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ABSTRACT 18 

Despite the demonstrated success of genome-wide genetic screens and chemical 19 

genomics studies at predicting functions for genes of unknown function or predicting 20 

new functions for well-characterized genes, their potential to provide insights into gene 21 

function hasn't been fully explored. We systematically reanalyzed a published high-22 

throughput phenotypic dataset for the model Gram-negative bacterium Escherichia coli 23 

K-12. The availability of high-quality annotation sets allowed us to compare the power of 24 

different metrics for measuring phenotypic profile similarity to correctly infer gene 25 

function. We conclude that there is no single best method; the three metrics tested gave 26 

comparable results for most gene pairs. We also assessed how converting qualitative 27 

phenotypes to discrete, qualitative phenotypes affected the association between 28 

phenotype and function. Our results indicate that this approach may allow phenotypic 29 

data from different studies to be combined to produce a larger dataset that may reveal 30 

functional connections between genes not detected in individual studies. 31 

  32 
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INTRODUCTION 33 

Genome-wide genetic screens and chemical genomic studies, pioneered in yeast 34 

(GIAEVER AND NISLOW 2014), are now widely used to study gene function in many model 35 

organisms, including the bacterium Escherichia coli (Campos et al., 2018; Nichols et al., 36 

2011; Price et al., 2018). Based on the same principle that underlies the interpretation of 37 

forward genetic studies — that mutations that cause similar phenotypes are likely to 38 

affect the same biological process(es) — these high-throughput approaches have led to 39 

insights into the biology of a variety of organisms (Arnoldo et al., 2014; Hillenmeyer et 40 

al., 2010; Shefchek et al., 2020). It has been concluded that the collective phenotypic 41 

expression pattern of an organism can serve as a key to understand growth, fitness, 42 

development, and diseases (Bochner, 2009; Houle et al, 2010). 43 

 44 

Despite the demonstrated success of high-throughput phenotypic studies at predicting 45 

functions for genes of unknown function or predicting new functions for well-46 

characterized genes, their potential to provide insights into gene function hasn't been 47 

fully explored. There does not seem to have been a systematic comparison of different 48 

metrics for measuring the similarity of phenotypic profiles. Further, while the likely 49 

benefits of combining information from high throughput phenotypic studies from different 50 

laboratories have been recognized, very few methods of doing this have been described 51 

(Hoehndorf et al., 2013; Shefchek et al., 2020). 52 

 53 

Here, we report reanalysis of the data from a published high-throughput phenotypic 54 

study of Escherichia coli K-12 (Nichols et al. 2011). E. coli is one of the best-studied 55 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 16, 2020. ; https://doi.org/10.1101/2020.07.16.206243doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.16.206243
http://creativecommons.org/licenses/by-nc/4.0/


 

 

4 

bacterial organisms, and the availability of high-quality annotation sets with information 56 

on gene function and regulation allowed us to compare the ability of different metrics for 57 

measuring phenotypic profile similarity to correctly infer gene function. We conclude that 58 

there is no single best method for comparing phenotypic profiles. Overall, the three 59 

metrics we tested gave comparable results for most gene pairs. However, there were 60 

instances where the metrics behaved differently from one another. We also assessed 61 

how converting quantitative phenotypes to discrete, qualitative phenotypes affected 62 

associations between phenotype and function. Our results indicate that this may be a 63 

viable approach for combining phenotypic data from different studies, creating a larger 64 

dataset that may reveal functional associations not detected by individual studies alone. 65 

 66 

RESULTS 67 

Phenotypic profiles and the functional annotation sets used 68 

We start with descriptions of the phenotype data and functional annotation sets that 69 

were used for our analysis. The phenotypic profiles come from a high-throughput 70 

chemical genomics study of E. coli K-12 (Nichols et al., 2011). Growth phenotypes for 71 

3,979 mutant strains, which were primarily single-gene deletions of non-essential 72 

genes, were based on sizes of spot colonies grown under 324 conditions, which 73 

represented 114 unique stresses. Fitness scores were obtained and normalized to a 74 

standard normal distribution based on the mean fitness for all strains in a given 75 

condition. Positive scores indicate increased fitness and negative scores indicate 76 

decreases fitness. Fitness scores were obtained and normalized to a standard normal 77 

distribution where positive scores indicate increased fitness and negative scores 78 
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indicate decreased fitness, which was based on the mean fitness for all strains in a 79 

given growth condition.  80 

 81 

Six annotation sets were used as sources of information about gene function. 82 

Annotations of E. coli genes to metabolic pathways and protein complexes were 83 

obtained from EcoCyc (Keseler et al., 2017); annotation of genes to operons and 84 

regulons were extracted from EcoCyc and RegulonDB (Gama-Castro et al., 2016); and 85 

annotations of genes to KEGG modules, which associate genes to metabolic pathways, 86 

molecular complexes, and also to phenotypic groups, such as pathogenesis or drug 87 

resistance, were obtained from the Kyoto Encyclopedia of Genes and Genomes 88 

(KEGG) (Kanehisa et al, 2016). For these annotation sets, genes were scored as co-89 

annotated if they shared the same annotation(s) from one or more of the annotation 90 

sets, for example, being annotated to the same metabolic pathway or protein complex, 91 

etc. The number of genes annotated by each annotation set and the total number of 92 

annotations can be found in Materials and Methods. 93 

 94 

The annotations of E. coli genes with Gene Ontology (GO) biological process terms 95 

(Gene Ontology Consortium, 2017) were obtained from EcoCyc. The GO biological 96 

process annotations of E. coli genes were treated separately from the other five 97 

annotation sets because GO’s directed-acyclic graph structure allows semantic 98 

similarity rather than co-annotation to be used for assessing functional similarity 99 

(Pesquita, 2017). While it is possible to identify gene pairs that are co-annotated with 100 

the same GO term(s), automated methods will include co-annotations to high-level 101 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 16, 2020. ; https://doi.org/10.1101/2020.07.16.206243doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.16.206243
http://creativecommons.org/licenses/by-nc/4.0/


 

 

6 

terms, such as ‘GO:0044237 cellular metabolic process’ or ‘GO:0051716 cellular 102 

response to stimulus’, which don’t provide very specific information about function. Also, 103 

co-annotation doesn’t capture instances where two genes are annotated with related, 104 

but not identical, terms. These limitation can be overcome by using semantic similarity 105 

rather than co-annotation to estimate functional similarity from GO annotations. The 106 

method for determining the semantic similarity of two GO terms developed by Wang et 107 

al. (Wang et al, 2007), takes into account the locations of the terms in the GO graph, as 108 

well as incorporating the different semantic contributions that a shared ancestral term 109 

may make to the two terms, based on the logical relationship, such as is_a or part_of, 110 

that connect the term to the shared ancestor. In addition, when calculating functional 111 

similarity, the Wang method includes both identical GO terms and semantically similar 112 

GO terms associated with the two genes being compared. The number of genes 113 

annotated with GO biological process terms set and the total number of annotations can 114 

be found in the Materials and Methods. 115 

 116 

Functional connections between genes enriched for higher phenotypic profile 117 

similarity 118 

The association between phenotypic profiles and functional annotations was examined 119 

from two perspectives: First, are gene pairs that share the same annotation(s), i.e. co-120 

annotated gene pairs, more likely to have higher phenotypic profile similarity? Second, 121 

are gene pairs with higher phenotypic profile similarity more likely to be co-annotated?  122 

 123 

To address whether co-annotated gene pairs have higher phenotypic profile similarity, 124 
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we used Pearson Correlation Coefficient (PCC) to assess the phenotypic profile 125 

similarity. This metric was chosen because it is probably the most widely used metric to 126 

assess phenotypic profile similarity and was the metric used in the original paper for 127 

comparing phenotypic profiles (Nichols et al., 2011). To visualize the results, the 128 

distributions of the absolute value of PCC (|PCC|) for gene pairs were plotted as violin 129 

plots for various combinations of annotation sets (Figure 1). The first violin plot shows 130 

the distribution of |PCC| values for all possible gene pairs (mean |PCC| = 0.00016). The 131 

majority have a |PCC| value <0.25 and only 0.16% have a |PCC| value >0.75 (an 132 

arbitrarily chosen cut-off). When only gene pairs that are co-annotated to the same 133 

EcoCyc pathway were considered (second violin plot), there was a statistically 134 

significant increase in the mean |PCC| value (0.032), and the percentage of gene pairs 135 

with |PCC| >0.75 increased twenty-fold. Similar results were seen for gene pairs that 136 

are co-annotated to the same heteromeric protein complex (third violin plot, mean |PCC| 137 

= 0.05 ). When considering only gene pairs that are co-annotated to more than one 138 

annotation set (fourth and fifth violin plots), even higher phenotypic profile similarity was 139 

observed (mean |PCC| = 0.19, 0.30, respectively), supporting the expectation that gene 140 

pairs with stronger functional associations will have more similar phenotypic profiles. 141 

The trend of there being a higher fraction of gene pairs with |PCC| >0.75 as functional 142 

associations increase also continued; this fraction increased from 0.16% for all gene 143 

pairs, to 3.2% for gene pairs in the same pathways, to 4.9% for gene pairs in the same 144 

protein complexes, to 19% for gene pairs in the same pathways and complexes, and to 145 

30% for gene pairs that are co-annotated in pathways, complexes, operons, regulons 146 

and KEGG modules. 147 
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 148 

A more detailed analysis within the EcoCyc pathway or heteromeric protein complex 149 

annotations was conducted by examining all pairwise combinations of gene pairs within 150 

pathways or protein complexes that contain two or more gene products. Supplemental 151 

Figures S1 and S2 show the distribution of |PCC| values for all pairwise combinations of 152 

genes in each pathway or protein complex. Of the 366 pathways and 271 protein 153 

complexes analyzed, 72% of the pathways and 67% of the protein complexes had a 154 

median |PCC| value that was higher than the random expectation.  155 

 156 

Phenotypic profile similarity is explained by functional annotations 157 

To address the second question, which is to test whether gene pairs with higher 158 

phenotypic profile similarity are more likely to be co-annotated, we ranked gene pairs 159 

based on phenotypic profile similarity and then calculated precision based on whether 160 

or not gene pairs are co-annotated (Figure 2). Precision is the fraction of results that a 161 

test identifies as positive that represent true positives. Mathematically, precision, also 162 

known as the positive predictive value, is the number of True Positives divided by True 163 

Positives plus False Positives, or TP/(TP+FP). After ranking gene pairs based on 164 

phenotypic profile similarity expressed as |PCC| values, precision for each position n in 165 

the ranking was calculated considering gene pairs ranked at or above position n to be 166 

TPs if they are co-annotated or FPs if they are not co-annotated. For example, for the 167 

100th gene pair in the ranking, precision is calculated for gene pairs 1 through 100. 168 

Figure 2 shows the plots of precision versus ranking for the top-ranking 500 gene pairs 169 

computed for single annotation sets or combinations of annotation sets. For gene pairs 170 
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co-annotated to the same pathway(s), precision started at zero, because the highest 171 

ranked gene pair was not co-annotated, but then increased to ~0.8 before gradually 172 

declining and leveling off at approximately 0.2. Surprisingly, for gene pairs co-annotated 173 

to the same protein complex, precision was very low and not significantly different from 174 

the precision values computed for randomly ordered gene pairs. Combining the 175 

annotation sets for pathways and protein complexes, brought a slight increase in 176 

precision. When operon, regulon, and KEGG modules were also included to define the 177 

broadest set of co-annotations, precision increased dramatically.  178 

 179 

The Pearson Correlation Coefficient is sensitive to the extreme fitness scores on 180 

minimal media 181 

To try to understand why precision was so low for protein complex annotations (Figure 182 

