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Regulation of gene expression drives protein interactions that govern synaptic wiring and neuronal ac-
tivity. The resulting coordinated activity among neuronal populations supports complex psychological
processes, yet how gene expression shapes cognition and emotion remains unknown. Here we directly
bridge the microscale and macroscale by mapping gene expression patterns to functional activation
patterns across the cortical sheet. Applying unsupervised learning to the Allen Human Brain Atlas and
Neurosynth databases, we identify a ventromedial-dorsolateral gradient of gene assemblies that sepa-
rate affective and cognitive domains. This topographic molecular-psychological signature reflects the
hierarchical organization of the neocortex, including systematic variations in cell type, myeloarchitec-
ture, laminar differentiation, and intrinsic network affiliation. In addition, this molecular-psychological
signature is related to individual differences in cognitive performance, strengthens over neurodevelop-
ment, and can be replicated in two independent repositories. Collectively, our results reveal spatially
covarying transcriptomic and cognitive architectures, highlighting the influence that molecular mech-
anisms exert on psychological processes.

INTRODUCTION

The human brain is an integrated system, involving inter-
actions across multiple scales [9, 50]. At the molecular
level, fluctuations in gene expression and protein syn-
thesis in neurons drive single-cell activity [16, 66, 70].
The waxing and waning of cellular activity promotes
synaptic remodeling [30, 48, 84], shaping the wiring
of nested and increasingly polyfunctional neural circuits
[11, 17, 62]. Anatomical connections among mesoscopic
neuronal populations promote functional interactions
[69], manifesting as patterned neural activity that drives
psychological processes [6, 21, 68, 87]. The regulation of
gene expression is therefore naturally intertwined with
the brain’s structure and function [10, 32, 33, 64, 76].
How molecular dynamics map onto mental states re-
mains a key question in neuroscience [8].

Modern technological and analytic advances, in con-
cert with global data-sharing initiatives, have created
fundamentally new opportunities to link molecular dy-
namics and psychological processes. High-resolution
functional neuroimaging has informed comprehensive
meta-analytic atlases of how brain areas selectively re-
spond over a spectrum of perceptual, cognitive and af-
fective experimental manipulations [12, 24, 29, 34, 37,
51, 86]. At the same time, high-throughput microarray
profiling has yielded precise genome-wide maps of tran-
script distributions over the brain [39, 40, 58], allowing
inferences about the spatial distribution of cellular pro-
cesses and types [3, 4, 14, 32, 33, 64, 65, 67, 74, 83]. Al-
together, the concurrent emergence of global functional
genomic and brain mapping initiatives offers an unprece-
dented chance to identify spatial correspondences be-
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tween the brain’s genetic and cognitive architectures.

Here we directly relate microscale molecular processes
to the macroscale functional architecture of the human
brain. We apply partial least squares analysis to gene
expression maps (Allen Human Brain Atlas; [40]) and
probabilistic functional activation maps (Neurosynth;
[86]) to identify molecular signatures related to psycho-
logical processes (for a conceptually similar approach,
see [27]). We reveal distinct sets of functionally inter-
related genes that underlie a cognitive-affect gradient of
functional processes, and show that this molecular sig-
nature corresponds to systematic variation in cell type
compositions, microstructure, and large scale functional
system affiliation. Using data from the Human Connec-
tome Project (HCP; [72]) we also show that this gene
expression signature mediates individual differences in
behaviour via microstructure. Finally, we perform exten-
sive cross-validation, sensitivity testing and replication
using two independent datasets (BrainMap; [29], and
BrainSpan; [58]).

RESULTS

To establish a relationship between gene expression
and functional activity, we used the Allen Human Brain
Atlas for estimates of gene expression in the brain [40],
and Neurosynth for probabilistic measures that specific
terms (such as “attention”, “emotion”, and “sleep”) are
functionally related to specific brain regions [86]. This
probability describes how often specific terms and voxel
coordinates are published in conjunction with one an-
other. To facilitate comparison with other reports, only
genes with a differential stability greater than 0.1 were
retained for analysis (see Methods; [14, 39]), and the
term set was restricted to those in the intersection of
terms reported in Neurosynth and in the Cognitive At-
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Figure 1. Relating gene expression to functional activation | Partial least squares analysis (PLS) was used to identify spatially
covarying patterns of gene expression (Allen Human Brain Atlas) and functional activation (Neurosynth). (a) PLS relates two
data domains by correlating the variables across brain regions and subjecting this to singular value decomposition. This results in
multiple latent variables: linear weighted combinations of the original variables (gene weights and term weights) that maximally
covary with each other. (b) Latent variables are ordered according to effect size (the proportion of covariance explained between
gene expression and functional activation they account for) and shown in blue dots. Statistical significance is assessed with respect
to spatial autocorrelation-preserving null model [2], shown in grey. Only the first latent variable was statistically significant
(pspin = 0.0228), accounting for 65% of the covariance between gene expression and functional activation. (c) Projecting the
original data back onto the PLS-defined gene/term weights results in gene/term scores for each brain region, indexing the extent
to which a brain region expresses covarying gene/term patterns. (d) The correlation between gene scores and term scores was
cross-validated by constructing the training set with 75% of brain regions closest in Euclidean distance to a randomly chosen source
node (red), and the testing set as the remaining 25% of brain regions (grey). See Fig. S1 for a comparison with completely random
splits.

las [63]. Gene expression data and probabilistic mea-
sures were parcellated into 111 left hemisphere cortical
regions of interest [18, 23]. The resulting gene expres-
sion matrix was composed of normalized expression lev-
els of 8825 stable genes across 111 target brain regions
[18], and the functional activation matrix represented
the functional relatedness of 123 terms to the same 111
brain regions.

