1	Title: Insights from the reanalysis of high-throughput chemical genomics data for	

- 2 Escherichia coli K-12
- 3 **Authors:** Peter I-Fan Wu¹, Curtis Ross¹, Deborah A. Siegele² and James C. Hu^{1,3}
- 4
- 5 **Affiliations:**
- 6 1. Department of Biochemistry and Biophysics, Texas A&M University and Texas
- 7 Agrilife Research, College Station, TX 77843-2128
- 8 2. Department of Biology, Texas A&M University, College Station, TX 77843-3258
- 9 3. Deceased
- 10
- 11 Correspondence: <u>siegele@bio.tamu.edu</u>
- 12
- 13
- 14 Key words: phenotypic profiling, functional genomics, microbial genomics, biostatistics,
- 15 Escherichia coli, bacterial genetics
- 16
- 17

2

18 ABSTRACT

19 Despite the demonstrated success of genome-wide genetic screens and chemical 20 genomics studies at predicting functions for genes of unknown function or predicting 21 new functions for well-characterized genes, their potential to provide insights into gene 22 function hasn't been fully explored. We systematically reanalyzed a published high-23 throughput phenotypic dataset for the model Gram-negative bacterium Escherichia coli 24 K-12. The availability of high-guality annotation sets allowed us to compare the power of 25 different metrics for measuring phenotypic profile similarity to correctly infer gene 26 function. We conclude that there is no single best method; the three metrics tested gave comparable results for most gene pairs. We also assessed how converting qualitative 27 28 phenotypes to discrete, qualitative phenotypes affected the association between 29 phenotype and function. Our results indicate that this approach may allow phenotypic 30 data from different studies to be combined to produce a larger dataset that may reveal 31 functional connections between genes not detected in individual studies. 32

3

33 INTRODUCTION

34	Genome-wide genetic screens and chemical genomic studies, pioneered in yeast
35	(GIAEVER AND NISLOW 2014), are now widely used to study gene function in many model
36	organisms, including the bacterium Escherichia coli (Campos et al., 2018; Nichols et al.,
37	2011; Price et al., 2018). Based on the same principle that underlies the interpretation of
38	forward genetic studies — that mutations that cause similar phenotypes are likely to
39	affect the same biological process(es) — these high-throughput approaches have led to
40	insights into the biology of a variety of organisms (Arnoldo et al., 2014; Hillenmeyer et
41	al., 2010; Shefchek et al., 2020). It has been concluded that the collective phenotypic
42	expression pattern of an organism can serve as a key to understand growth, fitness,
43	development, and diseases (Bochner, 2009; Houle et al, 2010).
44	
44 45	Despite the demonstrated success of high-throughput phenotypic studies at predicting
44 45 46	Despite the demonstrated success of high-throughput phenotypic studies at predicting functions for genes of unknown function or predicting new functions for well-
44 45 46 47	Despite the demonstrated success of high-throughput phenotypic studies at predicting functions for genes of unknown function or predicting new functions for well-characterized genes, their potential to provide insights into gene function hasn't been
 44 45 46 47 48 	Despite the demonstrated success of high-throughput phenotypic studies at predicting functions for genes of unknown function or predicting new functions for well- characterized genes, their potential to provide insights into gene function hasn't been fully explored. There does not seem to have been a systematic comparison of different
 44 45 46 47 48 49 	Despite the demonstrated success of high-throughput phenotypic studies at predicting functions for genes of unknown function or predicting new functions for well- characterized genes, their potential to provide insights into gene function hasn't been fully explored. There does not seem to have been a systematic comparison of different metrics for measuring the similarity of phenotypic profiles. Further, while the likely
 44 45 46 47 48 49 50 	Despite the demonstrated success of high-throughput phenotypic studies at predicting functions for genes of unknown function or predicting new functions for well- characterized genes, their potential to provide insights into gene function hasn't been fully explored. There does not seem to have been a systematic comparison of different metrics for measuring the similarity of phenotypic profiles. Further, while the likely benefits of combining information from high throughput phenotypic studies from different
 44 45 46 47 48 49 50 51 	Despite the demonstrated success of high-throughput phenotypic studies at predicting functions for genes of unknown function or predicting new functions for well- characterized genes, their potential to provide insights into gene function hasn't been fully explored. There does not seem to have been a systematic comparison of different metrics for measuring the similarity of phenotypic profiles. Further, while the likely benefits of combining information from high throughput phenotypic studies from different laboratories have been recognized, very few methods of doing this have been described
 44 45 46 47 48 49 50 51 52 	Despite the demonstrated success of high-throughput phenotypic studies at predicting functions for genes of unknown function or predicting new functions for well- characterized genes, their potential to provide insights into gene function hasn't been fully explored. There does not seem to have been a systematic comparison of different metrics for measuring the similarity of phenotypic profiles. Further, while the likely benefits of combining information from high throughput phenotypic studies from different laboratories have been recognized, very few methods of doing this have been described (Hoehndorf et al., 2013; Shefchek et al., 2020).

54 Here, we report reanalysis of the data from a published high-throughput phenotypic

55 study of *Escherichia coli* K-12 (Nichols et al. 2011). *E. coli* is one of the best-studied

56 bacterial organisms, and the availability of high-quality annotation sets with information 57 on gene function and regulation allowed us to compare the ability of different metrics for 58 measuring phenotypic profile similarity to correctly infer gene function. We conclude that 59 there is no single best method for comparing phenotypic profiles. Overall, the three metrics we tested gave comparable results for most gene pairs. However, there were 60 61 instances where the metrics behaved differently from one another. We also assessed 62 how converting quantitative phenotypes to discrete, qualitative phenotypes affected 63 associations between phenotype and function. Our results indicate that this may be a 64 viable approach for combining phenotypic data from different studies, creating a larger 65 dataset that may reveal functional associations not detected by individual studies alone. 66

67 **RESULTS**

68 Phenotypic profiles and the functional annotation sets used

69 We start with descriptions of the phenotype data and functional annotation sets that 70 were used for our analysis. The phenotypic profiles come from a high-throughput 71 chemical genomics study of *E. coli* K-12 (Nichols et al., 2011). Growth phenotypes for 72 3,979 mutant strains, which were primarily single-gene deletions of non-essential 73 genes, were based on sizes of spot colonies grown under 324 conditions, which 74 represented 114 unique stresses. Fitness scores were obtained and normalized to a 75 standard normal distribution based on the mean fitness for all strains in a given 76 condition. Positive scores indicate increased fitness and negative scores indicate 77 decreases fitness. Fitness scores were obtained and normalized to a standard normal 78 distribution where positive scores indicate increased fitness and negative scores

indicate decreased fitness, which was based on the mean fitness for all strains in agiven growth condition.

81

82 Six annotation sets were used as sources of information about gene function. 83 Annotations of *E. coli* genes to metabolic pathways and protein complexes were 84 obtained from EcoCyc (Keseler et al., 2017); annotation of genes to operons and 85 regulons were extracted from EcoCyc and RegulonDB (Gama-Castro et al., 2016); and 86 annotations of genes to KEGG modules, which associate genes to metabolic pathways, 87 molecular complexes, and also to phenotypic groups, such as pathogenesis or drug resistance, were obtained from the Kyoto Encyclopedia of Genes and Genomes 88 89 (KEGG) (Kanehisa et al, 2016). For these annotation sets, genes were scored as co-90 annotated if they shared the same annotation(s) from one or more of the annotation 91 sets, for example, being annotated to the same metabolic pathway or protein complex, 92 etc. The number of genes annotated by each annotation set and the total number of 93 annotations can be found in Materials and Methods. 94

The annotations of *E. coli* genes with Gene Ontology (GO) biological process terms (Gene Ontology Consortium, 2017) were obtained from EcoCyc. The GO biological process annotations of *E. coli* genes were treated separately from the other five annotation sets because GO's directed-acyclic graph structure allows semantic similarity rather than co-annotation to be used for assessing functional similarity (Pesquita, 2017). While it is possible to identify gene pairs that are co-annotated with the same GO term(s), automated methods will include co-annotations to high-level

102 terms, such as 'GO:0044237 cellular metabolic process' or 'GO:0051716 cellular 103 response to stimulus', which don't provide very specific information about function. Also, 104 co-annotation doesn't capture instances where two genes are annotated with related, 105 but not identical, terms. These limitation can be overcome by using semantic similarity 106 rather than co-annotation to estimate functional similarity from GO annotations. The 107 method for determining the semantic similarity of two GO terms developed by Wang et 108 al. (Wang et al, 2007), takes into account the locations of the terms in the GO graph, as 109 well as incorporating the different semantic contributions that a shared ancestral term 110 may make to the two terms, based on the logical relationship, such as is a or part of, 111 that connect the term to the shared ancestor. In addition, when calculating functional 112 similarity, the Wang method includes both identical GO terms and semantically similar 113 GO terms associated with the two genes being compared. The number of genes 114 annotated with GO biological process terms set and the total number of annotations can 115 be found in the Materials and Methods. 116 117 Functional connections between genes enriched for higher phenotypic profile 118 similarity 119 The association between phenotypic profiles and functional annotations was examined 120 from two perspectives: First, are gene pairs that share the same annotation(s), i.e. co-121 annotated gene pairs, more likely to have higher phenotypic profile similarity? Second, 122 are gene pairs with higher phenotypic profile similarity more likely to be co-annotated? 123 124 To address whether co-annotated gene pairs have higher phenotypic profile similarity,

7

125 we used Pearson Correlation Coefficient (PCC) to assess the phenotypic profile 126 similarity. This metric was chosen because it is probably the most widely used metric to 127 assess phenotypic profile similarity and was the metric used in the original paper for 128 comparing phenotypic profiles (Nichols et al., 2011). To visualize the results, the 129 distributions of the absolute value of PCC (|PCC|) for gene pairs were plotted as violin 130 plots for various combinations of annotation sets (Figure 1). The first violin plot shows 131 the distribution of |PCC| values for all possible gene pairs (mean |PCC| = 0.00016). The 132 majority have a PCC value <0.25 and only 0.16% have a PCC value >0.75 (an 133 arbitrarily chosen cut-off). When only gene pairs that are co-annotated to the same 134 EcoCyc pathway were considered (second violin plot), there was a statistically 135 significant increase in the mean |PCC| value (0.032), and the percentage of gene pairs 136 with |PCC| >0.75 increased twenty-fold. Similar results were seen for gene pairs that 137 are co-annotated to the same heteromeric protein complex (third violin plot, mean PCC) 138 = 0.05). When considering only gene pairs that are co-annotated to more than one 139 annotation set (fourth and fifth violin plots), even higher phenotypic profile similarity was 140 observed (mean |PCC| = 0.19, 0.30, respectively), supporting the expectation that gene 141 pairs with stronger functional associations will have more similar phenotypic profiles. 142 The trend of there being a higher fraction of gene pairs with |PCC| >0.75 as functional 143 associations increase also continued; this fraction increased from 0.16% for all gene 144 pairs, to 3.2% for gene pairs in the same pathways, to 4.9% for gene pairs in the same 145 protein complexes, to 19% for gene pairs in the same pathways and complexes, and to 146 30% for gene pairs that are co-annotated in pathways, complexes, operons, regulons 147 and KEGG modules.

4			٠	
	L.	5	,	
				i
	ι.			,

149 A more detailed analysis within the EcoCyc pathway or heteromeric protein complex 150 annotations was conducted by examining all pairwise combinations of gene pairs within 151 pathways or protein complexes that contain two or more gene products. Supplemental Figures S1 and S2 show the distribution of |PCC| values for all pairwise combinations of 152 153 genes in each pathway or protein complex. Of the 366 pathways and 271 protein 154 complexes analyzed, 72% of the pathways and 67% of the protein complexes had a 155 median *PCC* value that was higher than the random expectation. 156 157 Phenotypic profile similarity is explained by functional annotations 158 To address the second question, which is to test whether gene pairs with higher 159 phenotypic profile similarity are more likely to be co-annotated, we ranked gene pairs 160 based on phenotypic profile similarity and then calculated precision based on whether 161 or not gene pairs are co-annotated (Figure 2). Precision is the fraction of results that a 162 test identifies as positive that represent true positives. Mathematically, precision, also 163 known as the positive predictive value, is the number of True Positives divided by True 164 Positives plus False Positives, or TP/(TP+FP). After ranking gene pairs based on 165 phenotypic profile similarity expressed as |PCC| values, precision for each position n in 166 the ranking was calculated considering gene pairs ranked at or above position n to be 167 TPs if they are co-annotated or FPs if they are not co-annotated. For example, for the

168 100th gene pair in the ranking, precision is calculated for gene pairs 1 through 100.