2), we inspected the gene pairs and saw that 98 of the 100 top-ranking gene pairs 183 

consisted of genes coding for biosynthetic enzymes, and, in 84 of these 98 gene pairs, 184 

the genes were annotated to different biosynthetic pathways. For example, the top-185 

ranked gene pair (|PCC| = 0.96) contained the genes ilvC and argB, which encode 186 

enzymes required for isoleucine-valine and arginine biosynthesis, respectively. Mutant 187 

strains lacking any of these biosynthetic genes would be auxotrophs and share the 188 

phenotype of little or no growth on unsupplemented minimal media. To test whether the 189 

|PCC|-based measure of phenotypic profile similarity was dominated by the large 190 

negative fitness scores associated with the auxotrophic phenotypes, we excluded the 191 

fitness scores for the growth conditions that involved minimal media (10 out of 324 total 192 

conditions) and reassessed the relationship between precision and phenotypic profile 193 
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similarity. As shown in Figure 3, even though only a small fraction of conditions were 194 

excluded, this change resulted in dramatically higher precision overall, regardless of 195 

which functional annotation set was used to score co-annotation. A comparable 196 

increase in precision was also seen when auxotrophic mutants were excluded from the 197 

data set (Supplemental Figure S3). 198 

 199 

Alternative metrics for measuring phenotypic profile similarity  200 

There are other methods, besides the Pearson Correlation Coefficient, that can be used 201 

to assess similarity. We chose the absolute value of Spearman's Rank Correlation 202 

Coefficient (|SRCC|) or mutual information (MI), which were implemented as described 203 

in the methods, to measure phenotypic profile similarity, and used the union of the five 204 

annotation sets to score co-annotation. Violin plots of the distributions of phenotypic 205 

profile similarity obtained using these alternative metrics were not significantly different 206 

from the distributions seen using |PCC| as the metric (results not shown). In contrast, as 207 

shown in Figure 4a, the correlation between phenotypic profile similarity and precision 208 

was dramatically higher for |SRCC| and MI compared to |PCC|. For both |SRCC| and 209 

MI, precision was >0.9 for the top 100 ranked gene pairs and remained >0.5 for 210 

approximately the top 500 pairs. This result indicates that determining phenotypic profile 211 

similarity using Spearman’s Rank Correlation Coefficient or Mutual Information is less 212 

sensitive to the presence of a relatively small number of extreme phenotype scores than 213 

using the Pearson Correlation Coefficient. If we recalculate precision for all three 214 

metrics after excluding the 10 growth conditions where auxotrophic mutants don’t grow, 215 

there is very little difference in precision for the three metrics (Figure 4b). 216 
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 217 

Simplified phenotypic profiles preserve biological meanings 218 

Combining phenotypic information from different studies is expected to increase the 219 

likelihood of finding associations between genes and functions. However, the ability to 220 

combine datasets can be limited by differences in how quantitative phenotypes are 221 

scored and by the need for methods to combine quantitative and qualitative phenotypic 222 

information. Different quantitative datasets could be combined by renormalizing the data 223 

to make them interoperable. Alternatively, quantitative phenotypes could be converted 224 

to qualitative phenotypes, which would allow integration of both quantitative and 225 

qualitative data. We chose to test the second approach because, if successful, it would 226 

allow more datasets to be combined. 227 

 228 

The quantitative fitness scores in the phenotypic dataset were discretized to create a 229 

qualitative dataset with the fitness scores converted to 1, 0, or -1, where 1 stands for 230 

increased fitness, -1 for decreased fitness, and 0 for no difference in fitness compared 231 

to the mean fitness for all strains in a particular growth condition. The |PCC| values 232 

used to separate the three phenotype classes were based on the 5% false discovery 233 

rate as described (Nichols et al., 2011). Because the majority of strains have no 234 

significant phenotype in the growth conditions used (Nichols et al., 2011), after 235 

discretizing the data the majority of strains will have fitness scores of 0. Therefore, the 236 

Pearson Correlation Coefficient was no longer suitable for measuring phenotypic profile 237 

similarity. Instead, mutual information (MI) (Priness et al., 2007) was used as the 238 

scoring metric. The distribution of MI values for gene pairs were plotted as violin plots. 239 
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The first violin plot in Figure 5a shows the distribution of MI values for all possible gene 240 

pairs, followed, from left to right, by the distribution of MI values for gene pairs co-241 

annotated to either the same pathway; the same protein complex; the same pathway 242 

and protein complex; or the same pathway, protein complex, operon, regulon, and 243 

KEGG module. Converting the continuous quantitative fitness values to discrete ternary 244 

scores reduced the variation in the data, reflected by the change in shape of the violin 245 

plots compared to the plots shown in Figure 1. However, as was seen for the mean 246 

|PCC| values in the analysis of the quantitative data (Figure 1), the mean MI values 247 

increased as the functional associations for a given gene pair increased (Figure 5a 248 

inset).  249 

 250 

Many of the growth conditions used in the original chemical genomics study involved 251 

multiple tests of the same chemical present at different concentrations. To test the effect 252 

of further simplifying the phenotypes, the original 324 growth conditions were reduced to 253 

114 unique stresses by including the score for only the most significant phenotype for 254 

each chemical treatment (1 or -1, as appropriate, or using a score of 0 if no significant 255 

phenotypes were seen for that treatment). The violin plots in Figure 5b show the 256 

distribution of MI values for all gene pairs and for different combinations of annotation 257 

sets for the reduced dataset. As seen for the full qualitative dataset, the mean MI values 258 

for co-annotated gene pairs in the reduced dataset were significantly higher than the 259 

mean MI value for all possible gene pairs (Figure 5b inset). In addition, when the 260 

distributions of gene pairs in the same co-annotation group are compared between 261 

Figures 5a and 5b, very significant differences of the means were observed for every 262 
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co-annotated group (p-value <0.001). Overall, these results indicate that useful 263 

inferences about gene function can still be made after the conversion of quantitative 264 

phenotypes to qualitative phenotypes and even after collapsing the number of 265 

phenotypes for each chemical treatment.  266 

 267 

We expected loss of information after quantitative phenotype scores were converted to 268 

the discretized, ternary fitness scores. To compare how many functional associations 269 

could still be retrieved using the qualitative scores, gene pairs were sorted based on 270 

their MI values determined using either quantitative phenotype scores, the qualitative 271 

ternary fitness scores, or the qualitative ternary fitness scores for the reduced set of 272 

conditions. Then precision was calculated, as described earlier, and was plotted versus 273 

ranking. As can be seen in Figure 6, precision is comparable for the top 100 gene pairs 274 

for both quantitative and discretized, qualitative fitness scores. After this point, precision 275 

drops more quickly for the qualitative data than for the quantitative data. When precision 276 

for the reduced set of conditions is compared to precision for either of the other data 277 

sets, we see that precision drops off sooner and decreases more rapidly. Yet, precision 278 

is still much higher than for randomly ordered gene pairs, which indicates that there is 279 

still significant potential in using the discretized version of phenotypes to explain 280 

functions.   281 

 282 

Semantic similarity of GO annotations increased for gene pairs with shared 283 

functional annotations and with higher phenotypic profile similarity 284 
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Another way to assess whether two genes are likely to have similar functions is to 285 

compare the semantic similarity of the GO terms annotated to each gene. In the dataset 286 

from Nichols et al., 66% (2,609 out of 3,979) of the strains used have mutations of 287 

genes that are annotated with GO biological process terms, which seemed a sufficient 288 

number to justify using this approach. The Wang method (Wang et al., 2007) was used 289 

to compute semantic similarity, and the distribution of semantic similarity scores for all 290 

gene pairs where both members of the pair are annotated with at least one GO 291 

biological process term was compared to the distributions for subsets of gene pairs that 292 

have similar functions based on being co-annotated in one or more of the non-GO 293 

annotation sets. As shown in Figure 7a, semantic similarity increased when only co-294 

annotated gene pairs were considered. The mean pairwise semantic similarity 295 

increased from 0.217 for all genes with GO biological process annotations (first violin 296 

plot) to 0.543 for gene pairs co-annotated to the same EcoCyc pathway (second violin 297 

plot), and to 0.803 for gene pairs co-annotated to the same heteromeric protein complex 298 

(third violin plot). Mean profile similarity was even higher for gene pairs that are co-299 

annotated to both pathways and heteromeric protein complexes (mean=0.892) as well 300 

as for gene pairs that are co-annotated in all 5 annotation sets (mean=0.889), as shown 301 

in the fourth and fifth violin plots, respectively. These results show that co-annotated 302 

gene pairs are also enriched for functional similarity based on GO biological process 303 

annotations. 304 

 305 

To test whether gene pairs that have higher phenotypic profile similarity are more likely 306 

to have similar functions based on GO biological process annotations, we compared the 307 
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distributions of semantic similarity values for all gene pairs annotated with GO biological 308 

process terms and for subsets of these gene pairs that have high phenotypic profile 309 

similarity based on |PCC| or MI. The violin plots in Figure 7b show, from left to right, the 310 

distribution of semantic similarity values for all gene pairs with GO biological process 311 

annotations, the subset of gene pairs with |PCC| >0.75, the subset of gene pairs with MI 312 

>0.15 (where MI was determined using the ternary qualitative fitness scores for all growt 313 

conditions), and the subset of gene pairs with MI >0.32 (where . Comparison of the first 314 

two violin plots shows that gene pairs with |PCC| >0.75 are significantly enriched for 315 

higher semantic similarity. (The cutoff of |PCC| >0.75 was chosen arbitrarily to represent 316 

a moderate to high correlation (Hinkle et al., 2002).) Enrichment for higher semantic 317 

similarity scores was also seen for the next two subsets of gene pairs, where 318 

phenotypic profile similarity was calculated using the qualitative, ternary fitness values 319 

for either all 324 growth conditions (third violin plot) or for the collapsed set of 114 320 

growth conditions (fourth violin plot). (The MI cutoffs of >0.15 for the third violin plot and 321 

>0.32 for the fourth violin plot were chosen so that all three subsets of gene pairs would 322 

contain the same number (~1,000) of top-ranked gene pairs.) These results are 323 

consistent with those in Figure 4b, which show higher phenotypic profile similarity 324 

enriches for co-annotated gene pairs. 325 

 326 

In order to assess whether gene pairs that have higher semantic similarity also have 327 

higher phenotypic profile similarity, we chose an arbitrary cutoff of 0.5 for semantic 328 

similarity and used it to select a subset of gene pairs from the entire set of gene pairs 329 

with GO biological process annotations. We then compared the distribution of semantic 330 
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similarity scores for the two sets of gene pairs. The violin plots are shown in Figure 8. 331 

Although the two distributions appeared almost identical, the subset of gene pairs with 332 

semantic similarity >0.5 is enriched for gene pairs with higher phenotypic profile 333 

similarity. The difference in the mean |PCC| values for the two distributions is small 334 

(0.093 vs 0.10), but it is statistically significant based on the Mann-Whitney test, 335 

p<0.0001. This is consistent with Figure 1, where co-annotated gene pairs show 336 

enriched phenotypic similarity.  337 

 338 

DISCUSSION 339 

We systematically reanalyzed a published high-throughput phenotypic profile dataset for 340 

the model Gram-negative bacterium E. coli comparing different metrics for measuring 341 

phenotypic profile similarity, and assessing the effect of converting quantitative fitness 342 

scores to qualitative fitness on measurements of phenotypic profile similarity. We re-343 

examined the E. coli phenotypic profiles in a pairwise fashion with the help of existing 344 

functional annotations. Overall, we found that gene pairs with functional associatons are 345 

enriched for high phenotypic profile similarity scores and that gene pairs with high 346 

phenotypic similarity scores tend to have functional associations.  347 

 348 

Six high-quality annotations sets were used as sources of functional information. The 349 

gene annotations in EcoCyc, RegulonDB, KEGG, and GO come primarily from expert 350 

manual curation (Gama-Castro et al. 2016; Kanehisa et al. 2016; Keseler et al. 2017; 351 

Keseler, 2014; Gene Ontology Consortium, 2017). The GO biological process 352 

annotations include ~1,200 annotations (21%) that are inferred from electronic 353 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 16, 2020. ; https://doi.org/10.1101/2020.07.16.206243doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.16.206243
http://creativecommons.org/licenses/by-nc/4.0/


 

 

17 

annotation without additional human review. We decided to include the electronic 354 

annotations in our analysis because most of them come from the transfer of annotations 355 

from orthologous gene products or are based on mappings from external sources, such 356 

as InterPro2GO or EC2GO, which have been shown to be very accurate (Camon et al. 357 

