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ABSTRACT  

Comprehensive and efficient gene hit selection from high throughput assays remains 

a critical bottleneck in realizing the potential of genome-scale studies in biology. 

Widely used methods such as setting of cutoffs, prioritizing pathway enrichments, or 

incorporating predicted network interactions offer divergent solutions yet are 

associated with critical analytical trade-offs, and are often combined in an ad hoc 

manner. The specific limitations of these individual approaches, the lack of a 

systematic way by which to integrate their rankings, and the inaccessibility of complex 

computational approaches to many researchers, has contributed to unexpected 

variability and limited overlap in the reported results from comparable genome-wide 
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studies. Using a set of three highly studied genome-wide datasets for HIV host factors 

that have been broadly cited for their limited number of shared candidates, we 

characterize the specific complementary contributions of commonly used analysis 

approaches and find an optimal framework by which to integrate these methods. We 

describe Throughput Ranking by Iterative Analysis of Genomic Enrichment (TRIAGE), 

an integrated, iterative approach which uses pathway and network statistical methods 

and publicly available databases to optimize gene prioritization.  TRIAGE is accessible 

as a secure, rapid, user-friendly web-based application (https://triage.niaid.nih.gov). 

 

Keywords: high-throughput hit selection, genomics, genome-wide studies, 

prioritization, bioinformatics, pathway analysis, enrichment, network analysis, 

software. 

 

INTRODUCTION 

High-throughput approaches - such as RNA and CRISPR-based screens, Next 

Generation sequencing methods and proteomic analysis, permit the unbiased 

measurement of the contribution of each gene in the genome to the outcome of a 

specific biological process, and continue to be some of the most powerful tools in 

research biology (Gilbert et al., 2014; Heckl & Charpentier, 2015; Lee et al., 2003; 

Moffat et al., 2006). Yet, critical to the utility of these datasets is the ability to translate 

their results into a constrained list of prioritized candidates that can be rigorously 

investigated on a feasible scale. This bridging analysis step is significantly constrained 

by attempts to balance the challenges of analysing large datasets in an unbiased 
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manner to excavate novel insights, with the appropriate recognition of known gene 

candidates considered as validation hits. This phenomenon underlies what can be 

described as the “quantum leap” in publications of high-throughput studies, when the 

analysis leaps -often with sparse analytical justification- from considering statistically 

prioritized lists of candidates to a handful of hits that are selected for further validation 

guided by the a posteriori knowledge of the authors (Lotterhos et al., 2016). Widely 

applied bioinformatic approaches to hit selection can be categorized into three major 

classes; optimizing the setting of cutoffs, prioritizing based on the representation of 

pathways, and expanding the list of hits based on predicted interaction networks 

(Birmingham et al., 2009; Tseng et al., 2012). Though these methods provide differing 

solutions to the challenge of candidate prioritization, their corrective approaches are 

often associated with analytical tradeoffs relating to error correction, novelty 

identification, and interpretability. In addition to these challenges, two critical gaps 

persist; the absence of a systematic way by which these solutions can be collectively 

utilized such that the greatest additive benefit to hit selection accuracy is accrued, and 

analysis challenges for experimentalists who may lack the computational expertise 

required for their implementation.  

At the outset of many hit selection pipelines, the setting of a single cutoff for 

defining an initial set of hits creates an intrinsic compromise between decreasing the 

false positive rate while increasing the false negative rate or vice-versa (Boutros & 

Ahringer, 2008; Malo et al., 2006). Whether choosing a cutoff that is stringent or 

lenient, the artificial rigidity of a single cutoff crucially obscures the more complex 

reality whereby targets identified by the screen exist on a spectrum of confidences 

with novel biological insights distributed across the range of assay scores (Ober, 

2016). Since a more lenient cutoff strategy also makes the follow up experiments more 
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labor-intensive (as a high number of candidates are likely to fail secondary screen 

validation), many studies rely on more stringent cutoffs and preferentially err on the 

side of a low false positive rate. This approach leaves a large portion of potential 

candidates unexplored and has been found by many meta-analysis studies to be a 

critical driver of the limited agreement between related studies (Bushman et al., 2009; 

Hao et al., 2013; Rosenbluh et al., 2016). These findings emphasize the need for 

improved hit selection strategies that might better capture lower-scoring potential hits 

while circumventing the rigidity of a single cutoff. 

Pathway analysis is often implemented as an additional way to correct for false 

positives (Creixell et al., 2015), as randomly selected false-positive hits are less likely 

to be from the same pathway. Various grouping methods have been proposed as a 

way to apply the pathway analysis approach (Brunet et al., 2004; Kanehisa & Goto, 

2000; Langfelder & Horvath, 2007; Subramanian et al., 2005) as well as different 

statistical methods to quantify significant enrichment (Barry et al., 2005; Beißbarth & 

Speed, 2004; Dutta et al., 2012a; Goeman & Bühlmann, 2007; Gu et al., 2012; Jörg 

Rahnenführer et al., 2004). Irrespective of the chosen analysis method, however, a 

reliance on pathway databases for high-throughput hit selection limits the number of 

novel genes that can be identified and overlooks the genes that are not yet annotated 

within pathway databases, obviating one of the most important rationales for 

performing unbiased genome-scale screens. Additionally, reporting a list of implicated 

pathways as the primary insight from a genome-scale analysis removes the analytical 

output from the units the assay was designed to measure. Current best practices in 

pathway analysis have relegated these forms of high-throughput screen interpretation 

as “exploratory add-ons” (Sedeño-Cortés & Pavlidis, 2014) and highlight the challenge 

of converting insights on the combined gene set level back to individual gene analyses 
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that can be followed up experimentally (Mooney & Wilmot, 2015). These combined 

limitations present a challenge for how to utilize pathway analysis approaches in a way 

that still provides a path to the characterization of specific genes and mechanisms 

novel to the context being investigated, while also benefiting from its powerful false 

positive correction and contributions to interpretability. 

Complementary to the pathway analysis filtering approach, the network 

analysis approach utilizes protein-protein interaction (PPI) databases as a way to 

prioritize lower scoring hits from high-throughput studies and expand the dataset 

(Dutta et al., 2016; Tu et al., 2009; Li Wang et al., 2009). Various methods for 

incorporating the information from interaction databases into a prioritization pipeline 

for high-throughput studies have been developed (Cowen et al., 2017; Oti et al., 2006; 

Likai Wang et al., 2018; Yu et al., 2013; Zhang et al., 2017). Expansion of the lists of 

candidates by network analysis can successfully decrease the rate of false negatives, 

yet it also intrinsically amplifies the noise in the hit selection set (as false-positive 

candidates in the original high scoring set of hits also expand to include their predicted 

interactions). 

Taken together, the contributions and associated trade-offs of each class of 

methods to hit selection illuminates the range of possibilities and challenges that 

present at the juncture between high throughput experiments and subsequent follow 

up analysis. The unique trade-offs of each approach also suggest the possibility that 

some of the analytical blind spots can be offset by combining orthogonal approaches, 

yet a systematic approach by which to optimally integrate these methods has not been 

established. Here, we have developed an approach which, through iterative use of 

pathway and network databases, can harness the benefits while mitigating the 

drawbacks of these analysis methods. Using a set of comparable genome-scale 
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genetic screens of Human Immunodeficiency Virus (HIV) host response factors (Brass 

et al., 2008; König et al., 2008; Zhou et al., 2008), we demonstrate improved 

significance and magnitude of the overlap in screen hits by use of the iterative analysis 

strategy which we name TRIAGE, for Throughput Ranking by Iterative Analysis of 

Genomic Enrichment. We also describe the development of a web-based platform for 

TRIAGE (https://triage.niaid.nih.gov), for unrestricted access to this analysis resource. 

This integrated framework, made broadly accessible and easy to implement by 

researchers spanning the spectrum of computational skills, facilitates inference of 

novel insights from omic-scale datasets. 

 

 

RESULTS 

 

Independent screens for HIV dependency factors provide test datasets for 

challenges of hit selection. 

The challenge of optimal candidate selection from genome-scale screens has been 

implicated in the modest overlap and limited statistical significance of hit sets across 

parallel studies (Bhinder & Djaballah, 2013; Ein-Dor et al., 2006). High-throughput 

gene perturbation studies of similar biological phenomena that have surprisingly 

limited overlap have been found in host factor screens for Influenza (Watanabe et al., 

2010) and HIV (Hirsch, 2010). The three independent studies of essential proteins 

required for early infection of HIV, also known as HIV Host Dependency Factors 

(HDFs) are amongst the most frequently cited examples of the high discordance of hit 

identification between parallel high-throughput assays (Hirsch, 2010; Zhu et al., 2014). 

