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Abstract1

Scientific datasets are growing rapidly in scale and complexity. Consequently, the task of understanding2 these data to answer scientific questions increasingly requires the use of compression algorithms that3 reduce dimensionality by combining correlated features and cluster similar observations to summarize4 large datasets. Here we introduce a method for both dimension reduction and clustering called VAE-SNE5 (variational autoencoder stochastic neighbor embedding). Our model combines elements from deep6 learning, probabilistic inference, and manifold learning to produce interpretable compressed7 representations while also readily scaling to tens-of-millions of observations. Unlike existing methods,8 VAE-SNE simultaneously compresses high-dimensional data and automatically learns a distribution of9 clusters within the data — without the need to manually select the number of clusters. This naturally10 creates a multi-scale representation, which makes it straightforward to generate coarse-grained11 descriptions for large subsets of related observations and select specific regions of interest for further12 analysis. VAE-SNE can also quickly and easily embed new samples, detect outliers, and can be optimized13 with small batches of data, which makes it possible to compress datasets that are otherwise too large to14 fit into memory. We evaluate VAE-SNE as a general purpose method for dimensionality reduction by15 applying it to multiple real-world datasets and by comparing its performance with existing methods for16 dimensionality reduction. We find that VAE-SNE produces high-quality compressed representations with17 results that are on par with existing nonlinear dimensionality reduction algorithms. As a practical18 example, we demonstrate how the cluster distribution learned by VAE-SNE can be used for unsupervised19 action recognition to detect and classify repeated motifs of stereotyped behavior in high-dimensional20 timeseries data. Finally, we also introduce variants of VAE-SNE for embedding data in polar (spherical)21 coordinates and for embedding image data from raw pixels. VAE-SNE is a robust, feature-rich, and22 scalable method with broad applicability to a range of datasets in the life sciences and beyond.23

1 Introduction24

Modern scientific research generates large, high-resolution datasets that are complex and25 high-dimensional, where a single observation from an experimental system can contain measurements26 describing hundreds, or thousands, of features. For example, neuroscientists measure electrical activity27 across thousands of individual neurons simultaneously (Jun et al., 2017; Stringer et al., 2019a,b) — even28 across the entire brain (Ahrens et al., 2012, 2013); cell biologists and bioinformaticians routinely29 sequence the transcriptome for thousands of genes across large populations of single cells (Samusik30 et al., 2016; La Manno et al., 2018; Becht et al., 2019; Linderman et al., 2019); behavioral scientists31 measure the high-dimensional body posture dynamics of animals and humans (Stephens et al., 2008,32 2011; Kain et al., 2013; Berman et al., 2014; Wiltschko et al., 2015; Klibaite et al., 2017; Costa et al., 2019;33
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Cande et al., 2018; Mathis et al., 2018; Chambers et al., 2019; Günel et al., 2019; Graving et al., 2019;34 Klibaite and Shaevitz, 2019; Nath et al., 2019; Pereira et al., 2019; Bala et al., 2020; Ebbesen and Froemke,35 2020; Karashchuk et al., 2020); and evolutionary ecologists measure complex morphological patterns36 across sizeable collections of animal specimens (Cuthill et al., 2017, 2019; Ezray et al., 2019; Wham et al.,37 2019; Zhang et al., 2019). While there are many benefits to measuring real-world systems accurately and38 completely for answering scientific questions, this added complexity poses problems for conventional39 data analysis methods — especially those commonly used in the life sciences, like linear models (Bolker40 et al., 2009) — that are designed for small, low-dimensional datasets and typically rely on simplified41 models with strong, often unrealistic, assumptions for making statistical inferences.42 To deal with the complexity of modern data, researchers in many fields have begun to use43 machine-learning methods known as dimensionality reduction and clustering to help interpret large,44 high-dimensional datasets. These algorithms distill correlated features down to a smaller set of45 components (dimensionality reduction) or group large subsets of observations into a smaller set of46 classes based on similarity (clustering). Together these methods offer scientists a way to compress47 data, where compression is typically performed with the goal of reducing the size and complexity of a48 dataset while making only minimal, or very general, a priori assumptions about the true distribution of the49 data. Because these algorithms derive their compressed representations directly from the structure of50 the data itself, without human supervision, they are typically known as unsupervised learning algorithms.51 Across many scientific disciplines, unsupervised algorithms are rapidly becoming a commonly-used52 tool for visualizing and interpreting high-dimensional data distributions as well as summarizing large53 datasets with coarse-grained descriptions and identifying specific subpopulations and regions of54 interest within the data for further downstream analysis. Researchers have applied these methods to55 demonstrate how the brain organizes behavior (Stephens et al., 2008, 2011; Brown et al., 2013; Wiltschko56 et al., 2015; Berman et al., 2016; Billings et al., 2017; Cande et al., 2018; Markowitz et al., 2018; Costa et al.,57 2019; Stringer et al., 2019a,b); describe how cells grow and develop over time (La Manno et al., 2018);58 document new and rare types of cells (Grün et al., 2015; Linderman et al., 2019); gain insights into cancer59 treatment (Tirosh et al., 2016); and reveal fundamental principles of evolution (Cuthill et al., 2019; Ezray60 et al., 2019; Wham et al., 2019). Therefore, as scientists begin to regularly rely on these algorithms for61 analyzing complex datasets, the task of ensuring the quality, robustness, and utility of the compressed62 representations they produce is an issue of considerable importance — as is the ability to scale these63 methods to increasingly large datasets.64 While existing methods for dimension reduction produce high-quality compressed representations65 (Becht et al., 2019; Kobak and Linderman, 2019), they typically lack features for identifying groups of66 similar data (i.e., learned clusters; but see Pezzotti et al. 2016; Robinson and Pierce-Hoffman 2020), and67 despite much progress to improve scalability of existing algorithms (Linderman et al., 2017; McInnes68 et al., 2018; Linderman et al., 2019), some of the most widely-used methods are still limited in their ability69 to scale beyond a few million observations without specialized, high-performance hardware — especially70 in the case of large, out-of-core datasets that cannot fit into memory. Recent applications of deep71 learning (Goodfellow et al., 2016), and deep generative models in particular (Appendix A.1; Kingma and72 Welling 2013; Rezende et al. 2014), have begun to address these issues (Ding et al., 2018; Szubert et al.,73 2019; Ding and Regev, 2019). Nevertheless, even with the low memory and computational cost of deep74 learning methods that can be trained with small batches of data on consumer-grade hardware, these75 new algorithms are still significantly slower to fit to data than more popular methods because they76 require costly nearest neighbor or pairwise distance calculations (Becht et al., 2019; Ding et al., 2018;77 Szubert et al., 2019). The majority of these methods also do not provide any built-in mechanism for78 detecting outliers, which could potentially bias any downstream results and cause statistical errors79 when testing hypotheses.80 There has also been a flurry of recent work on advanced methods for clustering data (e.g., Campello81 et al. 2013; Jiang et al. 2016; Xie et al. 2016; Guo et al. 2017; McInnes et al. 2017; Fogel et al. 2019; Yang82 et al. 2019; Robinson and Pierce-Hoffman 2020; and numerous others), including efficient methods that83 rely on deep learning and deep generative models. However, the vast majority of these methods impose84 strong assumptions about the shape of the clusters and require the user to manually select the number85
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of clusters fitted to the data — or, alternatively, involve complex computations that do not scale well to86 large datasets. Determining how many clusters to fit is typically a non-trivial, unintuitive, and87 computationally-intensive task for datasets where the number of clusters is not known a priori (Milligan88 and Cooper, 1985; Pham et al., 2005; Fang and Wang, 2012; Todd et al., 2017). Many recently proposed89 clustering algorithms are also only evaluated with relatively small “toy” datasets, such as the MNIST90 handwritten digit database (LeCun et al., 2010), where the data typically have very little noise, no outliers,91 and the number of clusters is often known a priori. This lack of rigorous real-world assessment casts92 doubt on the practical utility of these algorithms in cases where datasets have a large number of93 observations, are naturally noisy or contain outliers, and the number of clusters is unknown, such as94 those commonly used in the natural sciences.95 Here we aim to address many of the limitations outlined above and unify some of the key96 methodological concepts from previous work into a single modeling framework. To accomplish this, we97 introduce a deep generative model for both dimensionality reduction and clustering. We then compare98 our model with existing methods for dimensionality reduction, and importantly, to ensure that it has99 practical utility, we demonstrate the application of our method using empirical examples with real-world100 data from multiple domains. In comparison to existing dimension reduction methods, our proposed101 method produces low-dimensional data representations with similar, or better, quality while also offering102 several key improvements. Notably, our approach provides the ability to scale to datasets containing103 tens-of-millions of observations without specialized, high-performance hardware and automatically104 learns an interpretable cluster distribution from the data without any manual tuning or expensive105 computations to determine the number of clusters. Together these results demonstrate that our106 proposed method is a robust, feature-rich, and scalable tool for data analysis and is widely-applicable to107 a variety of tasks.108