2005; Hill et al. 2001; Holliday et al. 2017). Indeed, there was no significant difference in 358 

the semantic similarity of gene pairs whether electronic annotations were included 359 

(Figure 7b) or excluded (Figure S4).  360 

 361 

One aim of this study was to determine whether different metrics for determining 362 

phenotypic profile similarity differed in their ability to identify gene pairs with functional 363 

similarity. We compared the performance of the metrics based on precision: the fraction 364 

of positive results that are true positives. Gene pairs with phenotypic profile similarity 365 

above a specified cutoff were considered as positive results, and true positives were 366 

defined as gene pairs that are co-annotated in at least one of the five annotation sets. 367 

We chose to use precision rather than accuracy, which is the fraction of correct 368 

results, because the co-annotated and non-co-annotated gene pairs constitute a highly 369 

imbalanced dataset (Saito & Rehmsmeier, 2015). Because the number of non-co-370 

annotated gene pairs is much larger than the number of co-annotated gene pairs, high 371 

accuracy could be achieved by classifying all gene pairs as true negatives, but this 372 

wouldn’t be very informative. 373 

 374 

Overall, there appeared to be little difference in the performance of |PCC|, |SRCC| or MI 375 

based on their precision scores for the top 500 gene pairs (Figure 4b). Initially, it 376 
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appeared that |SRCC| and MI outperformed |PCC| (Figure 4a). However, when the 377 

analysis was repeated after removing the conditions involving growth on minimal media, 378 

the precision for gene pairs ranked based on |PCC| increased significantly (compare 379 

Figures 4a and 4b). We suggest that this difference is due to the sensitivity of the 380 

Pearson Correlation Coefficient to outliers in the data (Schober et al., 2018). We 381 

realized that the collection of strains used by Nichols et al. contains many mutants that 382 

have little or no growth on minimal media because the gene for a biosynthetic enzyme 383 

is deleted. In contrast, these auxotrophic mutants didn’t have a significant phenotype in 384 

most of the other growth conditions tested, which used rich media, so the large negative 385 

fitness scores on minimal media were essentially outliers. In our analysis, the sensitivity 386 

of PCC to outliers interfered with the measurement of precision because there were so 387 

many combinations of genes from different biosynthetic pathways that shared an 388 

auxotrophic phenotype but did not share a functional annotation in the annotation sets 389 

used.  390 

 391 

However, this doesn’t mean that |PCC| can’t be used to measure phenotypic profile 392 

similarity in high-throughput phenotype screens. For most gene pairs that don’t include 393 

an auxotrophic mutant, the phenotypic profile similarity (based on |PCC|) changed very 394 

little when minimal media conditions were removed (data not shown). However, there 395 

were a few gene pairs where a possible functional association could have been missed 396 

if the minimal media conditions were not removed. We illustrate this with a gene pair 397 

where the functions of the gene products are known to have a functional association. 398 

The exbD and fepA genes are both needed for transport of ferric iron-enterobactin 399 
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across the outer membrane (Noinaj et al. 2010). When profile similarity was calculated 400 

using the fitness scores for all conditions, |PCC| = 0.4773. After minimal media 401 

conditions were removed, |PCC| increased to 0.6204, a high enough correlation that this 402 

gene pair would be a reasonable candidate for future experiments.  403 

 404 

In addition to showing comparable precision, the three metrics, |PCC|, |SRCC|, and MI, 405 

also produced comparable profile similarity scores for many, although not all, gene 406 

pairs. We conclude that there is no single best way to measure phenotypic profile 407 

similarity. Instead, it may be advantageous to use more than one correlation metric 408 

when searching for functional associations. For high-throughput experiments that 409 

measured growth of a large number of strains in many different environments, it may 410 

also be useful to preprocess the fitness data, such as filtering or combining results from 411 

certain growth conditions. 412 

 413 

To make it easier to compare results for the different similarity metrics, we have made 414 

the data set from Nichols et al. available in a searchable, interactive format that allows 415 

queries for strains, conditions, and phenotypic profile similarity of gene pairs determined 416 

by |PCC|, |SRCC|, MI, and semantic similarity 417 

(https://microbialphenotypes.org/wiki/index.php?title=Special:Ecolispecialpage). 418 

 419 

The relationship between precision and ranking based on profile similarity shown in 420 

Figure 4b suggests that a shared function is known for most of the highly correlated 421 

gene pairs. To test this idea, we used a cutoff of |PCC| >0.75 to define highly correlated 422 
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gene pairs, filtered out the gene pairs that have no co-annotations, and then manually 423 

examined the gene pairs. If fitness scores for the growth conditions involving minimal 424 

media were excluded, there were only 10 non-co-annotated gene pairs (summarized in 425 

Table 1). We found functional associations that could explain the observed phenotypic 426 

profile similarity for 7 of the 10 gene pairs. In one case, the two genes (dsbB and dsbA) 427 

showed up as non-co-annotated because they are in a pathway that wasn’t yet included 428 

in EcoCyc version 21.1. The other six gene pairs highlight some of the challenges of 429 

creating (and using) annotation, such as deciding where pathways start and end and 430 

determining appropriate levels of granularity. For example, the gene pairs rfaF(waaF)-431 

rfaE(hldE) and rfaF(waaF)-lpcA (gmhA) are non-co-annotated, even though all three 432 

genes are required for synthesis of the lipid A-core oligosaccharide component of outer 433 

membrane lipopolysaccharide. The explanation is that rfaF(waaF) is annotated to the 434 

central assembly pathway for building the lipid-core oligosaccharide moiety, while 435 

rfaE(hldE) and lpcA(gmhA) are annotated to a branch pathway that builds one of the 436 

saccharide subunits of the core (Raetz & Whitfield, 2002). The functional association 437 

between the three genes would have been revealed if we had included GO annotations, 438 

since all three genes are annotated to the GO term for the lipopolysaccharide core 439 

region biosynthetic process (GO:0009244). 440 

 441 

We did not find a shared function for the last three non-coannotated gene pairs. Given 442 

that so many of the other highly correlated gene pairs do share a function, it is possible 443 

that future experiments will uncover a shared function for these three gene pairs. 444 

However, it also possible that the observed phenotypic profile similarity is fortuitous, as 445 
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we saw for mutants with an auxotrophic phenotype or mutants with increased sensitivity 446 

to DNA damage. For example, this may be the most likely explanation for the 447 

phenotypic similarity of the mnmE and apaH genes. Both are required for growth at pH 448 

4.5 (Nichols et al. 2011, Vivijs et al., 2016), but appear to function independently. 449 

MnmE, partnered with MnmG, modifies 2-thiouridine residues in the wobble position of 450 

tRNA anticodons (Elseviers et al., 1984), while ApaH is a diadenosine tetraphosphatase 451 

(Guranowski et al., 1983) and mRNA decapping enzyme (Luciano et al., 2019). Both 452 

MnmE and ApaH are proposed to affect resistance to pH and other stresses through 453 

their effects on gene expression (Dedon & Begley, 2014, Vivijs et al., 2016, Luciano et 454 

al., 2019). 455 

 456 

A significant conclusion from this study is that functional associations can still be 457 

inferred from phenotypic profiles after quantitative fitness scores are converted to 458 

qualitative, ternary fitness values. While some information was lost compared to using 459 

quantitative fitness scores, the precision based on qualitative fitness values was much 460 

greater than for randomly ordered gene pairs (Figure 6). This result suggests that 461 

inherently qualitative phenotypes, such as aspects of cell morphology, could be 462 

incorporated into phenotypic profiles and used to infer functional associations. It may 463 

also be possible to incorporate phenotype annotations into phenotypic profiles. These 464 

annotations typically capture information in a qualitative fashion and have previously 465 

been shown to be useful for inferring gene function (Hoehndorf et al., 2013; Ascensao 466 

et al., 2014). These results also suggest that using qualitative phenotypes may be a 467 

viable option for integrating phenotype information from different studies. Thus, we 468 
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believe that using qualitative phenotypes to combine more E. coli datasets, or datasets 469 

from other microorganisms, will allow us to extract many more functional insights.  470 
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MATERIALS & METHODS 471 
 472 

Sources of data 473 

The high-throughput phenotypic profiling data as normalized fitness scores were 474 

downloaded from supplemental Table S2 of the original paper (Nichols et al., 2011). 475 

Missing values (0.17% of total fitness scores) were replaced with population mean as 476 

an imputation method.  477 

 478 

Six annotation sets including GO annotations were obtained from various sources: From 479 

a downloaded version of EcoCyc version 21.1 480 

(http://bioinformatics.ai.sri.com/ecocyc/dist/flatfiles-52983746/), the ECK identifiers in 481 

supplemental Table S2 from the original research paper (Nichols et al., 2011) were 482 

verified, corrected and mapped to EcoCyc gene identifiers and b numbers using 483 

information in the file genes.txt. EcoCyc Pathway annotations were mapped to each 484 

gene using information in the file pathways.col. EcoCyc Protein complex annotations 485 

were mapped to each gene using information in the file protcplxs.col. KEGG module 486 

annotations were obtained and mapped by retrieving module name and b numbers from 487 

the KEGG website (https://www.kegg.jp). Operon and regulon annotations were 488 

obtained and mapped to each gene using a download of Regulon DB version 9.4 489 

(http://regulondb.ccg.unam.mx). The file operon.txt was the source of operon 490 

annotations. The file object_synonym.txt was used to map ECK12 gene identifiers to 491 

ECK gene identifiers. RegulonDB annotations were then obtained from the file 492 

regulon_d_tmp.txt and mapped to ECK identifiers. GO biological process annotations 493 

were obtained from the Ecocyc file gene_association.ecocyc and mapped to each gene 494 
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to produce the file 2017_05_ECgene_association.ecocyc.csv. UniProt IDs retrieved 495 

from the Bioconductor package UniProt.ws were used to associate GO annotations 496 

from proteins to genes. The number of genes annotated by each annotation set and the 497 

total number of annotations are shown in Table 2. 498 

 499 

Statistical analysis and software 500 

The statistical programming language R was used throughout the study. Phenotypic 501 

profile similarity was calculated using Pearson Correlation Coefficient (|PCC|), 502 

Spearman’s Rank Correlation Coefficient (|SRCC|), Mutual Information, and semantic 503 

similarity. Pearson and Spearman’s Rank Correlation Coefficients were calculated using 504 

the cor() function, with the metric argument specified by either "pearson" or "spearman". 505 

Different implementations are needed to calculate Mutual Information for continuous, 506 

quantitative data and discretized, qualitative data. Mutual Information for quantitative 507 

data was calculated using the cminjk() function provided in the mpmi package, while 508 

Mutual Information for discretized data was calculated using the mutinformation() 509 

function provided in the infotheo package. Both packages are available from CRAN 510 

(https://cran.r-project.org/web/packages/mpmi/index.html). The semantic similarity of 511 

GO biological process annotations was calculated using a graph-based method (Wang 512 

et al., 2007). Calculations were performed using the GOSemSim package (Yu et al., 513 

2010) from Bioconductor. For the Mann-Whitney U test, wilcox.test() function was used. 514 

For violin plots, geom_violin() was used to plot the kernel density plot and geom_box() 515 

was used for the boxplot. Both functions are from the ggplot2 package (Wickham, 516 

2016). In the box plots associated with each violin plot, the middle lines in the boxes 517 
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represent medians; the whiskers indicate the 1.5 interquartile range (IQR) away from 518 

either Q1 (lower box boundary) or Q3 (upper box boundary).  519 

 520 

The code and data files used for calculations and reproducing the results are available 521 

on GitHub: https://github.com/peterwu19881230/Systematic-analyses-ecoli-phenotypes.  522 

  523 
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TABLES AND FIGURES 646 

Table 1 Non-co-annotated gene pairs with |PCC| >0.75 647 

 

Gene pair1 

Known or predicted functional 

association 

ECK0730-pal_ECK0725-ybgC2 Tol-Pal cell envelope complex (CPLX0-2201) 