Molecular signatures of psychological processes

We related gene expression to functional activation
using partial least squares analysis (PLS), a multivari-
ate statistical technique that extracts optimally covary-
ing patterns from two data domains [45, 53, 54, 85]
(Fig. 1a). PLS analysis revealed a single statistically sig-
nificant latent variable relating gene expression to corre-
sponding functional activation across the brain (pspin =
0.0228), where significance was assessed using a permu-
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Figure 2. Gene sets underlying cognition and affect | Genes and terms that contribute most to the latent variable were analyzed
further. (a) The contribution of positively- and negatively-weighed ontological terms to the latent variable were estimated with
term loadings: correlations between a term’s functional activation across brain regions and the PLS-derived score pattern. The
25% most positively (red) and negatively (blue) correlated terms demonstrate a cognitive-affective gradient. Word size represents
the relative size of the term loading. (b) Gene contribution was estimated with gene loadings: correlations between a gene’s
expression across brain regions and the PLS-derived score pattern. Biological processes in which the top 50% of genes with
positive and negative loading are most involved were identified using Gene Set Enrichment Analysis (see Methods) and tested
against a spatial autocorrelation-preserving null model [31]. (c) Cell-type deconvolution was used to identify cell type enrichment
in the gene sets identified by PLS [67]. The ratio of genes in each gene set preferentially expressed in seven distinct cell types is
shown against a null model of a random selection of all genes (boxplots). Cell types: ASTRO = astrocyte, MICRO = microglia,
OPC = oligodendrocyte precursor, OLIGO = oligodendrocyte, ENDO = endothelial, NEURO-EX = excitatory neurons, NEURO-IN
= inhibitory neurons, NULL = empirically derived null distribution.

tation test that preserves spatial autocorrelation (“spin
test”) [2, 75]. This latent variable represents a pat-
tern of gene expression (gene weights) and a pattern of
functional activation (term weights), that together cap-
ture 65% of the covariance between gene expression and
functional activation (Fig. 1b). Projecting the gene ex-
pression and functional activation matrices back onto the
gene weights and term weights, respectively, reflects how
well a brain area exhibits the gene and term pattern,
which we refer to as “gene scores” and “term scores”
(Fig. 1c). The pattern of gene and term scores across
the brain revealed a dorsolateral to ventromedial gradi-
ent, in which dorsolateral regions were scored more neg-
atively and ventromedial regions more positively.

We next cross-validated the correlation between gene
and term scores. Due to inherent spatial autocorrelation,
proximal regions exhibit similar gene expression profiles
and functional activity [2, 15]. Thus, randomly dividing
brain regions into training and testing sets may result in
interdependencies between the two sets (Fig. S1). To en-
sure that the correlation between gene and term scores
is not inflated due to spatial autocorrelation, we selected
the 75% of brain regions closest in Euclidean distance
to a randomly chosen source node as the training set,
and the remaining 25% of brain regions as the testing

set. This procedure was repeated 100 times and a dis-
tribution of correlations for the training and testing set
is shown in Fig. 1d. The mean out-of-sample correlation
between gene and term scores was 0.4770.

Distinct gene assemblies underlie cognition and affect

The significance of the first latent variable and the
cross-validation of score correlations demonstrates there
is a robust relationship between gene expression and
functional activation. The relationship itself is deter-
mined by the terms and genes that contribute most to the
latent variable. The loading of each term was computed
as the correlation between the term’s functional activa-
tion across brain regions with the PLS-estimated scores.
The 25% most positively and negatively correlated terms
were retained as terms that most contribute to the latent
variable (Fig. 2a; for the loadings of all reliable terms,
see Fig. S2). Terms with large positive loadings were
related to affective processes, including emotion, stress,
fear, anxiety, and mood. Terms with large negative load-
ing were identified as terms related to higher-order cog-
nitive processes. Examples include attention (of which
“visual attention”, “spatial attention”, and simply “atten-
tion” were all weighed very highly), visual perception,
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Figure 3. The gene expression-functional activation gradient is organized around microscale and macroscale hierarchies
(a) PLS-derived score patterns are positively correlated with cortical thickness, negatively correlated with intracortical myelin
(measured by T1w/T2w ratio), and positively correlated with the principal gradient of functional connectivity. (b) Distribution of
scores across seven intrinsic resting-state functional networks defined by Yeo and colleagues [87]. (c) Distribution of scores across
the seven Von Economo cytoarchitectonic classes [76, 78, 79]. (d) Distribution of PLS-derived gene and term scores across the
four Mesulam levels of laminar differentiation [57, 60]. Network assignments: SM = somatomotor, DA = dorsal attention, VIS
= visual, VA = ventral attention, DM = default mode, FP = fronto-parietal, LIM = limbic, PM = primary motor cortex, PSS =
primary/secondary sensory cortex, PS = primary sensory cortex, AC1, AC2 = association cortex, LB = limbic regions, IC = insular
cortex, IT = idiotypic, UM = unimodal, HM = heteromodal, PLB = paralimbic.

and imagery. This latent variable thus represents a puta-
tive cognitive-affective gradient of functional activity.

Gene contribution was analogously assessed by com-
puting spatial correlations (loadings) between an indi-
vidual gene’s expression pattern and the PLS-derived
scores. Genes with the 50% most positive loadings
(which we subsequently refer to as “positive genes”) co-
vary with the functional activity of terms related to af-
fective processes, and genes with the 50% most negative
loadings (“negative genes”) covary with the functional
activity of terms related to higher-order cognitive pro-
cesses. In other words, the pattern of positive genes
covarying with affective terms is strongest in positively
scored brain regions (Fig. 2a), and the pattern of nega-
tive genes covarying with cognitive terms is strongest in

negatively scored brain regions (Fig. 2b).

To better understand the biological significance of the
positive and negative gene sets, we adapted analyses
from the Gene Set Enrichment Analysis toolbox (https:
//github.com/benfulcher/GeneSetEnrichmentAnalysis
[31]). We explored the biological processes with which
the reliable positive and negative genes are significantly
involved (see Methods for details and Table S4 and S5
for a full machine-readable list of biological processes
and respective p-values). A selection of the significant
categories most related to brain structure and function
are visualized as word clouds in Fig. 2b. In general,
affect-related gene sets show enrichment for processes
related to neurogenesis and differentiation, while
cognition-related gene sets are enriched for processes
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related to synaptic signaling.
Alongside biological process, we asked whether