2 Results109

We make three main contributions in this paper: (1) First, we introduce a deep generative model for both110 dimensionality reduction and clustering called variational autoencoder stochastic neighbor embedding111 (VAE-SNE; Fig. 1; Methods). VAE-SNE can produce a variety of different compressed representations and112 readily scales to out-of-core datasets with tens-of-millions of observations. Our model builds on113 numerous ideas from past work by synthesizing methods from a class of generative models known as114 variational autoencoders (VAEs; Kingma and Welling 2013), the popular dimensionality reduction115 algorithm (t-distributed) stochastic neighbor embedding (SNE/t-SNE;Hinton and Roweis 2003; van der116 Maaten and Hinton 2008) and its many extensions (van der Maaten, 2009; Wang and Wang, 2016; Chien117 and Hsu, 2017; Ding et al., 2018), as well as recent advances in variational inference (Kingma et al., 2014;118 Burda et al., 2015; Dilokthanakul et al., 2016; Cremer et al., 2017; Tomczak and Welling, 2017) and119 clustering methods (Todd et al., 2017). (2) Second, we apply VAE-SNE, and a variety of other popular120 dimensionality reduction methods, to compress real-world datasets from different domains (Fig. 2). We121 then quantitatively assess how each algorithm performs in preserving important aspects of the data —122 including information about local, global, and temporal structure. We also assess generalization to new,123 out-of-sample data and compare processing speeds for each algorithm. Additionally, we show how the124 likelihood score produced by VAE-SNE can be used to detect outliers when embedding out-of-sample125 data. (3) Third, we show how VAE-SNE can be used to automatically cluster large datasets into a small126 set of interpretable classes. As a practical example, we apply VAE-SNE to a dataset of 21.1 million127 observations describing the high-dimensional body posture dynamics of a commonly-used model128 organism — the fruit fly (Drosophila melanogaster) — to automatically discretize these data into motifs129 of stereotyped behavior for further analysis (Fig. 3; Berman et al. 2014; Pereira et al. 2019). These results130 illustrate how VAE-SNE can be used as a type of automated ethogram for describing the full behavioral131 repertoire of animals (reviewed by Anderson and Perona 2014; Berman 2018; Brown and De Bivort 2018;132 Datta et al. 2019), while also providing several advantages over existing methods for this task.133 Our approach (Fig. 1; Methods) builds on VAEs as a base model for performing dimensionality134
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Figure 1. Overview of the VAE-SNE model. a-f, Observed samples from a high-dimensional data distri-bution x ∼ p(x) (a) are probabilistically embedded (b) into a low-dimensional latent distribution pθ(z)(c) using an encoder deep neural network DNNφ : x → z to generate an approximate latent poste-rior distribution qφ(z|x). Samples from the latent distribution z ∼ qφ(z|x) or z ∼ pθ(z) (c) are thentransformed (f) using a generative decoder deep neural network DNNθ : z → x to probabilisticallyreconstruct the high-dimensional data distribution pθ(x|z). Given a set of observed high-dimensionaldata {x1,x2, . . . ,xN} the model parameters for the encoder and decoder {θ,φ} are optimized so that theapproximate posterior for the encoder matches the true posterior from the generative decoder as best aspossible, or qφ(z|x) ≈ pθ(z|x), which then creates a functional mapping between the high-dimensionaland low-dimensional distributions. To improve local structure preservation during optimization, pairwisedistances between vectors in the high-dimensional and low-dimensional space are optimized usingpairwise similarity kernels (e), a probability density function of distance, so that the local neighborhoodsaround each observation match as best as possible, or p(x|xi) ≈ qφ(z|zi). This preferentially weightsthe preservation of local neighborhoods over global relationships by assigning more probability mass tonearby neighbors during optimization. The prior for the latent distribution pθ(z) is also a learned Gaussianmixture distribution (c) that is jointly optimized with the encoder and decoder to fit the observed dataand can be used to cluster the latent distribution (d) into a small set of discrete classes pθ(y|z) — wherehighly-overlapping modes (mixture components) within the distribution are automatically merged intothe same class label using sparse watershed assignment (Methods; Todd et al. 2017)
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reduction (Appendix A.1), which, like other types of autoencoders (Hinton and Salakhutdinov, 2006),135 model high-dimensional data using two deep neural networks: one to encode data to a compressed136 latent representation, and another to decode the latent vectors and reconstruct the data. However, VAEs137 are distinct from other autoencoders in that the encoder is used to parameterize continuous138 distributions of latent vectors — from which latent vectors are then probabilistically sampled — rather139 than embedding each high-dimensional observation as a single point in the latent space. This type of140 model offers an attractive dimensionality reduction framework because the objective function (Appendix141 A.2) naturally imparts a trade-off between the complexity of the encoded description and the overall142 accuracy of the decoded reconstruction (Alemi et al., 2016). However, these models suffer from multiple143 long-standing issues including a phenomenon known as posterior collapse (Alemi et al., 2017; Dieng144 et al., 2019a) where the latent coordinate space becomes arbitrarily organized and no longer preserves145 any statistical features of the high-dimensional data distribution. There has been a string of recent work146 to address these issues including some relatively straightforward solutions (Higgins et al., 2016; Dieng147 et al., 2019a) that achieve varying levels of success, as well as new objective functions that involve148 regularizing the mutual information between the high-dimensional data and latent distribution (e.g.,149 Zhao et al. 2017; Rezaabad and Vishwanath 2019; reviewed by Poole et al. 2019).150 For VAE-SNE, we provide an effective solution to this problem with the addition of a stochastic151 neighbor regularizer (Appendix B; van der Maaten and Hinton 2008; van der Maaten 2009; Chien and Hsu152 2017; Ding et al. 2018) that optimizes pairwise similarity kernels between the high- and low-dimensional153 distributions to strengthen local neighborhood preservation and more explicitly retain a useful154 representation. We also draw on other theoretical and practical improvements from the literature to155 enhance the performance of VAE-SNE (Methods). For example, we use a Gaussian mixture prior for156 learning the latent distribution (Kingma et al., 2014; Dilokthanakul et al., 2016; Tomczak and Welling,157 2017). This choice of distribution allows for better local structure preservation and, when combined with158 sparse watershed assignment to merge overlapping mixture components (Fig. 1; Methods; Todd et al.159 2017), serves as a flexible method for clustering data — without the need to manually define the number160 of clusters or impose strong assumptions about cluster shape. We employ several other advances to161 further improve structure preservation. For instance, we apply a perplexity annealing technique (Kobak162 and Berens, 2019) to slowly decay the size of the local neighborhoods optimized by the model during163 training, which helps to preserve structure across multiple scales. Moreover, we extensively optimize the164 algorithms underlying our model by applying parallel computations on the CPU and GPU that165 dramatically improve processing speed compared to previous work (Ding et al., 2018).166 In addition to our three main contributions, we further extend VAE-SNE to demonstrate its flexibility167 as a framework for dimensionality reduction. To accomplish this, we introduce a von Mises-Fisher168 variant of VAE-SNE (Appendix C.1; Fig. S10; Video S8, Video S9) that embeds data in polar coordinates169 (rather than Euclidean coordinates) on a 3-D unit sphere, which is potentially a more natural170 representation for many high-dimensional datasets (Davidson et al., 2018) and solves the “crowding”171 problem common to some methods (van der Maaten and Hinton, 2008; Ding and Regev, 2019). Finally,172 we also apply a modified convolutional version of VAE-SNE (Appendix C.2; Figs. S11, S12) to visualize173 natural history images of animal specimen collections (Cuthill et al., 2019; Zhang et al., 2019) by directly174 embedding the raw pixel data. Our results for these two extensions are described in Appendix C.175

2.1 Comparisons with other dimension reduction algorithms176

Current methods for dimensionality reduction generally fall into two classes known as linear and177
nonlinear algorithms. Linear algorithms, such as principal components analysis (PCA), compress178 high-dimensional data by learning linearly weighted combinations (affine transformations) of the179 original feature set. Typically these algorithms are optimized to preserve the global structure of the data,180 where local neighborhood relationships are distorted in order to maintain the full coordinate system of181 the original features as best as possible. On the other hand, nonlinear algorithms (sometimes called182 manifold learning algorithms) such as t-SNE (van der Maaten and Hinton 2008) and uniform manifold183 approximation and projection (UMAP; McInnes et al. 2018) typically take the opposite approach of184
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prioritizing relative relationships between data points rather than the global coordinate system. This185 approach allows local neighborhoods to be preserved while potentially sacrificing information about the186 larger-scale relationships between data points in the global coordinate space — although, as we187 demonstrate here, the global distortion imposed by many of these algorithms is actually comparable to188 that of PCA.189 To validate VAE-SNE as a general-purpose method for dimensionality reduction, we quantitatively190 compare its performance with other dimension reduction algorithms — both linear and nonlinear — using191 two datasets from different domains (see Methods) describing animal body part dynamics (Berman192 et al., 2014, 2016; Pereira et al., 2019) and single-cell RNA-seq expression profiles for hippocampal193 neurons (La Manno et al., 2018). We benchmark multiple variants of VAE-SNE with different pairwise194 similarity kernels for preserving local neighborhood information (including kernel functions with learned195 parameters; Appendix B), and we compare these results with those from two high-performance variants196 of t-SNE (van der Maaten and Hinton, 2008) known as FIt-SNE (Linderman et al., 2017, 2019) and197 Barnes-Hut-SNE (van der Maaten, 2014), as well as UMAP (McInnes et al., 2018), and two other deep198 neural network-based dimension reduction methods: scvis (Ding et al., 2018), and ivis (Szubert et al.,199 2019). We also apply PCA in 2, 5, 10, and 100 dimensions for a linear baseline comparison. We fit each200 algorithm with a training set and also embed an out-of-sample test set to assess generalization to new201 data. For both the training and test sets, we then quantitatively assess each algorithm’s ability to202 preserve different types of information about the high-dimensional data when compressing the data to203 two dimensions, including local, global, fine-scale, and temporal information (Methods). We quantify204 local information preservation for each algorithm by measuring the preservation of both metric205 (distance- or radius-based) and topological (nearest neighbors-based) neighborhoods that are206 approximately 1% of the total embedding size; we measure global information preservation by207 calculating the correlation between pairwise distances in high- and low-dimensional space; we assess208 fine-scale information by measuring neighborhood preservation for multiple neighborhood sizes < 1%209 of the total embedding size; and we evaluate temporal information preservation by computing the210 correlation between high- and low-dimensional temporal derivatives in a timeseries dataset. Overall the211 qualitative properties of the embeddings produced by each algorithm are strikingly similar within212 datasets (Fig. 2), which likely indicates shared mathematical properties of how the latent distributions213 are modelled. However, we do find potentially important quantitative differences between these214 algorithms in terms of information preservation and processing speed. We summarize our overall215 assessments of each nonlinear dimension reduction algorithm in Tables S1, S2, S3.216

2.1.1 Local structure preservation217

We find that VAE-SNE compares closely to FIt-SNE (Linderman et al., 2017), Barnes-Hut-SNE (van der218 Maaten, 2014), and UMAP (McInnes et al., 2018) in preserving local structure for both the training set219 (Figs. S1a, S2a, S5a) and test set (Figs. S3a, S4a), while scvis (Ding et al., 2018) and ivis (Szubert et al.,220 2019) perform slightly worse. Our results show that VAE-SNE with a t-SNE similarity kernel (van der221 Maaten and Hinton, 2008) performs the best for preserving local structure, but VAE-SNE with a Gaussian222 SNE kernel (Hinton and Roweis, 2003) also performs well — similarly to scvis (Ding et al., 2018) and ivis223 (Szubert et al., 2019). We also find that learning the similarity kernel parameters (for both Gaussian and224 Student’s t kernels) as a function of each data point does not improve performance for our local225 preservation metrics. The top performing algorithms for local structure preservation (VAE-SNE, t-SNE,226 and UMAP) are closely comparable to 5-dimensional PCA for both metrics we used to assess local227 neighborhood preservation.228

2.1.2 Global structure preservation229

We find that VAE-SNE also does well in preserving global structure for both the training set (Figs. S1a,230 S2b, S5a) and test set (Figs. S3a, S4b). VAE-SNE with a Gaussian SNE kernel performs best for this231 metric, but VAE-SNE with a t-SNE kernel also performs nearly as well. Notably all the232

6/53

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2020. ; https://doi.org/10.1101/2020.07.17.207993doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.17.207993
http://creativecommons.org/licenses/by/4.0/


Figure 2. Embeddings for body posture dynamics and single-cell RNA-seq data. a, 2-D embeddings ofbody posture dynamics data from Berman et al. (2014, 2016); Pereira et al. (2019) for each algorithm wetested. The color of each point indicates the logarithm of the total amplitude (overall movement) of bodyparts for each observation. b, 2-D embeddings of single-cell RNA-seq data of developing hippocampalneurons from La Manno et al. (2018) for each algorithm. The color of each point indicates the cell typefor that observation as described by La Manno et al. (2018).
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neural-network-based methods (VAE-SNE, scvis Ding et al. 2018, ivis Szubert et al. 2019) outperform233 both t-SNE and UMAP (McInnes et al., 2018) in preserving global structure for both datasets we tested.234 This is perhaps not surprising given that recent work has shown neural network models tend to learn the235 same axes as PCA (Rolinek et al., 2019). Additionally, these results show that learning the similarity236 kernel parameters as a function of each data point does improve global structure preservation for237 VAE-SNE with a t-SNE kernel — likely because it is optimized to be more similar to the Gaussian kernel238 used to calculate high-dimensional similarities (Appendix B). The top performing algorithms for this239 metric are comparable to 2-dimensional PCA, which demonstrates that nonlinear algorithms are capable240 of preserving the same global information as PCA while also better preserving local structure. On one241 hand, The scvis (Ding et al., 2018) algorithm in particular excels at preserving global structure for the242 single-cell RNA-seq dataset we tested (Fig. S5a). On the other hand, ivis (Szubert et al., 2019) performs243 much more poorly than the other neural network algorithms for this dataset, and FIt-SNE (Linderman244 et al., 2017, 2019) and Barnes-Hut-SNE (van der Maaten, 2014) perform even worse. We also show that245 UMAP (McInnes et al., 2018) with PCA initialization better preserves global structure than the default246 Laplacian Eigenmap initialization.247