ECK0768-uvrB_ ECK2563-recO DNA repair (recombinational repair RECFOR-

CPLX and nucleotide excision repair UVRABC-

CPLX) 

ECK1912-uvrC_ECK2563-recO DNA repair (recombinational repair RECFOR-

CPLX and nucleotide excision repair UVRABC-

CPLX) 

ECK2901-visC(ubiI)_ECK3033-yqiC(ubiK)3 ubiquinol-8 biosynthesis (PWY-6708) 

ECK3610-rfaF(waaF)_ECK3042-rfaE(hldE)4 superpathway of lipopolysaccharide 

biosynthesis (LPSSYN-PWY) 

ECK3610-rfaF(waaF)_ECK0223-lpcA4 super pathway of lipopolysaccharide 

biosynthesis (LPSSYN-PWY) 

ECK3852-dsbA_ECK1173-dsbB periplasmic disulfide bond formation (PWY0-

1599)5 

  
ECK1544-gnsB_ECK2394-gltX unknown 

ECK2066-yegK(pphC)_ECK0345-mhpB unknown 

ECK3699-mnmE_ECK0050-apaH unknown 

 648 
1 The strain names are from supplemental Table S2 of Nichols et al. (2011). Where the gene 649 

name has changed, the new gene name is included in parentheses. 650 
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2 ybgC is in an operon that also includes the genes for three of the protein components of the 651 

Tol-Pal cell envelope complex 652 

3 ubiK codes for an accessory protein required for efficient synthesis of ubiquinol-8 under 653 

aerobic conditions, but is not annotated as part the ubiquinol-8 biosynthesis pathway 654 

4 rfaE(hldE) and lpcA are not annotated to the super pathway of lipopolysaccharide biosynthesis 655 

(LPSSYN-PWY) 656 

5 PWY0-1599 was not present in EcoCyc version 21.1  657 
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Table 2. Annotation sets used in this study 658 

Annotation set (source) Subset of 
annotated 
genes testeda 

Total no. of 
annotations for 
each subsetb 

Pathways (EcoCyc) 885 2,317 

Heterooligomeric protein 
complexes (EcoCyc)  

688c 

 
871c 

Operons (RegulonDB)  3,858 5,349 

Regulons (RegulonDB) 1,572 3,886 

Modules (KEGG) 333 524 

Pathways or Protein 
complexes 

1,385 3,269 

Pathways and Protein 
Complexes 

188 818d  

Any (Union of all 5 
annotation sets) 

3,866 12,937 

All (Intersection of all 5 
annotation sets) 

77 922d 

GO biological process 2,609 5,775 

a Number of annotated genes that were deleted or 

otherwise mutated in the Nichols strain set (Nichols et al., 

2011). 
b Total number of annotations associated with the genes 

in the first column. 
c This excludes 681 genes annotated to protein 

complexes whose products form only homooligomeric 

complexes  
d This is the number of annotations associated with any of 

the 77 genes that are annotated to all 5 annotation sets. 

 659 
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 660 

 661 

 662 

Figure 1. Higher phenotypic similarity was found for co-annotated gene pairs. 663 

Shown are violin plots of the distributions of |PCC| for the indicated groups of gene 664 

pairs. Numbers above each violin plot indicate the number of gene pairs in each plot. 665 

***: p-value <0.001 was determined by 1-sided Mann-Whitney U test, compared to all 666 

gene pairs. The dashed line indicates |PCC| = 0.75, which was chosen as an arbitrary 667 

cut-off. 668 
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 670 

 671 

Figure 2. Increased co-annotation was found for gene pairs with higher 672 

phenotypic profile similarity. Gene pairs were ranked from high to low similarity 673 

based on |PCC| values and plotted versus precision [TP/(TP+FP)], which was 674 

calculated as described in the text (only the first 500 gene pairs are shown). Note that 675 

for the first few gene pairs the lines overlap except the line for protein complexes. The 676 

dashed line shows precision for randomly ordered gene pairs (negative control). The 677 

correspondence between |PCC| and ranking is shown below the graph. 678 
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 680 

 681 

Figure 3. Precision increased when minimal media conditions were excluded. 682 

Gene pairs were ranked from high to low similarity based on |PCC| and plotted versus 683 

precision, calculated as described in the text (only the first 500 gene pairs are shown). 684 

The dashed line shows precision for randomly ordered gene pairs (negative control). 685 

The correspondence between |PCC| and ranking is the same as in Figure 2. 686 
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Figure 4a  688 

 689 

Figure 4b 690 

 691 
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Figure 4. Precision versus ranking for different methods of measuring phenotype 692 

profile similarity. Gene pairs were ranked from high to low similarity and plotted versus 693 

precision, calculated as described in the text (only the first 500 gene pairs are shown). 694 

Phenotypic profile similarity was assessed using either |PCC|, MI, or |SRCC| with (a) all 695 

growth conditions used or (b) excluding growth conditions with minimal media. The 696 

dashed line shows precision for randomly ordered gene pairs (negative control). The 697 

correspondence between similarity scores and ranking is shown below each graph. 698 
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Figure 5a700 

 701 

Figure 5b 702 

 703 

 704 
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Figure 5. Phenotypic profile similarity after converting fitness scores from 706 

quantitative to qualitative, ternary values. Shown are violin plots of the distributions 707 

of phenotypic profile similarity based on Mutual Information for the indicated groups of 708 

gene pairs. Panel (a) shows results determined using all 324 growth conditions, and 709 

panel (b) shows results determined after collapsing the growth conditions to 114 unique 710 

stresses. The insets show the mean value for each distribution. For (a) the mean values 711 

are 0.0006, 0.014, 0.014, 0.039, and 0.057). For (b) the mean values are 0.0021, 0.026, 712 

0.025, 0.073, and 0.1). ***: p-value <0.001 determined by 1-sided Mann-Whitney U test. 713 

714 
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  715 

 716 

Figure 6. Precision versus ranking for quantitative versus qualitative, ternary 717 

fitness scores. Gene pairs were ranked from high to low similarity based on Mutual 718 

Information (MI) and plotted versus precision, calculated as described in the text (only 719 

the first 500 gene pairs are shown). The phenotypic profiles contained either the original 720 

quantitative data (black line), the discretized ternary values for all growth conditions 721 

(brown line), or the discretized, ternary values for growth conditions collapsed to 114 722 

unique stresses (orange line). The dashed line shows precision for randomly ordered 723 

gene pairs (negative control). The correspondence between similarity scores and 724 

ranking is shown below each graph.   725 
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Figure 7a 726 

 727 

Figure 7b 728 

 729 

 730 
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Figure 7. Higher semantic similarity and phenotypic profile similarity were found 732 

for co-annotated gene pairs. (a) Violin plots of the distributions of semantic similarity 733 

for the indicated groups of gene pairs. Numbers above each violin plot indicate the 734 

number of gene pairs in each plot. (b) Violin plots of semantic similarity for, from left to 735 

right: all gene pairs annotated with GO biological process term(s); the subset of gene 736 

pairs with |PCC| >0.75; the subset of gene pairs with MI >0.15 (calculated based on 737 

qualitative fitness scores for all growth conditions); and MI >0.32 (calculated based on 738 

qualitative fitness scores for the collapsed set of growth conditions). The cutoffs of MI 739 

>0.15 for the third violin plot and MI >0.32 for the fourth violin plot were chosen so that 740 

all three subsets of gene pairs would contain the same number (~1,000) of top-ranked 741 

gene pairs. ***: p-value <0.001 was determined by 1-sided Mann-Whitney U test, 742 

compared to all gene pairs.  743 
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744 

Figure 8. Higher phenotypic similarity was found for gene pairs that have higher 745 

GO semantic similarity. Violin plots of the distributions of the |PCC| values for all gene 746 

pairs with GO biological process annotations and the subset with semantic similarity is 747 

greater than an arbitrary cutoff of 0.5. Numbers above each violin plot indicate the 748 

number of gene pairs in each plot. ***: p-value <0.001 was determined by 1-sided 749 

Mann-Whitney U test, compared to all gene pairs. 750 
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Supplemental Tables and Figures 751 

 Supplemental Table S1  pages 47-59 752 

 Supplemental Table S2 pages 60-68 753 

 Supplemental Figure S1 pages 69-70 754 

 Supplemental Figure S2 pages 71-72 755 

 Supplemental Figure S3 page 73 756 

 Supplemental Figure S4 page 74 757 
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Supplemental Table S1. EcoCyc Pathways IDs and name of pathway for the labels 759 

used in Supplemental Figure S1. 760 

Label 
No. EcoCyc Pathway ID Pathway name 

1 HOMOSER-THRESYN-PWY L-threonine biosynthesis 

2 PWY0-1505 
ArcAB Two-Component Signal 
Transduction System, quinone dependent 

3 XYLCAT-PWY xylose degradation I 
4 PYRUVDEHYD-PWY pyruvate decarboxylation to acetyl CoA 

5 PWY0-1458 

PhoQP Two-Component Signal 
Transduction System, magnesium-
dependent 

6 PWY0-1487 
CreCB Two-Component Signal 
Transduction System 

7 GLUTATHIONESYN-PWY glutathione biosynthesis 

8 PWY0-1509 
NtrBC Two-Component Signal 
Transduction System, nitrogen-dependent 

9 PWY0-1474 
AtoSC Two-Component Signal 
Transduction System 

10 PWY-6890 
4-amino-2-methyl-5-
diphosphomethylpyrimidine biosynthesis 

11 PWY0-1554 5-(carboxymethoxy)uridine biosynthesis 

12 PWY-66 
GDP-L-fucose biosynthesis I (from GDP-
D-mannose) 

13 GLUTDEG-PWY L-glutamate degradation II 

14 PWY-7335 
UDP-N-acetyl-&alpha;-D-
mannosaminouronate biosynthesis 

15 PWY0-1500 
EnvZ Two-Component Signal 
Transduction System, osmotic responsive 

16 PWY0-1470 

QseBC Two-Component Signal 
Transduction System, quorum sensing 
related 

17 PWY0-1468 

DcuSR Two-Component Signal 
Transduction System, dicarboxylate-
dependent 

18 PWY-6153 autoinducer AI-2 biosynthesis I 

19 PWY0-1490 
EvgSA Two-Component Signal 
Transduction System 

20 BETSYN-PWY 
glycine betaine biosynthesis I (Gram-
negative bacteria) 

21 PWY0-1499 
DpiBA Two-Component Signal 
Transduction System 
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22 PWY-7343 UDP-&alpha;-D-glucose biosynthesis I 
23 2PHENDEG-PWY phenylethylamine degradation I 
24 PWY0-1264 biotin-carboxyl carrier protein assembly 
25 PWY-7761 NAD salvage pathway II 

26 PWY0-1559 
BtsSR Two-Component Signal 
Transduction System 

27 PWY0-1550 
YpdAB Two-Component Signal 
Transduction System 

28 GLUAMCAT-PWY N-acetylglucosamine degradation I 
29 GLUTSYN-PWY L-glutamate biosynthesis I 
30 GLUCONSUPER-PWY D-gluconate degradation 
31 RIBOKIN-PWY ribose phosphorylation 
32 PWY-6910 hydroxymethylpyrimidine salvage 

33 ALKANEMONOX-PWY 
two-component alkanesulfonate 
monooxygenase 

34 PWY-6147 
6-hydroxymethyl-dihydropterin 
diphosphate biosynthesis I 

35 PWY-40 putrescine biosynthesis I 
36 PWY0-1182 trehalose degradation II (trehalase) 
37 PWY0-461 L-lysine degradation I 
38 TREDEGLOW-PWY trehalose degradation I (low osmolarity) 