psychologically-relevant genes are preferentially ex-
pressed in specific cell types (Fig. 2c). Cell-type deconvo-
lution was performed using cell-specific aggregate gene
sets across five human adult postmortem single-cell and
single-nucleus RNA sequencing studies ([22, 38, 47, 49,
55, 88]), as presented previously (Supplementary Table
5 from [67]). Specifically, we calculated the ratio of
genes in each gene set preferentially expressed in one of
seven cell types: astrocytes, microglia, oligodendrocyte
precursors, oligodendrocytes, endothelial cells, excita-
tory neurons, and inhibitory neurons (Fig. 2c). Gene sets
were thresholded to include the top 50% of genes with
greatest loadings (note that although the threshold is ar-
bitrary, the results are highly consistent across a range of
thresholds, from 2.5% to no threshold; Fig. S3). Statisti-
cal significance was assessed against a null distribution of
ratios constructed by repeating the process 10 000 times
on a set of random genes (two-tailed, FDR-corrected).
Dominant positive genes (related to affect) are signifi-
cantly more expressed in astrocytes (p = 2.3 × 10−4),
microglia (p = 2.3 × 10−4), and oligodendrocyte pre-
cursors (p = 0.0160), and significantly less expressed
in excitatory neurons (p = 0.0052), oligodendrocytes
(p = 2.3 × 10−4), and endothelial cells (p = 0.0052).
Dominant negative genes (related to cognition) are sig-
nificantly more expressed in excitatory neurons (p =
0.0023) and inhibitory neurons (p = 0.0017), and sig-
nificantly less expressed in astrocytes (p = 0.0007), mi-
croglia (p = 0.0114), oligodendrocytes (p = 0.0019) and
oligodendrocyte precursors (p = 0.0114). Broadly, we
find evidence that areas associated with affect are en-
riched for genetic signal of cells involved in neuron sup-
port (astrocytes, microglia); areas associated with cog-
nition are enriched for genetic signal of neurons them-
selves (inhibitory and excitatory). This dichotomy also
matches the intuition derived from biological process en-
richment analysis (Fig. 2b).

The gene-activation gradient is organized around
microscale and macroscale hierarchies

Having identified a gradient of covarying gene ex-
pression and functional activation, we next investigated
whether these topographic patterns reflect variation in
other microstructural and functional attributes [42, 81].
To address this question, we averaged measures of corti-
cal thickness and T1w/T2w ratios (a widely used proxy
for intracortical myelin; [36]) from the left hemisphere
cortex across 417 unrelated subjects from the Human
Connectome Project (see Methods). We then computed
Pearson’s correlations of mean cortical thickness and
T1w/T2w maps with gene score and term score maps
(Fig. 3a). We find a strong positive correlation between
cortical thickness and PLS scores (r = 0.8216, pspin =
0.0002 for gene scores, r = 0.5201, pspin = 0.0426 for
term scores), and a strong negative correlation between

T1w/T2w ratio and PLS scores (r = −0.8586, pspin =
0.0003 for gene scores, r = −0.5822, pspin = 0.0039 for
term scores). Altogether, the gene-activation gradient
mirrors microstructural attributes [14, 33, 41, 80].

Given that the score pattern resembles the differentia-
tion between unimodal and transmodal cortex [43, 56],
we sought to relate the score pattern to the principal
functional gradient reported by Margulies and colleagues
[52]. For this purpose, we applied diffusion map embed-
ding on a group-averaged functional connectivity matrix
computed from the 1 003 HCP subjects with complete
resting-state fMRI data, and extracted the first princi-
pal gradient [19, 71]. This gradient situates brain re-
gions on a continuous axis from unimodal primary sen-
sory and motor cortex to transmodal higher association
cortex (Fig. 3a). We find that the gene score and term
score patterns significantly correlate with this gradient
(r = 0.5461, pspin = 0.0054 for gene scores, r = 0.6822,
pspin = 0.0002 for term score; Fig. 3a). This implies that
negatively scored regions tend to be more closely aligned
with unimodal cortex and positively scored regions tend
to be predominantly aligned transmodal cortex.

As a final step, we sought to understand how well
the gene and term score maps conform to other major
structural and functional partitions of the human cere-
bral cortex. We stratified gene and term scores in several
complementary ways: (1) within seven intrinsic func-
tional brain networks as defined by Yeo and colleagues
[87], (2) within seven Von Economo classes of corti-
cal cytoarchitecture [76, 78, 79], and (3) within four
Mesulam levels of laminar differentiation across the cor-
tex [57, 60] (Fig. 3b–d). Consistent with the notion
that the gene expression-functional activation gradient
reflects a differentiation between cognitive and affective
psychological domains, we observe a separation between
limbic/paralimbic and somato-motor/idiotypic networks
across all three partitions.

Relating psychologically-informed patterns of gene
expression to individual differences in behaviour

Finally, we asked whether a physical manifestation of
topographic PLS score maps is related to interindivid-
ual performance differences on established psychometric
assessments of cognition and affect. Since PLS-derived
gene scores are most highly correlated with T1w/T2w ra-
tios (Fig. 3a), we used T1w/T2w ratios from n = 417 un-
related HCP subjects as a proxy for the degree to which
the gene expression-functional activation gradient is ob-
served in a given individual. Specifically, we correlated
individual subjects’ T1w/T2w ratios with the PLS gene
scores (Fig. 4a). This approach results in a distribution
of subject correlations that describe how well an individ-
ual manifests the gene score pattern by means of their
T1w/T2w ratio. This vector of correlations per subject
was then independently correlated to the performance
on 58 behavioural measures (see Methods for details of
variable selection and Table S3 for a complete list of be-
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Figure 4. Molecular signatures of cognition influence individual differences in behaviour | We asked whether functionally-
relevant patterns of gene expression mediate individual differences in behaviour via brain structure, using T1w/T2w maps and
behavioural assessments from n = 417 unrelated HCP subjects. (a) For each subject, T1w/T2w maps were independently correlated
to the PLS-derived gene score pattern. This correlation represents the degree to which a subject exhibits the gene score pattern
(Fig. 1c). These individual-specific correlation coefficients were then correlated with individual performance on a range of 58
behavioural assessments. (b) Subjects who best manifest the gene score pattern via their T1w/T2w ratio performed significantly
better on eight cognitive tasks and one subjectively scored measure. Significance was assessed using an FDR corrected two-tailed
permuted test, where null models are shown as grey boxplots. For visualization, gene scores were multiplied by −1 to give
positive correlations with better performance. Boxplots represent the 1st, 2nd (median) and 3rd quartiles, whiskers represent the
non-outlier end-points of the distribution, and crosses represent outliers.

havioural measures included). These measures include
specific psychological tests (i.e. the Pennsylvania Matrix
Test for fluid intelligence), composite scores (i.e. a com-
posite score of executive cognitive function), and indi-
vidual subjective rankings of emotional states and social
traits (i.e. rating how stressed one feels or how many
close friends they have). The procedure yielded a corre-
lation for each behavioural measure, indicating whether
there is a relationship between how well an individual
physically manifests the PLS gene score pattern and their
score on the behavioural assessment (Fig. 4b–c). Signifi-
cance was determined using an FDR corrected two-tailed
permutation test in which the null distribution was con-
structed by correlating the original behavioural perfor-
mances to a permuted vector of the correlations between
gene scores and T1w/T2w ratios [7].