Independent work by Brass et al. (Brass et al., 2008), König et al. (König et al., 2008), 
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and Zhou et al. (Zhou et al., 2008) used genome-scale RNAi studies to identify cellular 

host factors required for effective early stage HIV infection. From approximately 300 

hits that passed the validation assays conducted in each study (Post-validation hits) 

only 2 were shared across all three, with a further 28 shared by at least 2 studies (Fig. 

1A). An analysis of the normalized scores of all genes and the validated hits reported 

by each study shows substantial variation in where the validated hits fell in the initial 

primary screen score distribution (Fig. 1C, Supplementary Table 1). However, a direct 

selection of the highest scoring 400 hits from each screen (Fig. 1C (red shading)), did 

not result in substantial changes in the number of overlapping genes (Fig. 1B). 

A closer inspection of the statistical and shared enrichment reveals that all three 

study comparisons crossed standard thresholds of statistical enrichment of overlap for 

post validation hits, while only one of the comparisons for high scoring hits passed the 

significance threshold (Fig. 1D). Since the number of shared hits between studies is 

very similar for the two hit selection categories (Fig. 1E), this improved statistical 

enrichment for validated hits is largely driven by the smaller size of the post-validation 

hit gene sets (Fig. 1F). The improvement in overlap significance also reflects the 

improvement achievable by the bioinformatic and experimental validation methods 

used by the three studies beyond the primary ‘high score’ metric (Supplementary 

Table 1), leading to a reduced number of false positives in the hit selection sets. The 

lack of increase in magnitude of overlap, however, shows that the approaches used 

did not reduce the false negative rate. 

In addition to demonstrating the challenges of current approaches to hit 

selection, these studies also provide datasets that can be used to test whether 

alternative hit selection methods can improve enrichment and error correction. Various 

attempts have been made at developing benchmarking or synthetic datasets to 
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evaluate the accuracy, sensitivity, and specificity of different hit selection approaches 

(Geistlinger et al., 2020; Mathur et al., 2018; Nguyen et al., 2019; Roder et al., 2019). 

The identification of a gold standard dataset by which different prioritization methods 

can be compared remains one of the critical challenges in bioinformatic analysis of 

high-throughput data (Khatri et al., 2012; Mathur et al., 2018; Mitrea et al., 2013). As 

the availability of optimal benchmarking datasets are lacking, the comparative analysis 

of the three described HIV studies can serve as a proxy for evaluating the accuracy of 

new methods. A more sensitive hit selection method applied to all three studies would 

lead to greater magnitude of overlap, while an approach with higher specificity would 

lead to improved statistical significance of overlap.  

 

Hit selection and prioritization of medium confidence hits by pathway analysis 

improves statistical enrichment, but not shared hits, across studies of HDFs. 

In the single cutoff approach commonly used in high-throughput studies, the list of 

potential candidates is separated into a binary classification of hits and non-hits based 

on a chosen threshold (Fig. 2A). This approach precludes the inclusion of lower 

scoring hits based on downstream analysis. As an alternative, we tested a dual cutoff 

approach with a stringent threshold for “high confidence” hits, and a more lenient cutoff 

to define a set of ‘medium confidence’ hits. In this design, the dataset is split into a 

three-tiered set of high confidence hits, medium confidence hits, and low 

confidence/non-hits (Fig. 2B). To apply this three-tier segmentation approach to the 

three studies of HDFs, the readouts of all three screens were normalized by Z score 

and each gene was assigned the median score of all its siRNAs. Those scores were 

graphed against additional readout scores used by the three studies, such as cell 

viability or the p value of concordance between multiple siRNAs against the same 
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gene (Fig. 2C, Supplementary Table 1), and a single cutoff was assigned to the 

additional readout scores of each screen (see Methods). We then assigned 

comparable dual cutoffs to the Z scores of the three screens, with the 400 highest 

scores assigned as high confidence, the next 1000 assigned as medium confidence, 

and both groups also required to pass the additional readout score threshold. The rest 

of the gene candidates were assigned as non-hits (Fig. 2C).  

As a benchmark, we first tested whether the application of pathway analysis 

could improve overlap in hits from HDF studies with the standard single cutoff 

approach. Using the pathway membership list from the Kyoto Encyclopedia for Genes 

and Genomes (KEGG) database, we applied pathway analysis exclusively on the high 

scoring hits of the three screens (Kanehisa et al., 2017). High scoring genes that were 

in a pathway that had an enrichment score by the hypergeometric test of p ≤ 0.05 were 

selected as hits, all high scoring hits not in an enriched pathway were reassigned as 

non-hits (Fig. 2D). Statistical significance of overlap increased in two out of the three 

comparisons as compared to the significance of overlap in the high scoring and post 

validation hits as described earlier (Fig. 2E). Number of shared hits, however, 

decreased in all cases as compared to the prior analysis approaches (Fig. 2F). We 

then ran pathway analysis on the HDF screens using the hit sets prepared by the dual 

cutoff method. Following analysis of the high confidence set to first identify enriched 

pathways and the hits therein, medium confidence hits that were members of those 

pathways were promoted into the hit set. Hits in either the high confidence or medium 

confidence set that were not part of these enriched pathways were relegated to the 

non-hit group (Fig. 2G). A comparison of the three studies of HDFs with hit selection 

by this approach shows that it improves both measures of overlap, significance of 

enrichment (Fig. 2H) and number of shared hits (Fig. 2I), in all screens as compared 
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to pathway analysis with the single cutoff approach (Figs. 2E, F). Comparison to hit 

selection by high scores and post validation, however, shows that the strength in 

pathway analysis is predominantly in the false positive correction (Fig. 2H) and only 

marginally adds to the sensitivity of the analysis, as measured by the shared hits 

across studies (Fig. 2I). 

 

Hit selection and prioritization of medium confidence hits by network analysis 

improves shared hits, but not statistical enrichment, across studies of HDFs. 

To characterize the specific contribution by network analysis approaches to the 

efficacy of hit selection we applied first generation network analysis to the datasets of 

the studies of HDFs. Using the tiered dataset approach described in the previous 

section and the protein-protein interactions curated by the Search Tool for the 

Retrieval of Interacting Genes (STRING) database (Damian Szklarczyk et al., 2010; 

D. Szklarczyk et al., 2019) (see Material and Methods), high confidence and medium 

confidence hits were entered into the network and searched for predicted interactions. 

The interactions were filtered to include only those between a high confidence hit and 

a medium confidence hit as a means to promote medium confidence hits to the high 

confidence set. Medium confidence hits that had no predicted interaction with any of 

the high confidence hits were assigned as non-hits in the final hit selection (Fig. 2J). 

Significance of overlap was not improved by network analysis (Fig. 2K) reflecting the 

expansion of the total number of hits selected and the increase in false positive hits. 

In contrast, this approach led to a sharp increase in the number of shared hits across 

studies (Fig. 2L). Testing the significance of the overlap by random permutation also 

found that the number of shared hits found by network analysis alone was only above 

a statistical threshold of significance in two out of the three comparisons (Fig. 2K), 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2020. ; https://doi.org/10.1101/2020.07.15.204917doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.15.204917
http://creativecommons.org/licenses/by-nd/4.0/


suggesting that the ‘catch-all’ approach of network analysis without any false positive 

correction is prone to the amplification of false positives. This strongly suggests that 

hit selection by network analysis is a highly sensitive approach but requires additional 

correction to increase the specificity of the hit selection set.  

 

An integrated serial approach to pathway and network analysis improves both 

statistical enrichment and number of shared hits. 

As we show in the previous two sections, pathway analysis has the strongest impact 

on false positive correction (Fig. 2H), while network analysis’ impact is largely 

observed in false negative reduction (Fig. 2L). These complementary solutions 

suggested to us that an integrated framework that combines these two methods could 

be the optimal means to harness their combinatorial benefit towards robust hit 

selection. To test a more integrated approach, we designed a combined analysis 

framework for pathway and network analysis. Using the same three-tiered dataset 

approach described above, the first step in the analysis identifies enriched pathways 

from the high confidence hits. Following the identification of significantly enriched 

pathways, medium confidence hits that are members of the enriched pathways are 

promoted to high confidence and all high and medium confidence hits that are not part 

of the enriched pathways become the new medium confidence set. Network analysis 

is then applied to the newly assigned high confidence and medium confidence sets, 

with medium confidence hits that have a reported interaction with a high confidence 

hit promoted to the high confidence set. The expanded set of high confidence hits is 

then assigned as the final hit selection set (Fig. 3A). Applying this integrated serial 

approach to the three studies of HIV HDFs led to improvements in both significance 

of overlap and shared hit number across the three studies (Fig. 3B, C). While the 
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improvements in significance or shared hit magnitude were not as strong as with the 

respective exclusive use of pathway or network analysis alone (Fig. 2H, L), the 

improvements observed in both metrics when using the integrated serial framework 

suggests that it can at least partially capture the complementary error correction of the 

two methods.  

