. a, Distribution of E1 across
deciles based on EA-PGS (only controls) and ADHD. The E1 scores are residualized for
all the covariates and then the residuals are plotted. The centre black line correspond to
full sample mean. The means of decile 1 and ADHD are shown orange and blue lines re-
spectively. b, E1 scores in each decile is compared against ADHD using logistic regression
adjusted for covariates. Beta and standard errors are plotted.

were largely similar across the groups. While the phenotypic variances of E1 in MDD, BD
and AN did not differ significantly from that in the controls, the phenotypic variances of
E1 in ADHD, ASD and SCZ were significantly lower than in the controls (but the
differences were only modest).

Stratified polygenic score analyses revealed wide differences in the association of EA-PGS
with E1 across the six psychiatric disorder groups and controls (Fig. 3; Supplementary
Table 6). Firstly, EA-PGS explained more variance in E1 in controls than in the full
sample; R2 in the controls was 10.61%, which was 1.28 times higher than R2 in the full
sample (Pdiff =1.9x10−5). Secondly, EA-PGS explained substantially lower variances in
E1 in ASD and ADHD than in the controls; R2 in ASD and ADHD were 6.52% and 7.3%,
which were 38.7% and 31.1% less respectively compared to R2 in the controls and the
differences were statistically significant (ASD: Pdiff =2.1x10−6; ADHD: Pdiff =2.9x10−5).
It is less likely that R2 in ADHD and ASD are lesser than in controls because the
phenotypic variances of E1 are lower in ADHD and ASD than in the controls
(Supplementary Notes). Thirdly, EA-PGS explained higher variance in E1 in BPD (R2

=12.2%; Pdiff =0.41) and lower variance in E1 in AN (R2 =7.9%; Pdiff =0.15) than in
the controls. However, the differences were not statistically significant, which might be
due to that the sample sizes in these groups were not as large as the sample sizes in ASD
and ADHD. Lastly, the variances explained in E1 in SCZ (R2 =9.2%; Pdiff =0.21) and
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MDD (R2 =9.4%; Pdiff =0.20) were almost similar to that in controls. Since many in the
ADHD group were comorbid for ASD and vice versa, we repeated the analysis in
individuals with only ADHD and only ASD and found similar results (Supplementary
Table 6). Hence, the low variance in ADHD group was not due to a subset of individuals
who were comorbid with ASD and likewise the low variance in ASD group was not due
to a subset of individuals who were comorbid with ADHD. Compared to other psychiatric
disorders, ASD is relatively more heterogenous constituting of subtypes that differ
significantly in terms of cognitive functions.30 Hence, we also tested if the variance
explained is low across subtypes of ASD. We grouped the ASD individuals into three
groups: Asperger’s (ICD-10 F84.5); miscellaneous pervasive developmental disorders
(PDD), which included other PDD and PDD unspecified (F84.9 and F84.8); other
subtypes, which included rest of the subtypes including childhood autism and atypical
autism (as there were only very few in each of the other ASD subtypes, we clumped them
together into a single group). We repeated the analysis in the three groups separately
(Supplementary Table 6). Among the three groups, the R2 was lowest in Asperger’s (R2

=5.4%; Pdiff =4.4x10−7) and was significantly different from the R2 in controls. The R2

in other two groups were lower, but did not differ significantly from the R2 in controls
(miscellaneous PDD: R2 =8%, Pdiff =0.04, adjusted Pdiff =0.13; Other subtypes: R2

=6.7%; Pdiff =0.03; adjusted Pdiff =0.11). This could be partly due to that the sample
size of these two groups were lower compared to sample size in Asperger’s.

In summary, we found that the association between EA-PGS and E1 was not as much
stronger in individuals with psychiatric disorder as it was in controls; although the
associations in all the six disorders differed at least to some extent from that of the
controls, a large and statistically significant difference was observed only in ASD and
ADHD.

Figure 3 | Polygenic predictions in controls and psychiatric disorders. Variances ex-
plained by EA-PGS constructed at ten different P value thresholds are shown as bar plots.
The variance is measured as incremental R2 (see Methods). ADHD-Attention deficit hy-
peractivity disorder; ASD-Autism Spectrum Disorder; AN-Anorexia Nervosa; MDD-Major
Depressive Disorder; SCZ-Schizophrenia; BD-Bipolar Disorder.