2.1.3 Fine-scale structure preservation248

In addition to local and global structure preservation, we evaluate the ability of each algorithm to249 preserve very fine-scale neighborhood information (Figs. S1b, S3b, S5b). We find that both FIt-SNE250 (Linderman et al., 2017) and Barnes-Hut-SNE (van der Maaten, 2014) excel at preserving this fine-scale251 information for the posture dynamics dataset (Figs. S1b, S3b) while every other nonlinear algorithm252 performs relatively poorly for both the training and test set. For the single-cell RNA-seq dataset, this253 distinction is not nearly as large and the algorithms all perform more similarly (Fig. S5b), which indicates254 performance varies depending on the dataset. Performance for the ivis algorithm (Szubert et al., 2019)255 is especially poor for this metric on the single cell RNA-seq dataset. However, neighborhood256 membership for neighborhoods between 1% and 10% of the total embedding size are all similarly257 well-preserved for each algorithm.258

2.1.4 Temporal structure preservation259

Because one of the datasets we use for benchmarking is a behavioral timeseries, for these data we also260 assess the temporal structure preservation of each algorithm (Figs. S3a, S4c) on the out-of-sample test261 set (the training set is randomly sampled across multiple timeseries, so temporal information is not262 preserved). We find that VAE-SNE (particularly the SNE kernel variant), FIt-SNE (Linderman et al., 2017),263 Barnes-Hut-SNE (van der Maaten, 2014), scvis (Ding et al., 2018), and ivis (Szubert et al., 2019) perform at264 the same level as 5-dimensional PCA in preserving temporal structure, while UMAP (McInnes et al., 2018)265 performs relatively poorly in comparison to the other algorithms — even worse than 2-dimensional PCA.266

2.1.5 Speed comparisons267

In addition to assessing information preservation, we also compare the speed the of each algorithm268 both when fitting the algorithm to the training set (Figs. S1c, S5c) and when embedding an out-of-sample269 test set (Figs. S3c, S5c). We find that training time increases approximately linearly with the size of the270 dataset for each algorithm. UMAP (McInnes et al., 2018) has the fastest training time (approximately as271 fast as PCA), followed by FIt-SNE (Linderman et al., 2017) and Barnes-Hut-SNE (van der Maaten, 2014),272 and then VAE-SNE. While VAE-SNE is slower for fitting the training set than both UMAP (McInnes et al.,273 2018) and t-SNE, it is much faster than the other two neural network methods scvis (Ding et al., 2018)274 and ivis (Szubert et al., 2019). We also demonstrate that VAE-SNE, and the other neural network275 methods, can quickly embed out-of-sample test data (Figs. S3c, S5c). The time needed for embedding276 new data is much higher for both t-SNE and UMAP, and while the elapsed time for embedding the test277 set scales linearly with the number of samples for all algorithms, we also find that it increases with the278
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size of the training set for both UMAP (McInnes et al., 2018) and Barnes-Hut-SNE (van der Maaten, 2014)279 (Fig. S3c). This is almost certainly because adding new data for these algorithms requires calculating280 approximate nearest neighbors between the out-of-sample data and the training set, which consequently281 requires more computation time for larger training sets. Unexpectedly, FIt-SNE (Linderman et al., 2017)282 does not exhibit this behavior despite using similar nearest neighbor calculations to Barnes-Hut-SNE283 (van der Maaten, 2014). On the other hand, VAE-SNE and other deep learning algorithms do not suffer284 from this limitation. Finally, while we do not comprehensively assess memory complexity of different285 algorithms in this paper, we stopped our speed comparisons at data subsets with 232,000 (× 1500286 dimensions) observations because UMAP began to cause out-of-memory errors for larger subsets —287 while all of the other algorithms we tested could still successfully run under the same conditions. This288 helps to illustrate the key advantage of deep learning-based methods, which naturally maintain very low289 memory complexity by applying optimization using small batches of data.290

2.2 Using the likelihood to assess out-of-sample data291

Because VAE-SNE also calculates a likelihood score for reconstructing the original high-dimensional292 data, we can use this to assess performance on out-of-sample data, which is an idea originally proposed293 by Ding et al. (2018). To test this, we calculate the likelihood score for real data from the posture294 dynamics dataset (Berman et al., 2014, 2016; Pereira et al., 2019) and randomly-permuted data295 (randomized across feature columns) from the same dataset. We find that the likelihood score is reliably296 lower for the randomized data, and the two likelihood distributions are well separated (Fig. S6a), which297 shows this metric could potentially be used to detect outliers. We also compare the entropy of the298 approximate posterior distribution for each embedded sample as another potential metric for detecting299 outliers. While we find that the entropy is much higher for the randomized data, the distribution is highly300 overlapping with the entropy for the real data (Fig. S6b), which indicates the entropy may not be as301 useful for evaluating the embedding quality.302

2.3 Clustering body posture dynamics to reveal stereotyped behavioral303
organization304

To demonstrate its capabilities as a clustering algorithm, we use VAE-SNE to automatically discretize a305 dynamical time series dataset describing the high-dimensional body posture and behavioral repertoire of306 59 freely-behaving fruit flies (D. melanogaster; Berman et al. 2014, 2016; Pereira et al. 2019) — a307 commonly-used model organism for neuroscience, pharmaceutical, and genetics research. To308 accomplish this, we use the annotated training data from (Pereira et al., 2019) to train a pose estimation309 model using deep learning-based software (DeepPoseKit; Graving et al. 2019). We then use this trained310 model to automatically track the spatial locations of 10 body parts (head, legs, wings, abdomen) directly311 from video timeseries data and generate time-frequency spectrograms describing body-part dynamics312 for each observation in the timeseries (Berman et al., 2014), which naturally incorporates multi-scale313 temporal information into each data vector. We then apply VAE-SNE to compress the data to a314 30-dimensional latent embedding and simultaneously discretize the dynamical posture timeseries into a315 set of behavioral clusters. We find that, after optimizing the 30-D VAE-SNE model for 5 repeated trials316 using the full 21.1 million observation dataset and applying sparse watershed assignment to generate317 cluster labels (Methods; Fig. 1d; Todd et al. 2017), VAE-SNE consistently learns a total of 26 low-level318 behavioral clusters describing distinct, stereotyped body part movements. We also achieve similar319 (nearly identical) results when clustering in 10-D and 50-D space and when varying the number of320 components in the Gaussian mixture prior used for clustering — provided that the number of321 components is large enough (e.g., K ≥ 100).322 To provide a broad overview of the behavioral structure discovered by VAE-SNE, we manually group323 these low-level clusters into 6 high-level clusters (Figs. 3, S7; Video S1) by examining video clips324 sampled from each cluster (Video S2–Video S7) and by calculating and visualizing the mean325 spectrograms for each low-level cluster to quantify the average distribution of body part movements326
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Figure 3. Clustering body posture dynamics. a, The posterior probability density for the full 21.1 millionobservation body posture dynamics dataset from Berman et al. (2014, 2016); Pereira et al. (2019) em-bedded using a 2-dimensional VAE-SNE model. b, The manually-grouped high-level cluster assignmentsproduced using the learned prior from a 30-dimensional VAE-SNE embedding visualized in the 2-D em-bedding, where contours are the largest 90% probability density contour for each cluster distribution.
c, Mean and 95% bootstrap intervals of the marginal (stationary) probability and mean bout length foreach high-level cluster (n = 59 per cluster). d-i, Visualizations describing the high-level locomotion (d,f,h;Video S2; Fig. S8) and posterior grooming (e,g,i; Video S4; Fig. S9) clusters. d-e, The 2-D posteriorprobability density for each cluster (left) and the mean spectrogram for each cluster (right). f-i, Theprincipal component scores for the two largest components of the spectrograms assigned to eachcluster visualized within the 2-D embedding (left), and the eigenvector coefficients describing the linearcontribution of each spectrogram feature (right) for the principal component score.
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across frequencies for each behavioral class (Figs. S8d-f, S9d-i). These high-level clusters include:327 locomotion (Video S2), anterior grooming (Video S3), posterior grooming (Video S4), wing movements328 (Video S5), small/slow leg movements (Video S6), and idle behavior (Video S7). Many of the low-level329 clusters (10 clusters in total) describe distinct slow/small leg movements, while there are 3 low-level330 clusters for locomotion (Fig. S8), 3 for anterior grooming, 6 for posterior grooming (Fig. S9), 2 for wing331 movements, and 2 for idle behavior. Videos and posture timeseries data sampled from each cluster also332 clearly demonstrate the stereotypy of behaviors within these behavioral classes, which matches well333 with previous work describing these dynamics (Berman et al., 2014, 2016; Klibaite et al., 2017; Klibaite334 and Shaevitz, 2019; Pereira et al., 2019). Additionally, the principal components of the spectrograms335 from each high-level cluster (Fig. 3f-i; Fig. S7d-i) reveal continuous variation related to asymmetrical336 body movements and differences in peak movement frequency. We calculate basic statistics describing337 cluster usage across individuals (Figs. 3c, S8c, S9c) including the marginal (stationary) probability of338 behavioral classes across individuals and the mean bout length, or the average amount of time a339 behavior is performed when an individual transitions into that cluster. In particular, the low probability340 and short bout length for wing movements and short bout length for slow/small leg movements (Fig. 3c)341 indicate these clusters may be transitional or idiosyncratic behaviors (Todd et al., 2017). For the low-level342 locomotion clusters (Fig. S8) we also calculate the forward component of the leg movement velocity (in343 body lengths per second, or BL · s−1) relative to the egocentric orientation of the animal. We then use344 the forward velocity to classify each leg in the timeseries as “swing” (forward velocity > 0 BL · s−1) or345 “stance” (forward velocity ≤ 0 BL · s−1) and find that our low-level locomotion clusters show signatures346 of distinct locomotory gaits (i.e., tetrapod and tripod gaits; Mendes et al. 2013; Pereira et al. 2019) with347 different numbers of legs being used for walking, on average, within each cluster. Together these results348 demonstrate that VAE-SNE is able to automatically decompose the dynamics of known complex349 behaviors (Video S1).350 Due to the many philosophical complexities of objectively evaluating unsupervised cluster351 representations (reviewed by Jain et al. 1999; Kleinberg 2003; Todd et al. 2017), we forgo any further352 quantitative assessment of our clustering results and instead leave this for future work. For example, it353 is unclear how to best select the number of clusters for many different algorithms; how to properly354 compare algorithms that naturally produce different numbers of clusters and cluster shapes; and what355 metric(s) should be used to meaningfully evaluate a clustering description as generally “good” or356 “useful” other than manual, qualitative validation of the results, which we already provide here — though357 several quantitative descriptors with varying levels of desirability have been recently proposed for358 behavioral data (Todd et al., 2017). Comparing unsupervised cluster labels with a priori-defined labels —359 as is common practice (e.g., Jiang et al. 2016; Xie et al. 2016; Guo et al. 2017; Yang et al. 2019; Luxem360 et al. 2020) — is also problematic, as human-supervised descriptions may not accurately capture the361 underlying structure of the data distribution, and this is especially true for datasets where the goal is to362 potentially discover subtle differences that are undetectable by humans (e.g., Wiltschko et al. 2015).363 Despite the limitations imposed by these complexities, our results still illustrate multiple useful features364 of VAE-SNE as a general-purpose method.365 Overall, we demonstrate how VAE-SNE can be used as a practical, scalable, and flexible tool for366 clustering real-world high-dimensional data. In this case, we transform posture data into interpretable367 behavioral labels that are comparable to those from previous methods (Berman et al., 2014, 2016; Todd368 et al., 2017; Klibaite et al., 2017; Cande et al., 2018; Klibaite and Shaevitz, 2019; Pereira et al., 2019).369 However, in contrast to many of these existing methods, VAE-SNE performs dimension reduction and370 clustering simultaneously, and unlike most previously-described algorithms for clustering data (e.g.,371 Jiang et al. 2016; Xie et al. 2016; Guo et al. 2017; Yang et al. 2019), our method learns a small set of372 decipherable classes without the need to carefully tune the number of clusters fitted to the data, which373 can often be a non-trivial, unintuitive, and computationally-intensive process (Milligan and Cooper, 1985;374 Pham et al., 2005; Fang and Wang, 2012; Todd et al., 2017). Instead, any arbitrarily large number will give375 similar results due to the sparse watershed assignment procedure we use to combine overlapping376 clusters (Methods; Fig. 1d; Todd et al. 2017). In contrast to methods that impose strong assumptions377 about cluster shape, our clustering method has relaxed assumptions and allows for arbitrarily complex378
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(e.g., non-convex) cluster distributions based on the local structure of the data. Additionally, in379 comparison to prior methods for unsupervised behavioral analysis, VAE-SNE has the advantage of being380 able to use more than two dimensions for clustering data, which has been shown to provide381 higher-quality behavioral labels with many potentially-desirable properties (Todd et al., 2017). Finally, our382 results further show that there is no need to carefully select a subset of data to use for training (e.g., the383 importance sampling technique described by Berman et al. 2014), which can also be a time-consuming384 process. Instead, VAE-SNE can be readily applied to large datasets that cannot fit into memory while still385 successfully detecting relatively short-lived and infrequent types of behavior, such as wing movements386 (Fig. 3b-c; Video S5).387