 

An iterative method for the integrated approach further improves hit selection 

from individual methods. 

In an attempt to further amplify the combinatorial benefit we observed with the serial 

approach above, we designed a framework that iteratively applies this strategy. In the 

iterative design, the same procedure as described for the serial application of pathway 

then network analysis is applied as a first iteration. The hits selected by the end of this 

iteration are then reassigned as high confidence hits, and all medium and high 

confidence hits not selected by the first iteration are reassigned as medium confidence 

for the second iteration. The same integrated pathway-to-network analysis is repeated 

to complete the second iteration using the newly assigned high confidence and 

medium confidence hits as input. When the second iteration ends, if the set of high 

confidence hits has not changed from the previous iteration, the analysis terminates, 

and the final set of high confidence hits is assigned as the selected hits from the 

analysis. If, however, the new set of high confidence hits was modified by the second 

iteration, further iterations are applied until the high and medium confidence sets of 

candidates are no longer changed by further iterations of the cycle (Fig. 3D, 

Supplementary Figure 1). This approach ensures that the set of selected hits is 

modified and appended until neither pathway or network analysis can pull it in a 

different direction, ensuring that the resulting set of hits is at the equilibrium between 
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false positive correction by pathway analysis and false negative correction through 

network analysis. We applied this iterative approach to the studies of HDFs and found 

that the three screens required 4 to 5 iterations before the set of high confidence hits 

no longer changed (Supplementary Figure 2). We then repeated the comparative 

analysis of the three screens using the hits selected by the iterative approach and 

observed substantial improvements in both significance of overlap and the number of 

shared hits (Fig. 3E-F). Of note, the number of shared hits showed a marked 

improvement over the serial analysis method (Figures 3C, 3F), suggesting that the 

repeated iterations are able to capture additional shared hits between screens that 

could be missed by a less rigorous analysis approach.  

To further ascertain whether the above design of the iterative framework is 

optimized to give the best improvement in hit selection, we designed and tested an 

iterative pipeline where the order of analysis methods is reversed, with network 

analysis applied first to the dataset followed by pathway analysis (Supplemental Figure 

3A). Reversing the analysis order led to a decrease in both metrics of true positive hit 

selection (Supplemental Figure 3B-C). The measure of confidence by the random 

permutation test was also low in two out of the three comparisons, suggesting that the 

false positive noise was amplified in this hit selection approach. These results suggest 

that the optimal order for an integrated analysis framework is a false positive correction 

(such as pathway analysis) followed by a false negative correction (as in network 

analysis), whereas reversing the order can substantially amplify noise and blunts the 

power of an integrated and iterative approach.  

We also tested the iterative analysis on the post validation hits from the three 

HDF studies to determine if this framework for prioritization can be applied to hits 

thresholded by different methods. We assigned as high confidence the post validation 
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hits reported from each screen and as medium confidence hits the top scoring 1000 

candidates not selected as hits by each study (Supplemental Figure 4A-B). We 

observed similar improvements both in the number of shared hits across the screens 

and in the significance of overlap as we found with the iterative analysis of the highest 

scoring hits (Supplemental Figure 4C-D).  

Taken together, the analysis described above demonstrates that an iterative 

framework for pathway enrichment followed by network analysis provides the 

strongest combinatorial benefit of the complementary analysis approaches (Figure 4). 

By incorporating data that uses two cutoffs, this approach optimizes the ability to triage 

the results of a screen using a combination of the initial gene rankings from the assay 

and the known gene characteristics and functions from curated databases. Since this 

approach bears resemblance to the principle of medical triage as developed by the 

French physicians Dominique Jean Larrey and Pierre-François Percy in 1806 (Nakao 

et al., 2017), we chose the name TRIAGE for this approach as an acronym for 

Throughput Ranking by Iterative Analysis of Genomic Enrichment. 

 

triage.niaid.nih.gov is a secure, publicly accessible web-based interface for 

analysis of high-throughput genomic data. 

To broaden access to this analysis framework we have made the TRIAGE pipeline 

available as a secure web-based, user-friendly interface which can be accessed at 

triage.niaid.nih.gov. The platform is intuitive to use and requires no prior knowledge of 

computer languages. triage.niaid.nih.gov is hosted by the National Institute of Allergy 

and Infectious Diseases (NIAID) and uses a secure encrypted HTTPS connection. To 

increase security and data privacy, once a user’s session ends (i.e. close of browser 

window or move to a new site) the directory with all its files are removed from the 
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TRIAGE server. File names, analysis choices, user IDs, and results are neither 

collected nor stored.  

 

Uploading a data set to the TRIAGE platform for analysis. 

To upload a dataset for analysis by TRIAGE the data must be in .csv format. The 

document must also contain one of the following: either a column titled “GeneSymbol” 

that has HGNC gene symbols in all the rows, or, alternatively, a column titled 

“EntrezID” with NCBI EntrezIDs in all the rows. Both ID columns, however, do not need 

to be included in the upload file. The upload file must also include an additional column 

with the numeric values to be used for selecting high and medium confidence hits. The 

name of this column is up to the user. The numeric values can be either continuous 

values (such as a range of p values or a range of Zscores) or assigned values such 

as assigning a value of 1 to all IDs that should be considered “high confidence”, a 

value of 0.5 to all IDs that should be considered “medium confidence”, and a value of 

0 for all IDs that should be considered “non-hits”. (When using more than one readout 

to assign confidence levels -such as fold change and false detection rate or Z score 

and cell viability readout- it is recommended that the latter approach of assigning a set 

value to each ID based on its confidence ranking be applied before uploading the 

dataset to TRIAGE.) (Supplemental Figure 5) 

A panel of dropdown menus on the left side of the browser window allows the 

user to select the parameters that describe the data and the database settings 

preferred for the analysis. Some of the parameters come with default options, others 

require an input from the user. The website allows the user to select the organism 

(human or mouse), select a database for enrichment analysis, select interactions for 

network analysis, interaction confidence for network analysis, choose an input file to 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2020. ; https://doi.org/10.1101/2020.07.15.204917doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.15.204917
http://creativecommons.org/licenses/by-nd/4.0/


upload, high confidence cutoff value, and medium confidence cutoff value. (Fig. 5A, 

Supplementary Figure 6). 

As many high-throughput assays are now outsourced to core facilities within 

institutions and then sent to research groups to analyze and follow up on, these 

resources often supply in return a list of prioritized gene candidates and do not include 

the full range of scores for the entire genome being measured. These restricted lists 

preclude the possibility of running enrichment statistics that measure the number of 

hits against the entire genome-scale set from which they were selected. For those 

cases, TRIAGE also includes an added feature where the user can add in a “genome 

background” (Fig. 5A, Supplementary Figure 6). When selected, the add genome 

background feature adds genes to the list that aren’t included in the upload file to be 

used as a background for statistical enrichment analysis. The added background 

“genes” will not appear as suggested hits by the TRIAGE analysis, the background 

genes are only used as a means to have more robust statistics on the enrichment of 

pathways. The background genomes use only the known protein coding genes of the 

selected organisms that are not in the upload file.  

After selecting the appropriate parameters, the user clicks Analyze my data to 

run TRIAGE analysis and the iterative analysis process begins. A progress bar 

appears once the analysis has begun. When the analysis is complete, the window 

switches to the results panels. An added benefit of the fast speed of the analysis 

processes is that it allows a user to experiment with different cutoffs for the high and 

medium confidence settings and to compare and contrast outputs. To facilitate this 

approach, a Reset action button is included on the platform, which when clicked, 

resets the input settings and allows the user to easily run a new analysis with different 

parameters (Fig 5A).  
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TRIAGE results provide robustly prioritized hits with mapped enrichments of 

significantly represented pathways. 