We find that individuals whose T1w/T2w map is more
similar to the negative gene score pattern perform better
on behavioural tests of cognitive function. Specifically,
the significantly correlated cognitive tests included: the
number of correct responses on the Pennsylvania Ma-
trix Test (a measure of fluid intelligence, r = 0.1727,
p = 0.0130), the Reading Test (a measure of read-
ing decoding skills and crystallized cognitive abilities,
r = 0.1450, p = 0.0232), the Picture Vocabulary Test
(a measure of general vocabulary knowledge and crys-
tallized cognitive abilities, r = 0.1885, p = 0.0039),

the number of correct responses on the Short Pennsyl-
vania Line Orientation Test (a measure of spatial orien-
tation, r = 0.1523, p = 0.0232), the Cognitive Function
composite score (a composite score of fluid and crys-
tallized cognitive ability, r = 0.1513, p = 0.0232), and
the Crystallized Cognitive composite score (a composite
score of of verbal reasoning, r = 0.1829, p = 0.0039).
In addition to these cognitive tasks, a significant cor-
relation was also observed for subjectively scored emo-
tional support (r = 0.1340, p = 0.0432). Altogether, we
find that functionally-relevant patterns of gene expres-
sion may mediate individual differences in behaviour via
brain structure.

Molecular signature of psychological function strengthens
with development

Given the continuous development of cognitive pro-
cesses over the lifespan, we sought to track the gene
expression-functional activation signature through hu-
man development. We used BrainSpan, a dataset that
provides gene expression estimates from brain tissue
samples aged eight post-conception weeks (pcw) to forty
years, across sixteen unique cortical regions. A gene ex-
pression matrix was constructed for five different life
stages: fetal, infant, child, adolescent, and adult (see
Methods for details). Gene scores for the twelve regions
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Figure 5. Molecular signature of psychological function strengthens with development | The BrainSpan database was used
to replicate the results and also to compare how the isolated genetic signature develops over the lifespan [58]. (a) Gene scores
for twelve unique brain regions gradually increase with development and peak in adulthood. Brain regions with gene expression
levels only available in the fetal stage are indicated with an asterisk, and no corresponding curve is shown. (b) The correlation
between estimated gene scores and PLS-derived term scores is strongest in adolescence and adulthood.

with available gene expression estimates across all five
life stages were estimated by projecting each gene ex-
pression matrix onto the PLS-derived gene weights. This
results in a set of scores for twelve regions across brain
development (Fig. 5a). The molecular signature, repre-
sented by gene scores, increases with development, sug-
gesting the gene expression-functional activation gradi-
ent becomes more pronounced with maturation. In other
words, the genetic signal captured by the original PLS
analysis is specific to adult-derived cells.

We also used the BrainSpan dataset to externally val-
idate the original PLS model. Specifically, we mapped
the 16 unique cortical regions to the 34-node parcella-
tion and averaged PLS-derived term scores from the 34-
node parcellation across sibling nodes relating to a par-
ent node. This allows us to correlate estimated gene
scores with term scores at each stage of development
(Fig. 5b). Estimated gene scores and term scores cor-
related significantly in the infant (r = 0.61, p = 0.0352),
adolescent (r = 0.85, p = 0.0004), and adult (r = 0.77,
p = 0.0035) life stages.

Sensitivity and validation analysis

All analyses presented thus far were conducted on a
particular parcellation of brain regions and a predefined
set of genes. To ensure the observed results are not
dependent on these methodological choices, we com-
pared results when analyses were repeated across dif-
ferent node resolutions and gene sets. Furthermore, we
replicated the results using a second dataset for the con-
struction of the functional activation matrix.

To ascertain our findings against different choices of
parcellation resolution, gene expression and functional
activation matrices were parcellated into three resolu-
tions: a 34-node parcellation, a 57-node parcellation,
and a 111-node parcellation [18]. Importantly, the 57-
node and 111-node parcellations are derived by divid-
ing the 34-node parcellation into smaller parcels, such
that each node in the 57- and 111-node parcellations is a
child of a node in the 34-node parcellation. Furthermore,
since the original analyses were conducted on differen-
tially stable genes (see Methods), and the calculation of
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differential stability depends on parcellation resolution,
the number of stable genes retained across parcellations
varied (between 8 825 and 11 560 genes retained). The
gene expression and functional activation matrices at
these three resolutions were subjected to PLS and the
gene scores and term scores were computed. In the two
finer resolutions, the mean score of sibling nodes was
computed such that one score for each of the 34 parent
nodes was available for all three resolutions. Correlating
gene scores and term scores across resolutions revealed
an almost one-to-one relationship, indicating node reso-
lution has little impact on gene scores and term scores
(Fig S4).

Likewise, we asked whether the gene sets contributing
most to the latent variable would be altered based on
which genes were included in the gene expression ma-
trix. Since the two gene sets underlying cognition and
affect are defined based on gene loadings, we compared
loadings of genes across six variations of the gene expres-
sion matrix. For each of the three resolutions introduced
above, one matrix includes all 20 323 genes and another
includes only differentially stable genes, as defined by
the specific parcellation. Each of the six gene expres-
sion matrices, alongside their corresponding functional
activity matrix, were subjected to PLS analysis and load-
ings were computed for each gene, where genes with the
top 50% of positive and negative loadings are considered
reliable. When compared across the six different gene
expression matrices, we find that reliable gene sets are
highly consistent (Fig. S5).

We next replicated original results using a different
data source for the construction of the functional acti-
vation matrix. BrainMap is a manually curated database
of published voxel coordinates from neuroimaging stud-
ies that are significantly activated or deactivated during
tasks [28, 29, 46, 73]. Using the analytic pipeline we
previously applied to Neurosynth, we converted Brain-
Map data into a functional activation matrix of probabil-
ities, which included 66 terms (see Methods for details,
and Table S2 for a full list of terms).

PLS analysis on the original gene expression matrix
with this BrainMap-derived functional activation ma-
trix again revealed a single statistically significance la-
tent variable that captured 51% of the covariance be-
tween gene expression and functional activation (pspin =
0.0034). The gene and term score distributions again
follow a ventromedial-dorsolateral gradient (Fig. S6a),
and gene weights were highly correlated with the orig-
inal Neurosynth-derived gene weights (Fig. S6b). Term
loadings were computed and the reliable positively and
negatively correlated terms are shown in Figure S6c. Un-
like the terms used in the Neurosynth-derived functional
activation matrix, some terms in BrainMap were pharma-
cological in nature. Interestingly, positive pharmacology
terms are primarily depressants (like alcohol and mari-
juana), and negative pharmacology terms are primarily
stimulants (like caffeine).