Psychiatric disorder specific association of socioeconomic factors with E1

Studies have shown that socioeconomic status (SES) of individuals with psychiatric
disorders differ significantly from general population.20,31 Also, SES strongly influences
school performance.32 Hence, we hypothesized that EA-PGS had weaker influence on
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school performance in individuals with psychiatric disorders because environmental
factors such as SES might have had a stronger influence. Also, it has been demonstrated
that as environmental variations increase, the influence of genetic variations on EA
decrease.15,33,34 To test our hypothesis, we studied four SES indicators namely mother’s
education and employment levels and father’s education and employment levels. All the
four SES indicators differed substantially between psychiatric disorders and controls.
Overall, the SES of ADHD, MDD, SCZ and BD were significantly lower and the SES of AN
was significantly higher compared to the SES of controls (Supplementary Table 7). We
studied the association of E1 with four SES indicators using linear regression adjusted for
exam age, sex and PCA group (methods). The strength of the association was assessed
based on the proportion of variance in E1 explained by the SES indicators (incremental
R2 ; Methods). Similar to the PGS analysis, we estimated standard errors for R2 via
bootstrapping in order to statistically compare R2 between groups. The results were
opposite to what we expected: SES explained lower variance in E1 in individuals with
psychiatric disorders than in controls (Fig. 4; Supplementary Table 8). Specifically, the
variances explained in E1 in ASD and ADHD were significantly lower than in the controls
and the R2 differences were statistically significant with regard to all the four SES
indicators. In other psychiatric disorders, only few of the comparisons were statistically
significant: mother’s and father’s occupation explained significantly lower variance in E1
in SCZ than in the controls; mother’s education explained significantly lower variance in
E1 in AN than in the controls; father’s education explained significantly lower variance in
E1 in BD than in the controls (Fig 4; Supplementary Table 8).

In summary, the results suggested that the decrease in the influence of EA-PGS on school
performance in individuals with ASD and ADHD is not due to a corresponding increase in
the influence of SES on school performance in these individuals. On the contrary, the
influence of SES on school performance was also lower in ASD and ADHD.

It is important to note that the SES difference between the groups itself is less likely to
have affected the EA-PGS’s influence on school performance. For example, the SES of
both ADHD and MDD groups were lower than controls. However, the R2 was low only in
ADHD, but not in MDD. In addition, when we divided the controls into five quantiles
based on their SES and performed PGS analysis in each of the quantiles separately, we
did not observe a significant difference in the R2 across the quantiles (Supplementary Fig
5; Supplementary Table 9).

Psychiatric disorder specific association of EA-PGS with E1 after adjusting for
socio-economic factors

Given that both SES and EA-PGS both had weaker associations with school performance
in individuals with psychiatric disorders than in the controls, it is likely that the
attenuation of the association is caused by a factor that is common to both SES and
EA-PGS. If so, adjusting for SES in the PGS analysis will attenuate the R2 differences
between controls and psychiatric disorders (as the common factor gets cancelled out).
So, we repeated the PGS analysis by including the four SES indicators as covariates. As
we expected, after accounting for the SES, the R2 differences between controls and
psychiatric disorders attenuated, but not in all the disorders (Fig. 5; Supplementary
Table 10). The attenuation was largest for ADHD; before adjustment ADHD R2 was
31.1% lesser than controls R2 , but after adjustment ADHD R2 was only 8.5% lesser than
controls R2 and the R2 difference between ADHD and controls was no longer statistically
significant (Pdiff =0.48). The attenuation was minimal in ASD; before adjustment ASD
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Figure 4 | Variance explained in E1 in controls and in psychiatric disorders by a,
EA-PGS constructed using threshold P<0.05 b, Mother’s education status c, Father’s ed-
ucation status d, Mother’s employment level e, Father’s employment level. Association
analyses were performed using linear regression adjusted for covariates (see methods).
The variance explained is assessed using incremental R2 (see Methods), which are shown
as bars. The error bars represent standard errors estimates using bootstrapping. Star
symbol indicates that the R2 is statistically different from the R2 in controls, assessed us-
ing Z test. ASD-Autism spectrum disorder; ADHD-Attention deficit hyperactivity disorder;
AN-Anorexia nervosa; MDD-Major depressive disorder; SCZ-Schizophrenia; BD-Bipolar
disorder
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R2 was 38.7% lesser than controls R2 and after adjustment ASD R2 was 33% lesser than
controls R2 and the R2 difference between ASD and controls remained statistically
significant (Pdiff =0.005). In AN, almost no attenuation was seen; before adjustment AN
R2 was 25.5% lesser than controls R2 and after adjustment AN R2 was 24.4% lesser than
controls R2 and the R2 difference between AN and controls was not statistically
significant either before or after adjustment (Pdiff =0.15). In MDD and SCZ, the R2