Once the TRIAGE analysis is complete, the window switches to the Enriched 

Pathways tab. This tab provides a list of statistically enriched pathways found in the 

set of selected hits by TRIAGE analysis. The names of the enriched pathways can 

also be clicked to open a new tab from the KEGG website showing a schematic of the 

genes in the pathways with the gene hits from the TRIAGE analysis highlighted. Genes 

that were marked as high confidence at the input of the analysis are highlighted in blue 

and those marked as medium confidence are highlighted in red (Fig. 5B-C). This 

feature makes it possible to further explore if the genes that are driving the enrichment 

of the pathway are spread across the pathway or concentrated in a particular segment. 

The Gene Hits tab contains a series of tables that list the genes that were 

selected by the TRIAGE process and can guide the further prioritization of hits for 

follow up (Fig. 5C). The TRIAGE Gene Hits table provides a list of prioritized hits 

selected by TRIAGE analysis with supporting information on interacting genes and 

membership in enriched pathways (Supplementary Figure 7). The Gene Hits by 

Iteration table presents the input document with the genes added or dropped out at 

each iteration listed in appended columns. The Graph: Gene Hits by Iteration tab 

displays a graph showing the number of medium confidence hits and high confidence 

hits that were selected as TRIAGE hits at each iteration of the analysis. The High 

Confidence Hits not in TRIAGE Hits table includes a list of hits that were assigned as 

high confidence in the input but were not selected as hits by the TRIAGE analysis. 

This table is included so that the user can easily review the high-confidence hits that 

were dropped out by TRIAGE to see if any of those should be manually added back 

in based on the user’s knowledge and judgment. This is an important feature in the 
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context of under-studied genes that lack pathway annotations or reported interactions 

but could be important novel regulators of the biological process being studied. The 

Pathway Enrichments table lists the enriched pathways from the analysis with a range 

of statistical cutoffs and the gene candidates that drive the enrichment. All output 

tables can be downloaded and saved by the user (Supplementary Figure 8). The 

Download all files action button under the Download tab provides a zipped folder of 

the analysis files generated by the TRIAGE platform.  

An interactive visualization of pathway hits and network interactions supports 

hypothesis generation for “missing links” between enriched pathways. 

Though frequently applied in parallel, there is a need for developing a way of visually 

representing integrated pathway and network analysis results. To build in a solution 

within the TRIAGE platform we utilized the Hierarchical Edge Bundling method 

(Holten, 2006) as a means of grouping network nodes (which in this context would be 

genes or proteins) that are part of enriched pathways into individual groups. The graph 

assigns another group as the “additional TRIAGE hits” group to place all the gene hits 

that are not annotated as part of the selected pathways. For visual clarity, the often 

seen intra-group connections within a given pathway are filtered out, but are shown 

for the group representing the hits outside the selected pathways. This method allows 

for easier visualization of genes driving suggested interactions between pathways and 

makes it possible to explore putative interactions between pathways through a 

common ‘connecting’ gene (Fig. 6A). 

Within the TRIAGE platform the user can select up to three pathways from the 

list of enriched pathways and TRIAGE will generate a graph of all the TRIAGE hits 

that are part of the selected pathways as well as all the TRIAGE hits that have 

predicted interactions with the selected ‘pathway’ members (Fig. 6B). Hovering with a 
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cursor over a specific gene (“node”) highlights all the predicted interactions (“edges”) 

for that gene. Clicking on a gene ‘fixes’ the interactions, so that the user can then click 

on one of the predicted interactions to observe the interactions from the second node. 

A panel at the side of the graph provides information about the interaction, such as 

the evidence source for the interaction and its confidence score from the STRING 

database (Fig 6B). After clicking through a string of interacting genes the user can 

click the “Highlight Clicked Pathway” icon and all the genes clicked through in the 

exploration are highlighted (Fig. 6C). The clicked genes, and the pathways they are 

members of are tabulated in a separate table that can be downloaded with the rest of 

the analysis at the download tab.  

To demonstrate the utility of this visualization and analysis tool we analyzed the 

TRIAGE results based on the post-validation hits from the Brass et al. HIV study 

described earlier (Brass et al., 2008) (Supplementary Figure 4A, center). The N-

Glycan biosynthesis and RNA transport pathways were among the strongest 

enrichments listed in the results (Supplementary Figure 8). A subsequently published 

meta-analysis of the three studies of HDFs identified the RNA Transport pathway as 

critical for early HIV infection based on the combined results from all three studies 

(Bushman et al., 2009). An additional meta-analysis study using broad network 

prioritization in all three studies highlighted the Golgi related COG2-4 genes which 

facilitate vesicular transport and recycling of glycotransferases as essential factors in 

early HIV infection, along with its interacting gene STX5 (Zhu et al., 2014). The study 

suggests that these factors potentially modulate HIV infection by regulating 

glycosylation. Using the visualization platform on TRIAGE we selected the N-Glycan 

biosynthesis pathway and the RNA transport pathway to generate a network of the 

related pathway hits and its predicted interactions from the TRIAGE analysis of the 
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Brass et al. data alone (Fig. 6B). Observing the network reveals that the N-Glycan 

biosynthesis pathway gene MAN2A1 interacts with STX5 and the COG genes. 

Following the interactions, we can see that the RNA transport pathway gene NUP160 

also interacts with STX5. In addition to identifying the essential enrichments previously 

characterized only after several meta-analysis studies, the TRIAGE output network 

also identifies specific gene candidates by which these putative enrichments and 

regulatory mechanisms can be further investigated. Clicking on the nodes along these 

interactions and then highlighting the clicked pathway reveals a link between the two 

enrichments, suggesting that the RNA transport and Golgi factors are both regulated 

via the N-Glycan maturation enzyme MAN2A1 (Fig. 6C).  This analysis is also an 

illustrative example of how the interactive TRIAGE network can be used to identify 

high-priority candidates for further validation of novel mechanisms.  

R script of the TRIAGE framework can be adapted for analysis with bespoke 

databases and network and enrichment criteria. 

TRIAGE analysis was developed and tested using a set of parameters and heuristics 

that are in broad use by researchers. The framework, however, can in principle be 

applied to any set of complementary pathway and network approaches. Extensive 

developments in the assessment of pathway enrichments and applications of network 

analysis theory have enabled more sophisticated approaches to be applied by more 

computationally skilled investigators. Different analyses also call for databases 

curated by different criteria to match the specific research question. To broaden the 

use of the TRIAGE framework to incorporate different methods of pathway and 

network analysis as well as diverse databases, we also built TRIAGE as an adaptable 

function in R (https://github.com/niaid/TRIAGE). The TRIAGE function in R can be 

downloaded and run locally with any user provided databases and network graph. The 
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script can also be adapted for more bespoke analysis approaches using 2nd  (Barry et 

al., 2005; Cowen et al., 2017; Subramanian et al., 2005; Yu et al., 2013)  and 3rd (Dutta 

et al., 2012b; Gu et al., 2012; J. Rahnenführer et al., 2004; Likai Wang et al., 2018; 

Zhang et al., 2017) generation pathway and network approaches or alternative 

bioinformatic solutions using TRIAGE as a framework for integrating complementary 

hit selection approaches. 

 

DISCUSSION 

Comparative analysis of three genome-wide screens of HIV HDFs shows that pathway 

and network-based approaches for hit selection are complimentary in the solutions 

they provide with strengths in false positive and false negative correction, respectively. 

Based on these insights, the TRIAGE iterative analysis framework developed herein, 

which integrates pathway and network-based methods to prioritize hits from a two 

cutoff dataset, leads to the strongest combined error correction with additional 

improvements to the interpretability of the results. To broaden its accessibility and 

implementation, the TRIAGE application is available as a web-based interface 

(triage.niaid.nih.gov) as well as an adaptable bioinformatic framework. 

In the development of TRIAGE, we focused on the twin challenges of 

incomplete genome annotation by pathway databases and lack of false positive 

correction in network analysis approaches. TRIAGE addresses these issues and 

optimizes the use of these different database classes to more thoroughly identify 

biologically significant hits from omic-scale studies. TRIAGE was designed and tested 

using the first-generation methods of pathway and network analysis (Over 

Representation Analysis (ORA) (Beißbarth & Speed, 2004; Goeman & Bühlmann, 

2007) and Direct Neighbour network (Oti et al., 2006), respectively) both of which 
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remain widely used in the routine reporting of high-throughput studies (Dong et al., 

2016). Pathway and network analysis methods have gone through critical evolutions 

over the past decade. A second generation of enrichment approaches were developed 

as Functional Class Sorting (FCS) methods which emphasize coordinated changes in 

the group of genes from the predetermined set (i.e. pathway or functional group) (Barry 

et al., 2005; Subramanian et al., 2005). A third generation of enrichment analysis 

approaches were later developed as topology-based (TB) approaches that consider 

the organization of genes within a pathway and do not weigh all genes in the pathway 

equally (Dutta et al., 2012b; Gu et al., 2012; J. Rahnenführer et al., 2004). Alternative 

and more discriminating approaches to expanding candidate lists by network analysis 

have also been created, such as network propagation (Cowen et al., 2017), and 

methods that incorporate concepts from graph and information theory (Yu et al., 2013). 