DISCUSSION

In the present report, we identify spatially covarying
gradients of gene expression and functional activation
across the neocortex. Collectively, these patterns delin-
eate a ventromedial-dorsolateral axis, separating gene
sets related to cognitive versus affective function. The
spatial patterning of gene and term scores follows a hier-
archical organization, is closely related to multiple struc-
tural and functional attributes, and to individual dif-
ferences in behaviour. We externally validate our re-
sults in two distinct datasets and show that the gene-
activation signature strengthens with human develop-
ment. Our results directly bridge microscale gene expres-
sion to macroscale functional processes and highlight the
influence that molecular mechanisms have on cognition
and behaviour.

The present findings build on previous reports that link
gene expression to the structural and functional archi-
tecture of the brain. Gene expression profiles have been
linked to cortical folding [1], cortical shrinkage during
adolescence [83], subcortical connectivity [26], and pat-
terns of long-distance and short-distance neural commu-
nication [32, 44, 76]. In particular, intracortical myelin
distribution, as measured by T1w/T2w ratio, is corre-
lated with regional transcription levels, potentially re-
flecting a hierarchical axis of cytological properties, in-
cluding cytoarchitecture and cell density [14, 33]. Our
results expand on this literature, demonstrating that gra-
dients of gene expression distinguish affective processes
from cognitive processes. In other words, by shaping
micro- and macro-scale brain structure, gene expression
is naturally related to neurocognitive organization and,
ultimately, to psychological function [27].

What do the present findings show us about the re-
gional specialization for psychological functions? Al-
though we have summarized the gene-activation gra-
dient as one primarily differentiating cognitive and af-
fective processes, greater nuance is warranted. In par-
ticular, the posterior/dorsal system is more specifically
related to perception, orienting and attention, whereas
the anterior/ventral system is more specifically related
to emotion and evaluation. Thus, the axis differentiates
attentional and evaluation functions, and may be more
aptly termed an “affective-attentive” or “evaluation-
perception” axis. Interestingly, many of the intermediate
terms that do not load highly on either end of the axis are
integrative in nature (e.g. “consciousness’, “integration”,
“episodic memory”, “communication”, etc.; Fig. S2), sug-
gesting that these more complex functions lie at the in-
tersection of the two systems.

How covarying patterns of gene expression and func-
tional activation emerge over the course of ontogeny
and phylogeny remains an open challenge. Patterns of
gene expression are involved in cortical reorganization
during neurodevelopment, including folding [1], prun-
ing [83] and establishment of cortico-cortical connec-
tivity [74]. In the BrainSpan dataset, we find that the
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gene-cognition signature has a protracted trajectory over
development, gradually becoming most prominent in
adulthood (Fig. 5). This external confirmation of our
results suggests continued refinement and differentia-
tion of cognitive-affective processes during maturation,
but more research is necessary to understand the be-
havioural consequences of this process at the individ-
ual participant level. A related question is how the as-
sociation between transcription and functional activa-
tion evolves across phylogeny. In particular, evolutionary
expansion of the cortical mantle is thought to have al-
tered the relationship between molecular gradients and
microcircuitry, promoting increasingly complex cognitive
function [13, 44]. Thus, the present work could be
extended by comparing psychologically-relevant expres-
sion patterns, biological processes and cell-type compo-
sition across species.

We map whole-genome transcription patterns to a
spectrum of cognitive and affective functions across mul-
tiple brain areas, but the relationship between gene ex-
pression and behaviour has been previously approached
from different directions. One approach is to focus on
a region of interest. For instance, Vogel and colleagues
related variations in cognitive function to a transcrip-
tional gradient across the long axis of the hippocampus
[77]. An alternative approach is to map single func-
tions of interest to single genes or gene modules. For in-
stance, Fox and colleagues used Neurosynth and AHBA
to identify multiple gene-cognition associations in sub-
cortex, including previously established associations be-
tween dopamine receptor genes and reward functions in
the basal ganglia, as well as novel associations [27]. The
results reported here open new possibilities for mapping
high-dimensional transcriptional readouts to neurocog-
nitive function in a data-driven and multivariate analysis
framework [59], broadening the scope of inquiry to mul-
tiple gene sets and comprehensive neurocognitive pro-
files.

The present work should be understood alongside
some important methodological considerations. First,
the main analysis involved two singular datasets, poten-
tially limiting the generalizability of the results. Despite
extensive validation, the present findings are based on
small samples of post-mortem brains and more compre-
hensive microarray gene expression datasets are neces-
sary for future studies. Second, all analyses were per-
formed in the left cerebral cortices of the six donors, pre-
cluding any tests of lateralized brain function, such as
language. Third, due to well-documented differences in
transcriptional signatures of cortex, subcortex and cere-
bellum [61], the present investigation focused only on
the cortex. How gene expression and functional coacti-
vation covary in subcortical structures should be investi-
gated in future work [27]. Fourth, the mapping of func-
tional activation to psychological terms in Neurosynth
cannot distinguish activations from deactivations [86].
Thus, the present results identify gene assemblies whose
expression covaries with functional activity, but do not

isolate the direction of effect.
In summary, we demonstrate that patterns of gene ex-

pression influence cognition and emotion. Organized
across a spatially ordered ventromedial-dorsolateral gra-
dient, we show that this genetic signature shapes the
composition of cell types and microstructure, ultimately
manifesting as a large-scale axis differentiating affective
and cognitive processes. Collectively, these results high-
light a direct link between molecular dynamics and psy-
chological function.

METHODS

Code used to conduct the reported analyses are avail-
able at https://github.com/netneurolab.

Microarray gene expression

Regional microarray expression data were obtained
from six post-mortem brains provided by the Allen Hu-
man Brain Atlas (http://human.brain-map.org/) [40].
Since only two of the six brains included samples from
the right hemisphere, analyses were conducted on the
left hemisphere only. All processing was performed using
the abagen toolbox (https://github.com/netneurolab/
abagen). These data were processed and mapped to
parcellated brain regions at three increasingly finer res-
olutions, from 34 to 111 left hemisphere cortical grey
matter nodes according to the Lausanne anatomical at-
las [18, 23].

Microarray probes were reannotated using data pro-
vided by Arnatkevičiūtė et al. [3]. A single microarray
probe with the highest differential stability, ∆S(p), was
selected to represent each gene [39], where differential
stability was calculated as:

∆S(p) =
1(
N
2

) N−1∑
i=1

N∑
j=i+1

r[Bi(p), Bj(p)] (1)

Here, r is Spearman’s rank correlation of the expression
of a single probe p across regions in two donor brains, Bi
and Bj , and N is the total number of donor brains. This
procedure retained 20 232 probes, each representing a
unique gene.