169 Figure 2 shows the plots of precision versus ranking for the top-ranking 500 gene pairs

170 computed for single annotation sets or combinations of annotation sets. For gene pairs

171 co-annotated to the same pathway(s), precision started at zero, because the highest 172 ranked gene pair was not co-annotated, but then increased to ~0.8 before gradually 173 declining and leveling off at approximately 0.2. Surprisingly, for gene pairs co-annotated 174 to the same protein complex, precision was very low and not significantly different from the precision values computed for randomly ordered gene pairs. Combining the 175 176 annotation sets for pathways and protein complexes, brought a slight increase in 177 precision. When operon, regulon, and KEGG modules were also included to define the 178 broadest set of co-annotations, precision increased dramatically. 179 180 The Pearson Correlation Coefficient is sensitive to the extreme fitness scores on 181 minimal media 182 To try to understand why precision was so low for protein complex annotations (Figure 183 2), we inspected the gene pairs and saw that 98 of the 100 top-ranking gene pairs 184 consisted of genes coding for biosynthetic enzymes, and, in 84 of these 98 gene pairs, 185 the genes were annotated to different biosynthetic pathways. For example, the top-186 ranked gene pair (|PCC| = 0.96) contained the genes *ilvC* and *argB*, which encode

187 enzymes required for isoleucine-valine and arginine biosynthesis, respectively. Mutant

188 strains lacking any of these biosynthetic genes would be auxotrophs and share the

189 phenotype of little or no growth on unsupplemented minimal media. To test whether the

190 |PCC|-based measure of phenotypic profile similarity was dominated by the large

191 negative fitness scores associated with the auxotrophic phenotypes, we excluded the

192 fitness scores for the growth conditions that involved minimal media (10 out of 324 total

193 conditions) and reassessed the relationship between precision and phenotypic profile

10

similarity. As shown in Figure 3, even though only a small fraction of conditions were
excluded, this change resulted in dramatically higher precision overall, regardless of
which functional annotation set was used to score co-annotation. A comparable
increase in precision was also seen when auxotrophic mutants were excluded from the
data set (Supplemental Figure S3).

199

200 Alternative metrics for measuring phenotypic profile similarity

201 There are other methods, besides the Pearson Correlation Coefficient, that can be used 202 to assess similarity. We chose the absolute value of Spearman's Rank Correlation Coefficient (|SRCC|) or mutual information (MI), which were implemented as described 203 204 in the methods, to measure phenotypic profile similarity, and used the union of the five 205 annotation sets to score co-annotation. Violin plots of the distributions of phenotypic 206 profile similarity obtained using these alternative metrics were not significantly different 207 from the distributions seen using *PCC* as the metric (results not shown). In contrast, as 208 shown in Figure 4a, the correlation between phenotypic profile similarity and precision 209 was dramatically higher for |SRCC| and MI compared to |PCC|. For both |SRCC| and 210 MI, precision was >0.9 for the top 100 ranked gene pairs and remained >0.5 for 211 approximately the top 500 pairs. This result indicates that determining phenotypic profile 212 similarity using Spearman's Rank Correlation Coefficient or Mutual Information is less 213 sensitive to the presence of a relatively small number of extreme phenotype scores than 214 using the Pearson Correlation Coefficient. If we recalculate precision for all three 215 metrics after excluding the 10 growth conditions where auxotrophic mutants don't grow, 216 there is very little difference in precision for the three metrics (Figure 4b).

11

217

218 Simplified phenotypic profiles preserve biological meanings

219 Combining phenotypic information from different studies is expected to increase the 220 likelihood of finding associations between genes and functions. However, the ability to combine datasets can be limited by differences in how quantitative phenotypes are 221 222 scored and by the need for methods to combine quantitative and qualitative phenotypic 223 information. Different quantitative datasets could be combined by renormalizing the data 224 to make them interoperable. Alternatively, quantitative phenotypes could be converted 225 to qualitative phenotypes, which would allow integration of both quantitative and qualitative data. We chose to test the second approach because, if successful, it would 226 227 allow more datasets to be combined.

228

229 The quantitative fitness scores in the phenotypic dataset were discretized to create a 230 gualitative dataset with the fitness scores converted to 1, 0, or -1, where 1 stands for 231 increased fitness, -1 for decreased fitness, and 0 for no difference in fitness compared 232 to the mean fitness for all strains in a particular growth condition. The PCC values 233 used to separate the three phenotype classes were based on the 5% false discovery 234 rate as described (Nichols et al., 2011). Because the majority of strains have no 235 significant phenotype in the growth conditions used (Nichols et al., 2011), after 236 discretizing the data the majority of strains will have fitness scores of 0. Therefore, the 237 Pearson Correlation Coefficient was no longer suitable for measuring phenotypic profile 238 similarity. Instead, mutual information (MI) (Priness et al., 2007) was used as the 239 scoring metric. The distribution of MI values for gene pairs were plotted as violin plots.

240 The first violin plot in Figure 5a shows the distribution of MI values for all possible gene 241 pairs, followed, from left to right, by the distribution of MI values for gene pairs co-242 annotated to either the same pathway: the same protein complex: the same pathway 243 and protein complex; or the same pathway, protein complex, operon, regulon, and 244 KEGG module. Converting the continuous quantitative fitness values to discrete ternary 245 scores reduced the variation in the data, reflected by the change in shape of the violin 246 plots compared to the plots shown in Figure 1. However, as was seen for the mean 247 PCC values in the analysis of the quantitative data (Figure 1), the mean MI values 248 increased as the functional associations for a given gene pair increased (Figure 5a 249 inset).

250

251 Many of the growth conditions used in the original chemical genomics study involved 252 multiple tests of the same chemical present at different concentrations. To test the effect 253 of further simplifying the phenotypes, the original 324 growth conditions were reduced to 254 114 unique stresses by including the score for only the most significant phenotype for each chemical treatment (1 or -1, as appropriate, or using a score of 0 if no significant 255 256 phenotypes were seen for that treatment). The violin plots in Figure 5b show the 257 distribution of MI values for all gene pairs and for different combinations of annotation 258 sets for the reduced dataset. As seen for the full gualitative dataset, the mean MI values 259 for co-annotated gene pairs in the reduced dataset were significantly higher than the 260 mean MI value for all possible gene pairs (Figure 5b inset). In addition, when the 261 distributions of gene pairs in the same co-annotation group are compared between 262 Figures 5a and 5b, very significant differences of the means were observed for every

co-annotated group (p-value <0.001). Overall, these results indicate that useful
inferences about gene function can still be made after the conversion of quantitative
phenotypes to qualitative phenotypes and even after collapsing the number of
phenotypes for each chemical treatment.

267

268 We expected loss of information after quantitative phenotype scores were converted to 269 the discretized, ternary fitness scores. To compare how many functional associations 270 could still be retrieved using the qualitative scores, gene pairs were sorted based on 271 their MI values determined using either quantitative phenotype scores, the qualitative 272 ternary fitness scores, or the qualitative ternary fitness scores for the reduced set of 273 conditions. Then precision was calculated, as described earlier, and was plotted versus 274 ranking. As can be seen in Figure 6, precision is comparable for the top 100 gene pairs 275 for both quantitative and discretized, qualitative fitness scores. After this point, precision 276 drops more quickly for the qualitative data than for the quantitative data. When precision 277 for the reduced set of conditions is compared to precision for either of the other data 278 sets, we see that precision drops off sooner and decreases more rapidly. Yet, precision 279 is still much higher than for randomly ordered gene pairs, which indicates that there is 280 still significant potential in using the discretized version of phenotypes to explain 281 functions.

282

283 Semantic similarity of GO annotations increased for gene pairs with shared

284 functional annotations and with higher phenotypic profile similarity

14

285 Another way to assess whether two genes are likely to have similar functions is to 286 compare the semantic similarity of the GO terms annotated to each gene. In the dataset 287 from Nichols et al., 66% (2,609 out of 3,979) of the strains used have mutations of 288 genes that are annotated with GO biological process terms, which seemed a sufficient 289 number to justify using this approach. The Wang method (Wang et al., 2007) was used 290 to compute semantic similarity, and the distribution of semantic similarity scores for all 291 gene pairs where both members of the pair are annotated with at least one GO 292 biological process term was compared to the distributions for subsets of gene pairs that 293 have similar functions based on being co-annotated in one or more of the non-GO 294 annotation sets. As shown in Figure 7a, semantic similarity increased when only co-295 annotated gene pairs were considered. The mean pairwise semantic similarity 296 increased from 0.217 for all genes with GO biological process annotations (first violin 297 plot) to 0.543 for gene pairs co-annotated to the same EcoCyc pathway (second violin 298 plot), and to 0.803 for gene pairs co-annotated to the same heteromeric protein complex 299 (third violin plot). Mean profile similarity was even higher for gene pairs that are co-300 annotated to both pathways and heteromeric protein complexes (mean=0.892) as well 301 as for gene pairs that are co-annotated in all 5 annotation sets (mean=0.889), as shown 302 in the fourth and fifth violin plots, respectively. These results show that co-annotated 303 gene pairs are also enriched for functional similarity based on GO biological process 304 annotations.

305

To test whether gene pairs that have higher phenotypic profile similarity are more likely
 to have similar functions based on GO biological process annotations, we compared the

15

308 distributions of semantic similarity values for all gene pairs annotated with GO biological 309 process terms and for subsets of these gene pairs that have high phenotypic profile 310 similarity based on [PCC] or MI. The violin plots in Figure 7b show, from left to right, the 311 distribution of semantic similarity values for all gene pairs with GO biological process 312 annotations, the subset of gene pairs with |PCC| >0.75, the subset of gene pairs with MI 313 >0.15 (where MI was determined using the ternary qualitative fitness scores for all growt 314 conditions), and the subset of gene pairs with MI >0.32 (where . Comparison of the first 315 two violin plots shows that gene pairs with |PCC| >0.75 are significantly enriched for 316 higher semantic similarity. (The cutoff of |PCC| >0.75 was chosen arbitrarily to represent 317 a moderate to high correlation (Hinkle et al., 2002).) Enrichment for higher semantic 318 similarity scores was also seen for the next two subsets of gene pairs, where 319 phenotypic profile similarity was calculated using the qualitative, ternary fitness values 320 for either all 324 growth conditions (third violin plot) or for the collapsed set of 114 321 growth conditions (fourth violin plot). (The MI cutoffs of >0.15 for the third violin plot and 322 >0.32 for the fourth violin plot were chosen so that all three subsets of gene pairs would 323 contain the same number (~1.000) of top-ranked gene pairs.) These results are 324 consistent with those in Figure 4b, which show higher phenotypic profile similarity 325 enriches for co-annotated gene pairs.

326

In order to assess whether gene pairs that have higher semantic similarity also have
higher phenotypic profile similarity, we chose an arbitrary cutoff of 0.5 for semantic
similarity and used it to select a subset of gene pairs from the entire set of gene pairs
with GO biological process annotations. We then compared the distribution of semantic

331	similarity scores for the two sets of gene pairs. The violin plots are shown in Figure 8.
332	Although the two distributions appeared almost identical, the subset of gene pairs with
333	semantic similarity >0.5 is enriched for gene pairs with higher phenotypic profile
334	similarity. The difference in the mean PCC values for the two distributions is small
335	(0.093 vs 0.10), but it is statistically significant based on the Mann-Whitney test,
336	p<0.0001. This is consistent with Figure 1, where co-annotated gene pairs show
337	enriched phenotypic similarity.

338

339 **DISCUSSION**

We systematically reanalyzed a published high-throughput phenotypic profile dataset for 340 341 the model Gram-negative bacterium E. coli comparing different metrics for measuring 342 phenotypic profile similarity, and assessing the effect of converting quantitative fitness 343 scores to qualitative fitness on measurements of phenotypic profile similarity. We re-344 examined the *E. coli* phenotypic profiles in a pairwise fashion with the help of existing 345 functional annotations. Overall, we found that gene pairs with functional associatons are 346 enriched for high phenotypic profile similarity scores and that gene pairs with high 347 phenotypic similarity scores tend to have functional associations.

348

Six high-quality annotations sets were used as sources of functional information. The
gene annotations in EcoCyc, RegulonDB, KEGG, and GO come primarily from expert
manual curation (Gama-Castro et al. 2016; Kanehisa et al. 2016; Keseler et al. 2017;
Keseler, 2014; Gene Ontology Consortium, 2017). The GO biological process
annotations include ~1,200 annotations (21%) that are inferred from electronic

annotation without additional human review. We decided to include the electronic
annotations in our analysis because most of them come from the transfer of annotations
from orthologous gene products or are based on mappings from external sources, such
as InterPro2GO or EC2GO, which have been shown to be very accurate (Camon et al.
2005; Hill et al. 2001; Holliday et al. 2017). Indeed, there was no significant difference in
the semantic similarity of gene pairs whether electronic annotations were included
(Figure 7b) or excluded (Figure S4).

361

362 One aim of this study was to determine whether different metrics for determining 363 phenotypic profile similarity differed in their ability to identify gene pairs with functional similarity. We compared the performance of the metrics based on precision: the fraction 364 365 of positive results that are true positives. Gene pairs with phenotypic profile similarity 366 above a specified cutoff were considered as positive results, and true positives were 367 defined as gene pairs that are co-annotated in at least one of the five annotation sets. 368 We chose to use precision rather than accuracy, which is the fraction of correct 369 results, because the co-annotated and non-co-annotated gene pairs constitute a highly 370 imbalanced dataset (Saito & Rehmsmeier, 2015). Because the number of non-co-371 annotated gene pairs is much larger than the number of co-annotated gene pairs, high 372 accuracy could be achieved by classifying all gene pairs as true negatives, but this 373 wouldn't be very informative.