Where more multi-level datasets are available, network prioritization using more 

sophisticated statistical and machine learning methods such as linear regression and 

random forest have yielded more discriminating results (Likai Wang et al., 2018; Zhang 

et al., 2017). It remains to be tested, however, whether the TRIAGE design can be 

similarly applied to those analysis methods as well as alternative complementary false 

positive and false negative correction methods.  

Some of the intrinsic challenges of relying on curated databases persist even 

in the TRIAGE design. In the context of using pathway enrichment for hits prioritization, 

the statistical approach used to assess significant enrichment (a hypergeometric test 

with FDR) favors a specific range of pathway sizes. Best practices in the use of 

pathway enrichment statistics suggest that the analysis works best in pathways that 

contain member genes in the range of 20 to 400 (Ramanan et al., 2012). This range 

limits the possibility to reliably explore broader pathways such as metabolic processes 
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which have higher gene membership counts. There is also substantial redundancy 

and overlap in pathway annotation which can lead to unrelated enrichments being 

identified, though some bioinformatic solutions for this have already been proposed  

(Pita-Juárez et al., 2018; Simillion et al., 2017; Vivar et al., 2013).  

Network analysis driven data exploration also has a set of persistent 

challenges. Notably, network analysis databases such as STRING are cell type and 

treatment agnostic (Ma et al., 2019), making some of the imputed interactions 

irrelevant or misleading for analysis in different contexts. The latter challenge could be 

addressed by more cell or disease specific protein-protein interaction networks being 

generated, but this will require a substantial investment from the research community 

to develop and generate such resources. The TRIAGE R code is designed such that 

it can be adapted to more bespoke analysis pipelines when such datasets are 

available. Recently developed search engines such as GADGET have used 

thoroughly sensitive text mining algorithms to map abstracts in PubMed to specific 

gene IDs, metabolites, and disease keywords (Craven, M. (2015). Gadget. Retrieved 

from http://gadget.biostat.wisc.edu/), an expansion of these methods to map 

interactions from the literature to the cell or tissue types and the treatments they were 

identified in could address some of the current network database blindspots. Additional 

creative bioinformatic methods, however, will also be necessary to infer across which 

cell types and conditions observed protein-protein interactions can be extrapolated to, 

and in what contexts comparisons are less likely to be informative. Finally, the powerful 

utility of pathway and network databases and the novel ways in which they continue 

to be applied further underscores the critical need to support the maintenance of these 

resources. 
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DATA AVAILABILITY 

The datasets analysed in this study have all been previously published in Brass et al., 

2008 (Brass et al., 2008), König et al., 2008 (König et al., 2008), and Zhou et al., 2008 

(Zhou et al., 2008).  

The TRIAGE application can be accessed at https://triage.niaid.nih.gov.  

TRIAGE source and compiled codes corresponding to this manuscript’s version of the 

software are available at https://github.com/niaid/TRIAGE. 
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TABLE AND FIGURES LEGENDS 

 

Figure 1: Parallel genome-wide siRNA studies have limited overlap in hits 

selected by highest score or post-validation.  (A, B) Venn diagram of shared and 

unshared hits for the three studies of HIV HDFs from the post validation sets (A) or 

selected by highest score (B). (C) Normalized data from the three siRNA studies of 
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HDFs. Red highlighted area indicates highest scoring hits. Genes highlighted in light 

blue were selected as post validation hits by the respective studies. (D) Negative Log 

p Values of the statistical enrichment between the hit sets of the three siRNA HDF 

studies for hits selected by high score cutoff (red) and post-validation hits selected by 

analysis and secondary screening (blue). Threshold is set at -Log(0.05). (E) Number 

of shared hits in two screen comparisons of the three siRNA studies of HDFs. (F) 

Median size of the hit selection sets for each two-way comparison of the three siRNA 

studies of HDFs. 

Figure 2: Prioritization of candidates by pathway enrichment or network 

analysis are complementary in hit selection solutions. (A) Schematic of a single 

cutoff, two tier data approach. (B) Schematic of a dual cutoff, three tier data approach. 

(C) Scores from three genome-wide studies of HDF. Normalized scores are plotted on 

the x-axis and secondary scores that were considered (such as cell viability and 

assigned p-values) are on the y-axis. Genes with both scores above the cutoff are in 

orange and genes with Z scores above the secondary cutoff are in purple. (D) 

Schematic of the pathway analysis approach for hit selection. Candidates are divided 

by a single cutoff. (E, F) statistical significance of the overlap (E) and number of shared 

hits (F) selected by pathway analysis of 2-tiered data versus highest scoring and post 

validation hits. (G) Schematic of the pathway analysis approach for hit selection from 

a three-tiered dataset. (H, I) statistical significance of the overlap (H) and number of 

shared hits (I) selected by pathway analysis of 3-tiered data versus highest scoring 

and post validation hits. (J) Schematic of the network analysis approach for hit 

selection. (K, L) statistical significance of the overlap (K) and number of shared hits 

(L) selected by network analysis of 3-tiered data versus highest scoring and post 
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validation hits. Random permutation test scores: ns = p > 0.05, * = p ≤ 0.05, ** = p ≤ 

0.01. 

Figure 3: Integrated and iterative approaches to pathway and network analysis 

improve overlap by multiple measures. (A) Schematic of the serial analysis 

approach for hit selection. Pathway analysis is applied to high confidence hits. High 

confidence and medium confidence hits from enriched pathways are assigned as high 

confidence hits. Network analysis is applied to the set of high confidence hits. Medium 

confidence hits that have predicted interactions with high confidence hits are added to 

the final hit set. (B, C) statistical significance of the overlap (B) and number of shared 

hits (C) selected by serial analysis of 3-tiered data versus highest scoring and post 

validation hits. (D) Schematic of the iterative analysis approach for hit selection. i = 

number of iterations. Pathway and network analysis are sequentially applied as in the 

integrated approach. When i > 1, if the set of high confidence hits at the end of the 

current iteration (HCi) is the same as the set of high confidence hits from the end of 

the previous iteration (HCi-1) high confidence hits are used as the final hit set from the 

study. If high confidence set of hits are different, another iteration of integrated analysis 

is applied. (E, F) statistical significance of the overlap (E) and number of shared hits 

(F) selected by iterative analysis of 3-tiered data versus highest scoring and post 

validation hits. Random permutation test scores: ns = p > 0.05,  * = p ≤ 0.05,  ** = p ≤ 

0.01. 

Figure 4: Throughput Ranking by Iterative Analysis of Genomic Enrichment 

(TRIAGE). Summary and comparison of the multiple approaches to hit selection 

evaluated by false positive correction (measured by significance of overlap (blue)) and 

false negative correction (measured by number of shared hits (green)). Hit selection 
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methods: (clockwise from top center): post validation hits, high scoring hits, pathway 

analysis using a two-tiered dataset, pathway analysis using a three-tiered dataset, 

network analysis, serial integration of pathway and network analysis, iterative 

integration of pathway and network analysis.  

Figure 5: Uploading and analyzing data on triage.niaid.nih.gov. (A) The landing 

page of triage.niaid.nih.gov after a gene list has been uploaded. (B) Pathway 

enrichment tab on TRIAGE. Genes listed on right from enriched pathways are color-

coded based on their assignment in the uploaded gene list; High confidence (blue) 

and medium confidence (red). (C) A mapped KEGG pathway linked from a TRIAGE-

output with candidates ranked as high confidence in the input highlighted in blue and 

candidates ranked as medium confidence highlighted in red.  

 

Figure 6: An interactive version of pathway and gene networks enables 

exploration of putative missing links. (A) Structure of a TRIAGE network 

visualization map integrating pathway and network information utilizing hierarchical 

edge bundling. (B) An interactive version of the pathway and gene network graph in 

TRIAGE. This example shows the results following the selection of the “RNA transport” 

and “N-Glycan biosynthesis” pathways in the TRIAGE analysis of the Brass et al. study 

(Brass et al., 2008) of essential factors for HIV infection. Information about different 

nodes and edges appear in the window at top right. (C) “Highlight Clicked Pathway” 

option in TRIAGE highlights the clicked-on genes and their interactions. 