Next, samples were assigned to brain regions using
their corrected MNI coordinates (https://github.com/
chrisfilo/alleninf) by finding the nearest region, up to
2mm away. To reduce the potential for misassignment,
sample-to-region matching was constrained by hemi-
sphere and cortical/subcortical divisions [3]. If a brain
region was not assigned any sample based on the above
procedure, the sample closest to the centroid of that re-
gion was selected in order to ensure that all brain regions
were assigned a value.

Tissue sample expression values were then normalized
separately for each donor across genes using a scaled ro-
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bust sigmoid function [32]:

xnorm =
1

1 + exp(− (xg−〈xg〉)
σg

)
(2)

where 〈xg〉 is the median and σg is the standard deviation
of the expression value of a single gene across regions.
Normalized gene expression values were then rescaled
to a unit interval:

xscaled =
xnorm −min(xnorm)

max(xnorm)−min(xnorm)
(3)

Gene expression values were normalized across tissue
samples using the same procedure. Samples assigned
to the same brain region were then averaged separately
for each donor. Scaled regional expression profiles were
finally averaged across donors, resulting in a single ma-
trix X with r rows corresponding to brain regions and
g columns corresponding to the retained 20 232 genes.
Due to the variability of gene expression across donors, a
threshold of 0.1 was imposed on the differential stability
of each gene, such that only stable genes were retained
for future analysis. At the 34-node, 57-node, and 111-
node resolutions, the ensuing number of stable genes re-
tained was 11 560, 10 453, and 8 825, respectively.

Functional activation

Probabilistic measures of the association between
voxels and terms were obtained from Neurosynth, a
meta-analytic tool that synthesizes results from more
than 15 000 published fMRI studies by searching for
high-frequency key words (such as “pain” and “at-
tention”) that are published alongside fMRI voxel co-
ordinates (https://github.com/neurosynth/neurosynth
[86]). This measure of association is the probability that
a given term is reported in the study if there is activa-
tion observed at a given voxel. Note that the tool does
not distinguish between areas that are activated or deac-
tivated in relation to the term of interest, nor the degree
of activation, only that certain brain areas are frequently
mentioned in conjunction with certain words. Although
more than a thousand terms are reported in Neurosynth,
we focus primarily on cognitive function and therefore
limit the terms of interest to cognitive and behavioural
terms. These terms were selected from the Cognitive
Atlas, a public ontology of cognitive science [63]. We
used t = 123 terms, ranging from umbrella terms (“at-
tention”, “emotion”) to specific cognitive processes (“vi-
sual attention”, “episodic memory”), behaviours (“eat-
ing”, “sleep”), and emotional states (“fear”, “anxiety”).
The coordinates reported by Neurosynth were parcel-
lated into 111 left-hemisphere cortical regions. The
probabilistic measure reported by Neurosynth can be
interpreted as a quantitative representation of how re-
gional fluctuations in activity are related to psychological

processes. For simplicity, we refer to these probabilities
as “functional activations” throughout the present report.
The full list of terms is shown in Table S1.

Partial least squares analysis

Partial least squares analysis (PLS) was used to relate
gene expression to functional activation. PLS is an un-
supervised multivariate statistical technique that decom-
poses relationships between two datasets (in our case,
gene expression, Xn×g and functional activation, Yn×t)
into orthogonal sets of latent variables with maximum
covariance, which are linear combinations of the original
data. This was done by applying singular value decom-
position on the matrix Y′X such that

(Y′X)′ = USV′ (4)

where Ug×t and Vt×t are orthonormal matrices consist-
ing of left and right singular vectors, and St×t is a di-
agonal matrix of singular values (Fig. 1a) [25]. The ith

columns of U and V constitute a latent variable, and
the ith singular value in S represents the covariance be-
tween singular vectors. The ith singular value is pro-
portional to the amount of covariance between gene ex-
pression and functional activation captured by the ith la-
tent variable, where the effect size can be estimated as
the ratio of the squared singular value to the sum of
all squared singular values. In the present study, the
left singular vectors (i.e. the columns of U) represent
the degree to which each gene contributes to the latent
variable and demonstrates the extracted association be-
tween gene expression and cognitive activation (“gene
weights”). The right singular vectors (i.e. the columns
of V) represent the degree to which the cognitive terms
contribute to the same latent variable (“term weights).
Positively weighed genes covary with positively weighed
terms, and negatively weighed genes covary with neg-
atively weighed terms. Gene and term scores at each
brain region for each latent variable can be computed
by projecting the original data onto the singular vector
weights (Fig. 1c). Positively scored brain regions are re-
gions that demonstrate the covariance between expres-
sion of positively weighted genes and activation of posi-
tively weighted cognitive terms (and vice versa for nega-
tively scored brain regions):

Gene scores for latent variable i = Xn×gU(i)g×1

Term scores for latent variable i = Yn×tV(i)t×1.

The robustness of the PLS model was assessed by
cross-validating the correlation between gene scores
and term scores. Since our observations are brain ar-
eas and therefore nonindependent, we designed the
cross-validation such that the training and testing set
were composed of spatially distant brain regions. To
achieve this, a random source node and the 75% of
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brain regions closest in Euclidean distance composed
the training set, and the remaining 25% of brain re-
gions composed the testing set (Fig. 1d). PLS was
used to compute gene scores and term scores from
the training set, as well as the correlation between
the two (Corr(XtrainUtrain,YtrainVtrain)). The test set
was projected onto the training-derived singular vector
weights to generate predicted gene and term scores, and
the correlation between predicted scores was computed
(Corr(XtestUtrain,YtestVtrain)). This procedure was re-
peated 100 times, yielding a distribution of score cor-
relations for the training and testing sets (Fig. 1d).

Null model

Spatial autocorrelation-preserving permutation tests
were used to assess statistical significance of associations
across brain regions, termed “spin tests” [2]. We created
a surface-based representation of the parcellation on the
FreeSurfer fsaverage surface, via files from the Connec-
tome Mapper toolkit (https://github.com/LTS5/cmp).
We used the spherical projection of the fsaverage surface
to define spatial coordinates for each parcel by selecting
the vertex closest to the center of the mass of each par-
cel [75]. These vertices were then projected to a sphere,
randomly rotated, and reassigned to the closest parcel
(10 000 repetitions). The procedure was performed at
the parcel resolution rather than the vertex resolution to
avoid upsampling the data.