differences between the controls and these disorders almost fully disappeared after
adjustment (MDD: Pdiff =0.98; SCZ: Pdiff =0.93). Unlike other disorders, we observed a
marked increase in the R2 difference between BD and controls; before adjustment BD R2

was 15% higher than controls R2 and after adjustment BD R2 was 46.7% higher than
controls R2 ; yet the R2 difference did not reach statistical significance (Pdiff =0.10; likely
to be due to small sample size of BD).

In summary, the large R2 difference between ADHD and controls reduced substantially
after adjusting for SES, but the R2 difference between ASD and controls didn’t. Hence,
the weaker association of EA-PGS with E1 in ADHD compared to controls is mainly due
to a factor that is common between EA-PGS and SES. In ASD, however, this is not the
case, hence the weaker association of EA-PGS with E1 in ASD compared to controls
might be due to other sources of variation influencing E1.

Fig. 5 | Association of EA-PGS after adjusting for SES. a, Association of EA-PGS with E1
before adjusting for SES (showed for comparison) b, Association of EA-PGS with E1 after
adjusting for SES performed using linear regression adjusted for all the covariates used
in the main analysis plus the four SES factors (father’s and mother’s education, father’s
and mother’s employment); R2-Variance explained in E1 by EA-PGS; Error bars represent
standard errors calculated using bootstrapping; Star symbol indicates the R2 is statistically
different from R2 in controls c, Percentage difference in R2 between psychiatric groups
and controls before (lighter shades) and after (darker shades) SES adjustment. Negative
values indicate that the R2 in the psychiatric group is higher than the R2 in controls. ASD-
Autism spectrum disorder; ADHD-Attention deficit hyperactivity disorder; AN-Anorexia
nervosa; MDD-Major depressive disorder; SCZ-Schizophrenia; BD-Bipolar disorder

Discussion

Most of the previous studies on the association of EA-PGS with EA or school performance
were based on individuals from the general population.7–9 It was therefore not clear if
results from such studies could be generalized to those with psychiatric disorders.
Nation-wide register based cohorts such as iPSYCH25 are well suited to address such
research questions as they offer a unique opportunity to study both the genetic and
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environmental factors of multiple psychiatric disorders at the same time within a single
population setting. Also, currently iPSYCH has the largest sample size with information
on both school grades and genotypes.19 Hence, we studied the association of EA-PGS
with school performance in iPSYCH and focused specifically on how the associations
differed between those with and without psychiatric disorders.

As we had information on multiple types of school grades for each individual, we were
able to perform a PCA and capture the overall school performance as a latent factor E1.19

Defining the phenotype this way is better than taking an average across all the grades as
latent variable captures variance across all the subjects more uniformly. For example, a
high E1 score in an individual indicates that the individual performed equally well in all
the subjects.

We performed three main analyses. First, we studied the association of EA-PGS with
school performance in the full sample and compared the results to those from previous
studies.8,9 In our sample, the maximum variance explained in school performance by
EA-PGS was 8.4%. This was lower compared to the estimates reported in previous
studies8,9 (R2 =14%). But subsequent analysis suggested that the relatively low R2

estimate in the full sample was partially due to the inclusion of those with psychiatric
disorders (mainly ADHD and ASD) in the analysis. The maximum variance explained in
school performance by EA-PGS raised to 10.6% when the analysis was performed only in
controls. However, this is still slightly lower than the previous reports, which could be
due to that we used SNP weights from the summary statistics from SSGAC that excluded
23andme samples.4 But other factors such as environmental differences between our
cohort and those involved in the previous studies are also likely to contribute as cohort to
cohort genetic heterogeneity has been well documented in previous EA GWAS.4

Nevertheless, our first analysis represents an independent replication of the strong
association of EA-PGS with school performance.