 

 

MATERIAL AND METHODS 
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Datasets and Databases. 

 

Genome-wide siRNA studies of HIV Dependency Factors  

The three genome-wide siRNA studies of essential proteins in early HIV infection were 

published by Brass et al., 2008; König et al., 2008; and Zhou et al., 2008. The complete 

datasets of scores and metadata of these studies were generously shared by Amy 

Espeseth (Zhou et al screen), Abraham Brass (Brass et al screen), and Sumit Chanda 

(König et al screen). Brass et al. and Zhou et al. performed two readouts one at 48 

hours post infection and another at a later timepoint. For comparative purposes we 

only compared the first readout from Brass and Zhou to the study of König et al. to 

focus on the candidates regulating early infection (Supplementary Table 1). 

 

KEGG database for pathway enrichment  

The KEGG database was downloaded from the KEGG Application Program Interface 

(API), as described previously (Kanehisa et al., 2017). For the analysis described in 

this manuscript, the KEGG data was downloaded on May 11, 2019. Pathway lists were 

filtered for pathways that are related to biological processes (and excluding the ones 

related to disease) by only selecting pathways with PathwaysIDs of 05000 or less. 

EntrezIDs were added to the NCBI gene symbols in the KEGG database by the 

org.Hs.eg.db: R package (Marc Carlson (2018). org.Hs.eg.db: Genome wide 

annotation for Human. R package version 3.7.0.) and the org.Mm.eg.db: R package 

(Marc Carlson (2018). org.Mm.eg.db: Genome wide annotation for Mouse. R package 

version 3.7.0.). The annotated pathway enrichment document was formatted into a 
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matrix of gene IDs and pathway identifiers and subset into 2x2 matrices for competitive 

enrichment analysis as previously described (Goeman & Bühlmann, 2007).  

 

STRING database for biological network interactions  

The STRING database was downloaded from the STRING API as previously 

described (Damian Szklarczyk et al., 2010). The 9606.protein.links.full.v10.5 was 

downloaded for human interactions and the 10090.protein.links.full.v10.5 for mouse 

interactions. Inferred interactions from other species were not included. The network 

downloads were separated based on the evidence source of their interactions. The 

evidence source categories followed the STRING database categorizations. The 

different evidence source network files were then split into three groups based on their 

evidence scores, 0.15-0.4 as low confidence, 0.4-0.7 as medium confidence, and 0.7-

1 as high confidence. The files were then converted into the igraph format using the 

igraph R package (Csardi G, Nepusz T: The igraph software package for complex 

network research, InterJournal, Complex Systems 1695. 2006. http://igraph.org). For 

the analysis described in this manuscript, the STRING data was downloaded on 

October 3rd, 2018. Each analysis was performed using a single master igraph that 

was generated by combining the igraphs of the relevant criteria (evidence source and 

scores). The networks were used to prioritize lower scoring hits by using the direct 

neighbor functional approach as previously described (Li Wang et al., 2009).  

 

Gene and protein ID conversion  

Gene to protein ID conversions were done using the biomaRt R package (Mapping 

identifiers for the integration of genomic datasets with the R/Bioconductor package 

biomaRt. Steffen Durinck, Paul T. Spellman, Ewan Birney and Wolfgang Huber, 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2020. ; https://doi.org/10.1101/2020.07.15.204917doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.15.204917
http://creativecommons.org/licenses/by-nd/4.0/


Nature Protocols 4, 1184-1191 (2009).) EntrezID to GeneSymbol ID conversions were 

done using the org.Hs.eg.db: R package (Marc Carlson (2018). org.Hs.eg.db: Genome 

wide annotation for Human. R package version 3.7.0.) and the org.Mm.eg.db: R 

package (Marc Carlson (2018). org.Mm.eg.db: Genome wide annotation for Mouse. R 

package version 3.7.0.)  

 

Statistics 

 

Normalization of high-throughput readouts  

Normalization of scores from high-throughput studies was performed using the Z score 

approach described in (Birmingham et al., 2009). Where plate information was 

available, scores were normalized to plate mean, otherwise scores were normalized 

to overall mean of the data set.  

 

Cell viability correction  

Cell viability correction varied for different studies and was based on available data as 

follows:  

Zhou et al Screen: The study calculated a Percent Cell Viability measure for each gene 

target. The values were normalized using a normal distribution and gene candidates 

with a cell viability score of -2 or less were flagged.  

Brass et al Screen: The study included cell count number for each gene target. The 

counts were log10 normalized and then given a plate-by-plate Z-score normalization. 

Gene candidates with a cell viability score of -2 or less were flagged.  

König et al Screen: Data shared with us for these studies already had a cell viability 

correction applied to their readout scores.  

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2020. ; https://doi.org/10.1101/2020.07.15.204917doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.15.204917
http://creativecommons.org/licenses/by-nd/4.0/


 

Hypergeometric test for pathway enrichment  

Hypergeometric distributions to calculate the significance of shared enrichments 

(across screens and for pathway analysis) were done by generating contingency 

matrices of shared and non-shared hits and then analyzing by a one-sided Fishers’ 

Test with the alternative hypothesis set to “greater than” and the null being no shared 

enrichment. This approach has been previously described as the “competitive 

enrichment” test or over representation analysis (Khatri et al., 2012).  

 

Random permutation testing 

Statistical significance of the number of shared hits across studies was calculated 

using a random permutation test. For each analysis and comparison, 1000 input files 

were generated having the same size of hits and non-hits (or high confidence hits, 

medium confidence hits, and non-hits where relevant) with the gene candidates 

assigned to different confidence groups at random. Each of the randomly generated 

inputs was run through the same analysis and cross-screen comparison as the non-

random input. The number of shared hits found in each analysis of the random input 

was plotted and compared to a Poisson distribution derived from the maximum 

likelihood estimator of the non-random hits. A p-value for the random results was 

computed from its corresponding Poisson distribution. This test was used to increase 

confidence that the results represented in the findings are driven by the prioritization 

of biologically relevant candidates and not by the size of the input or biases in the 

analysis method and annotation databases used. 

 

Bioinformatics  

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2020. ; https://doi.org/10.1101/2020.07.15.204917doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.15.204917
http://creativecommons.org/licenses/by-nd/4.0/


 

Iterative analysis in R  

Computational analysis was done in the R environment (R Core Team (2013). R: A 

language and environment for statistical computing. R Foundation for Statistical 

Computing, Vienna, Austria. URL http://www.R-project.org/). Genomic analysis 

software was supported by the BioConductor platform (Gentleman et al., 2004). To 

build the TRIAGE analysis pipeline in R, all components were built as separate 

functions and then integrated together into a master function. Below is a summary of 

the individual steps taken followed by their integration into an iterative function.  

 

Importing and standardizing databases: The downloads from pathway databases and 

network databases (KEGG and STRING) were mapped to common IDs (EntrezIDs). 

The network database was converted to a set of igraphs and the pathway database 

was converted to a two-column table of pathway name and pathway members. This 

enabled efficient mapping between hit datasets and databases.  

 

Pathway enrichment function: A pathway enrichment function was created that creates 

a contingency matrix for each pathway name in the pathway database and a list of IDs 

separated into “hits” and “non-hits”. Using a one-sided Fisher’s exact test, the p-

values, FDR, and Bonferroni correction of enrichment for each pathway name were 

generated. This analysis loops over all the unique pathway names in the pathway 

database table. The pathway function is provided with a significance cutoff (<0.055). 

The function uses the significance to separate the pathway names that passed the 

threshold of significance for the list of pathway names and creates a list of selected 

pathways. Using the list of selected pathways, a vector of unique gene IDs that are 
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members of the selected pathways is created. When using a dataset with a single 

cutoff (hits vs. non-hits), the intersect of the pathway member IDs and hit IDs is sub 

selected as a new set of hits. When using a dataset with two cutoffs (high confidence 

hits, medium confidence hits, and non-hits), only the high confidence hits are used as 

the “hits” for determining pathway enrichment. After the vector of pathway associated 

genes is created, a vector of the union of high confidence and medium confidence hits 

is generated. The intersect of the new vector of hits and the vector of pathway genes 

is taken as the new set of hits.  

 

Network enrichment function: A generated igraph of the selected network database 

parameters is matched with a list of high confidence hits and medium confidence hits. 