Gene set analysis

To determine the biological processes in which the
gene sets identified by PLS are most involved, we
adapted analyses from the Gene Set Enrichment Analy-
sis toolbox (originally available at https://github.com/
benfulcher/GeneSetEnrichmentAnalysis [31]). Gene
annotations were provided by the Gene Ontology
(geneontology.org) and organized such that each biolog-
ical process category was linked to its associated genes
[5, 20]. For each category, we define the category score
as the mean loading of the genes of interest, which was
done separately for positive genes (genes with the top
50% positive loadings) and negative genes (genes with
the top 50% negative loadings). To assess the signif-
icance of the category scores, we permuted the rows
(brain areas) of the functional activation matrix while
preserving spatial autocorrelation using the spherical
projection and rotation procedure (spins) described in
the previous subsection. We then subjected the original
gene expression matrix and the permuted functional acti-
vation matrix to PLS and recomputed the category scores
(1 000 repetitions).

Next, cell-type deconvolution was performed using
cell-specific aggregate gene sets across five human adult
postmortem single-cell and single-nucleus RNA sequenc-
ing studies ([22, 38, 47, 49, 55, 88]), as presented previ-
ously (Supplementary Table 5 from [67]). Briefly, cor-

tical cell classes were determined based on hierarchi-
cal clustering of regional topographies across all study-
specific cell types in the Allen Human Brain Atlas, result-
ing in seven major canonical cortical cell classes: astro-
cytes (Astro), endothelial (Endo), microglia (Micro), ex-
citatory neurons (Neuro-Ex), inhibitory neurons (Neuro-
In), oligodendrocytes (Oligo), and oligodendrocyte pre-
cursors (OPC) (See Figure 2 from [67]).

Human Connectome Project dataset

Data from the Human Connectome Project (HCP,
S1200 release) [35, 72] was used for measures of cortical
thickness, T1w/T2w ratios, functional connectivity, and
behavioural tests. The 417 unrelated subjects (age range
22–37 years) with available resting-state fMRI data had
individual measures of cortical thickness and T1w/T2w
ratios. These structural modalities were acquired on a
Siemens Skyra 3T scanner, and included a T1-weighted
MPRAGE sequence at an isotropic resolution of 0.7mm,
and a T2-weighted SPACE also at an isotropic resolution
of 0.7mm. Details on imaging protocols and procedures
are available at http://protocols.humanconnectome.
org/HCP/3T/imaging-protocols.html. Image processing
includes correcting for gradient distortion caused by non-
linearities, correcting for bias field distortions, and reg-
istering the images to a standard reference space. Mea-
sures of cortical thickness are estimated as the geomet-
ric distance between the white and grey matter surfaces,
and intracortical myelin as the T1w/T2w ratio. Cortical
thickness and T1w/T2w ratios for each subject was made
available in the surface-based CIFTI file format and par-
cellated into 219 cortical regions according to the Lau-
sanne anatomical atlas [18]. Only the left-hemisphere
regions were retained for analysis.

A group-averaged dense functional connectiv-
ity matrix was constructed from the 1 003 sub-
jects with all four 15-minute resting-state fMRI
runs. For details on how the dense functional
connectivity matrix was constructed, see https:
//www.humanconnectome.org/storage/app/media/
documentation/s1200/HCP1200-DenseConnectome+
PTN+Appendix-July2017.pdf. The cortical subset of
the matrix was parcellated into 219 nodes according
to the Lausanne anatomical atlas [18]. Following
Margulies and colleagues, a principal functional
gradient was computed by applying diffusion map
embedding to the functional connectivity matrix
[52], using the Dimensionality Reduction Toolbox
(https://lvdmaaten.github.io/drtoolbox/). The pro-
cedure yielded an eigenvector map representing the
differentiation of unimodal and transmodal cortical
regions. Only the left hemisphere was retained for
comparison with gene and term scores.

Behavioural performance was assessed using 58 tests.
Tests included task performance on sensorimotor pro-
cessing, cognitive processing, subjective measures of
quality of life and personality, and four in-scanner tasks.
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When available, age-adjusted scores were used rather
than age-unadjusted scores. Demographic variable were
excluded. A complete list of behavioural tests used can
be found in Table S3. To rule out confounding contribu-
tions from genetic correlations among individuals due to
family structure, we restricted all behavioural analyses to
a subset of 417 individuals with no familial relationships,
and with complete T1w/T2w ratio and behavioural per-
formance on the 58 tests.

External validation using BrainMap

BrainMap is a manually created and curated data
repository of results from published functional and struc-
tural neuroimaging studies [28, 29, 46, 73]. Specifi-
cally, BrainMap includes the brain coordinates that are
significantly activated during thousands of different ex-
periments. All experiments conducted on unhealthy sub-
jects were excluded, as well as all experiments without
a defined behavioural domain. This resulted in 8 703
experiments organized into 66 unique behavioural do-
mains (Table S2). To enable more direct comparabil-
ity with results using Neurosynth, the BrainMap data
were subjected to the Neurosynth meta-analytic pipeline
(https://github.com/neurosynth/neurosynth). This ap-
proach resulted in a region by term matrix of probabilis-
tic measures that certain terms are published in conjunc-
tion with certain brain regions.

External validation using BrainSpan

BrainSpan is a database of gene expression in the
brain across development, available at https://www.
brainspan.org/static/download.html [58]. Gene expres-
sion levels were quantified in specific tissue samples from
post-mortem brains ranging from eight post-conception
weeks (pcw) to 40 years of age. Ages were binned into
five life stages: fetus (8pcw–37pcw), infant (4mos–1yr),
child (2yrs–8yrs), adolescent (11yrs–19yrs), and adult
(21yrs–40yrs) [82]. For each age category, a gene ex-

pression matrix was constructed by averaging the expres-
sion of every gene across identical regions. Any miss-
ing data was replaced with the median expression of the
gene across all regions. Of the sixteen unique cortical
brain regions with gene expression levels, four regions
did not have gene expression estimates in any of the age
categories besides the fetal stage. For comparison with
PLS results derived from AHBA, we selected the 9 568
available genes with differential stability greater than 0.1
as defined on the 34-node parcellation. Gene scores for
the 12 regions with expression levels available for all age
stages were estimated by projecting the gene expression
matrices onto the PLS-derived gene weights.