Second, by using ADHD as reference group we were able to benchmark the effect sizes of
EA-PGS deciles in controls. Our analysis showed that the school performance of controls
in the lowest decile were comparable to the school performance of those with ADHD.
Hence, it can be inferred that the impact of low EA-PGS on school performance might be
comparable to the impact of ADHD (a condition that is strongly associated with learning
difficulties28,35,36) on school performance. However, we caution that the reference group
in our analysis comprised of mainly high functioning ADHD individuals i.e. those who
were able to go to school and sit for the exams. Should we have considered those who
dropped out of school as well the impact of ADHD on school performance might have
been stronger compared to the impact of low EA-PGS on school performance.18

Nevertheless, the results we present here is to our knowledge the first demonstration that
having a low EA-PGS might be comparable to having learning difficulties. It is however
important to note these comparisons are at group-levels and less likely to be meaningful
at individual levels, which can be appreciated from the wide overlaps in the E1
distribution across the deciles.

Third, we demonstrate the EA-PGS’s association with school performance is weaker in
individuals with ASD and ADHD than in the controls. Interestingly, the factor that
reduces the strength of the association of EA-PGS with school performance in ADHD
seems to be different from the one in ASD. The attenuation in the EA-PGS’s association
with school performance in ADHD is mainly to due to a factor that is common between
EA-PGS and SES. We speculate that this common factor is genetic nurture i.e. the
indirect genetic effects of the parents’ genotypes on offspring’s school performance
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mediated through the environment.12 Recently it has been demonstrated that EA-PGS
constructed using the nontransmitted alleles in the parents’ genome significantly
correlate with offspring’s EA and this correlation is mediated through the rearing
environment the parents create for their children.12 The study reported that one third of
the EA-PGS’s association with EA was mediated through genetic nurture. In line with this
report, a recent study has demonstrated that EA-PGS’s association with EA is weaker in
adopted individuals than in the nonadopted.37 The variance explained in EA by EA-PGS
in adopted was only half of that in nonadopted. This is because the adopted individuals
do not share their genome with their foster parents and hence do not experience genetic
nurture. In our study we found that both EA-PGS and parents’ education explained lower
variance in school performance in those with ADHD than in the controls. As the parents’
education strongly correlate with their nurturing behavior38 (better educated parents
nurture their children more compared to poorly educated parents), attenuation of
variance difference between ADHD and controls after adjusting for parents’ education
suggest that the genetic nurture is either absent or markedly reduced in those with
ADHD. We hypothesize that this is because children with ADHD are less receptive to the
nurture their parents provide due to their behavioral problems such as inattention and
hyperactivity. Hence, even though a higher EA-PGS drive the parents (both with and
without ADHD) to nurture their children more, this behavior might not be helping
children with ADHD as much it helps children without ADHD. However, this is only
speculation and needs to be confirmed through studies involving genotyped
parents-offspring trios. Unlike ADHD, the variance difference between ASD and controls
did not attenuate substantially after controlling for SES, which means that the genetic
nurture is unlikely to be the one that weakens the EA-PGS’s association with school
performance in ASD. Other factors such as rare or de-novo coding variants or copy
number variations (CNVs) might have a large effect on school performance in ASD than
in controls, which in turn might have weakened the association of common variants with
school performance.39

Some of the limitations of our study are as follows. First, our study sample is biased
toward those who were functional enough to go to school and sit for the exams. Hence,
the results cannot be completely generalized, particularly the results from ASD. Second,
not everyone in the psychiatric disorder groups received their diagnoses before the
exams. However, it is not possible to know when the individuals received their first
diagnosis as our register data contains only hospital-based records and do not contain
information from local general practitioners and private practitioners. Hence, we did not
consider the date of diagnosis in our analysis. Third, the parents involved in our analysis
are legal parents, but we did not know if they are biological parents as that information
is not available in the registers. So, our interpretations in relation to genetic nurture are
only speculative and need to be verified with genetic data from biological
parent-offspring trios.