A new igraph is created based on the intersect of the list of hits with the database 

igraph. A two-column table of each of the two IDs (“nodes”) from each predicted 

interaction (“edge”) is created. The list is then matched with a list of the high confidence 

hits. To find the medium confidence hits that have predicted interactions with high 

confidence hits, edges that have a match with the high confidence list of hits in at least 

one of their nodes are kept, while nodes without a match in either of their edges are 

filtered out. A new vector of unique IDs is generated from the filtered table and the 

union of the vector and the high confidence list of hits is assigned as the new set of 

high confidence hits.  

 

Iterative analysis function: The iterative function was built by first creating a pipeline 

where the pathway enrichment function is applied to the input of a screen containing 

gene IDs in three groups (high confidence, medium confidence, and non-hits). The 

output of the pathway analysis steps is then reshaped to match the required input for 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2020. ; https://doi.org/10.1101/2020.07.15.204917doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.15.204917
http://creativecommons.org/licenses/by-nd/4.0/


the network analysis step. Following the network analysis output, the new hit 

characterizations are assigned as the new input column for pathway analysis. A 

“confidence category” column keeps track of what confidence level each hit was at the 

first input while a “proxy score” column updates the level of hit confidence each gene 

is assigned within each iteration. A separate data frame is created where the selected 

enrichment pathways from the pathway function are tabulated.  

To halt the iterative loop when the iterations converge to the same set of high- 

confidence hits, the script uses a while function relying on a variable nested in an if 

function. Briefly, the variable “counter” is assigned as TRUE at the start of the analysis. 

An additional variable (“iteration”) counts what iteration of the analysis is currently 

running. The analysis function is wrapped within a “while” function that only runs the 

analysis while counter = TRUE. Following an iteration of pathway and network 

analysis, an if function evaluates if the iteration count is greater than 1. If true, the if 

function evaluates if the table of IDs with associated proxy score of this iteration match 

the table of IDs with associated proxy scores from the previous iteration. If the 

condition is true the “counter” variable is assigned as counter = FALSE. This leads to 

the termination of the function. Otherwise, the counter variable remains TRUE and the 

condition of the while loop is met to commence a new iteration of the analysis. When 

the analysis is complete a data frame with all the input IDs, the confidence category 

each ID was assigned at input, the proxy score for each iteration, and whether the ID 

was assigned as a “hit” by the final iteration is generated. An additional data frame 

with the pathway enrichments from the final iteration is also generated with each 

pathway name matched with the intersect of member IDs with the list of hit IDs.  

Repeated tests with different datasets have all resulted in the analysis 

converging to a single set of hits after a finite number of iterations. When testing 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2020. ; https://doi.org/10.1101/2020.07.15.204917doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.15.204917
http://creativecommons.org/licenses/by-nd/4.0/


randomized datasets, however, a number of datasets (out of more than five thousand 

tested) led to the set oscillating between different sets after a few iterations. To ensure 

the termination of the iterative analysis even in those rare cases, an additional 

condition was added to the above described test. The results of each iteration after 

iteration ≥ 3 are compared to the results of all the previous iterations. If a result is 

repeated it is indicative of an oscillating pattern. The analysis then finds the iteration 

within the repeated pattern that has the largest hit set and then terminates the analysis 

and assigns that iteration as the final output. 

 

Web based interface of TRIAGE (Shiny)  

The TRIAGE web interface was designed to run on a set of intuitive user inputs and 

provide the user with the results of TRIAGE analysis and the ability to explore and 

download the results. Creation of the public facing web page based on R script was 

done using the Shiny application (Winston Chang, Joe Cheng, JJ Allaire, Yihui Xie 

and Jonathan McPherson (2019). shiny: Web Application Framework for R. R package 

version 1.3.2. https://CRAN.R- project.org/package=shiny). Briefly, the different sets 

of outputs were separated into different tabs with an additional tab added for input. 

Inputs required from the user were separated into “selectedInputs” (organism, 

pathway, network, interaction confidence for network analysis), “conditionalPanel” 

(selecting interaction network confidence source), “fileInput” (uploading input file), 

“textInput” (high-conf cutoff value, mid-conf cutoff value), “checkboxInput” (add 

genome background), and “actionButton” (run analysis, reset analysis). The inputs are 

assigned to variables that are then matched to variables in the TRIAGE function. A set 

of warning messages were built in for cases where lists of hits or chosen parameters 

yield no results in pathway and network analysis.  
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To create the hyperlinks for each enriched pathway which maps hits onto 

KEGG pathways, a link2KEGGmapper function is generated following the TRIAGE 

analysis. The link2KEGGmapper function generates a list of gene names mapped to 

the organism abbreviation and assigns colors based on the input-provided confidence 

level. A web path is created for each pathway and added to the end of the 

https://www.kegg.jp/kegg- bin/show_pathway?%s0%s web address. This generates a 

unique URL for each pathway based on the list of high confidence and medium 

confidence hits in its membership to match the URL generated by the KEGG mapper 

and ID color feature (https://www.genome.jp/kegg/tool/map_pathway3.html).  

For the table of pathway enrichment, an enrichment score (EnrichScore) for 

each pathway was calculated. The score is a measure of the robustness of the 

pathway enrichments by the number of genes represented in the TRIAGE dataset. 

The EnrichScore also evaluates how many of the genes driving the pathway 

enrichment were assigned as high confidence in the input. The total EnrichScore is 

calculated as !	 !"#$%&%'
$%&%'(&)*#+,*- +

!".+/012%$%&%'
!"#$%&%' $ /	2 

To generate the appended columns of “InteractingGenes” and 

“NetworkGenePathways” for the TRIAGE gene hits tab, an igraph of the selected hits 

is generated based on the network input parameters provided by the user and filtered 

into a sub-igraph for each hit. The interacting genes are then cross-referenced with 

the pathway input parameters selected by the user and the list of pathway 

memberships of the interacting genes are tabulated, counted, and added to the 

“NetworkGenePathways” column. The download tab on the interface was created as 

a reactive page. As files are added to the directory with additional analysis steps, the 

download page updates with a list of file names in the current directory. For ease of 

use the download files are put in a zip file format.  
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The application is hosted by the National Institute of Allergy and Infectious 

Disease (NIAID) Office of Cyber Infrastructure and Computational Biology (OCICB) at 

the following URL: https://triage.niaid.nih.gov. The analysis is run behind two internet 

security firewalls and all requests are handled using encrypted connections. After a 

connection ends the directory with the uploaded input file and all the output files 

generated during the analysis are deleted from the server.  

 

Interactive pathway and network visualization 

Interactive visual interfaces were built by integrating the JavaScript language into the 

R Shiny platform. Communication across the platforms were done by creating 

JavaScript files in R using the jasonlite R package (Jeroen Ooms (2014). The jsonlite 

Package: A Practical and Consistent Mapping Between JSON Data and R Objects. 

arXiv:1403.2805 [stat.CO] URL https://arxiv.org/abs/1403.2805.) and then fed into 

d3.js file (Bostock et al., 2011).  

To create the hierarchical edge bundling maps of selected pathways and 

TRIAGE hits, an igraph of all the selected hits is generated. A vector of all the 

selected pathway names and additional group “additional TRIAGE hits” is also 

created. To filter the network map, first the nodes are filtered based on membership 

in the selected pathways or interaction with a node in one of the selected pathways. 

Second, edges are filtered based on having the two nodes in different groups in the 

vector of selected pathways and novel hits (this removes intra-group nodes). The 

edges are assigned color grouping based on the node that is in a pathway group. 

Nodes that appear in more than one group are assigned to a separate group with a 

different coloring indicating membership in both groups 1 and 2. Visual parameter 

controls of the graph on the interface are created using the Shiny slider function. A 
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window in the interface maps the node selected by the cursor to the selected 

network data frame and populates the field with interaction confidence and evidence 

source information on the selected node. 
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Zhou et al. Brass et al. König et al.
Cell Type HeLa P4/R5 Cells HeLa-derived TZM-bl 

Cells
293T Cells

Experimental
Conditions 
And

Treatment HXB2 HIV- 1 HIV IIIB VSV-G pseudotyped 
HIV-1 reporter virus 
encoding
luciferase

Design Readout 1 Tat activation of 
expression of the b-
Gal reporter

p24 (product of gag 
gene)

HIV-1 Vector encoded 
luciferase 

Time point: 
Readout 1

48h 48h 24h

Readout 2 Tat activation of 
expression of the b-
Gal reporter

b-Gal (Tat dependent) MuLV and AAV

Time point: 
Readout 2

96h 72h 24h

Cell Viability 
Correction

Decrease of cell 
viability by 2 SDs or 
more

Decrease of cell 
viability by 2 SDs or 
more

Cell toxicity screen

Hit Selection, 
Bioinformatics,

Z score cutoff 2 SSMD relative to the 
negative control

2 SDs greater than the 
plate mean

2 siRNAs with ³45% 
reduction in HIV 
infectivity

and Secondary 
Screening

Bioinformatics 
Used in Hit 
Selection

In silico screening for 
expression in activated 
T cells and 
Macrophages

None “evidence score” 
based on functional, 
biochemical, and 
transcriptional data. 
Yeast to hybrid protein 
interaction database, 
NCBI HIV-1 Protein 
Interaction Database, 
MCODE, Ontogeny-
based pattern 
identification algorithm

Secondary 
Screening

Rescreening by 
independent siRNAS

Rescreening of pooled 
siRNAs in single 
siRNA assay

Rescreening of pooled 
siRNAs in single 
siRNA assay

Supplementary Table 1: Design and hit selection methods for the three siRNA studies of early
HIV dependency factors by Zhou et al., Brass et al., and König et al.
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Supplementary Figure 1: Hit selection by iterative application of pathway and network 
analysis.
Flowchart of the Throughput Ranking by Iterative Analysis of Genomic Enrichments (TRIAGE) 
hit selection pipeline.