374

375 Overall, there appeared to be little difference in the performance of |PCC|, |SRCC| or MI 376 based on their precision scores for the top 500 gene pairs (Figure 4b). Initially, it

18

377 appeared that |SRCC| and MI outperformed |PCC| (Figure 4a). However, when the 378 analysis was repeated after removing the conditions involving growth on minimal media, 379 the precision for gene pairs ranked based on |PCC| increased significantly (compare 380 Figures 4a and 4b). We suggest that this difference is due to the sensitivity of the Pearson Correlation Coefficient to outliers in the data (Schober et al., 2018). We 381 382 realized that the collection of strains used by Nichols et al. contains many mutants that 383 have little or no growth on minimal media because the gene for a biosynthetic enzyme 384 is deleted. In contrast, these auxotrophic mutants didn't have a significant phenotype in 385 most of the other growth conditions tested, which used rich media, so the large negative 386 fitness scores on minimal media were essentially outliers. In our analysis, the sensitivity 387 of PCC to outliers interfered with the measurement of precision because there were so 388 many combinations of genes from different biosynthetic pathways that shared an 389 auxotrophic phenotype but did not share a functional annotation in the annotation sets 390 used.

391

392 However, this doesn't mean that *PCC* can't be used to measure phenotypic profile 393 similarity in high-throughput phenotype screens. For most gene pairs that don't include 394 an auxotrophic mutant, the phenotypic profile similarity (based on |PCC|) changed very 395 little when minimal media conditions were removed (data not shown). However, there 396 were a few gene pairs where a possible functional association could have been missed 397 if the minimal media conditions were not removed. We illustrate this with a gene pair 398 where the functions of the gene products are known to have a functional association. 399 The exbD and fepA genes are both needed for transport of ferric iron-enterobactin

400	across the outer membrane (Noinaj et al. 2010). When profile similarity was calculated
401	using the fitness scores for all conditions, PCC = 0.4773. After minimal media
402	conditions were removed, PCC increased to 0.6204, a high enough correlation that this
403	gene pair would be a reasonable candidate for future experiments.
404	
405	In addition to showing comparable precision, the three metrics, PCC , SRCC , and MI,
406	also produced comparable profile similarity scores for many, although not all, gene
407	pairs. We conclude that there is no single best way to measure phenotypic profile
408	similarity. Instead, it may be advantageous to use more than one correlation metric
409	when searching for functional associations. For high-throughput experiments that
410	measured growth of a large number of strains in many different environments, it may
411	also be useful to preprocess the fitness data, such as filtering or combining results from
412	certain growth conditions.
413	
414	To make it easier to compare results for the different similarity metrics, we have made
415	the data set from Nichols et al. available in a searchable, interactive format that allows
416	queries for strains, conditions, and phenotypic profile similarity of gene pairs determined
417	by PCC , SRCC , MI, and semantic similarity
418	(https://microbialphenotypes.org/wiki/index.php?title=Special:Ecolispecialpage).
419	
420	The relationship between precision and ranking based on profile similarity shown in
421	Figure 4b suggests that a shared function is known for most of the highly correlated
422	gene pairs. To test this idea, we used a cutoff of PCC >0.75 to define highly correlated

20

423 gene pairs, filtered out the gene pairs that have no co-annotations, and then manually 424 examined the gene pairs. If fitness scores for the growth conditions involving minimal 425 media were excluded, there were only 10 non-co-annotated gene pairs (summarized in 426 Table 1). We found functional associations that could explain the observed phenotypic profile similarity for 7 of the 10 gene pairs. In one case, the two genes (dsbB and dsbA) 427 428 showed up as non-co-annotated because they are in a pathway that wasn't yet included 429 in EcoCyc version 21.1. The other six gene pairs highlight some of the challenges of 430 creating (and using) annotation, such as deciding where pathways start and end and 431 determining appropriate levels of granularity. For example, the gene pairs rfaF(waaF)-432 rfaE(hldE) and rfaF(waaF)-lpcA (gmhA) are non-co-annotated, even though all three genes are required for synthesis of the lipid A-core oligosaccharide component of outer 433 434 membrane lipopolysaccharide. The explanation is that rfaF(waaF) is annotated to the 435 central assembly pathway for building the lipid-core oligosaccharide moiety, while 436 rfaE(hldE) and lpcA(qmhA) are annotated to a branch pathway that builds one of the 437 saccharide subunits of the core (Raetz & Whitfield, 2002). The functional association 438 between the three genes would have been revealed if we had included GO annotations. 439 since all three genes are annotated to the GO term for the lipopolysaccharide core 440 region biosynthetic process (GO:0009244).

441

We did not find a shared function for the last three non-coannotated gene pairs. Given that so many of the other highly correlated gene pairs do share a function, it is possible that future experiments will uncover a shared function for these three gene pairs. However, it also possible that the observed phenotypic profile similarity is fortuitous, as

21

446	we saw for mutants with an auxotrophic phenotype or mutants with increased sensitivity
447	to DNA damage. For example, this may be the most likely explanation for the
448	phenotypic similarity of the <i>mnmE</i> and <i>apaH</i> genes. Both are required for growth at pH
449	4.5 (Nichols et al. 2011, Vivijs et al., 2016), but appear to function independently.
450	MnmE, partnered with MnmG, modifies 2-thiouridine residues in the wobble position of
451	tRNA anticodons (Elseviers et al., 1984), while ApaH is a diadenosine tetraphosphatase
452	(Guranowski et al., 1983) and mRNA decapping enzyme (Luciano et al., 2019). Both
453	MnmE and ApaH are proposed to affect resistance to pH and other stresses through
454	their effects on gene expression (Dedon & Begley, 2014, Vivijs et al., 2016, Luciano et
455	al., 2019).
456	
457	A significant conclusion from this study is that functional associations can still be
458	inferred from phenotypic profiles after quantitative fitness scores are converted to
459	qualitative, ternary fitness values. While some information was lost compared to using
460	quantitative fitness scores, the precision based on qualitative fitness values was much
461	greater than for randomly ordered gene pairs (Figure 6). This result suggests that
462	inherently qualitative phenotypes, such as aspects of cell morphology, could be
463	incorporated into phenotypic profiles and used to infer functional associations. It may
464	also be possible to incorporate phenotype annotations into phenotypic profiles. These
465	annotations typically capture information in a qualitative fashion and have previously
466	been shown to be useful for inferring gene function (Hoehndorf et al., 2013; Ascensao

468 viable option for integrating phenotype information from different studies. Thus, we

et al., 2014). These results also suggest that using qualitative phenotypes may be a

- 469 believe that using qualitative phenotypes to combine more *E. coli* datasets, or datasets
- 470 from other microorganisms, will allow us to extract many more functional insights.

23

471 MATERIALS & METHODS

472

473 Sources of data

474 The high-throughput phenotypic profiling data as normalized fitness scores were

475 downloaded from supplemental Table S2 of the original paper (Nichols et al., 2011).

476 Missing values (0.17% of total fitness scores) were replaced with population mean as

477 an imputation method.

478

479 Six annotation sets including GO annotations were obtained from various sources: From

480 a downloaded version of EcoCyc version 21.1

481 (http://bioinformatics.ai.sri.com/ecocyc/dist/flatfiles-52983746/), the ECK identifiers in

482 supplemental Table S2 from the original research paper (Nichols et al., 2011) were

483 verified, corrected and mapped to EcoCyc gene identifiers and b numbers using

484 information in the file genes.txt. EcoCyc Pathway annotations were mapped to each

485 gene using information in the file pathways.col. EcoCyc Protein complex annotations

486 were mapped to each gene using information in the file protcplxs.col. KEGG module

487 annotations were obtained and mapped by retrieving module name and b numbers from

488 the KEGG website (<u>https://www.kegg.jp</u>). Operon and regulon annotations were

489 obtained and mapped to each gene using a download of Regulon DB version 9.4

490 (<u>http://regulondb.ccg.unam.mx</u>). The file operon.txt was the source of operon

491 annotations. The file object_synonym.txt was used to map ECK12 gene identifiers to

492 ECK gene identifiers. RegulonDB annotations were then obtained from the file

493 regulon_d_tmp.txt and mapped to ECK identifiers. GO biological process annotations

494 were obtained from the Ecocyc file gene_association.ecocyc and mapped to each gene

24

495 to produce the file 2017_05_ECgene_association.ecocyc.csv. UniProt IDs retrieved
496 from the Bioconductor package UniProt.ws were used to associate GO annotations
497 from proteins to genes. The number of genes annotated by each annotation set and the
498 total number of annotations are shown in Table 2.

499

500 Statistical analysis and software

501 The statistical programming language R was used throughout the study. Phenotypic

502 profile similarity was calculated using Pearson Correlation Coefficient (|PCC|),

503 Spearman's Rank Correlation Coefficient (|SRCC|), Mutual Information, and semantic

504 similarity. Pearson and Spearman's Rank Correlation Coefficients were calculated using

505 the cor() function, with the metric argument specified by either "pearson" or "spearman".

506 Different implementations are needed to calculate Mutual Information for continuous,

507 quantitative data and discretized, qualitative data. Mutual Information for quantitative

508 data was calculated using the cminjk() function provided in the mpmi package, while

509 Mutual Information for discretized data was calculated using the mutinformation()

510 function provided in the infotheo package. Both packages are available from CRAN

511 (https://cran.r-project.org/web/packages/mpmi/index.html). The semantic similarity of

512 GO biological process annotations was calculated using a graph-based method (Wang

513 et al., 2007). Calculations were performed using the GOSemSim package (Yu et al.,

514 2010) from Bioconductor. For the Mann-Whitney U test, wilcox.test() function was used.

515 For violin plots, geom_violin() was used to plot the kernel density plot and geom_box()

516 was used for the boxplot. Both functions are from the ggplot2 package (Wickham,

517 2016). In the box plots associated with each violin plot, the middle lines in the boxes

25

- 518 represent medians; the whiskers indicate the 1.5 interquartile range (IQR) away from
- 519 either Q1 (lower box boundary) or Q3 (upper box boundary).

520

- 521 The code and data files used for calculations and reproducing the results are available
- on GitHub: https://github.com/peterwu19881230/Systematic-analyses-ecoli-phenotypes.

524	ACKNOWLEDGEMENTS: We mourn the unexpected death of JCH who led this project
525	and passed away on 23 Jan 2020. We hope this publication will continue his scientific
526	legacy. We thank Michelle Giglio, Matthew Sachs and Yen-Ting Lu for helpful
527	comments on the manuscript. This work was supported by a grant from the National
528	Institutes of Health (R01GM089636) to JCH.
529	
530	AUTHOR CONTRIBUTIONS: JH and DS conceptualized the project. JH, PW, and DS
531	designed the experiments and the analytical pipeline. PW implemented the experiments
532	and analyzed the data. CR helped with the implementation of experiments. PW, DS,
522	and IH wrote the manuscript

533 and JH wrote the manuscript.

COMPETING INTERESTS: The authors declare no competing interests.

27

537 **REFERENCES**

- 538 Arnoldo, A., Kittanakom, S., Heisler, L. E., Mak, A. B., Shukalyuk, A. I., Torti, D., . . .
- 539 Nislow, C. (2014). A genome scale overexpression screen to reveal drug activity in
- 540 human cells. *Genome Med*, 6(4), 32. doi:10.1186/gm549
- 541 Ascensao, J.A., Dolan, M.E., Hill, D.P., and Blake, J.A. (2014) Methodology for the
- 542 inference of gene function from phenotype data. *BMC Bioinformatics*, *15*(1), 405.
- 543 doi:10.1186/s12859-014-0405-z
- 544 Bochner, B. R. (2009). Global phenotypic characterization of bacteria. *FEMS Microbiol*
- 545 *Rev*, 33(1), 191-205. doi:10.1111/j.1574-6976.2008.00149.x
- 546 Campos, M., Govers, S. K., Irnov, I., Dobihal, G. S., Cornet, F., & Jacobs-Wagner, C.
- 547 (2018). Genomewide phenotypic analysis of growth, cell morphogenesis, and cell
- 548 cycle events in *Escherichia coli*. *Mol Syst Biol*, *14*(6), e7573.
- 549 doi:10.15252/msb.20177573
- 550 Camon, E. B., Barrell, D. G., Dimmer, E. C., Lee, V., Magrane, M., Maslen, J., . . .
- 551 Apweiler, R. (2005). An evaluation of GO annotation retrieval for BioCreAtIvE and
- 552 GOA. *BMC Bioinformatics, 6 Suppl 1*, S17. doi:10.1186/1471-2105-6-S1-S17
- 553 Chibucos, M. C., Zweifel, A. E., Herrera, J. C., Meza, W., Eslamfam, S., Uetz, P., . . .
- 554 Giglio, M. G. (2014). An ontology for microbial phenotypes. *BMC Microbiol, 14*, 294.
- 555 doi:10.1186/s12866-014-0294-3
- 556 Dedon, P.C. and Begley, T.J. (2014) A system of RNA modifications and biased codon
- use controls cellular stress response at the level of translation. Chem Res Toxicol,
- 558 27, 330-337. doi:10.1021/tx400438d

559	Elseviers, D., Petrullo, L.A., & Gallagher, P.J. (1984) Novel E. coli mutants deficient in
560	biosynthesis of 5-methylaminomethyl-2-thiouridine. Nucleic Acids Res 12(8), 3521-
561	34. doi:10.1093/nar/12.8.3521
562	Gama-Castro, S., Salgado, H., Santos-Zavaleta, A., Ledezma-Tejeida, D., Muniz-
563	Rascado, L., Garcia-Sotelo, J. S., Collado-Vides, J. (2016). RegulonDB version
564	9.0: high-level integration of gene regulation, coexpression, motif clustering and
565	beyond. Nucleic Acids Res, 44(D1), D133-143. doi:10.1093/nar/gkv1156
566	Gene Ontology Consortium (2017). Expansion of the Gene Ontology knowledgebase
567	and resources. Nucleic Acids Res, 45(D1), D331-D338. doi:10.1093/nar/gkw1108
568	Guranowski, H., Jakubowski, H., & Holler, E. (1983) Catabolism of diadenosine 5', 5"'-
569	P1,P4-tetraphosphate in procaryotes. Purification and properties of diadenosine
570	5',5"'-P1,P4-tetraphosphate (symmetrical) pyrophosphohydrolase from Escherichia
571	coli K12. J Biol Chem, 258(24), 14784-9. PMID:6317672
572	Hill, D. P., Davis, A. P., Richardson, J. E., Corradi, J. P., Ringwald, M., Eppig, J. T., &
573	Blake, J. A. (2001). Program description: Strategies for biological annotation of
574	mammalian systems: implementing gene ontologies in mouse genome informatics.
575	Genomics, 74(1), 121-128. doi:10.1006/geno.2001.6513
576	Hillenmeyer, M. E., Ericson, E., Davis, R. W., Nislow, C., Koller, D., & Giaever, G.
577	(2010). Systematic analysis of genome-wide fitness data in yeast reveals novel gene
578	function and drug action. Genome Biol, 11(3), R30. doi:10.1186/gb-2010-11-3-r30
579	Hinkle, D.E., Wiersma, W., & Jurs, S.G. (2002). Applied Statistics for the Behavioral
580	Sciences (5th Edition), Houghton Mifflin.