3 Discussion388

Here we introduce VAE-SNE, a deep generative model for simultaneously reducing dimensionality and389 clustering data. We compare VAE-SNE to existing methods for dimensionality reduction and390 demonstrate its utility and versatility using real-world examples. Our results establish that VAE-SNE is391 able to generate robust and interpretable compressed representations for data from different domains392 and is comparable in performance to other nonlinear methods for dimensionality reduction. In contrast393 to these existing methods, VAE-SNE has the advantage of being able to automatically cluster similar394 observations into a small set of classes, which can then be used to summarize large datasets with a395 coarse-grained description or select specific subpopulations of data for more detailed analysis. Our396 approach can also readily scale to very large datasets by leveraging techniques from deep learning —397 including, and especially, out-of-core data that cannot fit into memory. However, despite these strengths,398 VAE-SNE still has important limitations depending on the goals of the user, and there are many ways in399 which the model could be improved or extended in subsequent iterations. There are also other domains400 that VAE-SNE could be applied to in the future.401 VAE-SNE preserves local relationships while also minimizing global structure distortion. Additionally,402 while VAE-SNE is not explicitly an autoregressive model, it still preserves a good deal of403 high-dimensional timeseries information. However, our results also show that VAE-SNE, and most of the404 other dimension reduction methods we tested, does not accurately preserve fine-scale structure405 (neighborhoods <1% of the total embedding size). For many applications, preserving these details may406 be unimportant, but this structure has been shown to be useful for detecting infrequent types of data,407 such as rare cell types (Linderman et al., 2019). Therefore, our results suggest that if researchers wish to408 preserve this type of information they should use FIt-SNE (Linderman et al., 2017, 2019) or409 Barnes-Hut-SNE (van der Maaten, 2014) over other algorithms for dimension reduction. We also find that,410 when initialized with PCA over the default initialization, UMAP (McInnes et al., 2018) preserves global411 structure slightly better without noticeably affecting local structure preservation, so PCA may be a more412 advantageous choice for initializing UMAP embeddings.413 VAE-SNE optimizes faster than existing deep learning methods for dimensionality reduction, but414 FIt-SNE (Linderman et al., 2017, 2019), Barnes-Hut-SNE (van der Maaten, 2014), and UMAP (McInnes415 et al., 2018) are still faster. However, the training time for deep-neural-network methods like VAE-SNE416 and ivis (Szubert et al., 2019) can be variable due to the use of early stopping criteria that automatically417 end training when no improvement in the objective function is detected. These early stopping criteria418 could be easily adjusted to further shorten (or lengthen) training time. While we did not assess419 performance during the optimization process, much of the training time for VAE-SNE is spent on minor420 improvements to the objective function, which indicates adequate results can also be achieved with less421 training time. Additionally, FIt-SNE (Linderman et al., 2017, 2019), Barnes-Hut-SNE (van der Maaten,422 2014), and UMAP (McInnes et al., 2018), are much slower for embedding new data because they423 calculate nearest neighbors for the new data and further optimize the embedding, which VAE-SNE does424 not require due to its learned encoder function. For smaller datasets that can fit in memory FIt-SNE425 (Linderman et al., 2017, 2019), Barnes-Hut-SNE (van der Maaten, 2014), and UMAP (McInnes et al., 2018)426 are still attractive options for dimensionality reduction, but for datasets that do no fit into memory,427
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VAE-SNE provides some distinct advantages.428 VAE-SNE has the ability to detect outliers and assess the embedding quality for out-of-sample data.429 This provides a straightforward mechanism for identifying new data to include in the training set, which430 can further improve performance. Most of the other algorithms we tested, or at least the specific431 software implementations we tested, provide no mechanism for quantitatively assessing embedding432 quality for each observation — with outliers being simply embedded under the assumption that the data433 are well supported by the training distribution. This can cause problems for any downstream analysis,434 especially when using statistical tests to answer scientific questions. Further improvements for outlier435 detection might include the use of Bayesian inference (Hafner et al., 2018) or other methods for436 estimating predictive uncertainty (reviewed by Kendall and Gal 2017).437 We demonstrate that results produced by VAE-SNE can serve as a highly-interpretable coarse-grained438 description of tens-of-millions of observations — with several advantages over existing methods for439 clustering data. Applying VAE-SNE to future research in the behavioral sciences could help to reveal the440 genetic, environmental, and neural underpinnings of animal behavior (Berman, 2018; Brown and441 De Bivort, 2018; Datta et al., 2019) — especially when combined with recent advances in behavioral442 measurement (Mathis et al., 2018; Pereira et al., 2019; Graving et al., 2019; Günel et al., 2019) as well as443 genetic (Ran et al., 2013; Doudna and Charpentier, 2014), sensory (Stowers et al., 2017), and neural (Bath444 et al., 2014; Cande et al., 2018) manipulations. The clustering capabilities of VAE-SNE could also be445 applied to other types of data, such as single-cell RNA-seq data (Ding et al., 2018; La Manno et al., 2018)446 and natural history images (Cuthill et al., 2019; Zhang et al., 2019), but we leave this as future work for447 other researchers and domain experts to explore and validate. VAE-SNE might also be further improved448 by the use of more complex hierarchical clustering distributions (Tomczak and Welling, 2017; Roberts449 et al., 2018; Razavi et al., 2019), where additional scales with finer- or coarser-grained descriptions can450 be selected from the model for post-hoc analysis. Recent work has also shown that iteratively adjusting451 the parameters of the t-SNE similarity kernel can be used to generate a hierarchy of clusters in the latent452 embedding (Robinson and Pierce-Hoffman, 2020), which could be potentially applied to VAE-SNE as well.453 To demonstrate the flexibility of VAE-SNE as a deep learning model, we introduce a variant for454 embedding data in polar coordinates on a unit sphere (Appendix C.1). We find that VAE-SNE successfully455 preserves structure in a spherical embedding as well (Fig. S10; Video S8; Video S9), which may be a456 more natural way to model some high-dimensional data sets (Davidson et al., 2018) since it avoids the457 “crowding” problem common to other embedding methods (van der Maaten and Hinton, 2008; Ding and458 Regev, 2019). While we focus on the Euclidean and cosine distances for calculating local neighborhoods,459 any differentiable distance function could potentially be substituted to create different embedding460 geometries, and, while we focus on kernels from the location-scale family of probability distributions (i.e.461 Gaussian, Student’s t), other log probability functions could potentially be used as well.462 We also introduce a convolutional version of VAE-SNE for embedding images directly from raw pixel463 data (Appendix C.2). After applying this model to natural history images, we find that it groups464 perceptually-similar images based on complex sets of image features that correspond with taxonomic465 groupings (Figs. S11, S12). These results indicate that convolutional VAE-SNE may be useful for tasks466 such as relating distributions of complex animal coloration patterns to ecological, evolutionary, and467 behavioral function (Cuthill et al., 2017, 2019; Ezray et al., 2019; Wham et al., 2019). Future applications468 might include applying VAE-SNE to audio data (e.g., Oord et al. 2016; Sainburg et al. 2019).469 There are multitude of ways in which VAE-SNE could be further improved or extended. Naturally,470 future work could apply more recent advances in variational and probabilistic inference like normalizing471 flows (Rezende and Mohamed, 2015; Kingma et al., 2016; Papamakarios et al., 2017), which allow data to472 be modeled with a more direct invertible mapping from the latent posterior to the data distribution, while473 also employing flexible, arbitrarily-complex distributions. The latent distribution used for VAE-SNE could474 also be modeled using many other types of representations such as quantized (Van Den Oord et al.,475 2017) or categorical (Jang et al., 2016; Maddison et al., 2016) distributions. Recent progress in476 generative adversarial networks (GANs; Goodfellow et al. 2014), may also provide further enhancements477 for modeling complex feature dependencies within the data distribution (Larsen et al., 2016; Srivastava478 et al., 2017; Dieng et al., 2019b). Timeseries data could be explicitly modeled using autoregressive deep479

13/53

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2020. ; https://doi.org/10.1101/2020.07.17.207993doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.17.207993
http://creativecommons.org/licenses/by/4.0/


neural networks (e.g., Oord et al. 2016) for the encoder and decoder similar to Wiltschko et al. (2015);480 Johnson et al. (2016b); Sussillo et al. (2016); Markowitz et al. (2018); Pandarinath et al. (2018); Luxem481 et al. (2020), and the latent distribution can be optimized to accurately predict future observations,482 which has been shown to be a useful framework for modeling behavior (Berman et al., 2016; Luxem et al.,483 2020). Additionally, computational efficiency might be further improved by applying recent advances in484 metric (Sohn, 2016) and contrastive learning (Chen et al., 2020), which may reduce or eliminate the need485 to perform expensive pairwise computations. Recent work on density-preserving versions of t-SNE and486 UMAP (Narayan et al., 2020) could also be incorporated to further improve the embedding quality.487 Explicitly modeling hierarchical structure caused by variance across individual trials and subjects488 (Pandarinath et al., 2018) and batch effects due to variance in sampling procedures (Ding and Regev,489 2019) is also important for improving VAE-SNE in the future. These effects could be accounted for with490 more complex, hierarchically-parameterized models (Sussillo et al., 2016; Pandarinath et al., 2018),491 hierarchical latent distributions (Tomczak and Welling, 2017; Roberts et al., 2018; Razavi et al., 2019), and492 new similarity kernels — such as the conditional t-SNE kernel recently proposed by Kang et al. (2019).493 The general use of conditional (e.g., Van den Oord et al. 2016) or supervised (e.g., Alemi et al. 2016)494 labels when optimizing the model could also help to integrate additional prior information about the data495 distribution into the latent distribution, the latter of which is already a feature of both UMAP (McInnes496 et al., 2018) and ivis (Szubert et al., 2019).497 In summary, VAE-SNE is a general-purpose deep learning model for both dimension reduction and498 clustering that can be applied to many different types of data and readily scales to large datasets.499 Together our results illustrate that it is a robust, feature-rich method with multiple distinct advantages500 that make it an effective tool for analyzing real-world datasets across disciplines.501

4 Methods502

4.1 The VAE-SNE model503

VAE-SNE is a variational autoencoder (VAE; Appendix A.1) with a learned Gaussian mixture prior (Kingma504 et al., 2014; Dilokthanakul et al., 2016; Tomczak and Welling, 2017) that is optimized using the ELBO505 objective function (derived in Appendix A.2) with an additional local neighborhood regularizer (Hinton506 and Roweis, 2003; van der Maaten and Hinton, 2008; van der Maaten, 2009; Ding et al., 2018). The507 likelihood and divergence terms from the ELBO objective can be broadly considered as an information508 theoretic trade-off between reconstruction accuracy (distortion) and compression (rate) respectively509 (Alemi et al., 2016; Chalk et al., 2016; Alemi et al., 2017), which makes VAEs an attractive solution for510 dimensionality reduction. However, there are implicit problems with the ELBO objective (reviewed by511 Alemi et al. 2017; Dieng et al. 2019a) that may prevent the model from learning a useful latent512 representation — e.g., a powerful, overparameterized decoder can simply ignore the compressed latent513 codes but still produce high-quality reconstructions. These issues render VAEs problematic as a general514 method for reducing dimensionality, as the primary purpose of dimensionality reduction is to create515 compressed representations that preserve important statistical features of the original data distribution.516