König et al.

Brass et al.

Zhou et al.

Supplementary Figure 2: Iterations of integrated analysis of the three studies of HIV 
HDFs.
0 on the x-axis represents the high confidence set of hits at the analysis input stage. The high
confidence hit sets are contracted and expanded through iterative analysis cycles. Analysis
terminates when high confidence sets do not change between two consecutive iterations.



If i ≠ 1 
AND

HC Hitsi
= 

HC Hitsi-1

HC Hits

MC Hits

Non-hits

Pathway
Analysis

Network
Analysis

HC Hitsi = Hit Selection

i

High
Scoring

Post
Validation

Iterative Analysis:
Pathway + Network

Iterative Analysis:
Network + Pathway

Comparison

45

30

15

0

Sh
ar

ed
 H

its

BK BZ ZK BK BZ ZK BK BZ ZK BK BZ ZK

Z = Zhou et al., B = Brass et al., K = König et al. 

A

19

13

7

0

-L
og

 p
 V

al
ue

High
Scoring

Post
Validation

Iterative Analysis:
Pathway + Network

Comparison

Iterative Analysis:
Network + Pathway

BK BZ ZK BK BZ ZK BK BZ ZK BK BZ ZK

B

C

Supplementary Figure 3: Hit selection by iterative analysis with reverse pathway and 
network order.
(A) Schematic of the iterative analysis as in Fig. 3D with the order of pathway and network
analysis reversed. (B) statistical significance of the overlap across the three studies of HDFs
when comparing hits selected by reverse iterative analysis versus highest scoring hits, post
validation hits and hits selected by the alternative design of iterative analysis. (C) Number of
shared hits between the hits selected by reverse iterative analysis from the three studies versus
highest scoring hits, post validation hits and hits selected by the alternative design of iterative
analysis.. Random permutation test scores: ns = p > 0.05, * = p ≤ 0.05, ** = p ≤ 0.01
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Supplementary Figure 4: Using post-validation hits for analysis by TRIAGE. 
(A) Scores from three genome-wide studies of HDFs. Post-validation hits are in orange and the
highest scoring 1000 genes not selected are in purple. (B) Schematic of three-tiered data using
post validation hits as high confidence hits, and non-selected high scoring hits as medium
confidence hits. (C) Statistical significance of the overlap across the three studies of HDF when
comparing hits selected by TRIAGE analysis of post validation hits versus highest scoring hits,
post validation hits, and hits selected by TRIAGE analysis of high scoring hits. (D) Number of
shared hits between the hits selected by TRIAGE analysis of post validation hits versus highest
scoring hits, post validation hits, and hits selected by TRIAGE analysis of high scoring hits.
Random permutation test scores: ns = p > 0.05, * = p ≤ 0.05, ** = p ≤ 0.01



GeneSymbol EntrezID PercInfected.Zscore CellNumber.Zscore assigned.value
CXCR4 7852 -4.96623446 0.755277194 1
C1orf52 148423 -3.637572822 1.925896515 1
MED14 9282 -3.435696475 0.976086257 1
ADAM10 102 -3.435673997 1.513583032 1
GCK 2645 -3.223640638 1.920937941 1
GPR21 2844 -3.201246647 -0.096137148 1
ZNF831 128611 -3.20098761 -0.243515999 1
CD4 920 -3.162525347 1.767687649 1
EGFR 1956 -3.162525347 1.487870985 1
WNT1 7471 -3.140163554 1.674727332 1
USP6 9098 -3.114415882 1.238823011 1
PLEKHA7 144100 -1.920126088 -1.705268716 0.5
DPH3 285381 -1.919642212 -0.473272261 0.5
NA 284861 -1.919642212 -0.200375892 0.5
PNMA6A 84968 -1.917641072 -1.574602053 0.5
EIF3G 8666 -1.917428352 -1.51997327 0.5
TFDP2 7029 -1.916264377 1.3078323 0.5
CLNS1A 1207 -1.915660931 0.543313511 0.5
MMP19 4327 -1.90908986 1.426094148 0.5
RECQL4 9401 -1.90908986 1.167972495 0.5
ZNF536 9745 -1.909010831 -0.111569716 0.5
NMUR2 56923 -3.690591512 -2.63385185 0
SMU1 55234 -3.686455305 -3.076050904 0
LSM8 51691 -3.62462392 -2.307921727 0
NAT10 55226 -3.460889184 -2.681841646 0
SGO1 151648 -3.435116303 -4.066983289 0
DHRS13 147015 -3.38711184 -2.495038806 0
XAB2 56949 -3.327710602 -3.064859872 0
HEG1 57493 -3.291433863 -2.728928693 0
COPB2 9276 -3.28475593 -4.284378793 0
PSMB6 5694 -3.261635121 -3.280551426 0

Supplementary Figure 5: A sample input file for TRIAGE.
A sample dataset prepared for TRIAGE analyses using the data from the Brass et al. of study of
essential factors for HIV infection. Gene column IDs are labeled as “EntrezID” and
“GeneSymbol” (either one is sufficient for upload). The “PercInfected.Zscore” column includes
the normalized Z scores and can be used to set cutoffs for the high confidence and medium
confidence fields on the TRIAGE platform. To incorporate the “CellNumber.Zscore” in defining
high confidence vs. medium confidence hits, a new column is created “assigned.value”. Hits
assigned as high confidence by both criteria are given a value of 1, hits assigned as medium
confidence are given a value of 0.5. Hits that don’t meet the two criteria are assigned a value of
0.
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Supplementary Figure 6: Setting up an analysis on TRIAGE.
Guide for the control panel for setting up an analysis session on the triage.niaid.nih.gov web 
interface.



NCBI EntrezID. 

HGNC Gene Symbol.

The confidence category this gene was assigned to at the start of the analysis.

If the gene was selected as a hit by TRIAGE.

Names of KEGG Pathways that were identified by 
TRIAGE as enriched for in the dataset that the gene is an 
annotated member of.

Names of TRIAGE gene hits from the analysis that have 
predicted interactions with the listed hit gene of the row. 
The interactions are determined based on the network 
settings set by the user at the start of the analysis.  

Names of enriched pathways from the analysis which the 
interacting genes are members of. 

Number in parenthesis indicates the number of Interacting 
genes that are members of the preceding pathway.

Supplementary Figure 7: TRIAGE Gene Hits table on TRIAGE.
Guide for the “TRIAGE Gene Hits” table generated after an analysis session on  
triage.niaid.nih.gov is complete.



KEGG 
database 
pathway name

p-value of pathway 
enrichment. 

p-values with the Bonferroni 
corrections for multiple testing. 

p-values with added correction 
for False Detection Rate. 

Number of genes annotated in 
the pathway.

Number of pathway genes that are 
selected as hits by TRIAGE.

Number of hits in the pathway that are 
assigned as high confidence in the input file.

Gene Symbols of TRIAGE selected hits in the 
pathway that were assigned as high 
confidence in the input file.

Gene Symbols of TRIAGE selected hits in the 
pathway that were assigned as medium 
confidence in the input file.

A calculation representing the robustness of the 
pathways enrichments by the number of genes 
represented in the TRIAGE dataset and how many of 
them are high scoring. The EnrichScore is calculated as 
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Supplementary Figure 8: Pathway Enrichments table in TRIAGE.
Guide for the “Pathway Enrichments” table generated after an analysis session on 
triage.niaid.nih.gov is complete. 