- 581 Hoehndorf, R., Hardy, N. W., Osumi-Sutherland, D., Tweedie, S., Schofield, P. N., &
- 582 Gkoutos, G. V. (2013). Systematic analysis of experimental phenotype data reveals
- 583 gene functions. *PLoS One, 8*(4), e60847. doi:10.1371/journal.pone.0060847
- Holliday, G.L., Davidson, R., Akiva, E. & Babbitt, P.C. (2017). Evaluating functional
- annotations of enzymes using the Gene Ontology. *Methods Mol Biol, 1446*, 111-132.
- 586 doi:https://doi.org/10.1007/978-1-4939-3743-1_9
- Houle, D., Govindaraju, D. R., & Omholt, S. (2010). Phenomics: the next challenge. *Nat Rev Genet, 11*(12), 855-866. doi:10.1038/nrg2897
- 589 Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., & Tanabe, M. (2016). KEGG as
- 590 a reference resource for gene and protein annotation. *Nucleic Acids Res, 44*(D1),
- 591 D457-462. doi:10.1093/nar/gkv1070
- 592 Karp, P. D., Ong, W. K., Paley, S., Billington, R., Caspi, R., Fulcher, C., . . . Paulsen, I.
- 593 (2018). The EcoCyc database. *EcoSal Plus*, 8(1), 10.1128/ecosalplus.ESP-0006-
- 594 2018. doi:10.1128/ecosalplus.ESP-0006-2018
- 595 Keseler, I. M., Mackie, A., Santos-Zavaleta, A., Billington, R., Bonavides-Martinez, C.,
- 596 Caspi, R., . . . Karp, P. D. (2017). The EcoCyc database: reflecting new knowledge
- about Escherichia coli K-12. *Nucleic Acids Res, 45*(D1), D543-D550.
- 598 doi:10.1093/nar/gkw1003
- 599 Keseler, I. M., Skrzypek, M., Weerasinghe, D., Chen, A. Y., Fulcher, C., Li, G. W., . . .
- 600 Karp, P. D. (2014). Curation accuracy of model organism databases. *Database*
- 601 (Oxford), 2014, bau058. doi:10.1093/database/bau058

- 602 Luciano, D.J., Levenson-Palmer, R., & Belasco, J.G. (2019) Stresses that raise Np4A
- 603 levels induce protective nucleoside tetraphosphate capping of bacterial RNA. *Mol*
- 604 *Cell*, 75(5), 957-966.e8. doi:10.1016/j.molcel.2019.05.031
- Nichols, R. J., Sen, S., Choo, Y. J., Beltrao, P., Zietek, M., Chaba, R., . . . Gross, C. A.
- 606 (2011). Phenotypic landscape of a bacterial cell. *Cell, 144*(1), 143-156.
- 607 doi:10.1016/j.cell.2010.11.052
- Noinaj, N., Guuillier, M., Barnard, T.J., and Buchanan, S.K. (2010) TonB-dependent
- transporters: regulation, structure, and function. *Annu Rev Microbiol*, 64, 43-60. doi:
- 610 10.1146/annurev.micro.112408.134247
- 611 Pesquita, C. (2017). Semantic similarity in the Gene Ontology. *Methods Mol Biol*, 1446,
- 612 161-173. doi:https://doi.org/10.1007/978-1-4939-3743-1_12
- 613 Price, M. N., Wetmore, K. M., Waters, R. J., Callaghan, M., Ray, J., Liu, H., . . .
- Deutschbauer, A. M. (2018). Mutant phenotypes for thousands of bacterial genes of
- 615 unknown function. *Nature*, 557(7706), 503-509. doi:10.1038/s41586-018-0124-0
- 616 Priness, I., Maimon, O., & Ben-Gal, I. (2007). Evaluation of gene-expression clustering
- via mutual information distance measure. *BMC Bioinformatics*, *8*, 111.
- 618 doi:10.1186/1471-2105-8-111
- 619 Raetz, C.R.H. & Whitfield, C. (2002) Lipopolysaccharide endotoxins. Annu Rev
- *Biochem*, *71*, 635-700. doi:10.1146/annurev.biochem.71.110601.135414
- 621 Saito, T., & Rehmsmeier, M. (2015). The precision-recall plot is more informative than
- the ROC plot when evaluating binary classifiers on imbalanced datasets. *PLoS One*,
- 623 *10*(3), e0118432. doi:10.1371/journal.pone.0118432

- Schober, P., Boer, C., & Schwarte, L.A. (2018). Correlation coefficients: appropriate use
 and interpretation. *Anesth Analg* 126(5), 1763-1768.
- 626 doi:10.1213/ANE.00000000002864
- 627 Shefchek, K. A., Harris, N. L., Gargano, M., Matentzoglu, N., Unni, D., Brush, M., . . .
- 628 Osumi-Sutherland, D. (2020). The Monarch Initiative in 2019: an integrative data and
- 629 analytic platform connecting phenotypes to genotypes across species. *Nucleic Acids*
- 630 Res, 48(D1), D704-D715. doi:10.1093/nar/gkz997
- 631 Siegele, D. A., LaBonte, S. A., Wu, P. I., Chibucos, M. C., Nandendla, S., Giglio, M. G.,
- 632 & Hu, J. C. (2019). Phenotype annotation with the ontology of microbial phenotypes
- 633 (OMP). J Biomed Semantics, 10(1), 13. doi:10.1186/s13326-019-0205-5
- 634 Vivijs, B., Aertsen, A., & Michiels, C.W. (2016) Identification of genes required for
- 635 growth of Escherichia coli MG1655 at moderately low pH. *Front Microbiol*, 7, 1672.
- 636 doi:10.3389/fmicb.2016.01672
- 637 Wang, J. Z., Du, Z., Payattakool, R., Yu, P. S., & Chen, C. F. (2007). A new method to
- 638 measure the semantic similarity of GO terms. *Bioinformatics*, 23(10), 1274-1281.
- 639 doi:10.1093/bioinformatics/btm087
- 640 Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Retrieved from
- 641 https://ggplot2.tidyverse.org
- 642 Yu, G., Li, F., Qin, Y., Bo, X., Wu, Y., & Wang, S. (2010). GOSemSim: an R package for
- 643 measuring semantic similarity among GO terms and gene products. *Bioinformatics*,
- 644 26(7), 976-978. doi:10.1093/bioinformatics/btq064
- 645

32

646 **TABLES AND FIGURES**

647 Table 1 Non-co-annotated gene pairs with |PCC| >0.75

	Known or predicted functional
Gene pair ¹	association
ECK0730-pal_ECK0725-ybgC ²	Tol-Pal cell envelope complex (CPLX0-2201)
ECK0768-uvrB_ECK2563-recO	DNA repair (recombinational repair RECFOR-
	CPLX and nucleotide excision repair OVRABC-
ECK1912-uvrC_ECK2563-recO	DNA repair (recombinational repair RECFOR-
	CPLX and nucleotide excision repair UVRABC-
	CPLX)
ECK2901-visC(ubil)_ECK3033-yqiC(ubiK) ³	ubiquinol-8 biosynthesis (PWY-6708)
ECK3610-rfaF(waaF)_ECK3042-rfaE(hldE) ⁴	superpathway of lipopolysaccharide
	biosynthesis (LPSSYN-PWY)
ECK3610- <i>rfaF(waaF)</i> _ECK0223-lpcA ⁴	super pathway of lipopolysaccharide
	biosynthesis (LPSSYN-PWY)
ECK3852-dsbA_ECK1173-dsbB	periplasmic disulfide bond formation (PWY0-
	1599) ⁵
EUK 1544-gnsb_EUK2394-gitX	unknown
ECK2066-yegK(pphC)_ECK0345-mhpB	unknown
ECK3699-mnmE_ECK0050-apaH	unknown

648

name has changed, the new gene name is included in parentheses.

⁶⁴⁹ ¹ The strain names are from supplemental Table S2 of Nichols et al. (2011). Where the gene

- $651 {}^2 ybgC$ is in an operon that also includes the genes for three of the protein components of the
- 652 Tol-Pal cell envelope complex
- 653 ³ *ubiK* codes for an accessory protein required for efficient synthesis of ubiquinol-8 under
- aerobic conditions, but is not annotated as part the ubiquinol-8 biosynthesis pathway
- ⁶⁵⁵ ⁴ *rfaE*(*hldE*) and *lpcA* are not annotated to the super pathway of lipopolysaccharide biosynthesis
- 656 (LPSSYN-PWY)
- ⁶⁵⁷ ⁵ PWY0-1599 was not present in EcoCyc version 21.1

Table 2. Annotation sets used in this study

Annotation set (source)	Subset of annotated genes tested ^a	Total no. of annotations for each subset ^b			
Pathways (EcoCyc)	885	2,317			
Heterooligomeric protein complexes (EcoCyc)	688°	871°			
Operons (RegulonDB)	3,858	5,349			
Regulons (RegulonDB)	1,572	3,886			
Modules (KEGG)	333	524			
Pathways or Protein complexes	1,385	3,269			
Pathways and Protein Complexes	188	818 ^d			
Any (Union of all 5 annotation sets)	3,866	12,937			
All (Intersection of all 5 77 922 annotation sets)					
GO biological process 2,609 5,775					
^a Number of annotated genes that were deleted or otherwise mutated in the Nichols strain set (Nichols et al., 2011)					
^b Total number of annotations associated with the genes					
[°] This excludes 681 genes annotated to protein					
complexes whose products form only homooligomeric complexes					
^d This is the number of annotations associated with any of the 77 genes that are annotated to all 5 annotation sets.					

Figure 1. Higher phenotypic similarity was found for co-annotated gene pairs.
Shown are violin plots of the distributions of |PCC| for the indicated groups of gene
pairs. Numbers above each violin plot indicate the number of gene pairs in each plot.
***: p-value <0.001 was determined by 1-sided Mann-Whitney U test, compared to all
gene pairs. The dashed line indicates |PCC| = 0.75, which was chosen as an arbitrary
cut-off.

36

Ranking Similarity	1st	100th	200th	300th	400th	500th
PCC	0.96	0.92	0.90	0.89	0.87	0.86

670

671

672 Figure 2. Increased co-annotation was found for gene pairs with higher

673 phenotypic profile similarity. Gene pairs were ranked from high to low similarity

based on |PCC| values and plotted versus precision [TP/(TP+FP)], which was

calculated as described in the text (only the first 500 gene pairs are shown). Note that

676 for the first few gene pairs the lines overlap except the line for protein complexes. The

- 677 dashed line shows precision for randomly ordered gene pairs (negative control). The
- 678 correspondence between |PCC| and ranking is shown below the graph.
- 679
bioRxiv preprint doi: https://doi.org/10.1101/2020.07.16.206243; this version posted July 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

682 Figure 3. Precision increased when minimal media conditions were excluded.

683 Gene pairs were ranked from high to low similarity based on |PCC| and plotted versus

684 precision, calculated as described in the text (only the first 500 gene pairs are shown).