4.1.1 Regularizing the ELBO to improve structure preservation517

We address the problems outlined above by optimizing VAE-SNE with a regularized version of the ELBO.518 This modification introduces a pairwise similarity regularizer derived from the (t-distributed) stochastic519 neighbor embedding (SNE/t-SNE) objective (Hinton and Roweis, 2003; van der Maaten and Hinton, 2008;520 van der Maaten, 2009). This idea of using the SNE objective for regularizing the latent space of VAEs521 was first proposed by Chien and Hsu (2017), which they called variational manifold probabilistic linear522 discriminant analysis (vm-PLDA), and later independently proposed by Ding et al. (2018) with their scvis523 model. However, the idea of applying the SNE objective to autoencoders, and deep neural networks in524 general, was introduced much earlier by van der Maaten (2009) with parametric t-SNE (pt-SNE), who525
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proposed to use this objective in conjunction with an autoencoder to jointly learn a latent embedding.526 The pt-SNE model (van der Maaten, 2009) was also recently combined with advances from the527 Barnes-Hut-SNE algorithm (van der Maaten, 2014) under the name net-SNE (Cho et al., 2018).528 Additionally, Moody (2017) developed one of the first publicly-available pieces of software to combine529 the SNE objective with variational inference (variational t-SNE, or vt-SNE; and topic-SNE) but did not use530 a deep neural network to amortize inference across a set of shared parameters. Im et al. (2018) also531 proposed a variational bound on the t-SNE objective to improve optimization.532 Here we apply the SNE objective to a VAE in a similar fashion to Ding et al. (2018). That is, we use the533 SNE objective as a method of better preserving structure in the latent embedding produced by our VAE,534 which improves the usefulness of the compressed representation (approximate posterior) produced by535 the ELBO. When combined into a single objective, we call this the stochastic neighbor evidence lower536 bound, or SNELBO. Generalizing from Ding et al. (2018), given a high-dimensional data matrix537
X = {x1, . . . ,xN} and model parameters {θ,φ}, the SNELBO objective is written as:538

arg min
θ,φ

−SNELBO(X,θ,φ) = arg min
θ,φ

− 1

N

∑
i

ELBOi(xi,θ,φ)− α SNEi(X,φ) (1a)
ELBOi(xi,θ,φ) = γ Ezi∼qφ(z|xi)[log pθ(xi|zi)︸ ︷︷ ︸

distortion

]− βKL[qφ(z|xi)‖pθ(z)]︸ ︷︷ ︸
rate

(1b)

SNEi(X,φ) = Ezi∼qφ(z|xi)
zj∼qφ(z|xj)

∑
j

SNEj|i(xi,xj ,φ)

 (1c)

= Ezi∼qφ(z|xi)
zj∼qφ(z|xj)

∑
j

KL[p(xj |xi)‖qφ(zj |zi)]


︸ ︷︷ ︸

pairwise similarity

(1d)

for i, j = 1, . . . , N and i 6= j, where N is the number of observations in the N ×M matrix X ∈ RM . Thus539 vectors xi and xj are the ith and jth row in X, while zi and zj are Monte Carlo samples from the540 approximate low-dimensional posterior zi ∼ qφ(z|xi) and zj ∼ qφ(z|xj) respectively (Eq. 12c) —541 sampled using the reparameterization trick from Kingma and Welling (2013), or zi = µ+ σ � ε, where ε542 is an auxillary noise variable ε ∼ N (0, I) and � is the element-wise product (see Appendix A.3 for further543 discussion).544 The objective function (Eq. 1a) consists of three terms, which can be interpreted as follows: (1) the545 expected log likelihood of the decoder distribution (Eq. 1b; distortion) minimizes distortion between the546 observed ground truth xi and reconstruction, or maximizes accuracy, and preserves global structure in547 the embedding; (2) the divergence between the approximate posterior and the prior distribution (Eq. 1b;548 rate) constrains the global coordinate space of the embedding and restricts the rate of information549 (relative to the prior) that can be transmitted through the compressed space; and (3) the expected550 divergence between pairwise similarities (Eq. 1d) in high-dimensional space p(xj |xi) and those in551 low-dimensional space qφ(zj |zi) acts as a regularizer to preserve local neighbor relationships between552 data points. Further details of this stochastic neighbor regularizer are derived in Appendix B.553 The Lagrange multipliers γ, β, and α are used to weight the distortion, rate, and pairwise similarity554 terms respectively, which we include as hyperparameters for the model. These multipliers can be555 adjusted to produce different forms of the objective for optimizing the model — e.g., increasing or556 decreasing the rate with the β multiplier (Higgins et al., 2017) — but in practice we set γ = β = 1, while α557 is set (following Ding et al. 2018) to the dimensionality of the data α = M to match the distortion term,558 which scales with the size of the input, or log pθ(x|z) =
∑M

m=1 log pθ(xm|z).559
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4.1.2 Learning a Gaussian mixture prior560

For optimizing the VAE-SNE objective (Eq. 1a), we use a learned, or empirical, Gaussian mixture prior for561
pθ(z) which allows for an arbitrarily complex distribution (similar to Kingma et al. 2014; Dilokthanakul562 et al. 2016; Tomczak and Welling 2017). Using a more complex distribution allows for a tighter bound on563 objective, and, after optimization, approaches the true posterior distribution as the complexity of the564 distribution is increased (Kingma et al., 2014; Dilokthanakul et al., 2016; Tomczak and Welling, 2017;565 Cremer et al., 2017). The Gaussian mixture distribution is written as the weighted mixture of K Gaussian566 components:567

pθ(z) =
K∑

k=1

ωkN (z|µk, I). (2)
The mean µk ∈M and mixture weight ωk ∈ ω of each component are learned as model parameters568
{M,ω} ∈ θ subject to a softmax normalization constraint∑K

k=1 ωk = 1. We also regularize the prior569 distribution by minimizing the divergence between the mixture distribution used to weight each570 component and a maximum-entropy mixture distribution, or:571

arg min
ω

K∑
k=1

ωk logωk + ωk logK. (3)
This prevents the prior from degenerating to a small number of modes (a problem described in more572 detail by Kingma et al. 2014; Dilokthanakul et al. 2016) by increasing the entropy of the mixture573 distribution. A higher entropy mixture distribution forces to model to utilize more of the components574 within the distribution, which increases the number of clusters and, consequently, the level of detail of575 the final clustering description (Still and Bialek, 2004). An analogous maximum entropy regularizer was576 also recently applied to solve the long-standing mode collapse problem common to generative577 adversarial networks (GANs; Dieng et al. 2019b).578 The covariance for each component distribution could be learned as free parameters, but we find579 that using a simpler identity covariance matrix I allows for a sufficiently expressive prior distribution580 without adding additional complexity — and is less prone to cluster degeneracy during optimization.581 Using a highly-flexible (i.e., K � 1) learned distribution as the prior for the latent space allows for better582 structure preservation, as non-convex structures are not distorted by the use of an overly simple prior.583 Also note that the special case of K = 1 mixture component is equivalent to the standard VAE prior584 (Kingma and Welling, 2013), or pθ(z) = N (z|0, I), which is the prior used by Ding et al. (2018).585

Calculating the rate loss term The parameters for the Gaussian mixture prior {M,ω} ∈ θ are then586 learned from the data via the rate term in the VAE-SNE objective (Eq. 1b). For the special case of K = 1587 we compute the Kullback-Leibler divergence analytically; however, because there is no analytical solution588 for a Gaussian mixture distribution with K > 1, we instead approximate this term numerically using589 Monte Carlo integration. In this case we use the expected log-density ratio for calculating the rate590 (Appendix A.2), which is written as:591

KL[qφ(z|xi)‖pθ(z)] =

∫
qφ(z|xi) log

qφ(z|xi)

pθ(z)
dz (4a)

= Ezi∼qφ(z|xi)

[
log

qφ(zi|xi)

pθ(zi)

]
(4b)

= Ezi∼qφ(z|xi) [log qφ(zi|xi)− log pθ(zi)] . (4c)
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Clustering data with the Gaussian mixture prior After optimizing the parameters for the prior, we can592 then use the learned Gaussian mixture to assign embedded data to discrete clusters. In other words, we593 wish to calculate the conditional distribution pθ(y|z), where y is a vector of class labels, or594
y = {y1, y2, . . . , yK}. However, the Gaussian mixture prior can contain highly-overlapping component595 distributions, which can cause undesirable side-effects. On one hand, this renders the parameterized596 mode for each overlapping component an unreliable descriptor of the surrounding local density, as each597 component is then simply a degenerate sub-mode within a non-Gaussian density cluster rather than a598 distinct subpopulation within the distribution delineated by the structure of the data. On the other hand,599 a Gaussian mixture distribution can have any arbitrary arrangement of weighted components, which600 makes the task of directly calculating the true local density mode for each embedded point both601 analytically and numerically intractable. Therefore, to circumvent these problems, we apply the sparse602 watershed assignment procedure described by Todd et al. (2017) to find the true local maximum for603 each component in the distribution — rather than for every embedded observation — through numerical604 optimization, which requires only a nominal amount of additional computation. We can then merge605 overlapping components and assign embedded data to a mode that more accurately reflects the606 underlying (potentially non-Gaussian) region of local density.607 Because this sparse watershed procedure produces clusters with an arbitrary number of weighted608 components, calculating the full posterior probability pθ(y|z) for each data point is computationally609 complex. So for the sake of simplicity, we perform hard label assignment. In other words, we calculate610 the mode of the cluster distribution for each value of z, or:611

li = arg max
l

pθ(yl|zi), (5)
for l = 1, . . . ,K , where li is the assigned label for the latent vector zi. This hard label assignment612 procedure is performed in 3 steps: (1) latent vectors are initially assigned to the nearest (highest local613 density) component in the Gaussian mixture prior; (2) the Gaussian mixture distribution is further614 optimized to combine overlapping mixture components using sparse watershed assignment (Todd et al.,615 2017); and (3) the initial cluster assignments are then recursively updated using the learned hierarchy of616 overlapping components to ensure each latent vector is assigned to the mode that best represents the617 underlying density of the local neighborhood for that observation. To accomplish these steps, the618 expected value of the approximate posterior for each data point is initially assigned to a single mode in619 the Gaussian mixture distribution by calculating the weighted mixture component with the maximum620 likelihood (minimum distortion), which is written as:621

ki = arg max
k

ωkN (E[qφ(z|xi)]|µk, I), (6)
where ki is the initial cluster assignment for the ith data point xi. We then combine degenerate622 (highly-overlapping) modes from the distribution by applying the sparse watershed procedure described623 by Todd et al. (2017). Using this procedure, the initial cluster assignments are further combined by624 optimizing the mean of each component to ascend to its local maximum within the Gaussian mixture625 prior, which we write as a minimization of the negative log-likelihood, or:626