To relate estimated gene scores with term scores, we
defined a region-to-region correspondence map from the
16-node parcellation to the 34-node parcellation. Term
scores were averaged across sibling nodes such that a sin-
gle term score was available for all 16 regions available
in BrainSpan. Note that brain regions in BrainSpan are
not organized by hemisphere; therefore, regional expres-
sion levels in the 16 regions are not necessarily measured
from the left hemisphere only.
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Figure S1. Cross-validation using distance-based set assignment results in more conservative score correlations | Left:
In distance-based set assignment, the 75% of nodes closest to a randomly chosen source node are assigned to the training set,
and the remaining 25% of nodes are assigned to the testing set. Right: In random set assignment, training and test sets are
assigned randomly. Due to spatial autocorrelation, random assignment yields inflated out-of-sample performance estimates. Only
distance-based assignment was used in the manuscript. Random set assignment is shown only for comparison.
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autobiographical memory expectancy language comprehension reading strategy
balance expertise learning reasoning strength
belief extinction listening recall stress
categorization face recognition localization recognition sustained attention
cognitive control facial expression loss rehearsal task difficulty
communication familiarity maintenance reinforcement learning thought
competition fear manipulation response inhibition uncertainty
concept fixation meaning response selection updating
consciousness focus memory retention utility
consolidation gaze memory retrieval retrieval valence
context goal mental imagery reward anticipation verbal fluency
coordination hyperactivity monitoring rhythm visual attention
decision imagery mood risk visual perception
decision making impulsivity morphology rule word recognition
detection induction motor control salience working memory
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distraction inhibition multisensory selective attention

TABLE S1. Neurosynth terms | Terms that overlapped between the Neurosynth database [86] and the Cognitive Atlas [63] were
included in analyses.
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Figure S2. Neurosynth term loadings | The loading for each term is calculated as the correlation between functional activation
across brain regions and PLS-derived gene scores. Error bars indicate bootstrap-estimated 95% confidence intervals. All terms with
a confidence interval that changes sign are excluded.

air-hunger disgust language phonology speech (action)
alcohol emotion learning preparation speech (languag)
amphetamines estrogen marijuana psychiatric medications SSRIs
anger execution memory reasoning steroids and hormones
antidepressants explicit motion rest syntax
antipsychotics fear music sadness thermoregulation
anxiety gustation nicotine semantics thirst
attention happiness non-steroidal anti-inflammatory drugs sexuality time
audition humour observation shape vision
bladder hunger olfaction sleep working memory
caffeine imagination opioids social cognition
capsaicin inhibition orthography soma
cognition interoception pain somesthesis
colour ketamine pharmacology space

TABLE S2. BrainMap terms | BainMap terms are organized by behavioural domain. All 66 unique behavioural domain (excluding
any undefined domains) used in analyses are shown here.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 16, 2020. ; https://doi.org/10.1101/2020.07.16.203026doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.16.203026
http://creativecommons.org/licenses/by/4.0/


18

Figure S3. Specific cell-type expression is consistent across gene sets | Positive and negative gene sets were constructed using
the largest positive/negative loadings, ranging from the top 2.5% genes to all genes. Each curve represents the difference between
the ratio of genes in each gene set preferentially expressed in a cell-type and the mean null ratio, computed from random gene
sets (10 000 repetitions). Curves above zero indicate overexpression and curves below zero indicate underexpression. Circles
demonstrate significance.

Figure S4. Gene and term scores are consistent across parcellation resolutions | PLS was performed on gene expression and
functional activation matrices at three progressively finer parcellation resolutions (n = 34, n = 57, and n = 111 left hemisphere
cortical regions; [18]). The resulting gene and term scores at each resolution were then correlated with the gene and term scores
from other resolutions.
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Figure S5. Reliable gene sets are consistent across parcellation resolutions and gene set assignment | The reliability of each
gene, as defined by its loading, was recomputed for six different gene expression matrices (3 parcellation resolutions × 2 gene set
assignment strategies). Tuning the parcellation of brain regions (n = 34, n = 57, and n = 111 left hemisphere cortical regions) and
the set of genes (all genes or differentially stable genes) used in the gene expression matrix reveals reliable gene sets are consistent
across different methodological choices when constructing the gene expression matrix. Reliable genes are coloured red (top 50%
of positive/negative loadings), unreliable genes are blue (bottom 50% of positive/negative loadings), and genes removed from the
analysis because their differential stability is less than 0.1 are white.
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Figure S6. Replication using BrainMap | Gene expression was related to a functional activation matrix derived using the
manually-curated BrainMap [28, 29]. (a) PLS-derived gene and term scores are correlated between Neurosynth- and BrainMap-
derived functional activation matrices. (b) PLS-estimated gene weights for the first latent variable from the Neurosynth- and
BrainMap-derived functional activation matrix are correlated. (c) Reliable terms with positive loadings (red) and negative load-
ings (blue). Error bars indicate bootstrap-estimated 95% confidence intervals.
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Pittsburg Sleep Quality Index Score Crystallized Cognition Composite Score (age adjusted)
Picture Sequence Memory Test (age adjusted) Penn Emotion Recognition (correct responses)
Dimensional Change Card Sort Test (age adjusted) Penn Emotion Recognition (reaction time)
Flanker (age adjusted) Penn Emotion Recognition (anger, correct responses)
Penn Matrix Test (correct response) Penn Emotion Recognition (fear, correct responses)
Penn Matrix Test (skipped items) Penn Emotion Recognition (happiness, correct responses)
Penn Matrix Test (reaction time) Penn Emotion Recognition (neutral, correct responses)
Reading Test (age adjusted) Penn Emotion Recognition (sadness, correct responses)
Picture Vocabulary Test (age adjusted) anger
Pattern Comparison Processing Test (age adjusted) hostility
Delay Discounting (AUC $200) aggression
Delay Discounting (AUC $40 000) fear
Penn Line Orientation (total correct) anxiety
Penn Line Orientation (reaction time) sadness
Penn Line Orientation (incorrect) life satisfaction
Short Penn Continuous Performance Test (true positives) life purpose
Short Penn Continuous Performance Test (true negatives) positive affect
Short Penn Continuous Performance Test (false positives) friendship
Short Penn Continuous Performance Test (false negatives) loneliness
Short Penn Continuous Performance Test (reaction time) perceived hostility
Short Penn Continuous Performance Test (sensitivity) perceived rejection
Short Penn Continuous Performance Test (specificity) emotional support
Short Penn Continuous Performance Test (longest run of non-responses) instrumental support
Penn Word Memory (total correct) stress
Penn Word Memory (reaction time) self-efficacy
List Sort (age adjusted) in-scanner emotion task
Fluid Cognition Composite Score (age adjusted) in-scanner language task
Early Childhood Composite Score (age adjusted) in-scanner relational task
Cognitive Function Composite Score (age adjusted) in-scanner working memory task

TABLE S3. HCP behavioural measures | Behavioural measures that were included in analyses cover a range of cognitive and
emotional tasks. Demographic variables were excluded.
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