- 685 The dashed line shows precision for randomly ordered gene pairs (negative control).
- 686 The correspondence between |PCC| and ranking is the same as in Figure 2.
- 687

38

688 Figure 4a

Ranking Similarity	1st	100th	200th	300th	400th	500th
PCC	0.96	0.92	0.90	0.89	0.87	0.86
MI	1.20	0.60	0.47	0.42	0.39	0.37
Spearman	0.94	0.76	0.66	0.63	0.61	0.59

689

690 Figure 4b

Ranking Similarity	1st	100th	200th	300th	400th	500th
PCC	0.96	0.77	0.68	0.64	0.62	0.61
MI	1.68	0.83	0.65	0.58	0.55	0.52
Spearman	0.94	0.75	0.66	0.63	0.61	0.60

39

692 Figure 4. Precision versus ranking for different methods of measuring phenotype

693 **profile similarity.** Gene pairs were ranked from high to low similarity and plotted versus

- 694 precision, calculated as described in the text (only the first 500 gene pairs are shown).
- 695 Phenotypic profile similarity was assessed using either |PCC|, MI, or |SRCC| with (a) all
- 696 growth conditions used or (b) excluding growth conditions with minimal media. The
- 697 dashed line shows precision for randomly ordered gene pairs (negative control). The
- 698 correspondence between similarity scores and ranking is shown below each graph.

40

700 Figure 5a

Figure 5b

706 Figure 5. Phenotypic profile similarity after converting fitness scores from

- 707 quantitative to qualitative, ternary values. Shown are violin plots of the distributions
- of phenotypic profile similarity based on Mutual Information for the indicated groups of
- gene pairs. Panel (a) shows results determined using all 324 growth conditions, and
- panel (b) shows results determined after collapsing the growth conditions to 114 unique
- stresses. The insets show the mean value for each distribution. For (a) the mean values
- 712 are 0.0006, 0.014, 0.014, 0.039, and 0.057). For (b) the mean values are 0.0021, 0.026,
- 713 0.025, 0.073, and 0.1). ***: p-value <0.001 determined by 1-sided Mann-Whitney U test.

Ranking Similarity	1st	100th	200th	300th	400th	500th
MI	1.20	0.60	0.47	0.42	0.39	0.37
MI ternary	0.72	0.20	0.20	0.20	0.20	0.18
MI ternary – collapsed	0.87	0.43	0.43	0.43	0.42	0.39

715

716

717 Figure 6. Precision versus ranking for quantitative versus qualitative, ternary

718 fitness scores. Gene pairs were ranked from high to low similarity based on Mutual 719 Information (MI) and plotted versus precision, calculated as described in the text (only 720 the first 500 gene pairs are shown). The phenotypic profiles contained either the original 721 quantitative data (black line), the discretized ternary values for all growth conditions (brown line), or the discretized, ternary values for growth conditions collapsed to 114 722 723 unique stresses (orange line). The dashed line shows precision for randomly ordered 724 gene pairs (negative control). The correspondence between similarity scores and 725 ranking is shown below each graph.

43

726 Figure 7a

728 Figure 7b

732	Figure 7. Higher semantic similarity and phenotypic profile similarity were found
733	for co-annotated gene pairs. (a) Violin plots of the distributions of semantic similarity
734	for the indicated groups of gene pairs. Numbers above each violin plot indicate the
735	number of gene pairs in each plot. (b) Violin plots of semantic similarity for, from left to
736	right: all gene pairs annotated with GO biological process term(s); the subset of gene
737	pairs with PCC >0.75; the subset of gene pairs with MI >0.15 (calculated based on
738	qualitative fitness scores for all growth conditions); and MI >0.32 (calculated based on
739	qualitative fitness scores for the collapsed set of growth conditions). The cutoffs of MI
740	>0.15 for the third violin plot and MI >0.32 for the fourth violin plot were chosen so that
741	all three subsets of gene pairs would contain the same number (~1,000) of top-ranked
742	gene pairs. ***: p-value <0.001 was determined by 1-sided Mann-Whitney U test,
743	compared to all gene pairs.

Figure 8. Higher phenotypic similarity was found for gene pairs that have higher
GO semantic similarity. Violin plots of the distributions of the |PCC| values for all gene
pairs with GO biological process annotations and the subset with semantic similarity is
greater than an arbitrary cutoff of 0.5. Numbers above each violin plot indicate the
number of gene pairs in each plot. ***: p-value <0.001 was determined by 1-sided
Mann-Whitney U test, compared to all gene pairs.

46

751 Supplemental Tables and Figures

752	Supplemental Table S1	pages 47-59
753	Supplemental Table S2	pages 60-68
754	Supplemental Figure S1	pages 69-70
755	Supplemental Figure S2	pages 71-72
756	Supplemental Figure S3	page 73
757	Supplemental Figure S4	page 74

47

759 Supplemental Table S1. EcoCyc Pathways IDs and name of pathway for the labels

view 760 used in Supplemental Figure S1.

Label		
No.	EcoCyc Pathway ID	Pathway name
1	HOMOSER-THRESYN-PWY	L-threonine biosynthesis
		ArcAB Two-Component Signal
2	PWY0-1505	Transduction System, quinone dependent
3	XYLCAT-PWY	xylose degradation I
4	PYRUVDEHYD-PWY	pyruvate decarboxylation to acetyl CoA
		PhoQP Two-Component Signal
		Transduction System, magnesium-
5	PWY0-1458	dependent
		CreCB Two-Component Signal
6	PWY0-1487	Transduction System
7	GLUTATHIONESYN-PWY	glutathione biosynthesis
		NtrBC Two-Component Signal
8	PWY0-1509	Transduction System, nitrogen-dependent
		AtoSC Two-Component Signal
9	PWY0-1474	Transduction System
		4-amino-2-methyl-5-
10	PWY-6890	diphosphomethylpyrimidine biosynthesis
11	PWY0-1554	5-(carboxymethoxy)uridine biosynthesis
		GDP-L-fucose biosynthesis I (from GDP-
12	PWY-66	D-mannose)
13	GLUTDEG-PWY	L-glutamate degradation II
		UDP-N-acetyl-α-D-
14	PWY-7335	mannosaminouronate biosynthesis
		EnvZ Two-Component Signal
15	PWY0-1500	Transduction System, osmotic responsive
		QseBC Two-Component Signal
10		I ransduction System, quorum sensing
16	PWY0-1470	
		DCUSR I wo-Component Signal
47		I ransduction System, dicarboxylate-
17	PVVYU-1468	dependent
18	PWY-6153	autoinducer AI-2 biosynthesis I
10	DVAD/0 1400	EvgSA Two-Component Signal
19	PVVYU-1490	I ransouction System
20	DETSYNI DWY	giycine betaine biosynthesis I (Gram-
20		DriPA Two Component Signal
01		
	FVV10-1499	Transduction System

22	PWY-7343	UDP-α-D-glucose biosynthesis I
23	2PHENDEG-PWY	phenylethylamine degradation I
24	PWY0-1264	biotin-carboxyl carrier protein assembly
25	PWY-7761	NAD salvage pathway II
		BtsSR Two-Component Signal
26	PWY0-1559	Transduction System
07		YpdAB Two-Component Signal
27		I ransduction System
28		N-acetylglucosamine degradation I
29	GLUISYN-PWY	L-glutamate biosynthesis I
30	GLUCONSUPER-PWY	D-gluconate degradation
31	RIBOKIN-PWY	ribose phosphorylation
32	PWY-6910	hydroxymethylpyrimidine salvage
22		two-component alkanesulfonate
	ALKANEMONOA-PW F	6 bydroxymethyl dibydronterin
34	PWY-6147	diphosphate biosynthesis I
35	PWY-40	putrescine biosynthesis I
36	PWY0-1182	trebalose degradation II (trebalase)
37	PWY0-461	L-lysine degradation L
38		trebalose degradation I (low osmolarity)
		UhpBA Two Component Signal
39	PWY0-1492	Transduction System
		PhoRB Two-Component Signal
		Transduction System, phosphate-
40	PWY0-1483	dependent
44		CpxAR Two-Component Signal
41	PWY0-1485	methylalyoval degradation II (no longer
42	PWY-901	recognized as a pathway in EcoCyc)
12		N6-L-threonylcarbamovladenosine37-
43	PWY0-1587	modified tRNA biosynthesis
		ZraSR Two-Component Signal
44	PWY0-1498	Transduction System
		BasSR Two-Component Signal
45	PWY0-1482	I ransduction System
46	CYANCAT-PWY	cyanate degradation
17	$P_{M/V}$	Abeta;-D-glucuronide and D-glucuronate
41		L alanina hiasynthesis III
40		
49		GIrkR Two-Component Signal
50	PWY0-1503	Transduction System

51	PWY-6019	pseudouridine degradation
52	ENTNER-DOUDOROFF-PWY	Entner-Doudoroff pathway I
53	BSUBPOLYAMSYN-PWY	spermidine biosynthesis I
54	TRESYN-PWY	trehalose biosynthesis I
55	PWY0-1477	ethanolamine utilization
56	PWY-7194	pyrimidine nucleobases salvage II
57	PWY0-1433	tetrahydromonapterin biosynthesis
58	PWY-6605	adenine and adenosine salvage II
		HprSR Two-Component Signal
59	PWY0-1588	Transduction System
60	PWY0-1280	ethylene glycol degradation
61	PWY0-1317	L-lactaldehyde degradation (aerobic)
62	PWY-5459	methylglyoxal degradation IV
63	ALANINE-SYN2-PWY	L-alanine biosynthesis II
		purine deoxyribonucleosides degradation
64	PWY-7179	
65	PWY-7176	UTP and CTP de novo biosynthesis
66		Aerotactic Two-Component Signal
00	FWT0-1319	BaeSR Two-Component Signal
67	PWY0-1481	Transduction System
		BarA UvrY Two-Component Signal
68	PWY0-1501	Transduction System
		CusSR Two-Component Signal
69	PWY0-1512	Transduction System
70		TorSR Two-Component Signal
70	PW/V 6703	proO0 biosynthosis
11	FW1-0703	prego biosynthesis
72	PWY-7197	phosphorylation
73	PWY-7205	CMP phosphorylation
74	PWY0-1534	hydrogen sulfide biosynthesis I
75	ASPARAGINESYN-PWY	L-asparagine biosynthesis II
		superpathway of L-asparagine
76	PWY0-1325	biosynthesis
77	PWY-7193	pyrimidine ribonucleosides salvage l
78	PWY-6537	4-aminobutanoate degradation II
		KdpDE Two-Component Signal
70		I ransduction System, potassium-
/9	PVV10-1490	
08	PWYU-151/	sedoneptulose bisphosphate bypass
81	PWY0-1309	cnitopiose degradation

82	Ρ\//ΥΩ_1497	RstBA Two-Component Signal
		trans_trans_farnesyl diphosphate
83	PWY-5123	biosynthesis
84	PWY0-661	PRPP biosynthesis II
85	PROSYN-PWY	L-proline biosynthesis I
86	GLYCLEAV-PWY	glycine cleavage
87	SERSYN-PWY	L-serine biosynthesis
88	PWY-5340	sulfate activation for sulfonation
89	PWY-5901	2,3-dihydroxybenzoate biosynthesis
90	CYSTSYN-PWY	L-cysteine biosynthesis I
0.1		NarX Two-Component Signal
91	PWY0-1515	I ransduction System, nitrate dependent
92	KDOSYN-PWY	Kdo transfer to lipid IVA I
03	$P_{M/V0_{-}1514}$	Transduction System nitrate dependent
93 04	PW/Y0-1275	lipoate biosynthesis and incorporation II
95	PW/Y0-901	L-selenocysteine biosynthesis I (bacteria)
		fructoselvsine and psicoselvsine
96	PWY0-521	degradation
97	PANTO-PWY	phosphopantothenate biosynthesis I
98	PWY-7221	guanosine ribonucleotides de novo biosynthesis
99	AMMASSIM-PWY	ammonia assimilation cycle III
100	PWY-5965	fatty acid biosynthesis initiation III
101	IDNCAT-PWY	L-idonate degradation
102	LYXMET-PWY	L-lyxose degradation
103	PUTDEG-PWY	putrescine degradation I
104	GALACTCAT-PWY	D-galactonate degradation
105	HOMOSERSYN-PWY	L-homoserine biosynthesis
100	D MD(4004	formaldehyde oxidation II (glutathione-
106		dependent)
107	THREONINE-DEG2-PWY	L-threonine degradation II
108	PWY0-1303	aminopropylcadaverine biosynthesis
109	PWY0-1312	acetate formation from acetyl-CoA I
110	SALVPURINE2-PWY	xanthine and xanthosine salvage
111	ASPARAGINE-DEG1-PWY	L-asparagine degradation I
112	PWY0-44	D-allose degradation
113	ALADEG-PWY	L-alanine degradation I
114	NADPHOS-DEPHOS-PWY	NAD phosphorylation and dephosphorylation

		RcsCDB Two-Component Signal
115	PWY0-1493	Transduction System
116	PPGPPMET-PWY	ppGpp biosynthesis
117	PWY-6543	4-aminobenzoate biosynthesis
118	PLPSAL-PWY	pyridoxal 5'-phosphate salvage l
		superpathway of heme b biosynthesis
119	PWY0-1415	from uroporphyrinogen-III
		Chemotactic Two-Component Signal
120	PWY0-1518	Transduction
101		pentose phosphate pathway (oxidative
121		
122	PVV1-0036	
123	PWY0-823	decarboxylase/agmatinase pathway)
		pyrimidine deoxyribonucleosides
124	PWY-7181	degradation
125	THIOREDOX-PWY	thioredoxin pathway
126	PWY0-1337	oleate β-oxidation
127	PWY-6614	tetrahydrofolate biosynthesis
128	PWY-6535	4-aminobutanoate degradation I
		2-O-α-mannosyl-D-glycerate
129	PWY0-1300	degradation
120		superpathway of pyrimidine nucleobases
130	PVV1-7208	salvage
131	PWY-5698	(ammonia producing)
132	PYRIDNUCSAI -PWY	NAD salvage pathway I
133	FTOH-ACETYL COA-ANA-PWY	ethanol degradation I
134	PWY-5162	2-oxopentenoate degradation
		L-threonine degradation III (to
135	THRDLCTCAT-PWY	methylglyoxal)
		UDP-N-acetyl-D-glucosamine
136	UDPNAGSYN-PWY	biosynthesis I
137	PWY0-1319	CDP-diacylglycerol biosynthesis II
138	PWY0-1569	autoinducer AI-2 degradation
139	PWY-5436	L-threonine degradation IV
140	DW0/0 1224	N-acetylneuraminate and N-
140	PWY0-1324	
141	μνντυ-43	conversion of succinate to propanoate
142	SFR-GI YSYN-PWY	biosynthesis I
		ADP-L-glycero-β:-D-manno-heptose
143	PWY0-1241	biosynthesis

oRxiv a l	icense	to display	' the	preprint	in	perpetuity.	lt i	S	ma
nternati	onal lice	ense.							