39 PWY0-1492 
UhpBA Two Component Signal 
Transduction System 

40 PWY0-1483 

PhoRB Two-Component Signal 
Transduction System, phosphate-
dependent 

41 PWY0-1485 
CpxAR Two-Component Signal 
Transduction System 

42 PWY-901 
methylglyoxal degradation II (no longer 
recognized as a pathway in EcoCyc) 

43 PWY0-1587 
N6-L-threonylcarbamoyladenosine37-
modified tRNA biosynthesis 

44 PWY0-1498 
ZraSR Two-Component Signal 
Transduction System 

45 PWY0-1482 
BasSR Two-Component Signal 
Transduction System 

46 CYANCAT-PWY cyanate degradation 

47 PWY-7247 
&beta;-D-glucuronide and D-glucuronate 
degradation 

48 PWY0-1021 L-alanine biosynthesis III 
49 PWY-2161 folate polyglutamylation 

50 PWY0-1503 
GlrKR Two-Component Signal 
Transduction System 
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51 PWY-6019 pseudouridine degradation 
52 ENTNER-DOUDOROFF-PWY Entner-Doudoroff pathway I 
53 BSUBPOLYAMSYN-PWY spermidine biosynthesis I 
54 TRESYN-PWY trehalose biosynthesis I 
55 PWY0-1477 ethanolamine utilization 
56 PWY-7194 pyrimidine nucleobases salvage II 
57 PWY0-1433 tetrahydromonapterin biosynthesis 
58 PWY-6605 adenine and adenosine salvage II 

59 PWY0-1588 
HprSR Two-Component Signal 
Transduction System 

60 PWY0-1280 ethylene glycol degradation 
61 PWY0-1317 L-lactaldehyde degradation (aerobic) 
62 PWY-5459 methylglyoxal degradation IV 
63 ALANINE-SYN2-PWY L-alanine biosynthesis II 

64 PWY-7179 
purine deoxyribonucleosides degradation 
I 

65 PWY-7176 UTP and CTP de novo biosynthesis 

66 PWY0-1519 
Aerotactic Two-Component Signal 
Transduction System 

67 PWY0-1481 
BaeSR Two-Component Signal 
Transduction System 

68 PWY0-1501 
BarA UvrY Two-Component Signal 
Transduction System 

69 PWY0-1512 
CusSR Two-Component Signal 
Transduction System 

70 PWY0-1506 
TorSR Two-Component Signal 
Transduction System, TMAO dependent 

71 PWY-6703 preQ0 biosynthesis 

72 PWY-7197 
pyrimidine deoxyribonucleotide 
phosphorylation 

73 PWY-7205 CMP phosphorylation 
74 PWY0-1534 hydrogen sulfide biosynthesis I 
75 ASPARAGINESYN-PWY L-asparagine biosynthesis II 

76 PWY0-1325 
superpathway of L-asparagine 
biosynthesis 

77 PWY-7193 pyrimidine ribonucleosides salvage I 
78 PWY-6537 4-aminobutanoate degradation II 

79 PWY0-1495 

KdpDE Two-Component Signal 
Transduction System, potassium-
dependent 

80 PWY0-1517 sedoheptulose bisphosphate bypass 
81 PWY0-1309 chitobiose degradation 
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82 PWY0-1497 
RstBA Two-Component Signal 
Transduction System 

83 PWY-5123 
trans, trans-farnesyl diphosphate 
biosynthesis 

84 PWY0-661 PRPP biosynthesis II 
85 PROSYN-PWY L-proline biosynthesis I 
86 GLYCLEAV-PWY glycine cleavage 
87 SERSYN-PWY L-serine biosynthesis 
88 PWY-5340 sulfate activation for sulfonation 
89 PWY-5901 2,3-dihydroxybenzoate biosynthesis 
90 CYSTSYN-PWY L-cysteine biosynthesis I 

91 PWY0-1515 
NarX Two-Component Signal 
Transduction System, nitrate dependent 

92 KDOSYN-PWY Kdo transfer to lipid IVA I 

93 PWY0-1514 
NarQ Two-Component Signal 
Transduction System, nitrate dependent 

94 PWY0-1275 lipoate biosynthesis and incorporation II 
95 PWY0-901 L-selenocysteine biosynthesis I (bacteria) 

96 PWY0-521 
fructoselysine and psicoselysine 
degradation 

97 PANTO-PWY phosphopantothenate biosynthesis I 

98 PWY-7221 
guanosine ribonucleotides de novo 
biosynthesis 

99 AMMASSIM-PWY ammonia assimilation cycle III 
100 PWY-5965 fatty acid biosynthesis initiation III 
101 IDNCAT-PWY L-idonate degradation 
102 LYXMET-PWY L-lyxose degradation 
103 PUTDEG-PWY putrescine degradation I 
104 GALACTCAT-PWY D-galactonate degradation 
105 HOMOSERSYN-PWY L-homoserine biosynthesis 

106 PWY-1801 
formaldehyde oxidation II (glutathione-
dependent) 

107 THREONINE-DEG2-PWY L-threonine degradation II 
108 PWY0-1303 aminopropylcadaverine biosynthesis 
109 PWY0-1312 acetate formation from acetyl-CoA I 
110 SALVPURINE2-PWY xanthine and xanthosine salvage 
111 ASPARAGINE-DEG1-PWY L-asparagine degradation I 
112 PWY0-44 D-allose degradation 
113 ALADEG-PWY L-alanine degradation I 

114 NADPHOS-DEPHOS-PWY 
NAD phosphorylation and 
dephosphorylation 
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115 PWY0-1493 
RcsCDB Two-Component Signal 
Transduction System 

116 PPGPPMET-PWY ppGpp biosynthesis 
117 PWY-6543 4-aminobenzoate biosynthesis 
118 PLPSAL-PWY pyridoxal 5'-phosphate salvage I 

119 PWY0-1415 
superpathway of heme b biosynthesis 
from uroporphyrinogen-III 

120 PWY0-1518 
Chemotactic Two-Component Signal 
Transduction 

121 OXIDATIVEPENT-PWY 
pentose phosphate pathway (oxidative 
branch) I 

122 PWY-6038 citrate degradation 

123 PWY0-823 
L-arginine degradation III (arginine 
decarboxylase/agmatinase pathway) 

124 PWY-7181 
pyrimidine deoxyribonucleosides 
degradation 

125 THIOREDOX-PWY thioredoxin pathway 
126 PWY0-1337 oleate &beta;-oxidation 
127 PWY-6614 tetrahydrofolate biosynthesis 
128 PWY-6535 4-aminobutanoate degradation I 

129 PWY0-1300 
2-O-&alpha;-mannosyl-D-glycerate 
degradation 

130 PWY-7208 
superpathway of pyrimidine nucleobases 
salvage 

131 PWY-5698 
allantoin degradation to ureidoglycolate II 
(ammonia producing) 

132 PYRIDNUCSAL-PWY NAD salvage pathway I 
133 ETOH-ACETYLCOA-ANA-PWY ethanol degradation I 
134 PWY-5162 2-oxopentenoate degradation 

135 THRDLCTCAT-PWY 
L-threonine degradation III (to 
methylglyoxal) 

136 UDPNAGSYN-PWY 
UDP-N-acetyl-D-glucosamine 
biosynthesis I 

137 PWY0-1319 CDP-diacylglycerol biosynthesis II 
138 PWY0-1569 autoinducer AI-2 degradation 
139 PWY-5436 L-threonine degradation IV 

140 PWY0-1324 
N-acetylneuraminate and N-
acetylmannosamine degradation I 

141 PWY0-43 conversion of succinate to propanoate 

142 SER-GLYSYN-PWY 
superpathway of L-serine and glycine 
biosynthesis I 

143 PWY0-1241 
ADP-L-glycero-&beta;-D-manno-heptose 
biosynthesis 
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144 PWY-6708 ubiquinol-8 biosynthesis (prokaryotic) 

145 PWY-7545 
pyruvate to cytochrome bd oxidase 
electron transfer 

146 PYRIDNUCSYN-PWY NAD biosynthesis I (from aspartate) 

147 PWY0-1568 
NADH to cytochrome bd oxidase electron 
transfer II 

148 PANTOSYN-PWY 
superpathway of coenzyme A 
biosynthesis I (bacteria) 

149 PWY-7242 D-fructuronate degradation 
150 PWY-6897 thiamine salvage II 
151 GLYCEROLMETAB-PWY glycerol degradation V 
152 FUCCAT-PWY fucose degradation 
153 PWY-6556 pyrimidine ribonucleosides salvage II 
154 PWY0-1338 polymyxin resistance 
155 PWY-5966 fatty acid biosynthesis initiation II 
156 PWY-7195 pyrimidine ribonucleosides salvage III 
157 PWY-7446 sulfoquinovose degradation I 
158 ACETOACETATE-DEG-PWY acetoacetate degradation (to acetyl CoA) 

159 PWY0-301 
L-ascorbate degradation I (bacterial, 
anaerobic) 

160 KDO-LIPASYN-PWY (Kdo)2-lipid A biosynthesis I 

161 GLYCOGENSYNTH-PWY 
glycogen biosynthesis I (from ADP-D-
Glucose) 

162 PWY-6700 queuosine biosynthesis 
163 AST-PWY L-arginine degradation II (AST pathway) 
164 ALANINE-VALINESYN-PWY L-alanine biosynthesis I 
165 PWY-4381 fatty acid biosynthesis initiation I 

166 PWY0-1507 
biotin biosynthesis from 8-amino-7-
oxononanoate I 

167 PWY-6611 adenine and adenosine salvage V 
168 PWY0-1573 nitrate reduction VIIIb (dissimilatory) 

169 PWY-7180 
2'-deoxy-&alpha;-D-ribose 1-phosphate 
degradation 

170 SERDEG-PWY L-serine degradation 
171 DARABCATK12-PWY D-arabinose degradation I 

172 PWY-5785 
di-trans,poly-cis-undecaprenyl phosphate 
biosynthesis 

173 PWY0-1221 putrescine degradation II 
174 TYRSYN L-tyrosine biosynthesis I 
175 PWY0-1545 cardiolipin biosynthesis III 
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176 PWY0-181 
salvage pathways of pyrimidine 
deoxyribonucleotides 

177 PWY-1269 
CMP-3-deoxy-D-manno-octulosonate 
biosynthesis 

178 PWY-7206 
pyrimidine deoxyribonucleotides 
dephosphorylation 

179 PWY-5705 allantoin degradation to glyoxylate III 
180 PWY0-1295 pyrimidine ribonucleosides degradation 
181 GLYOXDEG-PWY glycolate and glyoxylate degradation II 
182 PWY-6164 3-dehydroquinate biosynthesis I 
183 CARNMET-PWY L-carnitine degradation I 

184 PWY-5350 
thiosulfate disproportionation IV 
(rhodanese) 

185 PWY-5659 GDP-mannose biosynthesis 

186 PWY-6122 
5-aminoimidazole ribonucleotide 
biosynthesis II 

187 PWY-6121 
5-aminoimidazole ribonucleotide 
biosynthesis I 

188 PWY0-1565 
D-lactate to cytochrome bo oxidase 
electron transfer 

189 PWY0-1567 
NADH to cytochrome bo oxidase electron 
transfer II 

190 PWY0-1544 
proline to cytochrome bo oxidase electron 
transfer 

191 PWY-7544 
pyruvate to cytochrome bo oxidase 
electron transfer 

192 PWY0-1561 
glycerol-3-phosphate to cytochrome bo 
oxidase electron transfer 

193 PWY-6123 inosine-5'-phosphate biosynthesis I 

194 UBISYN-PWY 
superpathway of ubiquinol-8 biosynthesis 
(prokaryotic) 

195 TRPSYN-PWY L-tryptophan biosynthesis 
196 PWY0-501 lipoate biosynthesis and incorporation I 
197 DAPLYSINESYN-PWY L-lysine biosynthesis I 
198 GALACTUROCAT-PWY D-galacturonate degradation I 
199 GALACTMETAB-PWY galactose degradation I (Leloir pathway) 
200 LCYSDEG-PWY L-cysteine degradation II 

201 ACETATEUTIL-PWY 
superpathway of acetate utilization and 
formation 

202 PWY0-41 allantoin degradation IV (anaerobic) 

203 PWY-6961 
L-ascorbate degradation II (bacterial, 
aerobic) 
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204 COBALSYN-PWY 
adenosylcobalamin salvage from 
cobinamide I 