M∗ = arg min
M

− 1

K

K∑
k=1

log
K∑
l=1

ωlN (µk|µl, I), (7)
where µ∗k ∈M∗ is the optimized mean of each component. We optimize this objective numerically with627 the Adam optimizer (Kingma and Ba, 2014) with a learning rate of 1× 10−3 until the objective (Eq. 7)628 stops improving for 100 training steps. We then merge cluster assignments based on whether the mode629 for the initial cluster assignment ki has moved within the basin of attraction for another mixture630 component in the distribution (after optimizing Eq. 7), or:631

li = arg max
l

ωlN (µ∗ki
|µl, I) (8)
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where li is the sparse watershed label assignment for the ith data point xi, which was assigned to the632
kith mode of the distribution µki

in the initial cluster assignment step (Eq. 6). We then repeat this633 assignment procedure K times to ensure all label assignments to degenerate modes are reassigned to634 the mode with the highest local density:635

li := arg max
l

ωlN (µ∗li |µl, I) for k = 1, . . . ,K. (9)
Note that, for data assigned to non-degenerate modes in the initial step, typically the cluster assignment636 remains unchanged, where li = ki.637

4.2 Comparing dimensionality reduction algorithms638

We compared VAE-SNE to other dimensionality reduction algorithms including PCA (scikit-learn v0.23.0;639 Pedregosa et al. 2011), t-SNE (van der Maaten and Hinton, 2008), UMAP (v0.4.0; McInnes et al. 2018),640 scvis (Ding et al., 2018), and ivis (v1.7.2; Szubert et al. 2019). Our main comparisons involve compressing641 data to two dimensions for visualization purposes, but VAE-SNE (and other algorithms) can be used for642 dimensionality reduction more generally.643

4.2.1 openTSNE and t-SNE variants644

For t-SNE we used the openTSNE (v0.4.0) implementation from Poličar et al. (2019), which includes645 improvements from van der Maaten (2014); Linderman et al. (2017, 2019) to maximize speed and646 scalability, as well as methods for embedding out-of-sample data described by Poličar et al. (2019) (see647 also Berman et al. 2014; Kobak and Berens 2019). We tested two versions of openTSNE using both the648 Barnes-Hut approximation (Barnes-Hut-SNE) from van der Maaten (2014) and the Fourier interpolation649 approximation (FIt-SNE) from Linderman et al. (2017, 2019). However, FIt-SNE, the fastest version of650 openTSNE, is practically limited to very low dimensional embeddings (i.e., 1-D or 2-D) due to the Fourier651 interpolation algorithm used for approximating the gradient during optimization, and therefore cannot be652 used for more general-purpose dimensionality reduction (Linderman et al., 2017, 2019).653

4.2.2 scvis as a special case of VAE-SNE654

We found the original implementation of scvis (Ding et al., 2018) difficult to use for our comparisons655 without extensive modification, as it relies on outdated software dependencies and is limited to specific656 data file formats for using the code. However, scvis (Ding et al., 2018) can be considered a special case657 of VAE-SNE with specific hyperparameter settings, so instead we used VAE-SNE with hyperparameters658 matched to those described by Ding et al. (2018) for making comparisons. In particular, we used the659 network architecture for the encoder and decoder networks described by Ding et al. (2018), along with660 ELU activations (Clevert et al., 2015). We also use the asymmetric similarity kernel for the661 high-dimensional similarities (Eq. 17a), and we set K = 1 for the number of components in the prior662 distribution (Eq. 2). For benchmarking the processing speed of scvis (Ding et al., 2018), we disabled our663 added parallel computations (Section 4.5) to match the speed of the original implementation from Ding664 et al. (2018), and we calculated training time based on the original recommendation from Ding et al.665 (2018) for training with batch size of 512 for 100 epochs.666

4.2.3 Setting hyperparameters for comparisons667

For each algorithm we used Euclidean distances for calculating pairwise similarities (the default for all668 of the algorithms tested) along with the default settings for all other hyperparameters with some669 exceptions. For t-SNE, we set n jobs=-1 to enable parallel processing. For UMAP, we also compare PCA670 initialization for the low-dimensional embedding (vs. the default Laplacian Eigenmap initialization),671 which is not a default option but improves global structure preservation. For ivis (Szubert et al., 2019),672
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we used the default model and followed recommendations from Szubert et al. (2019) to adjust the early673 stopping criteria for different dataset sizes.674 The hyperparameters for different methods could, of course, be adjusted ad infinitum to produce675 different types of embeddings and could bias performance for different datasets in many ways; however,676 the comparisons we make in this paper are not meant to be exhaustive, only informative in terms of677 validating VAE-SNE as a comparable method. In the end, researchers will have to decide for themselves678 which algorithm is most useful for their specific application. It is also worth considering that, for some679 of the algorithms tested, adjusting the hyperparameters can dramatically alter computational and680 memory requirements — for example, increasing the perplexity hyperparamater for FIt-SNE (Linderman681 et al., 2017) and Barnes-Hut-SNE (van der Maaten, 2014) or the n neighbors hyperparameter for UMAP,682 increases number of nearest neighbors that are computed and, consequently, the size of the nearest683 neighbors graph used to optimize the embedding. Our decision to use default settings is also especially684 reasonable for the t-SNE variants we tested given that the openTSNE package (Poličar et al., 2019) uses685 hyperparameter suggestions from Kobak and Berens (2019), which have been empirically shown to work686 well across many datasets.687

4.2.4 VAE-SNE hyperparameters688

We tested multiple variants of VAE-SNE in our comparisons, but across these variants we use similar689 hyperparameters for training. For the encoder and decoder networks we use 4 densely-connected layers690 each with 256 units (with biases). For each layer we apply the nonlinear SELU activation function and691 use the appropriate random initialization for the weights described by Klambauer et al. (2017). We train692 each VAE-SNE model for a maximum of 100 epochs with an initial batch size of 512 using the Adam693 optimizer (Kingma and Ba, 2014) with a learning rate of 0.001. For the perplexity hyperparameter, we694 calculate this as a function of the batch size used during training, which we call the perplexity ratio, such695 that P = b% where P is the perplexity, b is the batch size, and % is the perplexity ratio. To improve global696 structure preservation, we begin training with % = 0.1 and then anneal to % = 0.01 by exponentially697 decaying % after each training batch (similar to the perplexity annealing technique described by Kobak698 and Berens 2019). After the perplexity ratio is fully annealed to the target value, we then perform early699 stopping if pairwise similarity loss stops improving by at least 0.001 per epoch with a patience of 5700 epochs (lack of progress is ignored for 5 epochs before stopping training). While it is common practice701 to decrease the learning rate after training stagnates to further improve performance, we instead702 increase the batch size, which has been shown to provide similar improvements (Smith et al., 2017).703 Therefore after training stagnates and early stopping is initiated for the initial batch size of 512, we704 increase the batch size to 1024 and continue training until early stopping is initiated again using the705 same criteria. For the Gaussian mixture prior we set the number of components to K = 100, but we706 found that any arbitrarily large number of components produced similar (nearly identical) results.707 We tested 4 variants of VAE-SNE with different similarity kernels. We tested VAE-SNE using a t-SNE708 similarity kernel with (1) constant kernel parameters (ν = τ = 1) as well as (2) learned kernel parameters709 (van der Maaten, 2009). We also tested VAE-SNE variants using a SNE kernel with (3) constant (η = 1)710 and (4) learned parameters as well. Otherwise the hyperparameters for each variant were kept constant,711 as described above.712

4.2.5 Local structure preservation713

After embedding the data with each algorithm we assessed local structure preservation with two714 measures of preservation that define local neighborhoods in different ways. For both of these metrics715 we targeted neighborhoods that correspond to ∼ 1% of the total embedding size.716

metric-based neighborhoods First, we used a metric-based measure of local neighborhood717 preservation, where neighborhoods are defined based on distance (a fixed radius) to a cluster center.718 Following Becht et al. (2019) we applied the k-means clustering algorithm (with k = 100 clusters; using719
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scikit-learn v0.23; Pedregosa et al. 2011) to the high-dimensional data and the low-dimensional720 embedding for each method, which effectively divides the data into small Voronoi regions. We then721 calculated the normalized mutual information (reviewed by Vinh et al. 2010; see also McDaid et al. 2011)722 between the high-dimensional and low-dimensional cluster assignments (using scikit-learn v0.23;723 Pedregosa et al. 2011). This provides a symmetric and permutation invariant measure of how well local724 neighborhood memberships from the high-dimensional space are preserved by each embedding method725 — with similarity ranging from 0 (no overlap, or random) to 1 (perfect overlap). We performed 5 replicates726 of this for each trial.727

topological neighborhoods Second, we assessed local neighborhood preservation topologically by728 calculating the exact nearest neighbors for 1000 randomly selected data points and then defining the729 local neighborhood for each point as k nearest neighbors, where k is selected such that k
N ≈ 0.01, and730

N is the total embedding size. We then computed the proportion of the neighbors that are assigned to731 the correct local neighborhood in low-dimensional embedding, which ranges from 0 (no neighbors732 preserved) to 1 (all neighbors preserved). We performed 5 replicates of this for each trial.733

4.2.6 Global structure preservation734

To assess global structure preservation we follow Becht et al. (2019) by calculating the Pearson735 correlation between pairwise squared Euclidean distances for 10,000 points in the high-dimensional736 space and the low-dimensional embedding for each method (for a total of 49.995 million distances). As737 distances have a lower bound of zero and tend to follow a log-normal (or Gamma) distribution, we first738 log transformed the distances in order to homogenize the variance and better match the assumptions of739 Pearson’s correlation score. The Pearson correlation then provides a measure of the global structure740 preservation ranging from -1 (anti-correlated) to 1 (correlated). We performed 5 replicates of this for741 each trial.742

4.2.7 Fine-scale structure preservation743

Because our metrics for local structure preservation only account for a single scale but not the744 fine-scale structure within local neighborhoods, we also assessed topological structure preservation for745 smaller neighborhood sizes. As before, we calculated the exact nearest neighbors for 1000 randomly746 selected data points. We then computed the proportion of points assigned to the correct neighborhood747 across 14 dyadically (log2) spaced neighborhood sizes ranging from k = 21 to k = 214. Neighborhood748 sizes were then normalized as a proportion of the total embedding size, or k
N . We performed 5 replicates749 of this for each trial and neighborhood size.750

4.2.8 Temporal structure preservation751

Because the largest dataset we use is also timeseries data, we assess temporal structure preservation752 for the test set by calculating Euclidean distances between sequential time points in high-dimensions753 and low-dimensions for each method. We then calculate the Pearson correlation coefficient of the log754 transformed distances (same as for assessing global structure preservation) for 50 randomly selected755 10 minute subsets (60,000 observations) within the full timeseries. This then provides a measure of how756 well temporal derivatives are preserved in the low-dimensional embedding ranging from -1757 (anti-correlated) to 1 (correlated).758

4.2.9 Hierarchical bootstrap for statistical comparisons759

To compare each information preservation metric statistically we performed hierarchical bootstrapping760 (see Saravanan et al. 2019 for a recent review). Every trial for each dimension reduction method has761 multiple observations per metric, which creates hierarchical dependencies in the data. To account for762
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this, we use seaborn v0.10.1 (Waskom et al., 2020) to calculate and plot hierarchical bootstrap estimates763 of the mean for each information preservation metric — resampling (with replacement) both within trials764 and across trials (n=1000 bootstrap samples). We then plot the 95% intervals of the bootstrap765 distribution to compare the performance of each dimension reduction method statistically. Rather than766 attempting to make decisions regarding the statistical “significance” of these bootstrap distributions767 based on an arbitrary threshold, we instead simply treat them as a measure of the uncertainty (variance)768 in effect size for each information preservation metric. The computational experiments from which the769 information preservation metrics are derived could be run ad infinitum to achieve statistical significance,770 which is effectively a measure of statistical resolution based on the number of observations, but this is771 not necessarily informative in practice.772