In summary, we have demonstrated that the genetic influences on school performance
differ across individuals with psychiatric disorders and general population. Our results
indicate that there might be a substantial heterogeneity in how genes and environment
influence the school performance in individuals with psychiatric disorders and studying
the same might offer novel insights into our understanding of the genetics of cognition.
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Online methods

Study cohort

The study individuals are from iPSYCH19 and ANGI,26 population-based Danish
case-cohorts recruited through Danish National registers.40,41 The iPSYCH cohort
comprises of individuals diagnosed with at least one of five major psychiatric disorders
(ADHD, ASD, MDD, SCZ and BPD ) and a randomly selected controls without any of the
five psychiatric disorders.25 The ANGI cohort comprises of individuals diagnosed with
AN recruited at United States, Sweden, Australia, and Denmark; only those recruited in
Denmark through Danish registers were included in the current study.26 ANGI
participants were recruited and genotyped along with iPSYCH. Hence, all further
descriptions about iPSYCH apply to ANGI as well. The iPSYCH cohort is a subsample of a
large baseline cohort, which comprises of almost everyone born in Denmark between
1981 and 2005 who were alive on their first birthday and had a known mother25

(N=1,472,762). The phase 1 release, iPSYCH2012, comprises of 77,369 individuals,
~99% of whom were successfully genotyped (cases=51,101 and controls=27,605).
Among them, around 60% of the individuals had information on school grades through
Danish education registers.42 The rest of the individuals did not have information on
school grades because they are either still young as of Dec 2016 or home schooled or
dropped out of school. After sample quality control (QC) filtering, 30,982 individuals
were included in the final analysis.19

School grades

The school grades were from exit exam (also called as ninth level exam or FP9) that
marks the end of compulsory schooling in Denmark. The school grades of the iPSYCH
individuals were obtained from Danish education register.42 We chose three subjects
namely Danish, English and mathematics, all of which have a compulsory exit exam
hence available for most of the individuals.19 The types of grades available under each
subject varied namely written, oral and grammar under Danish, oral under English and
written and oral (for exams conducted until 2006) and problem solving (for exams
conducted since 2007) under mathematics. The school grades data was processed
following strict QC procedures that ensured minimal heterogeneity. Only those who were
aged 14.5 to 17.5 years at the time of exam were included. Only the first attempt grades
were included. Only those who sat for the exams in all three subjects in the same school
year were included. After all the QC steps, a PCA was performed in the school grades and
the first PC, named as E1, was extracted.19 As the mathematics grades differed between
exams conducted between 2002-2006 and 2007-2016, we performed PCA separately in
two datasets and then concatenated the PCs. The E1 explained substantial and equal
proportion of variances across all the subjects hence indexing the overall school
performance. All subsequent analysis we report here are based on E1. For more details
on the school grades and the PCA of the school grades refer to Rajagopal et al 2020.19

Psychiatric diagnoses

The cases in iPSYCH were identified based on the ICD-10 diagnoses recorded in the
Danish Psychiatric Central Research Register.40 The ICD-10 codes used for the six
disorder were F90.0 for ADHD, F84.0, F84.1, F84.5, F84.8 and F84.9 for ASD, F32-F39
for MDD [Since 96% of the individuals had either F32 (depressive episode) or F33
(recurrent depressive disorder), we call it as MDD rather than as affective disorders],
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F30-31 for BPD, F20 for SCZ and F50.0 for AN. Individuals with ICD-10 diagnosis for
mental retardation (F70-F79) were excluded.

Ethical approvals

The iPSYCH project has been approved by the Danish Scientific Ethics Committee, the
Danish Health Data Authority, the Danish Data Protection Agency and the Danish
Neonatal Screening Biobank Steering Committee. For more details, refer to Pedersen et
al25

Genotyping and imputation

The iPSYCH individuals were genotyped using the DNA isolated from dried blood spots
obtained from the Danish neonatal screening biobank (DNSB).25 The DNSB stores dried
blood spots made using heel prick blood taken 4-7 days after birth for everyone born in
Denmark since 1981.43 The DNA was isolated from the blood spot and whole genome
amplified in triplicates and genotyped using PsychChip v1.0 array.25 The genotyped
markers were then phased using SHAPEIT44 followed by imputation using IMPUTE245

with 1000 genomes phase-3 as the reference panel.46 Standard QC procedures were
followed both prior to as well as after imputation, which are described in detail
elsewhere.30,47 After all QC steps, totally ~6 million imputed variants with MAF> 0.05
and INFO> 0.80 were available for polygenic score construction.