205 PWY-6012 acyl carrier protein metabolism 

206 FASYN-INITIAL-PWY 
superpathway of fatty acid biosynthesis 
initiation (E. coli) 

207 PWY-4621 arsenate detoxification II (glutaredoxin) 
208 DTDPRHAMSYN-PWY dTDP-L-rhamnose biosynthesis I 
209 GALACTARDEG-PWY D-galactarate degradation I 
210 PWY-6620 guanine and guanosine salvage 
211 PHESYN L-phenylalanine biosynthesis I 
212 PWY-4261 glycerol degradation I 
213 PWY-5386 methylglyoxal degradation I 
214 PWY-5668 cardiolipin biosynthesis I 
215 GLUCARDEG-PWY D-glucarate degradation I 
216 PWY0-1296 purine ribonucleosides degradation 
217 PWY-6151 S-adenosyl-L-methionine cycle I 
218 PWY0-1546 muropeptide degradation 
219 GLUT-REDOX-PWY glutathione-glutaredoxin redox reactions 

220 GLCMANNANAUT-PWY 

superpathway of N-acetylglucosamine, N-
acetylmannosamine and N-
acetylneuraminate degradation 

221 PWY0-1471 uracil degradation III 

222 PWY-5971 
palmitate biosynthesis II (bacteria and 
plants) 

223 PWY0-862 (5Z)-dodec-5-enoate biosynthesis I 

224 4AMINOBUTMETAB-PWY 
superpathway of 4-aminobutanoate 
degradation 

225 PWY-6277 
superpathway of 5-aminoimidazole 
ribonucleotide biosynthesis 

226 GLUTORN-PWY L-ornithine biosynthesis I 
227 PYRIDOXSYN-PWY pyridoxal 5'-phosphate biosynthesis I 
228 THRESYN-PWY superpathway of L-threonine biosynthesis 
229 P2-PWY citrate lyase activation 
230 DETOX1-PWY superoxide radicals degradation 
231 RIBOSYN2-PWY flavin biosynthesis I (bacteria and plants) 

232 PWY0-1584 
nitrate reduction X (dissimilatory, 
periplasmic) 

233 GLUCUROCAT-PWY 
superpathway of &beta;-D-glucuronosides 
degradation 

234 PWY-6579 
superpathway of guanine and guanosine 
salvage 

235 PWY-7315 dTDP-N-acetylthomosamine biosynthesis 
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236 HOMOSER-METSYN-PWY L-methionine biosynthesis I 

237 NRI-PWY 
Nitrogen Regulation Two-Component 
System 

238 PWY-6952 glycerophosphodiester degradation 
239 PWY-5437 L-threonine degradation I 

240 GLUCARGALACTSUPER-PWY 
superpathway of D-glucarate and D-
galactarate degradation 

241 PWY-6609 adenine and adenosine salvage III 
242 PWY-5453 methylglyoxal degradation III 
243 PWY0-42 2-methylcitrate cycle I 

244 PWY-6163 
chorismate biosynthesis from 3-
dehydroquinate 

245 PWY0-1297 
superpathway of purine 
deoxyribonucleosides degradation 

246 GLYOXYLATE-BYPASS glyoxylate cycle 
247 POLYISOPRENSYN-PWY polyisoprenoid biosynthesis (E. coli) 

248 PWY-6282 
palmitoleate biosynthesis I (from (5Z)-
dodec-5-enoate) 

249 FASYN-ELONG-PWY fatty acid elongation -- saturated 
250 LEUSYN-PWY L-leucine biosynthesis 

251 ILEUSYN-PWY 
L-isoleucine biosynthesis I (from 
threonine) 

252 METSYN-PWY 
L-homoserine and L-methionine 
biosynthesis 

253 PWY0-1353 
succinate to cytochrome bd oxidase 
electron transfer 

254 ASPASN-PWY 
superpathway of L-aspartate and L-
asparagine biosynthesis 

255 PWY0-1533 methylphosphonate degradation I 

256 PWY-7220 
adenosine deoxyribonucleotides de novo 
biosynthesis II 

257 PWY-7222 
guanosine deoxyribonucleotides de novo 
biosynthesis II 

258 PWY0-1582 
glycerol-3-phosphate to fumarate electron 
transfer 

259 NONOXIPENT-PWY 
pentose phosphate pathway (non-
oxidative branch) 

260 FAO-PWY fatty acid &beta;-oxidation I 
261 ORNDEG-PWY superpathway of ornithine degradation 
262 KETOGLUCONMET-PWY ketogluconate metabolism 

263 PWY0-381 
glycerol and glycerophosphodiester 
degradation 

264 PWY-5837 1,4-dihydroxy-2-naphthoate biosynthesis 
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265 GLYCOCAT-PWY glycogen degradation I 

266 PWY-7187 
pyrimidine deoxyribonucleotides de novo 
biosynthesis II 

267 PWY-7184 
pyrimidine deoxyribonucleotides de novo 
biosynthesis I 

268 PWY0-1298 
superpathway of pyrimidine 
deoxyribonucleosides degradation 

269 GLYCOLATEMET-PWY glycolate and glyoxylate degradation I 

270 PWY-6284 
superpathway of unsaturated fatty acids 
biosynthesis (E. coli) 

271 PWY-5973 cis-vaccenate biosynthesis 

272 GLUCOSE1PMETAB-PWY 
glucose and glucose-1-phosphate 
degradation 

273 SO4ASSIM-PWY sulfate reduction I (assimilatory) 
274 PWY-5686 UMP biosynthesis I 

275 PWY0-1329 
succinate to cytochrome bo oxidase 
electron transfer 

276 VALSYN-PWY L-valine biosynthesis 
277 ENTBACSYN-PWY enterobactin biosynthesis 

278 PWY-6892 
thiazole biosynthesis I (facultative 
anaerobic bacteria) 

279 PWY0-845 
superpathway of pyridoxal 5'-phosphate 
biosynthesis and salvage 

280 GALACT-GLUCUROCAT-PWY 
superpathway of hexuronide and 
hexuronate degradation 

281 NAGLIPASYN-PWY lipid IVA biosynthesis 

282 PWY-6690 
cinnamate and 3-hydroxycinnamate 
degradation to 2-oxopent-4-enoate 

283 HCAMHPDEG-PWY 

3-phenylpropanoate and 3-(3-
hydroxyphenyl)propanoate degradation to 
2-oxopent-4-enoate 

284 GALACTITOLCAT-PWY galactitol degradation 

285 PWY-6612 
superpathway of tetrahydrofolate 
biosynthesis 

286 PWY0-1355 
formate to trimethylamine N-oxide 
electron transfer 

287 PWY0-1576 hydrogen to fumarate electron transfer 

288 FUC-RHAMCAT-PWY 
superpathway of fucose and rhamnose 
degradation 

289 PWY0-1061 superpathway of L-alanine biosynthesis 
290 PWY0-1479 tRNA processing 
291 PWY-6519 8-amino-7-oxononanoate biosynthesis I 
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292 PWY0-163 
salvage pathways of pyrimidine 
ribonucleotides 

293 NONMEVIPP-PWY methylerythritol phosphate pathway I 

294 PWY0-881 
superpathway of fatty acid biosynthesis I 
(E. coli) 

295 HISTSYN-PWY L-histidine biosynthesis 
296 LIPA-CORESYN-PWY Lipid A-core biosynthesis 
297 PWY-6823 molybdenum cofactor biosynthesis 

298 PWY-6125 
superpathway of guanosine nucleotides 
de novo biosynthesis II 

299 PWY0-1581 nitrate reduction IX (dissimilatory) 

300 PWY0-1356 
formate to dimethyl sulfoxide electron 
transfer 

301 PWY0-1578 
hydrogen to trimethylamine N-oxide 
electron transfer 

302 POLYAMSYN-PWY superpathway of polyamine biosynthesis I 

303 OANTIGEN-PWY 
O-antigen building blocks biosynthesis (E. 
coli) 

304 PHOSLIPSYN-PWY 
superpathway of phospholipid 
biosynthesis I (bacteria) 

305 PWY-7196 
superpathway of pyrimidine 
ribonucleosides salvage 

306 ECASYN-PWY 
enterobacterial common antigen 
biosynthesis 

307 PWY0-162 
superpathway of pyrimidine 
ribonucleotides de novo biosynthesis 

308 PWY-7219 
adenosine ribonucleotides de novo 
biosynthesis 

309 GLUTAMINDEG-PWY L-glutamine degradation I 

310 MET-SAM-PWY 
superpathway of S-adenosyl-L-
methionine biosynthesis 

311 1CMET2-PWY N10-formyl-tetrahydrofolate biosynthesis 

312 PWY0-1577 
hydrogen to dimethyl sulfoxide electron 
transfer 

313 PENTOSE-P-PWY pentose phosphate pathway 
314 ARO-PWY chorismate biosynthesis I 
315 COLANSYN-PWY colanic acid building blocks biosynthesis 
316 PWY0-1261 anhydromuropeptides recycling I 
317 PWY0-1585 formate to nitrite electron transfer 
318 PWY0-321 phenylacetate degradation I (aerobic) 

319 PWY-5838 
superpathway of menaquinol-8 
biosynthesis I 
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320 THISYN-PWY 
superpathway of thiamine diphosphate 
biosynthesis I 

321 PWY-6387 

UDP-N-acetylmuramoyl-pentapeptide 
biosynthesis I (meso-diaminopimelate 
containing) 

322 PWY-7805 aminomethylphosphonate degradation 
323 PWY-6608 guanosine nucleotides degradation III 

324 GLYCOL-GLYOXDEG-PWY 
superpathway of glycol metabolism and 
degradation 

325 ARGSYN-PWY L-arginine biosynthesis I (via L-ornithine) 

326 PEPTIDOGLYCANSYN-PWY 
peptidoglycan biosynthesis I (meso-
diaminopimelate containing) 

327 PWY0-1277 
3-phenylpropanoate and 3-(3-
hydroxyphenyl)propanoate degradation 

328 PWY0-1321 nitrate reduction III (dissimilatory) 

329 ARGDEG-PWY 
superpathway of L-arginine, putrescine, 
and 4-aminobutanoate degradation 

330 BIOTIN-BIOSYNTHESIS-PWY biotin biosynthesis I 
331 TRNA-CHARGING-PWY tRNA charging 

332 PWY-6071 
superpathway of phenylethylamine 
degradation 

333 PWY0-166 

superpathway of pyrimidine 
deoxyribonucleotides de novo 
biosynthesis (E. coli) 

334 SALVADEHYPOX-PWY adenosine nucleotides degradation II 

335 METHGLYUT-PWY 
superpathway of methylglyoxal 
degradation 

336 PWY0-1347 
NADH to trimethylamine N-oxide electron 
transfer 

337 ORNARGDEG-PWY 
superpathway of L-arginine and L-
ornithine degradation 

338 PWY0-1334 
NADH to cytochrome bd oxidase electron 
transfer I 

339 PWY0-1348 
NADH to dimethyl sulfoxide electron 
transfer 

340 SULFATE-CYS-PWY 
superpathway of sulfate assimilation and 
cysteine biosynthesis 

341 PWY0-1335 
NADH to cytochrome bo oxidase electron 
transfer I 

342 PWY0-1336 NADH to fumarate electron transfer 

343 P4-PWY 
superpathway of L-lysine, L-threonine and 
L-methionine biosynthesis I 
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344 PWY-7211 

superpathway of pyrimidine 
deoxyribonucleotides de novo 
biosynthesis 

345 
BRANCHED-CHAIN-AA-SYN-
PWY 

superpathway of branched chain amino 
acid biosynthesis 

346 PWY0-1586 
peptidoglycan maturation (meso-
diaminopimelate containing) 

347 TCA TCA cycle I (prokaryotic) 

348 PWY-6126 
superpathway of adenosine nucleotides 
de novo biosynthesis II 

349 GLUCONEO-PWY gluconeogenesis I 
350 PWY0-1352 nitrate reduction VIII (dissimilatory) 

351 KDO-NAGLIPASYN-PWY 
superpathway of (Kdo)2-lipid A 
biosynthesis 

352 GLYCOLYSIS glycolysis I (from glucose 6-phosphate) 
353 PWY-5484 glycolysis II (from fructose 6-phosphate) 

354 COMPLETE-ARO-PWY 
superpathway of aromatic amino acid 
biosynthesis 

355 PWY0-781 aspartate superpathway 

356 TCA-GLYOX-BYPASS 
superpathway of glyoxylate bypass and 
TCA 

357 GLYCOLYSIS-E-D 
superpathway of glycolysis and the 
Entner-Doudoroff pathway 

358 THREOCAT-PWY superpathway of L-threonine metabolism 

359 ARG+POLYAMINE-SYN 
superpathway of arginine and polyamine 
biosynthesis 

360 LPSSYN-PWY 
superpathway of lipopolysaccharide 
biosynthesis 

361 HEXITOLDEGSUPER-PWY 
superpathway of hexitol degradation 
(bacteria) 

362 DENOVOPURINE2-PWY 
superpathway of purine nucleotides de 
novo biosynthesis II 

363 FERMENTATION-PWY mixed acid fermentation 

364 
GLYCOLYSIS-TCA-GLYOX-
BYPASS 

superpathway of glycolysis, pyruvate 
dehydrogenase, TCA, and glyoxylate 
bypass 

365 PRPP-PWY 
superpathway of histidine, purine, and 
pyrimidine biosynthesis 

366 ALL-CHORISMATE-PWY superpathway of chorismate metabolism 
  761 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 16, 2020. ; https://doi.org/10.1101/2020.07.16.206243doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.16.206243
http://creativecommons.org/licenses/by-nc/4.0/