144	PWY-6708	ubiquinol-8 biosynthesis (prokaryotic)
		pyruvate to cytochrome bd oxidase
145	PWY-7545	electron transfer
146	PYRIDNUCSYN-PWY	NAD biosynthesis I (from aspartate)
		NADH to cytochrome bd oxidase electron
147	PWY0-1568	transfer II
1/18		superpathway of coenzyme A biosynthesis I (bacteria)
140	PWY-7242	D-fructuronate degradation
150	PWY-6897	thiamine salvage II
151	GLYCEROLMETAB-PWY	diversi degradation V
152	FUCCAT-PWY	fucose degradation
152	PW/Y-6556	pyrimidine ribonucleosides salvage II
153	PW/V0_1338	pyrimalite fiberiacieosides salvage il
155	PW/Y-5966	fatty acid biosynthesis initiation II
156	PW/Y-7195	nyrimidine ribonucleosides salvage III
150	PW/V-7446	sulfoquinovose degradation l
158		acetoacetate degradation (to acetyl CoA)
130	ACETOACETATE-DEG-FWT	L-ascorbate degradation (bacterial
159	PWY0-301	anaerobic)
160	KDO-LIPASYN-PWY	(Kdo)2-lipid A biosynthesis I
		glycogen biosynthesis I (from ADP-D-
161	GLYCOGENSYNTH-PWY	Glucose)
162	PWY-6700	queuosine biosynthesis
163	AST-PWY	L-arginine degradation II (AST pathway)
164	ALANINE-VALINESYN-PWY	L-alanine biosynthesis I
165	PWY-4381	fatty acid biosynthesis initiation I
		biotin biosynthesis from 8-amino-7-
166	PWY0-1507	oxononanoate I
167	PWY-6611	adenine and adenosine salvage V
168	PWY0-1573	nitrate reduction VIIIb (dissimilatory)
160	DWW 7180	2'-deoxy-α-D-ribose 1-phosphate
109		
170		L-serine degradation
1/1		U-arabinose degradation I
172	PWY-5785	biosynthesis
173	PWY0-1221	putrescine degradation II
174	TYRSYN	L-tyrosine biosynthesis I
175	PWY0-1545	cardiolipin biosynthesis III

176	PWY0-181	salvage pathways of pyrimidine deoxyribonucleotides
		CMP-3-deoxy-D-manno-octulosonate
177	PWY-1269	biosynthesis
		pyrimidine deoxyribonucleotides
178	PWY-7206	dephosphorylation
179	PWY-5705	allantoin degradation to glyoxylate III
180	PWY0-1295	pyrimidine ribonucleosides degradation
181	GLYOXDEG-PWY	glycolate and glyoxylate degradation II
182	PWY-6164	3-dehydroquinate biosynthesis I
183	CARNMET-PWY	L-carnitine degradation I
		thiosulfate disproportionation IV
184	PWY-5350	(rhodanese)
185	PWY-5659	GDP-mannose biosynthesis
400	DW0 (0400	5-aminoimidazole ribonucleotide
186	PWY-6122	biosynthesis II
187	PW/Y_6121	5-aminoimidazoie nbonucieolide
107		D-lactate to cytochrome bo oxidase
188	PWY0-1565	electron transfer
-		NADH to cytochrome bo oxidase electron
189	PWY0-1567	transfer II
		proline to cytochrome bo oxidase electron
190	PWY0-1544	transfer
101		pyruvate to cytochrome bo oxidase
131	F VV I - 7 344	alverol-3-phosphate to cytochrome bo
192	PWY0-1561	oxidase electron transfer
193	PWY-6123	inosine-5'-phosphate biosynthesis I
		superpathway of ubiquinol-8 biosynthesis
194	UBISYN-PWY	(prokaryotic)
195	TRPSYN-PWY	L-tryptophan biosynthesis
196	PWY0-501	lipoate biosynthesis and incorporation I
197	DAPLYSINESYN-PWY	L-lysine biosynthesis I
198	GALACTUROCAT-PWY	D-galacturonate degradation I
199	GALACTMETAB-PWY	galactose degradation I (Leloir pathway)
200	LCYSDEG-PWY	L-cysteine degradation II
		superpathway of acetate utilization and
201	ACETATEUTIL-PWY	formation
202	PWY0-41	allantoin degradation IV (anaerobic)
203	PWY-6961	L-ascorbate degradation II (bacterial, aerobic)

\mathbf{UT}

204	COBALSYN-PWY	adenosylcobalamin salvage from cobinamide l
205	PWY-6012	acyl carrier protein metabolism
206	FASYN-INITIAL-PWY	superpathway of fatty acid biosynthesis initiation (E. coli)
207	PWY-4621	arsenate detoxification II (glutaredoxin)
208	DTDPRHAMSYN-PWY	dTDP-L-rhamnose biosynthesis I
209	GALACTARDEG-PWY	D-galactarate degradation I
210	PWY-6620	guanine and guanosine salvage
211	PHESYN	L-phenylalanine biosynthesis I
212	PWY-4261	glycerol degradation I
213	PWY-5386	methylglyoxal degradation I
214	PWY-5668	cardiolipin biosynthesis I
215	GLUCARDEG-PWY	D-glucarate degradation I
216	PWY0-1296	purine ribonucleosides degradation
217	PWY-6151	S-adenosyl-L-methionine cycle I
218	PWY0-1546	muropeptide degradation
219	GLUT-REDOX-PWY	glutathione-glutaredoxin redox reactions
220	GLCMANNANAUT-PWY	superpathway of N-acetylglucosamine, N- acetylmannosamine and N- acetylneuraminate degradation
221	PWY0-1471	uracil degradation III
222	PWY-5971	palmitate biosynthesis II (bacteria and plants)
223	PWY0-862	(5Z)-dodec-5-enoate biosynthesis I
224	4AMINOBUTMETAB-PWY	superpathway of 4-aminobutanoate degradation
225	PWY-6277	superpathway of 5-aminoimidazole ribonucleotide biosynthesis
226	GLUTORN-PWY	L-ornithine biosynthesis I
227	PYRIDOXSYN-PWY	pyridoxal 5'-phosphate biosynthesis I
228	THRESYN-PWY	superpathway of L-threonine biosynthesis
229	P2-PWY	citrate lyase activation
230	DETOX1-PWY	superoxide radicals degradation
231	RIBOSYN2-PWY	flavin biosynthesis I (bacteria and plants)
232	PWY0-1584	nitrate reduction X (dissimilatory, periplasmic)
233	GLUCUROCAT-PWY	superpathway of β-D-glucuronosides degradation
234	PWY-6579	superpathway of guanine and guanosine salvage
235	PWY-7315	dTDP-N-acetylthomosamine biosynthesis

r	I	1
236	HOMOSER-METSYN-PWY	L-methionine biosynthesis I
		Nitrogen Regulation Two-Component
237	NRI-PWY	System
238	PWY-6952	glycerophosphodiester degradation
239	PWY-5437	L-threonine degradation I
		superpathway of D-glucarate and D-
240	GLUCARGALACTSUPER-PWY	galactarate degradation
241	PWY-6609	adenine and adenosine salvage III
242	PWY-5453	methylglyoxal degradation III
243	PWY0-42	2-methylcitrate cycle I
		chorismate biosynthesis from 3-
244	PWY-6163	dehydroquinate
		superpathway of purine
245	PWY0-1297	deoxyribonucleosides degradation
246	GLYOXYLATE-BYPASS	glyoxylate cycle
247	POLYISOPRENSYN-PWY	polyisoprenoid biosynthesis (E. coli)
		palmitoleate biosynthesis I (from (5Z)-
248	PWY-6282	dodec-5-enoate)
249	FASYN-ELONG-PWY	fatty acid elongation saturated
250	LEUSYN-PWY	L-leucine biosynthesis
		L-isoleucine biosynthesis I (from
251	ILEUSYN-PWY	threonine)
252		L-homoserine and L-methionine
252	METSTN-PVV	biosynthesis
253	PW/V0-1353	electron transfer
200		superpathway of L-aspartate and L-
254	ASPASN-PWY	asparagine biosynthesis
255	PWY0-1533	methylphosphonate degradation I
		adenosine deoxyribonucleotides de novo
256	PWY-7220	biosynthesis II
		guanosine deoxyribonucleotides de novo
257	PWY-7222	biosynthesis II
		glycerol-3-phosphate to fumarate electron
258	PWY0-1582	transfer
250		pentose phosphate pathway (non-
259		
260		
261		superpathway of ornithine degradation
262	KEIOGLUCONMET-PWY	ketogluconate metabolism
000		glycerol and glycerophosphodlester
263	PVVYU-381	
264	PWY-5837	1,4-dihydroxy-2-naphthoate biosynthesis

265	GLYCOCAT-PWY	glycogen degradation I
266	PWY-7187	pyrimidine deoxyribonucleotides de novo biosynthesis II
267	PWY-7184	pyrimidine deoxyribonucleotides de novo biosynthesis I
268	PWY0-1298	superpathway of pyrimidine deoxyribonucleosides degradation
269	GLYCOLATEMET-PWY	glycolate and glyoxylate degradation I
270	PWY-6284	superpathway of unsaturated fatty acids biosynthesis (E. coli)
271	PWY-5973	cis-vaccenate biosynthesis
272	GLUCOSE1PMETAB-PWY	glucose and glucose-1-phosphate degradation
273	SO4ASSIM-PWY	sulfate reduction I (assimilatory)
274	PWY-5686	UMP biosynthesis I
275	PWY0-1329	succinate to cytochrome bo oxidase electron transfer
276	VALSYN-PWY	L-valine biosynthesis
277	ENTBACSYN-PWY	enterobactin biosynthesis
278	PWY-6892	thiazole biosynthesis I (facultative anaerobic bacteria)
279	PWY0-845	superpathway of pyridoxal 5'-phosphate biosynthesis and salvage
280	GALACT-GLUCUROCAT-PWY	superpathway of hexuronide and hexuronate degradation
281	NAGLIPASYN-PWY	lipid IVA biosynthesis
282	PWY-6690	cinnamate and 3-hydroxycinnamate degradation to 2-oxopent-4-enoate
283	HCAMHPDEG-PWY	3-phenylpropanoate and 3-(3- hydroxyphenyl)propanoate degradation to 2-oxopent-4-enoate
284	GALACTITOLCAT-PWY	galactitol degradation
285	PWY-6612	superpathway of tetrahydrofolate biosynthesis
286	PWY0-1355	formate to trimethylamine N-oxide electron transfer
287	PWY0-1576	hydrogen to fumarate electron transfer
288	FUC-RHAMCAT-PWY	superpathway of fucose and rhamnose degradation
289	PWY0-1061	superpathway of L-alanine biosynthesis
290	PWY0-1479	tRNA processing
291	PWY-6519	8-amino-7-oxononanoate biosynthesis I

292	PWY0-163	salvage pathways of pyrimidine
293	NONMEVIPP-PWY	methylerythritol phosphate pathway I
		superpathway of fatty acid biosynthesis I
294	PWY0-881	(E. coli)
295	HISTSYN-PWY	L-histidine biosynthesis
296	LIPA-CORESYN-PWY	Lipid A-core biosynthesis
297	PWY-6823	molybdenum cofactor biosynthesis
298	PWY-6125	superpathway of guanosine nucleotides de novo biosynthesis II
299	PWY0-1581	nitrate reduction IX (dissimilatory)
300	PWY0-1356	formate to dimethyl sulfoxide electron transfer
301	PWY0-1578	hydrogen to trimethylamine N-oxide electron transfer
302	POLYAMSYN-PWY	superpathway of polyamine biosynthesis I
303	OANTIGEN-PWY	O-antigen building blocks biosynthesis (E. coli)
		superpathway of phospholipid
304	PHOSLIPSYN-PWY	biosynthesis I (bacteria)
305	PWY-7196	superpathway of pyrimidine ribonucleosides salvage
		enterobacterial common antigen
306	ECASYN-PWY	biosynthesis
207		superpathway of pyrimidine
307	PVVY0-162	adonosino ribonuclootidos do novo
308	PWY-7219	biosynthesis
309	GLUTAMINDEG-PWY	L-glutamine degradation I
		superpathway of S-adenosyl-L-
310	MET-SAM-PWY	methionine biosynthesis
311	1CMET2-PWY	N10-formyl-tetrahydrofolate biosynthesis
312	PWY0-1577	hydrogen to dimethyl sulfoxide electron transfer
313	PENTOSE-P-PWY	pentose phosphate pathway
314	ARO-PWY	chorismate biosynthesis I
315	COLANSYN-PWY	colanic acid building blocks biosynthesis
316	PWY0-1261	anhydromuropeptides recycling I
317	PWY0-1585	formate to nitrite electron transfer
318	PWY0-321	phenylacetate degradation I (aerobic)
319	PWY-5838	superpathway of menaquinol-8 biosynthesis I