Relatedness and population stratification

Only unrelated individuals with European ancestries were studied. Relatedness was
estimated using identity by descent (IBD) analysis using Plink v.1.90.48 Pairs of
individuals with PIHAT> 0.20 were considered as related and one of each pair was
removed randomly. PCA of common variants was done in the unrelated individuals using
the SNPRelate49 R package using a set of high-quality genetic variants. A subsample of
the study individuals whose parents and paternal and maternal grandparents all born in
Denmark were used as a reference group to identify population outliers. A
five-dimensional ellipsoid based on the first five PCs of the reference group with a
diameter of eight standard deviations was created and those who fell outside this
ellipsoid were considered as non-Europeans and excluded from the analysis.19 The PCA
was repeated after outlier removal and the first 10 PCs were included as covariates in the
polygenic score association analysis.

EA-PGS construction

EA-PGS was constructed using effect sizes from the recent large GWAS of educational
attainment.4 The publicly available summary statistics that excluded 23andme sample
was used for this study (N= 766,345). The summary statistic was LD clumped using
1000 genomes EUR sample46 as reference to identify independent variants. Insertion and
deletion variants, variants with ambiguous alleles (A/T and G/C) and low frequency
variants (MAF< 0.05) were removed prior to clumping. The clumped summary statistics
file is then used for polygenic score construction. In the target sample, only variants with
INFO> 0.90 and missing rate< 1% were included for the polygenic score calculation.
Polygenic scores were calculated using Plink v1.9048 using ten different P value
thresholds.
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EA-PGS and SES analysis

Both EA-PGS and SES association analyses were performed using linear regression
adjusted for covariates. In the EA-PGS analysis, we included the following covariates:
exam age, sex, first 10 ancestral PCs, genotyping waves, psychiatric diagnoses and school
grades PCA group (since school grades PCA was performed separately in two datasets
and the PCs are combined together, a dummy variable representing the two groups was
included as a covariate). In the SES analysis, we included the following covariates: exam
age, sex and school grades PCA group. In each case we performed two regressions:
model 1, which included the main predictor (either EA-PGS or SES) and the covariates
and model 2, which included only the covariates. The final R2 , called as incremental R2 ,
was obtained by subtracting the model 2 R2 from the model 1 R2 . In order to statistically
compare R2 between two regression analyses, we estimated standard error via
bootstrapping. We repeated the regression analysis 1000 times with each time the
samples chosen by bootstrapping with replacement and measured the incremental R2

each time. The SE is obtained by calculating SD of the resulting 1000 R2 values. The
calculation of SE via bootstrapping was done using R package ’boot’. Then we calculated
Z score by dividing the R2 with SE and used the Z score for pairwise comparison using
Z-test as described in Cheesman et al.37

Socio-economic variables

We analyzed socio-economic variables namely mother’s education, father’s education,
mother’s employment and father’s employment from the Danish registers. The parents’
education was extracted from Danish education registers and were analyzed as
continuous variables with four levels namely primary education or no education (0),
high school or vocational education (1), short cycle higher education or bachelor (3) and
master or PhD (4). The parents’ employment information was as per the Danish labor
market affiliations: retired (0), unemployed (1), employed-basic level (2), employed
medium level (3) and employed top level (4). The descriptions of the five employment
levels are provided in the Supplementary Table 11. The employment status was also
analyzed as continuous variable. All these variables were as per the exam year i.e., the
year when the student sat for the exam. If the variables were not available on the exam
year, information from one or two years prior to exam year was extracted. We restricted
our analyses to only those whose mother and father were alive on the exam year and
those who resided with their mother and father in the same household on the exam year.

Multiple testing corrections

The statistical significance in each of the analyses was evaluated after accounting for
multiple testing using Bonferroni’s method. In all the PGS deciles-based analyses the P
value threshold was set to 0.005 (0.05/10). In all the R2 comparisons between the
psychiatric disorders and controls (both PGS and SES analyses), the P value threshold
was set to 0.008 (0.05/6). In the R2 comparison across the SES quintiles, the P value
threshold was set to 0.01 (0.05/5).
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