 60 

Supplemental Table S2. EcoCyc protein complex IDs and name of protein complex for 762 

the labels used in Supplemental Figure S2. 763 

Label 
No. EcoCyc Protein complex ID Name of complex 

1 3-ISOPROPYLMALISOM-
CPLX 3-isopropylmalate dehydratase 

2 CPLX0-8178 
peptidoglycan glycosyltransferase / 
peptidoglycan DD-transpeptidase - MrcB-
LpoB complex 

3 SULFITE-REDUCT-CPLX assimilatory sulfite reductase (NADPH) 
4 TRYPSYN tryptophan synthase 

5 PC00027 DNA-binding transcriptional dual regulator 
IHF 

6 GLUTAMIDOTRANS-CPLX imidazole glycerol phosphate synthase 

7 SULFATE-
ADENYLYLTRANS-CPLX sulfate adenylyltransferase 

8 CPLX0-7609 5-carboxymethylaminomethyluridine-tRNA 
synthase [multifunctional] 

9 CPLX0-3107 ClpXP 
10 CARBPSYN-CPLX carbamoyl phosphate synthetase 
11 SUCCCOASYN succinyl-CoA synthetase 
12 PYRUVATEDEH-CPLX pyruvate dehydrogenase 
13 ABC-63-CPLX Zn2+ ABC transporter 
14 CYSSYNMULTI-CPLX cysteine synthase complex 
15 RNAP70-CPLX RNA polymerase sigma 70 
16 CPLX0-2021 DNA-binding transcriptional dual regulator HU 
17 CPLX-3946 exodeoxyribonuclease VII 
18 CPLX0-7910 DNA polymerase III, &psi;-&chi; subunit 
19 CPLX0-3949 thiazole synthase 
20 CPLX0-1321 HflK-HflC complex; regulator of FtsH protease 
21 ANTHRANSYN-CPLX anthranilate synthase 
22 CPLX0-7994 poly-N-acetyl-D-glucosamine synthase 
23 CPLX0-7529 polysaccharide export complex 
24 CPLX0-2502 molybdopterin synthase 
25 CPLX0-3104 ClpAP 
26 CPLX0-3959 Xer site-specific recombination system 
27 CPLX0-231 galactitol-specific PTS enzyme II 
28 CPLX-156 mannitol-specific PTS enzyme II CmtBA 
29 NAP-CPLX periplasmic nitrate reductase 
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30 TMAOREDUCTI-CPLX trimethylamine N-oxide reductase 1 

31 CPLX0-7720 undecaprenyl-phosphate-&alpha;-L-Ara4N 
flippase 

32 CPLX0-1163 HslVU protease 
33 ABC-6-CPLX glutathione / L-cysteine ABC exporter CydDC 
34 CPLX0-8239 Grx4-IbaG complex 

35 ACETOACETYL-COA-
TRANSFER-CPLX acetoacetyl-CoA transferase 

36 CPLX0-7852 GadE-RcsB DNA-binding transcriptional 
activator 

37 CPLX0-3925 DNA polymerase V 
38 CPLX-63 trimethylamine N-oxide reductase 2 

39 ACETOLACTSYNIII-CPLX acetolactate synthase / 
acetohydroxybutanoate synthase 

40 CPLX0-4 aromatic carboxylic acid efflux pump 
41 GLUTAMATESYN-DIMER glutamate synthase 
42 GLUTAMATESYN-CPLX glutamate synthase 
43 CPLX0-3821 HypA-HypB heterodimer 
44 PHES-CPLX phenylalanine&mdash;tRNA ligase 
45 CPLX0-2661 McrBC restriction endonuclease 
46 CPLX0-5 enterobactin export complex EntS-TolC 

47 NRDACTMULTI-CPLX anaerobic nucleoside-triphosphate reductase 
activating system 

48 CPLX0-7976 translocation and assembly module 
49 ABC-54-CPLX divisome protein complex FtsEX 
50 CPLX-3945 curli secretion and assembly complex 
51 CPLX0-241 tagatose-1,6-bisphosphate aldolase 2 
52 CPLX0-7 N-acetylmuramic acid-specific PTS enzyme II 
53 ABC-21-CPLX putative transport complex, ABC superfamily 
54 FAO-CPLX aerobic fatty acid oxidation complex 
55 CPLX0-7704 ATP-dependent Lipid A-core flippase 

56 RIBONUCLEOSIDE-DIP-
REDUCTII-CPLX ribonucleoside-diphosphate reductase 2 

57 DTDPRHAMSYNTHMULTI-
CPLX dTDP-L-rhamnose synthetase complex 

58 APP-UBIOX-CPLX cytochrome bd-II ubiquinol oxidase 
59 CPLX0-2221 Colicin E9 translocon 

60 CPLX0-8238 putative menaquinol-cytochrome c reductase 
NrfCD 

61 CPLX0-8182 N6-L-threonylcarbamoyladenine synthase 
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62 CPLX0-3976 Enterobacterial Common Antigen 
Biosynthesis Protein Complex 

63 CPLX0-8179 
peptidoglycan glycosyltransferase / 
peptidoglycan DD-transpeptidase - MrcA-
LpoA complex 

64 ASPCARBTRANS-CPLX aspartate carbamoyltransferase 

65 CPLX0-8230 HigB-HigA toxin/antitoxin complex and DNA-
binding transcriptional repressor 

66 PABASYN-CPLX 4-amino-4-deoxychorismate synthase 
67 CPLX0-7684 L-valine exporter 

68 PC00084 RcsAB DNA-binding transcriptional dual 
regulator 

69 CPLX0-8232 carnitine monooxygenase 
70 CPLX0-1668 anaerobic fatty acid &beta;-oxidation complex 
71 RNAP54-CPLX RNA polymerase sigma 54 

72 PYRNUTRANSHYDROGEN-
CPLX pyridine nucleotide transhydrogenase 

73 ETHAMLY-CPLX ethanolamine ammonia-lyase 
74 YDGEF-CPLX multidrug/spermidine efflux pump 
75 CPLX-159 putative PTS enzyme II FrvAB 

76 CPLX0-8213 periplasmic protein-L-methionine sulfoxide 
reducing system 

77 RNAPS-CPLX RNA polymerase sigma S 
78 CPLX-158 fructose-specific PTS enzyme II 
79 CPLX0-3922 primosome 
80 CPLX0-7909 RnlA-RnlB toxin-antitoxin complex 
81 CPLX0-7624 YhaV-PrlF toxin-antitoxin complex 

82 CPLX0-7791 RelB-RelE antitoxin/toxin complex / DNA-
binding transcriptional repressor 

83 CPLX0-7610 N-acetyl-D-galactosamine specific PTS 
(cryptic) 

84 CPLX0-7823 DosC-DosP complex 
85 ABC-61-CPLX putative transport complex, ABC superfamily 

86 CPLX0-7787 DinJ-YafQ antitoxin/toxin complex / DNA-
binding transcriptional repressor 

87 CPLX0-7988 PaaF-PaaG hydratase-isomerase complex 

88 CPLX0-3930 FlhDC DNA-binding transcriptional dual 
regulator 

89 CPLX0-8174 Cas1-Cas2 complex 
90 CPLX0-245 alkyl hydroperoxide reductase 

91 CPLX0-7916 RcsB-BglJ DNA-binding transcriptional 
activator 
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92 CPLX0-7788 NAD-dependent dihydropyrimidine 
dehydrogenase 

93 CPLX-157 glucose-specific PTS enzyme II 

94 CPLX0-3241 ubiquinol&mdash;[NapC cytochrome c] 
reductase NapGH 

95 CPLX0-8227 FicT-FicA complex 
96 CPLX0-3937 evolved &beta;-D-galactosidase 
97 CPLX0-1841 predicted xanthine dehydrogenase 
98 CPLX0-7942 Grx4-BolA complex 

99 SECD-SECF-YAJC-YIDC-
CPLX Sec translocon accessory complex 

100 FABZ-CPLX 3-hydroxy-acyl-[acyl-carrier-protein] 
dehydratase 

101 NITRITREDUCT-CPLX nitrite reductase - NADH dependent 
102 MONOMER0-2461 MtlR-HPr 
103 LTARTDEHYDRA-CPLX L(+)-tartrate dehydratase 

104 CPLX0-7986 HypCD complex involved in hydrogenase 
maturation 

105 CPLX0-3781 YefM-YoeB antitoxin/toxin complex / DNA-
binding transcriptional repressor 

106 CPLX0-7425 HipAB toxin/antitoxin complex / DNA-binding 
transcriptional repressor 

107 NRFMULTI-CPLX periplasmic nitrite reductase NrfAB 
108 CPLX0-7822 MqsA-MqsR antitoxin/toxin complex 

109 ACETOLACTSYNI-CPLX acetohydroxybutanoate synthase / 
acetolactate synthase 

110 CPLX0-2561 bacterial condensin MukBEF 
111 RNAP32-CPLX RNA polymerase sigma 32 
112 CPLX0-240 tagatose-1,6-bisphosphate aldolase 1 

113 CPLX0-3957 ATP dependent structure specific DNA 
nuclease 

114 CPLX-168 trehalose-specific PTS enzyme II 
115 CPLX-3942 sulfurtransferase complex TusBCD 
116 TRANS-CPLX-201 multidrug efflux pump AcrAB-TolC 
117 GCVMULTI-CPLX glycine cleavage system 
118 F-O-CPLX ATP synthase Fo complex 
119 ABC-45-CPLX intermembrane phospholipid transport system 
120 RECFOR-CPLX RecFOR complex 
121 UVRABC-CPLX excision nuclease UvrABC 
122 ENTMULTI-CPLX enterobactin synthase 
123 CYT-D-UBIOX-CPLX cytochrome bd-I ubiquinol oxidase 
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124 RUVABC-CPLX resolvasome 
125 CPLX0-7450 flagellar motor switch complex 

126 ABC-18-CPLX D-galactose / methyl-&beta;-D-galactoside 
ABC transporter 

127 CPLX0-1923 energy transducing Ton complex 

128 CPLX0-1924 vitamin B12 outer membrane transport 
complex 

129 MUTHLS-CPLX MutHLS complex, methyl-directed mismatch 
repair 

130 CPLX0-3108 ClpAXP 
131 ABC-19-CPLX molybdate ABC transporter 

132 ANGLYC3PDEHYDROG-
CPLX 

anaerobic glycerol-3-phosphate 
dehydrogenase 

133 ABC-33-CPLX xylose ABC transporter 
134 ABC-11-CPLX iron(III) hydroxamate ABC transporter 
135 CPLX0-8167 hydrogenase 1, oxygen tolerant hydrogenase 
136 FORMHYDROGI-CPLX hydrogenase 1 
137 TRANS-200-CPLX macrolide ABC exporter 
138 CPLX0-1341 SufBC2D Fe-S cluster scaffold complex 
139 ABC-12-CPLX L-glutamine ABC transporter 
140 NITRATREDUCTZ-CPLX nitrate reductase Z 