4.3 Datasets773

4.3.1 Animal body posture dynamics774

The largest dataset we used for comparisons is a behavioral dataset from Berman et al. (2014, 2016);775 Pereira et al. (2019) consisting of ∼1-h video recordings (at 100Hz) for 59 freely-behaving individual fruit776 flies (Drosophila melanogaster) for a total of ∼21.1 million observations (downloaded from:777 http://arks.princeton.edu/ark:/88435/dsp01pz50gz79z). We tracked the full body posture of each778 individual with DeepPoseKit v0.3.6 (Graving et al., 2019) using the procedures described by Graving et al.779 (2019) to train a deep convolutional pose estimation model using the keypoint annotations from Pereira780 et al. (2019) as training data. For each video this produced a multivariate time series of the Euclidean781 coordinates describing 32 body part positions in the video — including the head, neck, eyes, thorax,782 abdomen, wings, and 24 leg joints. We then rotationally and translationally aligned the posture data at783 each timepoint to the major body axis (neck-thorax vector) and calculated the sine and cosine of the784 keypoint angles for the 30 body parts not used for alignment. This resulted in a 30× 2 = 60 dimensional785 posture timeseries. To transform the spatial posture data into a dynamical spatio-temporal786 representation, we then applied a normalized Morlet wavelet transform from Berman et al. (2014) using787 the behavelet Python package v0.0.1 (Graving, 2019) to generate a multi-scale time-frequency788 spectrogram of the body posture dynamics for each time point. Following Berman et al. (2014); Pereira789 et al. (2019), we used 25 dyadically (log2) spaced frequencies ranging from 1Hz to 50Hz (the Nyquist790 frequency of the signal), which expanded the dimensionality of the timeseries from 30× 2 = 60 to791
30× 2× 25 = 1500.792

Dimension reduction comparisons To generate a training set for benchmarking the different793 algorithms, we uniformly randomly sampled a subset of data from the body posture dynamics timeseries794 for 58 of 59 individuals while excluding one randomly selected individual to use as a test set. We tested795 4 training set sizes: 58× 500 = 29, 000; 58× 1000 = 58, 000; 58× 2000 = 116, 000; 58× 4000 = 232, 000,796 above which we encountered out-of-memory errors when running UMAP (McInnes et al., 2018) on larger797 subsets of data. Each test set contains ∼ 360, 000 sequential observations. We then applied each798 dimension reduction method to the training set and subsequently embedded the test set. For training799 VAE-SNE we used the cross-entropy loss as a log likelihood function, as it matches well with the800 normalized time-frequency data, but we also found that other likelihood functions work similarly well.801

Behavioral clustering To simplify the dataset for performing our clustering analysis, we used the sine802 and cosine of the keypoint angles for the 6 legs (the distal tips of each leg), 2 wings, head, and abdomen803 for a total of 10 body parts and a 10× 2 = 20 dimensional posture timeseries. As before we applied the804 time-frequency transform which expands the dimensionality of the timeseries from 10× 2 = 20 to805
10× 2× 25 = 500. We then applied VAE-SNE with a t-SNE kernel (Appendix B; ν = τ = 1) to compress806 the spectrogram data to 30 dimensions. We used the cross-entropy between normalized time-frequency807 vectors, or H[xi,xj ] = −

∑
xi logxj , as our metric for calculating high-dimensional similarities808 (Appendix B), as this provides a more natural measure of divergence between the normalized809
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spectrograms than Euclidean distance. The cross-entropy is closely related (up to a constant) to the810 Kullback-Leibler divergence — the metric originally used by Berman et al. (2014) — but is slightly faster to811 calculate, which reduces training time. When visualizing the spectrograms we integrate (sum) across812 the wavelet coefficients for the sine and cosine for each body part in the spectrogram.813

4.3.2 Single-cell RNA-seq814

To test the application of VAE-SNE to single-cell RNA-seq data, we used data from La Manno et al. (2018)815 which consists of 18,213 observations describing the development and cell fate of hippocampal neurons.816 We preprocessed these data using the velocyto.py (v0.17.17) package from La Manno et al. (2018). We817 compressed the raw expression values to 500 dimensions using PCA before applying subsequent818 dimension reduction algorithms. We applied each dimension reduction algorithm to the full dataset and819 then re-embedded the training set in place of a test set in order to evaluate the speed for embedding new820 data. We report information preservation metrics only for the training set, as no test set was used due to821 the relatively small size of the dataset. For training VAE-SNE on this dataset we use a Student-t822 likelihood function, but found other likelihood functions work similarly well.823

4.3.3 Natural history images824

We also applied a convolutional variant of VAE-SNE to natural history images, and to test this we used825 two datasets: a set of 59,244 shell images from Zhang et al. (2019) and a set of 2,468 butterfly images826 from Cuthill et al. (2019). All images were preprocessed by applying local adaptive thresholding to detect827 and remove the background. Images were then zero-padded to create a 1:1 aspect ratio and resized to a828 resolution of 192× 192. We trained convolutional VAE-SNE using the same hyperparameters as the829 dimension reduction experiments, but using batches of only 256 images.830

4.4 Computing hardware831

All performance comparisons were conducted on a high-end consumer-grade workstation equipped with832 an Intel Core-i9-7900X CPU (10 cores, 20 threads @ 3.30GHz), 32GB of DDR4 RAM, a 4TB NVMe solid833 state drive, and a NVIDIA GeForce GTX 1080 Ti GPU (11 GB GDDR5X VRAM).834

4.5 Parallelizing pairwise computations to improve performance835

To improve performance of pairwise computations over Ding et al. (2018), we reimplemented the836 underlying algorithms for training VAE-SNE. The largest performance bottleneck for VAE-SNE is the837 recursive binary search algorithm for computing high-dimensional pairwise similarities (Appendix B).838 However, the computations for this algorithm are embarrassingly parallel, so we reimplemented it to run839 recursion loops in parallel across multiple CPU threads. This was accomplished by JIT-compiling the840 code using the numba library (Lam et al., 2015), which resulted in massive speed improvements. We841 also reimplemented all pairwise distance calculations on the GPU using PyTorch (Paszke et al., 2019),842 which further improved performance.843

4.6 Code availability844

The code for VAE-SNE is freely available at https://github.com/jgraving/vaesne under a permissive845 open-source license. The library is written primarily using PyTorch v1.5.0 (Paszke et al., 2019) and846 includes a scikit-learn-style API (Buitinck et al., 2013) for fitting the model (model.fit()) and predicting847 on new data (model.predict()).848
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Table S1. Ranked information preservation metric performance for nonlinear dimension reduction
algorithms. Rankings for each nonlinear dimension reduction algorithm in terms of general performancefor local, global, fine-scale, and temporal structure preservation (lower is better).
name citation local global fine-scale temporalVAE-SNE (t-SNE) this paper 1 1 2 2VAE-SNE (SNE) this paper 2 1 2 1FIt-SNE Linderman et al. (2017) 1 2 1 2Barnes-Hut-SNE van der Maaten (2014) 1 2 1 2UMAP (LE init) McInnes et al. (2018) 1 3 2 3UMAP (PCA init) McInnes et al. (2018) 1 2 2 3scvis Ding et al. (2018) 2 1 2 2ivis Szubert et al. (2019) 2 1 3 1

Table S2. Ranked processing speed performance for nonlinear dimension reduction algorithms. Rank-ings for each nonlinear dimension reduction algorithm in terms of general performance for training timeand test time (lower is better), as well as whether or not test time increases as a function of training setsize.
name citation train time test time test time ∝ train sizeVAE-SNE this paper 4 1 noFIt-SNE Linderman et al. (2017) 2 4 noBarnes-Hut-SNE van der Maaten (2014) 3 5 yesUMAP McInnes et al. (2018) 1 3 yesscvis Ding et al. (2018) 6 1 noivis Szubert et al. (2019) 5 2 no

Table S3. Additional features for nonlinear dimension reduction algorithms. A summary of potentiallyuseful additional features for each nonlinear dimension reduction algorithm including batch trainingfor applying dimension reduction to large out-of-core datasets, non-Euclidean embeddings for differenttypes of compressed representations, whether the algorithm is tractable in higher dimensions (>2), andwhether the algorithm learns a distribution of clusters within the data.
name citation batch training non-Euclidean >2 dims. clusteringVAE-SNE this paper yes yes yes yesFIt-SNE Linderman et al. (2017) no no no noBarnes-Hut-SNE van der Maaten (2014) no no yes noUMAP McInnes et al. (2018) no yes yes noscvis Ding et al. (2018) yes no yes noivis Szubert et al. (2019) yes no yes no
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Figure S1. Dimension reduction performance for the posture dynamics training set. Plots show perfor-mance comparisons for the posture dynamics dataset (Berman et al., 2014, 2016; Pereira et al., 2019)using the training set. a, Mean and 95% interval of the bootstrap distribution for local and global structurepreservation. Results are pooled across all training set sizes (for each metric n = 4 training set sizes ×5 trials × 5 replicates = 100 per algorithm). b, Mean and 95% interval of the bootstrap distribution forfine-scale structure preservation across multiple neighbor sizes (as a proportion of the total embeddingsize). Results are from the largest training set size only (n = 14 neighborhood sizes× 5 trials× 5 replicates= 350 per algorithm). c, Training time for fitting each algorithm across different training set sizes (n = 4training set sizes × 5 trials = 20 per algorithm).
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a

b

Figure S2. Dimension reduction performance for the posture dynamics training set across training set
sizes. Plots show performance comparisons for the posture dynamics dataset (Berman et al., 2014, 2016;Pereira et al., 2019) using training sets of different sizes. a-b, Mean and 95% interval of the bootstrapdistribution for local (a) and global (b) structure preservation. (for each metric n = 5 trials × 5 replicates= 25 per training set size per algorithm)
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Figure S3. Dimension reduction performance for the posture dynamics test set. Plots show perfor-mance comparisons for the posture dynamics dataset (Berman et al., 2014, 2016; Pereira et al., 2019)using the test set. a, Mean and 95% interval of the bootstrap distribution for local, global, and temporalstructure preservation. Results are pooled across all training set sizes (for local and global structure n= 4 training set sizes × 5 trials × 5 replicates = 100 per algorithm; for temporal structure n = 4 trainingset sizes × 5 trials × 50 subsamples = 1000 per algorithm). b, Mean and 95% interval of the bootstrapdistribution for fine-scale structure preservation across multiple neighbor sizes (as a proportion of thetotal embedding size). Results are from the largest training set size only (n = 14 neighborhood sizes × 5trials × 5 replicates = 350 per algorithm). c, Elapsed time for embedding the test set with each algorithmacross different training set sizes (n = 4 training set sizes × 5 trials = 20 per algorithm).
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Figure S4. Dimension reduction performance for the posture dynamics test set across training set
sizes. Plots show performance comparisons for the posture dynamics dataset (Berman et al., 2014, 2016;Pereira et al., 2019) using training sets of different sizes. a-c, Mean and 95% interval of the bootstrapdistribution for local (a), global (b), and temporal (c) structure preservation (for local and global structuren = 5 trials × 5 replicates = 25 per algorithm for each training set size; for temporal structure n = 5 trials
× 50 subsamples = 250 per algorithm for each training set size).
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Figure S5. Dimension reduction performance for the single-cell RNA-seq dataset. Plots show perfor-mance comparisons for the single-cell RNA-seq dataset from La Manno et al. (2018) using the entiredataset. a, Mean and 95% interval of the bootstrap distribution for local and global structure preservation(for each metric n = 5 trials × 5 replicates = 25 per algorithm). b, Mean and 95% interval of the bootstrapdistribution for fine-scale structure preservation across multiple neighbor sizes (as a proportion of thetotal embedding size; n = 14 neighborhood sizes× 5 trials× 5 replicates = 350 per algorithm). c, Elapsedtime for embedding the training set and re-embedding the training set as a “test” set with each algorithm(for each metric n = 5 trials × 5 replicates = 25 per algorithm).
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a