320	THISYN-PWY	superpathway of thiamine diphosphate biosynthesis I
		UDP-N-acetylmuramoyl-pentapeptide biosynthesis I (meso-diaminopimelate
321	PWY-6387	containing)
322	PWY-7805	aminomethylphosphonate degradation
323	PWY-6608	guanosine nucleotides degradation III
324	GLYCOL-GLYOXDEG-PWY	superpathway of glycol metabolism and degradation
325	ARGSYN-PWY	L-arginine biosynthesis I (via L-ornithine)
326	PEPTIDOGLYCANSYN-PWY	peptidoglycan biosynthesis I (meso- diaminopimelate containing)
327	PWY0-1277	3-phenylpropanoate and 3-(3- hydroxyphenyl)propanoate degradation
328	PWY0-1321	nitrate reduction III (dissimilatory)
329	ARGDEG-PWY	superpathway of L-arginine, putrescine, and 4-aminobutanoate degradation
330	BIOTIN-BIOSYNTHESIS-PWY	biotin biosynthesis I
331	TRNA-CHARGING-PWY	tRNA charging
332	PWY-6071	superpathway of phenylethylamine degradation
333	PWY0-166	superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis (E. coli)
334	SALVADEHYPOX-PWY	adenosine nucleotides degradation II
335	METHGLYUT-PWY	superpathway of methylglyoxal degradation
336	PWY0-1347	NADH to trimethylamine N-oxide electron transfer
337	ORNARGDEG-PWY	superpathway of L-arginine and L- ornithine degradation
338	PWY0-1334	NADH to cytochrome bd oxidase electron transfer I
339	PWY0-1348	NADH to dimethyl sulfoxide electron transfer
340	SULFATE-CYS-PWY	superpathway of sulfate assimilation and cysteine biosynthesis
341	PWY0-1335	NADH to cytochrome bo oxidase electron transfer I
342	PWY0-1336	NADH to fumarate electron transfer
343	P4-PWY	superpathway of L-lysine, L-threonine and L-methionine biosynthesis I

		superpathway of pyrimidine
344	PWY-7211	deoxyribonucieotides de novo biosynthesis
	BRANCHED-CHAIN-AA-SYN-	superpathway of branched chain amino
345	PWY	acid biosynthesis
		peptidoglycan maturation (meso-
346	PWY0-1586	diaminopimelate containing)
347	ТСА	TCA cycle I (prokaryotic)
348	PWY-6126	de novo biosynthesis II
349	GLUCONEO-PWY	gluconeogenesis I
350	PWY0-1352	nitrate reduction VIII (dissimilatory)
351	KDO-NAGLIPASYN-PWY	superpathway of (Kdo)2-lipid A biosynthesis
352	GLYCOLYSIS	glycolysis I (from glucose 6-phosphate)
353	PWY-5484	glycolysis II (from fructose 6-phosphate)
354	COMPLETE-ARO-PWY	superpathway of aromatic amino acid biosynthesis
355	PWY0-781	aspartate superpathway
356	TCA-GLYOX-BYPASS	superpathway of glyoxylate bypass and TCA
357	GLYCOLYSIS-E-D	superpathway of glycolysis and the Entner-Doudoroff pathway
358	THREOCAT-PWY	superpathway of L-threonine metabolism
359	ARG+POLYAMINE-SYN	superpathway of arginine and polyamine biosynthesis
360	LPSSYN-PWY	superpathway of lipopolysaccharide biosynthesis
361	HEXITOLDEGSUPER-PWY	superpathway of hexitol degradation (bacteria)
362	DENOVOPURINE2-PWY	superpathway of purine nucleotides de novo biosynthesis II
363	FERMENTATION-PWY	mixed acid fermentation
		superpathway of glycolvsis, pvruvate
	GLYCOLYSIS-TCA-GLYOX-	dehydrogenase, TCA, and glyoxylate
364	BYPASS	bypass
		superpathway of histidine, purine, and
365		pyrimidine biosynthesis
366	ALL-CHORISMATE-PWY	superpathway of chorismate metabolism

60

762 **Supplemental Table S2.** EcoCyc protein complex IDs and name of protein complex for

the labels used in Supplemental Figure S2.

Label No.	EcoCyc Protein complex ID	Name of complex
1	3-ISOPROPYLMALISOM- CPLX	3-isopropylmalate dehydratase
2	CPLX0-8178	peptidoglycan glycosyltransferase / peptidoglycan DD-transpeptidase - MrcB- LpoB complex
3	SULFITE-REDUCT-CPLX	assimilatory sulfite reductase (NADPH)
4	TRYPSYN	tryptophan synthase
5	PC00027	DNA-binding transcriptional dual regulator
6	GLUTAMIDOTRANS-CPLX	imidazole glycerol phosphate synthase
7	SULFATE- ADENYLYLTRANS-CPLX	sulfate adenylyltransferase
8	CPLX0-7609	5-carboxymethylaminomethyluridine-tRNA synthase [multifunctional]
9	CPLX0-3107	ClpXP
10	CARBPSYN-CPLX	carbamoyl phosphate synthetase
11	SUCCCOASYN	succinyl-CoA synthetase
12	PYRUVATEDEH-CPLX	pyruvate dehydrogenase
13	ABC-63-CPLX	Zn2+ ABC transporter
14	CYSSYNMULTI-CPLX	cysteine synthase complex
15	RNAP70-CPLX	RNA polymerase sigma 70
16	CPLX0-2021	DNA-binding transcriptional dual regulator HU
17	CPLX-3946	exodeoxyribonuclease VII
18	CPLX0-7910	DNA polymerase III, ψ-χ subunit
19	CPLX0-3949	thiazole synthase
20	CPLX0-1321	HflK-HflC complex; regulator of FtsH protease
21	ANTHRANSYN-CPLX	anthranilate synthase
22	CPLX0-7994	poly-N-acetyl-D-glucosamine synthase
23	CPLX0-7529	polysaccharide export complex
24	CPLX0-2502	molybdopterin synthase
25	CPLX0-3104	ClpAP
26	CPLX0-3959	Xer site-specific recombination system
27	CPLX0-231	galactitol-specific PTS enzyme II
28	CPLX-156	mannitol-specific PTS enzyme II CmtBA
29	NAP-CPLX	periplasmic nitrate reductase

30	TMAOREDUCTI-CPLX	trimethylamine N-oxide reductase 1
31	CPLX0-7720	undecaprenyl-phosphate-α-L-Ara4N flippase
32	CPLX0-1163	HsIVU protease
33	ABC-6-CPLX	glutathione / L-cysteine ABC exporter CydDC
34	CPLX0-8239	Grx4-IbaG complex
35	ACETOACETYL-COA- TRANSFER-CPLX	acetoacetyl-CoA transferase
36	CPLX0-7852	GadE-RcsB DNA-binding transcriptional activator
37	CPLX0-3925	DNA polymerase V
38	CPLX-63	trimethylamine N-oxide reductase 2
39	ACETOLACTSYNIII-CPLX	acetolactate synthase / acetohydroxybutanoate synthase
40	CPLX0-4	aromatic carboxylic acid efflux pump
41	GLUTAMATESYN-DIMER	glutamate synthase
42	GLUTAMATESYN-CPLX	glutamate synthase
43	CPLX0-3821	HypA-HypB heterodimer
44	PHES-CPLX	phenylalanine—tRNA ligase
45	CPLX0-2661	McrBC restriction endonuclease
46	CPLX0-5	enterobactin export complex EntS-TolC
47	NRDACTMULTI-CPLX	anaerobic nucleoside-triphosphate reductase activating system
48	CPLX0-7976	translocation and assembly module
49	ABC-54-CPLX	divisome protein complex FtsEX
50	CPLX-3945	curli secretion and assembly complex
51	CPLX0-241	tagatose-1,6-bisphosphate aldolase 2
52	CPLX0-7	N-acetylmuramic acid-specific PTS enzyme II
53	ABC-21-CPLX	putative transport complex, ABC superfamily
54	FAO-CPLX	aerobic fatty acid oxidation complex
55	CPLX0-7704	ATP-dependent Lipid A-core flippase
56	RIBONUCLEOSIDE-DIP- REDUCTII-CPLX	ribonucleoside-diphosphate reductase 2
57	DTDPRHAMSYNTHMULTI- CPLX	dTDP-L-rhamnose synthetase complex
58	APP-UBIOX-CPLX	cytochrome bd-II ubiquinol oxidase
59	CPLX0-2221	Colicin E9 translocon
60	CPLX0-8238	putative menaquinol-cytochrome c reductase NrfCD
61	CPLX0-8182	N6-L-threonylcarbamoyladenine synthase

62	CPLX0-3976	Enterobacterial Common Antigen Biosynthesis Protein Complex
63	CPLX0-8179	peptidoglycan glycosyltransferase / peptidoglycan DD-transpeptidase - MrcA- LpoA complex
64	ASPCARBTRANS-CPLX	aspartate carbamoyltransferase
65	CPLX0-8230	HigB-HigA toxin/antitoxin complex and DNA- binding transcriptional repressor
66	PABASYN-CPLX	4-amino-4-deoxychorismate synthase
67	CPLX0-7684	L-valine exporter
68	PC00084	RcsAB DNA-binding transcriptional dual regulator
69	CPLX0-8232	carnitine monooxygenase
70	CPLX0-1668	anaerobic fatty acid β-oxidation complex
71	RNAP54-CPLX	RNA polymerase sigma 54
72	PYRNUTRANSHYDROGEN- CPLX	pyridine nucleotide transhydrogenase
73	ETHAMLY-CPLX	ethanolamine ammonia-lyase
74	YDGEF-CPLX	multidrug/spermidine efflux pump
75	CPLX-159	putative PTS enzyme II FrvAB
76	CPLX0-8213	periplasmic protein-L-methionine sulfoxide reducing system
77	RNAPS-CPLX	RNA polymerase sigma S
78	CPLX-158	fructose-specific PTS enzyme II
79	CPLX0-3922	primosome
80	CPLX0-7909	RnIA-RnIB toxin-antitoxin complex
81	CPLX0-7624	YhaV-PrIF toxin-antitoxin complex
82	CPLX0-7791	RelB-RelE antitoxin/toxin complex / DNA- binding transcriptional repressor
83	CPLX0-7610	N-acetyl-D-galactosamine specific PTS (cryptic)
84	CPLX0-7823	DosC-DosP complex
85	ABC-61-CPLX	putative transport complex, ABC superfamily
86	CPLX0-7787	DinJ-YafQ antitoxin/toxin complex / DNA- binding transcriptional repressor
87	CPLX0-7988	PaaF-PaaG hydratase-isomerase complex
88	CPLX0-3930	FlhDC DNA-binding transcriptional dual regulator
89	CPLX0-8174	Cas1-Cas2 complex
90	CPLX0-245	alkyl hydroperoxide reductase
91	CPLX0-7916	RcsB-BgIJ DNA-binding transcriptional activator

92	CPLX0-7788	NAD-dependent dihydropyrimidine
93	CPLX-157	glucose-specific PTS enzyme II
94	CPLX0-3241	ubiquinol—[NapC cytochrome c] reductase NapGH
95	CPLX0-8227	FicT-FicA complex
96	CPLX0-3937	evolved β-D-galactosidase
97	CPLX0-1841	predicted xanthine dehydrogenase
98	CPLX0-7942	Grx4-BolA complex
99	SECD-SECF-YAJC-YIDC- CPLX	Sec translocon accessory complex
100	FABZ-CPLX	3-hydroxy-acyl-[acyl-carrier-protein] dehydratase
101	NITRITREDUCT-CPLX	nitrite reductase - NADH dependent
102	MONOMER0-2461	MtIR-HPr
103	LTARTDEHYDRA-CPLX	L(+)-tartrate dehydratase
104	CPLX0-7986	HypCD complex involved in hydrogenase maturation
105	CPLX0-3781	YefM-YoeB antitoxin/toxin complex / DNA- binding transcriptional repressor
106	CPLX0-7425	HipAB toxin/antitoxin complex / DNA-binding transcriptional repressor
107	NRFMULTI-CPLX	periplasmic nitrite reductase NrfAB
108	CPLX0-7822	MqsA-MqsR antitoxin/toxin complex
109	ACETOLACTSYNI-CPLX	acetohydroxybutanoate synthase / acetolactate synthase
110	CPLX0-2561	bacterial condensin MukBEF
111	RNAP32-CPLX	RNA polymerase sigma 32
112	CPLX0-240	tagatose-1,6-bisphosphate aldolase 1
113	CPLX0-3957	ATP dependent structure specific DNA nuclease
114	CPLX-168	trehalose-specific PTS enzyme II
115	CPLX-3942	sulfurtransferase complex TusBCD
116	TRANS-CPLX-201	multidrug efflux pump AcrAB-ToIC
117	GCVMULTI-CPLX	glycine cleavage system
118	F-O-CPLX	ATP synthase Fo complex
119	ABC-45-CPLX	intermembrane phospholipid transport system
120	RECFOR-CPLX	RecFOR complex
121	UVRABC-CPLX	excision nuclease UvrABC
122	ENTMULTI-CPLX	enterobactin synthase
123	CYT-D-UBIOX-CPLX	cytochrome bd-I ubiquinol oxidase