141 CPLX-155 N,N'-diacetylchitobiose-specific PTS enzyme 
II 

142 CPLX0-3958 EcoKI restriction-modification system 
143 NITRATREDUCTA-CPLX nitrate reductase A 
144 EIISGA L-ascorbate specific PTS enzyme II 
145 ABC-56-CPLX aliphatic sulfonate ABC transporter 
146 ABC-32-CPLX thiamin(e) ABC transporter 

147 FORMATEDEHYDROGO-
CPLX formate dehydrogenase O 

148 RECBCD exodeoxyribonuclease V 
149 DIMESULFREDUCT-CPLX dimethyl sulfoxide reductase 

150 TSR-CPLX chemotaxis signaling complex - serine 
sensing 

151 TSR-GLUME Tsrglu-Me 
152 TSR-GLN Tsrgln 
153 TSR-GLU Tsrglu 
154 ABC-64-CPLX taurine ABC transporter 
155 CPLX0-8152 cystine / cysteine ABC transporter 
156 ABC-2-CPLX arabinose ABC transporter 
157 CPLX0-7807 putative multidrug efflux pump MdtNOP 
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158 ABC-57-CPLX multidrug ABC exporter 

159 PABSYNMULTI-CPLX para-aminobenzoate synthase multi-enzyme 
complex 

160 CPLX0-3932 multidrug efflux pump AcrAD-TolC 
161 TAP-GLU Tapglu 

162 TAP-CPLX chemotaxis signaling complex - dipeptide 
sensing 

163 TAP-GLUME Tapglu-Me 
164 TAP-GLN Tapgln 
165 CPLX0-3801 DNA polymerase III, preinitiation complex 
166 CPLX0-761 putative xanthine dehydrogenase 
167 CPLX0-2081 dihydroxyacetone kinase 
168 CPLX0-2982 FtsH/HflKC protease complex 
169 CITLY-CPLX citrate lyase, inactive 
170 ACECITLY-CPLX citrate lyase 
171 CPLX0-2141 multidrug efflux pump AcrEF-TolC 

172 CPLX-170 galactosamine-specific PTS enzyme II 
(cryptic) 

173 ABC-49-CPLX glutathione ABC transporter 

174 TRG-CPLX chemotaxis signaling complex - 
ribose/galactose/glucose sensing 

175 TRG-GLUME Trgglu-Me 
176 TRG-GLN Trggln 
177 TRG-GLU Trgglu 
178 TRANS-CPLX-203 2,3-diketo-L-gulonate:Na+ symporter 
179 CPLX-169 sorbitol-specific PTS enzyme II 
180 SEC-SECRETION-CPLX Sec Holo-Translocon 
181 CPLX0-2121 multidrug efflux pump EmrAB-TolC 
182 ABC-5-CPLX vitamin B12 ABC transporter 
183 CPLX0-2361 DNA polymerase III, core enzyme 
184 ABC-42-CPLX D-allose ABC transporter 
185 TRANS-CPLX-204 multidrug efflux pump MdtEF-TolC 
186 CPLX-165 mannose-specific PTS enzyme II 

187 METNIQ-METHIONINE-
ABC-CPLX L-methionine/D-methionine ABC transporter 

188 CPLX0-7458 glycolate dehydrogenase 
189 ABC-28-CPLX ribose ABC transporter 
190 ALPHA-SUBUNIT-CPLX formate dehydrogenase N, subcomplex 

191 FORMATEDEHYDROGN-
CPLX formate dehydrogenase N 

192 CPLX0-2161 multidrug efflux pump EmrKY-TolC 
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193 EIISGC putative PTS enzyme II SgcBCA 
194 ABC-60-CPLX putative transport complex, ABC superfamily 
195 CPLX0-7805 aldehyde dehydrogenase 

196 TAR-CPLX chemotaxis signaling complex - aspartate 
sensing 

197 TAR-GLUME Targlu-Me 
198 TAR-GLN Targln 
199 TAR-GLU Targlu 
200 ABC-48-CPLX putative transport complex, ABC superfamily 
201 ABC-26-CPLX glycine betaine ABC transporter 
202 CPLX0-8119 putative PTS enzyme II FryBCA 
203 CYT-O-UBIOX-CPLX cytochrome bo3 ubiquinol oxidase 
204 ABC-10-CPLX ferric enterobactin ABC transporter 
205 ABC-16-CPLX maltose ABC transporter 
206 ABC-7-CPLX thiosulfate/sulfate ABC transporter 
207 F-1-CPLX ATP synthase F1 complex 

208 SUCC-DEHASE succinate:quinone oxidoreductase 
subcomplex 

209 CPLX0-8160 succinate:quinone oxidoreductase 
210 ABC-27-CPLX phosphate ABC transporter 
211 TATABCE-CPLX twin arginine protein translocation system 
212 CPLX0-8120 putative ABC transporter ArtPQMI 

213 CPLX0-1941 ferric enterobactin outer membrane transport 
complex 

214 CPLX0-3323 holocytochrome c synthetase 
215 ABC-24-CPLX spermidine preferential ABC transporter 
216 ABC-70-CPLX sulfate/thiosulfate ABC transporter 
217 CPLX0-1721 copper/silver export system 
218 CPLX0-3401 fimbrial complex 
219 CPLX-160 putative PTS enzyme II FrwCBDPtsA 
220 ABC-35-CPLX heme trafficking system CcmABCDE 
221 CPLX0-1601 selenate reductase 

222 CPLX0-7952 ferric coprogen outer membrane transport 
complex 

223 ABC-4-CPLX L-arginine ABC transporter 

224 CPLX0-1943 ferric citrate outer membrane transport 
complex 

225 CPLX0-1942 ferrichrome outer membrane transport 
complex 

226 ABC-34-CPLX sn-glycerol 3-phosphate / 
glycerophosphodiester ABC transporter 
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227 CPLX0-1762 phenylacetyl-CoA 1,2-epoxidase 
228 ABC-29-CPLX putrescine ABC exporter 
229 ABC-55-CPLX putative transport complex, ABC superfamily 
230 CPLX0-7958 methylphosphonate degradation complex 

231 HCAMULTI-CPLX putative 3-phenylpropionate/cinnamate 
dioxygenase 

232 CPLX0-7935 carbon-phosphorus lyase core complex 
233 ABC-25-CPLX putrescine ABC transporter 
234 ABC-14-CPLX histidine ABC transporter 

235 CPLX0-7628 lipopolysaccharide transport system - outer 
membrane assembly complex 

236 ABC-41-CPLX putative oligopeptide ABC transporter 
237 FUMARATE-REDUCTASE fumarate reductase 
238 ABC-3-CPLX lysine / arginine / ornithine ABC transporter 
239 ABC-52-CPLX putative transport complex, ABC superfamily 
240 ABC-51-CPLX putative transport complex, ABC superfamily 
241 FORMHYDROG2-CPLX hydrogenase 2 
242 ABC-13-CPLX glutamate / aspartate ABC transporter 
243 ABC-46-CPLX galactofuranose ABC transporter 
244 ATPASE-1-CPLX K+ transporting P-type ATPase 
245 ABC-58-CPLX Autoinducer-2 ABC transporter 

246 ABC-40-CPLX glycine betaine ABC transporter, non-
osmoregulatory 

247 ABC-9-CPLX ferric citrate ABC transporter 
248 TRANS-CPLX-202 multidrug efflux pump MdtABC-TolC 
249 CPLX0-2201 The Tol-Pal Cell Envelope Complex 

250 CPLX0-3361 NADH:quinone oxidoreductase I, peripheral 
arm 

251 ABC-22-CPLX oligopeptide ABC transporter 
252 CPLX0-3970 murein tripeptide ABC transporter 

253 CPLX0-7725 CRISPR-associated complex for antiviral 
defense 

254 ABC-59-CPLX putative D,D-dipeptide ABC transporter 
255 CPLX0-7992 lipopolysaccharide transport system 
256 CPLX0-2381 degradosome 
257 ABC-20-CPLX Ni(2+) ABC transporter 

258 ABC-15-CPLX branched chain amino acid / phenylalanine 
ABC transporter 

259 ABC-304-CPLX leucine / L-phenylalanine ABC transporter 
260 ABC-8-CPLX dipeptide ABC transporter 
261 HYDROG3-CPLX hydrogenase 3 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 16, 2020. ; https://doi.org/10.1101/2020.07.16.206243doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.16.206243
http://creativecommons.org/licenses/by-nc/4.0/


 68 

262 ATPSYN-CPLX ATP synthase / thiamin triphosphate synthase 
263 FHLMULTI-CPLX formate hydrogenlyase complex 
264 CPLX0-3803 DNA polymerase III, holoenzyme 
265 CPLX0-7451 flagellar export apparatus 
266 CPLX0-250 hydrogenase 4 
267 CPLX0-3933 Outer Membrane Protein Assembly Complex 
268 NADH-DHI-CPLX NADH:quinone oxidoreductase I 
269 CPLX0-3382 Type II secretion system 

270 FLAGELLAR-MOTOR-
COMPLEX flagellar motor complex 

271 CPLX0-7452 flagellum 
  764 
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  765 

Supplemental Figure S1. Phenotypic profile similarity for genes in the same 766 

heteromeric protein complex. The distribution of phenotypic profile similarity values 767 

determined by |PCC| for all pairwise combinations of genes assigned to the same 768 
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EcoCyc pathway. In the figure, the pathways are sorted by (i) the number of genes in 769 

the pathway and then (ii) the median |PCC| value. The names of the pathways are 770 

indicated by numeric labels, which are defined in supplemental Table S1. The dashed 771 

line shows the average |PCC| value for random pairs of genes. For pathways that have 772 

two or three members, the results are shown as scatter plots. For pathways with more 773 

than three genes, the results are shown as box plots with the outliers shown as black 774 

dots.   775 
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 776 

Supplemental Figure S2. Phenotypic profile similarity for genes in the same 777 

EcoCyc heteromeric protein complex. The distribution of phenotypic profile similarity 778 

values determined by |PCC| for all pairwise combinations of genes assigned to the 779 
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same EcoCyc heteromeric protein complex. In the figure, the pathways are sorted by (i) 780 

the number of genes in the complex and then (ii) the median |PCC| value. The names of 781 

the complexes are indicated by numeric labels, which are defined in supplemental Table 782 

S2. The dashed line shows the average |PCC| value for random pairs of genes. For 783 

protein complexes that have two or three members, the results are shown as scatter 784 

plots. For protein complexes with more than three genes, the results are shown as box 785 

plots with the outliers shown as black dots.   786 
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 787 

Supplemental Figure S3. Precision increased when auxotrophic mutants were 788 

excluded. Gene pairs were ranked from high to low similarity based on |PCC| and 789 

plotted versus precision, calculated as described in the text (only the first 500 gene 790 

pairs are shown). The dashed line shows precision for randomly ordered gene pairs 791 

(negative control). The correspondence between phenotypic profile similarity based on 792 

|PCC| and ranking is shown below the graph.  793 
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 794 

 795 

Supplemental Figure S4. Higher semantic similarity and phenotypic profile 796 

similarity were still found when GO biological process annotations with an IEA 797 

evidence code were excluded. Violin plots of semantic similarity for, from left to right: 798 

all gene pairs annotated with GO biological process term(s); the subset of gene pairs 799 

with |PCC| >0.75; the subset of gene pairs with MI >0.15 (calculated based on 800 

qualitative fitness scores for all growth conditions); and MI >0.32 (calculated based on 801 

qualitative fitness scores for the collapsed set of growth conditions). The cutoffs of MI 802 

>0.15 for the third violin plot and MI >0.32 for the fourth violin plot were chosen so that 803 

all three subsets of gene pairs would contain the same number (~1,000) of top-ranked 804 

gene pairs. ***: p-value <0.001 was determined by 1-sided Mann-Whitney U test, 805 

compared to all gene pairs. 806 
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