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is ma available under aCC-BY-NC 4.0 International license.	.de
6	;4

124	RUVABC-CPLX	resolvasome
125	CPLX0-7450	flagellar motor switch complex
126	ABC-18-CPLX	D-galactose / methyl-β-D-galactoside ABC transporter
127	CPLX0-1923	energy transducing Ton complex
128	CPLX0-1924	vitamin B12 outer membrane transport complex
129	MUTHLS-CPLX	MutHLS complex, methyl-directed mismatch repair
130	CPLX0-3108	CIPAXP
131	ABC-19-CPLX	molybdate ABC transporter
132	ANGLYC3PDEHYDROG- CPLX	anaerobic glycerol-3-phosphate dehydrogenase
133	ABC-33-CPLX	xylose ABC transporter
134	ABC-11-CPLX	iron(III) hydroxamate ABC transporter
135	CPLX0-8167	hydrogenase 1, oxygen tolerant hydrogenase
136	FORMHYDROGI-CPLX	hydrogenase 1
137	TRANS-200-CPLX	macrolide ABC exporter
138	CPLX0-1341	SufBC2D Fe-S cluster scaffold complex
139	ABC-12-CPLX	L-glutamine ABC transporter
140	NITRATREDUCTZ-CPLX	nitrate reductase Z
141	CPLX-155	N,N'-diacetylchitobiose-specific PTS enzyme
142	CPLX0-3958	EcoKI restriction-modification system
143	NITRATREDUCTA-CPLX	nitrate reductase A
144	EIISGA	L-ascorbate specific PTS enzyme II
145	ABC-56-CPLX	aliphatic sulfonate ABC transporter
146	ABC-32-CPLX	thiamin(e) ABC transporter
147	FORMATEDEHYDROGO- CPLX	formate dehydrogenase O
148	RECBCD	exodeoxyribonuclease V
149	DIMESULFREDUCT-CPLX	dimethyl sulfoxide reductase
150	TSR-CPLX	chemotaxis signaling complex - serine sensing
151	TSR-GLUME	Tsrglu-Me
152	TSR-GLN	TsrgIn
153	TSR-GLU	Tsrglu
154	ABC-64-CPLX	taurine ABC transporter
155	CPLX0-8152	cystine / cysteine ABC transporter
156	ABC-2-CPLX	arabinose ABC transporter
157	CPLX0-7807	putative multidrug efflux pump MdtNOP

/as not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the prep available under aCC-BY-NC 4.0 International license.	rint in perpetuity. It is made
	65

158	ABC-57-CPLX	multidrug ABC exporter
150		para-aminobenzoate synthase multi-enzyme
100		complex
160	CPLX0-3932	multidrug efflux pump AcrAD-TolC
161	TAP-GLU	Tapglu
162	TAP-CPLX	chemotaxis signaling complex - dipeptide sensing
163	TAP-GLUME	Tapglu-Me
164	TAP-GLN	TapgIn
165	CPLX0-3801	DNA polymerase III, preinitiation complex
166	CPLX0-761	putative xanthine dehydrogenase
167	CPLX0-2081	dihydroxyacetone kinase
168	CPLX0-2982	FtsH/HflKC protease complex
169	CITLY-CPLX	citrate lyase, inactive
170	ACECITLY-CPLX	citrate lyase
171	CPLX0-2141	multidrug efflux pump AcrEF-ToIC
172	CPLX-170	galactosamine-specific PTS enzyme II (cryptic)
173	ABC-49-CPLX	glutathione ABC transporter
174	TRG-CPLX	chemotaxis signaling complex -
175	TRG-GLUME	Traglu-Me
176	TRG-GLN	TrggIn
177	TRG-GLU	Traglu
178	TRANS-CPLX-203	2,3-diketo-L-gulonate:Na+ symporter
179	CPLX-169	sorbitol-specific PTS enzyme II
180	SEC-SECRETION-CPLX	Sec Holo-Translocon
181	CPLX0-2121	multidrug efflux pump EmrAB-ToIC
182	ABC-5-CPLX	vitamin B12 ABC transporter
183	CPLX0-2361	DNA polymerase III, core enzyme
184	ABC-42-CPLX	D-allose ABC transporter
185	TRANS-CPLX-204	multidrug efflux pump MdtEF-ToIC
186	CPLX-165	mannose-specific PTS enzyme II
187	METNIQ-METHIONINE- ABC-CPLX	L-methionine/D-methionine ABC transporter
188	CPLX0-7458	glycolate dehydrogenase
189	ABC-28-CPLX	ribose ABC transporter
190	ALPHA-SUBUNIT-CPLX	formate dehydrogenase N, subcomplex
191	FORMATEDEHYDROGN- CPLX	formate dehydrogenase N
192	CPLX0-2161	multidrug efflux pump EmrKY-ToIC

193	EIISGC	putative PTS enzyme II SgcBCA
194	ABC-60-CPLX	putative transport complex, ABC superfamily
195	CPLX0-7805	aldehyde dehydrogenase
196	TAR-CPLX	chemotaxis signaling complex - aspartate sensing
197	TAR-GLUME	Targlu-Me
198	TAR-GLN	Targln
199	TAR-GLU	Targlu
200	ABC-48-CPLX	putative transport complex, ABC superfamily
201	ABC-26-CPLX	glycine betaine ABC transporter
202	CPLX0-8119	putative PTS enzyme II FryBCA
203	CYT-O-UBIOX-CPLX	cytochrome bo3 ubiquinol oxidase
204	ABC-10-CPLX	ferric enterobactin ABC transporter
205	ABC-16-CPLX	maltose ABC transporter
206	ABC-7-CPLX	thiosulfate/sulfate ABC transporter
207	F-1-CPLX	ATP synthase F1 complex
208	SUCC-DEHASE	succinate:quinone oxidoreductase subcomplex
209	CPLX0-8160	succinate:quinone oxidoreductase
210	ABC-27-CPLX	phosphate ABC transporter
211	TATABCE-CPLX	twin arginine protein translocation system
212	CPLX0-8120	putative ABC transporter ArtPQMI
213	CPLX0-1941	ferric enterobactin outer membrane transport complex
214	CPLX0-3323	holocytochrome c synthetase
215	ABC-24-CPLX	spermidine preferential ABC transporter
216	ABC-70-CPLX	sulfate/thiosulfate ABC transporter
217	CPLX0-1721	copper/silver export system
218	CPLX0-3401	fimbrial complex
219	CPLX-160	putative PTS enzyme II FrwCBDPtsA
220	ABC-35-CPLX	heme trafficking system CcmABCDE
221	CPLX0-1601	selenate reductase
222	CPLX0-7952	ferric coprogen outer membrane transport complex
223	ABC-4-CPLX	L-arginine ABC transporter
224	CPLX0-1943	ferric citrate outer membrane transport complex
225	CPLX0-1942	ferrichrome outer membrane transport complex
226	ABC-34-CPLX	sn-glycerol 3-phosphate / glycerophosphodiester ABC transporter

227	CPLX0-1762	phenylacetyl-CoA 1,2-epoxidase
228	ABC-29-CPLX	putrescine ABC exporter
229	ABC-55-CPLX	putative transport complex, ABC superfamily
230	CPLX0-7958	methylphosphonate degradation complex
231	HCAMULTI-CPLX	putative 3-phenylpropionate/cinnamate dioxygenase
232	CPLX0-7935	carbon-phosphorus lyase core complex
233	ABC-25-CPLX	putrescine ABC transporter
234	ABC-14-CPLX	histidine ABC transporter
235	CPLX0-7628	lipopolysaccharide transport system - outer membrane assembly complex
236	ABC-41-CPLX	putative oligopeptide ABC transporter
237	FUMARATE-REDUCTASE	fumarate reductase
238	ABC-3-CPLX	lysine / arginine / ornithine ABC transporter
239	ABC-52-CPLX	putative transport complex, ABC superfamily
240	ABC-51-CPLX	putative transport complex, ABC superfamily
241	FORMHYDROG2-CPLX	hydrogenase 2
242	ABC-13-CPLX	glutamate / aspartate ABC transporter
243	ABC-46-CPLX	galactofuranose ABC transporter
244	ATPASE-1-CPLX	K+ transporting P-type ATPase
245	ABC-58-CPLX	Autoinducer-2 ABC transporter
246	ABC-40-CPLX	glycine betaine ABC transporter, non- osmoregulatory
247	ABC-9-CPLX	ferric citrate ABC transporter
248	TRANS-CPLX-202	multidrug efflux pump MdtABC-ToIC
249	CPLX0-2201	The Tol-Pal Cell Envelope Complex
250	CPLX0-3361	NADH:quinone oxidoreductase I, peripheral arm
251	ABC-22-CPLX	oligopeptide ABC transporter
252	CPLX0-3970	murein tripeptide ABC transporter
253	CPLX0-7725	CRISPR-associated complex for antiviral defense
254	ABC-59-CPLX	putative D,D-dipeptide ABC transporter
255	CPLX0-7992	lipopolysaccharide transport system
256	CPLX0-2381	degradosome
257	ABC-20-CPLX	Ni(2+) ABC transporter
258	ABC-15-CPLX	branched chain amino acid / phenylalanine ABC transporter
259	ABC-304-CPLX	leucine / L-phenylalanine ABC transporter
260	ABC-8-CPLX	dipeptide ABC transporter
261	HYDROG3-CPLX	hydrogenase 3

262	ATPSYN-CPLX	ATP synthase / thiamin triphosphate synthase
263	FHLMULTI-CPLX	formate hydrogenlyase complex
264	CPLX0-3803	DNA polymerase III, holoenzyme
265	CPLX0-7451	flagellar export apparatus
266	CPLX0-250	hydrogenase 4
267	CPLX0-3933	Outer Membrane Protein Assembly Complex
268	NADH-DHI-CPLX	NADH:quinone oxidoreductase I
269	CPLX0-3382	Type II secretion system
270	FLAGELLAR-MOTOR- COMPLEX	flagellar motor complex
271	CPLX0-7452	flagellum

769	EcoCyc pathway. In the figure, the pathways are sorted by (i) the number of genes in
770	the pathway and then (ii) the median PCC value. The names of the pathways are
771	indicated by numeric labels, which are defined in supplemental Table S1. The dashed
772	line shows the average PCC value for random pairs of genes. For pathways that have
773	two or three members, the results are shown as scatter plots. For pathways with more
774	than three genes, the results are shown as box plots with the outliers shown as black
775	dots.

778 **EcoCyc heteromeric protein complex.** The distribution of phenotypic profile similarity

values determined by |PCC| for all pairwise combinations of genes assigned to the

- same EcoCyc heteromeric protein complex. In the figure, the pathways are sorted by (i)
- the number of genes in the complex and then (ii) the median |PCC| value. The names of
- the complexes are indicated by numeric labels, which are defined in supplemental Table
- 783 S2. The dashed line shows the average |PCC| value for random pairs of genes. For
- 784 protein complexes that have two or three members, the results are shown as scatter
- plots. For protein complexes with more than three genes, the results are shown as box
- 786 plots with the outliers shown as black dots.
bioRxiv preprint doi: https://doi.org/10.1101/2020.07.16.206243; this version posted July 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

787

788 Supplemental Figure S3. Precision increased when auxotrophic mutants were

excluded. Gene pairs were ranked from high to low similarity based on |PCC| and
plotted versus precision, calculated as described in the text (only the first 500 gene
pairs are shown). The dashed line shows precision for randomly ordered gene pairs
(negative control). The correspondence between phenotypic profile similarity based on
IPCC| and ranking is shown below the graph.

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.16.206243; this version posted July 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

74

796 Supplemental Figure S4. Higher semantic similarity and phenotypic profile 797 similarity were still found when GO biological process annotations with an IEA 798 evidence code were excluded. Violin plots of semantic similarity for, from left to right: 799 all gene pairs annotated with GO biological process term(s); the subset of gene pairs 800 with |PCC| >0.75; the subset of gene pairs with MI >0.15 (calculated based on 801 qualitative fitness scores for all growth conditions); and MI >0.32 (calculated based on 802 qualitative fitness scores for the collapsed set of growth conditions). The cutoffs of MI 803 >0.15 for the third violin plot and MI >0.32 for the fourth violin plot were chosen so that 804 all three subsets of gene pairs would contain the same number (~1,000) of top-ranked 805 gene pairs. ***: p-value <0.001 was determined by 1-sided Mann-Whitney U test, 806 compared to all gene pairs.