b

Figure S6. Likelihood and entropy distributions. a, Histograms of the log likelihood scores from thedecoder (Eq. 1b; distortion) for real and randomized data (n = 232,000 for each distribution). b, Histogramsof the log entropy from the approximate posterior (Eq. 12d) for real and randomized data (n = 232,000for each distribution).
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Figure S7. High-level behavioral clusters. Visualizations describing the manually-grouped high-levelclusters for anterior grooming (a,e,g), wing movements (b,e,h) and small/slow leg movements (c,f,i). a-c,The 2-D posterior probability density for each cluster (left), where contours are the largest 90% probabilitydensity contour for each cluster distribution, and the mean spectrogram for each cluster (right). d-i,The principal component scores of the spectrograms assigned to each cluster visualized within the 2-Dembedding (left) and the eigenvector coefficients describing the linear contribution of each spectrogramfeature (right) for the principal component score.
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Figure S8. Low-level locomotion clusters. Visualizations describing the low-level clusters within thehigh-level locomotion cluster. a-b, The 2-D posterior probability density for the high-level cluster (a) andfor each low-level cluster (b), where letters for each cluster label correspond to panels d-f. Contoursare the largest 90% probability density contour for each cluster distribution. c, Mean and 95% bootstrapintervals of the marginal (stationary) probability and mean bout length for each low-level cluster (n =59 per cluster). d-f, The mean spectrogram (left), example time segments (middle) showing forwardvelocity of each leg measured in body lengths (BL) per second and swing (forward velocity > 0 BL · s−1)or stance (forward velocity ≤ 0 BL · s−1) classification, and histograms (right) showing the number oflegs classified as stance in each timestep assigned to each cluster (n = 0.57 million for slow, d; n = 1.03million for medium, e; and n = 1.47 million for fast, f) — where the label for each panel in d-f correspondsto a cluster label in panel b. Example videos for these low-level clusters are shown in Video S2.
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Figure S9. Low-level posterior grooming clusters. Visualizations describing the low-level clusters withinthe high-level posterior grooming cluster. a-b, The 2-D posterior probability density for the high-levelcluster (a) and for each low-level cluster (b), where letters for each cluster label correspond to panels
d-i. Contours are the largest 90% probability density contour for each cluster distribution. c, Mean and95% bootstrap intervals of the marginal (stationary) probability and mean bout length for each low-levelcluster (n = 59 per cluster). d-i, The mean spectrogram for each cluster — where the label for each panelin d-i corresponds to a cluster label in panel b. Example videos for these low-level clusters are shown inVideo S4.
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Figure S10. Spherical embeddings with von Mises-Fisher VAE-SNE. a-b, Spherical embeddings usingVAE-SNE with a von Mises-Fisher similarity kernel (Appendix C.1) of the posture dynamics dataset (a;Video S8) from Berman et al. (2014, 2016); Pereira et al. (2019) and the single-cell RNA-seq dataset(b; Video S9) from La Manno et al. (2018). c-d, Stereographic (planar) projections of the sphericalembeddings from a-b. Colors for a-d are the same as in Fig. 2 (total amplitude and cell type).
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Figure S11. Embedding shell images. Shell images from Zhang et al. (2019) embedded in two dimensionsusing convolutional VAE-SNE. Insets illustrate example regions of perceptually similar images from thetaxonomic genera Bradybaena (land snails; top-left), Erosaria (cowries; top-right), Vexillum (sea snails;bottom-left), and Conus (cone snails; bottom-right). Scatter plot (bottom-center) shows the 10 mostcommon genera in the dataset.
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Figure S12. Embedding butterfly images. Butterfly (Heliconius spp.) images from Cuthill et al. (2019)embedded in two dimensions using convolutional VAE-SNE. Insets show example regions of perceptuallysimilar subspecies (top). Scatter plots (bottom) show labels for the 10 most common subspecies inthe dataset (bottom-left) and the image viewpoint relative to the specimen’s dorso-ventral body axis(bottom-right).
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Figure Video S1. Video segments labeled with VAE-SNE. Randomly selected video segments (1/2×speed) labeled with VAE-SNE illustrating the temporal dynamics of movements through the behavioralspace and transitions between high-level clusters within the distribution. a, https://youtu.be/JlbSdKzvLfk;
b, https://youtu.be/uWScG UuzRQ; c, https://youtu.be/T8e JSoCwMA

Figure Video S2. Samples from the locomotion cluster. Randomly sampled videos (1/3× speed) fromthe locomotion cluster showing: a, slow walking (https://youtu.be/hB3JIRF2JGQ); b, medium walking(https://youtu.be/kNHGJypOGhs); and c, fast walking (https://youtu.be/A2sLtgYhHGc). Red lines showthe posture tracking data for all 32 keypoints.

Figure Video S3. Samples from the anterior grooming cluster. Randomly sampled videos (1/3× speed)from one of the anterior grooming clusters (https://youtu.be/0MT3lb2bJro). Red lines show the posturetracking data for all 32 keypoints.

Figure Video S4. Samples from the posterior grooming cluster. Randomly sampled videos(1/3× speed) from the posterior grooming cluster showing: a, bilateral hindleg grooming(https://youtu.be/O Tyf4pEQMo); b, right hindleg grooming (https://youtu.be/VTIwZp6d6b4); b, leftmidleg grooming (https://youtu.be/0vJvAINbfjw). Red lines show the posture tracking data for all 32keypoints.

Figure Video S5. Samples from the wing movements cluster. Randomly sampled videos (1/3× speed)from the wing movements cluster showing: a, wing extensions (https://youtu.be/lE31SeJ7ehY); and b,wing flicks (https://youtu.be/nsgnFbrk090). Red lines show the posture tracking data for all 32 keypoints.

Figure Video S6. Samples from the small/slow leg movements cluster. Randomly sampledvideos (1/3× speed) from the small/slow leg movement cluster showing: a, small leg movements(https://youtu.be/ARkH1uvPBnQ); b, slow leg movements (https://youtu.be/hwL7ovNjbBQ); c, small leftmidleg movements (https://youtu.be/o8vxtgwzx9Q) Red lines show the posture tracking data for all 32keypoints.

Figure Video S7. Samples from the idle cluster. Randomly sampled videos (1/3× speed) from the idlecluster (https://youtu.be/0wbdqmuCe g). Red lines show the posture tracking data for all 32 keypoints.

Figure Video S8. Spherical embedding of the posture dynamics dataset. Rotating view of the posturedynamics dataset (https://youtu.be/QcDUlQUOvdo) from Berman et al. (2014, 2016); Pereira et al. (2019)embedded on a 3-D sphere using von Mises-Fisher VAE-SNE. Colors are the same as in Fig. 2 (totalamplitude).

Figure Video S9. Spherical embedding of the single-cell RNA-seq dataset. Rotating view of the single-cell RNA-seq dataset (https://youtu.be/jyIWB6-qye0) from La Manno et al. (2018) embedded on a 3-Dsphere using von Mises-Fisher VAE-SNE. Colors are the same as in Fig. 2 (cell type).
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A Variational autoencoders and the evidence lower bound867

A.1 VAEs as approximate Bayesian inference868

As is common to most dimensionality reduction algorithms, we seek to model a high-dimensional data869 distribution p(x) using a low dimensional latent distribution p(z). Variational autoencoders (VAEs) are870 one such model that combines both modeling and inference by defining a joint distribution between a871 latent variable z and observed samples x. We can accomplish this using a generative model that maps872 samples from the low-dimensional latent distribution to the high-dimensional data distribution using a873 set of shared parameters θ, which can take the form of a deep neural network model pθ(x|z) = DNNθ(z)874 with some prior over latent distribution pθ(z). We then wish to find the model parameters θ that875 maximize the joint likelihood, which can be written as:876

arg max
θ

pθ(x, z) = arg max
θ

pθ(x|z)pθ(z). (10)
Although, to compute the low-dimensional distribution for the data, we then need to derive the latent877 posterior for the model pθ(z|x). This can be derived from the likelihood using Bayes’ rule:878

pθ(z|x) =
pθ(x|z)pθ(z)

pθ(x)
. (11)

However, computing the integral in Eq. 11 pθ(x) =
∫
pθ(x|z)pθ(z) dz is not tractable in practice.879 Therefore, we require a way to approximate this latent posterior distribution, which is the exact problem880 for which VAEs provide a tractable solution.881 Like other VAE models (Kingma and Welling, 2013; Kingma et al., 2014; Burda et al., 2015;882 Dilokthanakul et al., 2016; Ding et al., 2018; Dieng et al., 2019a), VAE-SNE performs dimensionality883 reduction by nonlinearly mapping observed high-dimensional data vectors x to a low-dimensional884 embedding z using a deep neural network (DNN) as an encoder function DNNφ : x→ z (Eq. 12e) with885 the goal of learning an approximate posterior over the latent distribution qφ(z|x) (Eq. 12d), where the886 parameters of the approximate posterior are learned as a function of the data (Eq. 12e) and the encoder887 parameters φ are then shared across observed samples — known as amortization. The model then888 maps latent vectors sampled from the low-dimensional embedding (Eq. 12c) to reconstruct the original889 high-dimensional space DNNθ : z→ x̃ (Eq. 12a) using a generative decoder function we defined earlier890 (rewritten in Eq. 12b). More precisely:891

x̃ ∼ pθ(x|z) (12a)
pθ(x|z) = L (x|DNNθ(z)) (12b)

z ∼ qφ(z|x) (12c)
qφ(z|x) = N (z|µ, diag(σ2)) (12d)

(µ, logσ2) = DNNφ(x) (12e)
where L(x|·) is a user-selected likelihood function parameterized by the decoder function DNNθ(z), and892
N (·|µ, diag(σ2)) is a multivariate Gaussian whose parameters µ and σ2 are a specified by the encoder893 function DNNφ(x).894

A.2 Deriving the evidence lower bound895

After defining the generative model, we then wish to optimize the parameters of the encoder φ and896 decoder θ — given a set of observed samples from a data distribution x ∼ p(x) — so that the897 approximate posterior distribution qφ(z|x) matches closely with the true latent posterior from the898 generative decoder, or qφ(z|x) ≈ pθ(z|x). In other words, we wish to minimize the divergence between899 the two distributions, or:900
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arg min
θ,φ

KL[qφ(z|x)‖pθ(z|x)] = arg min
θ,φ

∫
qφ(z|x) log

qφ(z|x)

pθ(z|x)
dz. (13)

However, as we have already established, computing the true posterior is intractable, so researchers901 have derived a lower bound known as the evidence lower bound, or ELBO (Kingma and Welling, 2013),902 to approximate this objective. The ELBO can be derived directly from Eq.13 (Adams, 2020), which is903 written as:904

KL[qφ(z|x)‖pθ(z|x)] =

∫
qφ(z|x) log

qφ(z|x)

pθ(z|x)
dz (14a)

= log pθ(x) +

∫
qφ(z|x) log

qφ(z|x)

pθ(z|x)
dz− log pθ(x) (14b)

= log pθ(x) +

∫
qφ(z|x) log

qφ(z|x)

pθ(z|x)
dz−

∫
log qφ(z|x)pθ(x) dz (14c)

= log pθ(x) +

∫
qφ(z|x) log

qφ(z|x)

pθ(z|x)pθ(x)
dz (14d)

= log pθ(x)− Eqφ(z|x)

[
log

pθ(x, z)

qφ(z|x)

]
(14e)

= log pθ(x)− ELBO(θ,φ). (14f)
Because the Kullback-Leibler divergence is strictly non-negative, the ELBO is then a lower bound on the905 log marginal likelihood. However, The ELBO can also be derived by applying Jensen’s inequality, as is906 more common in the literature (Kingma and Welling, 2013), to directly calculate a lower bound on the log907 marginal likelihood, or:908

log pθ(x) = log

∫
pθ(x, z) dz (15a)

= log

∫
pθ(x, z)

qφ(z|x)

qφ(z|x)
dz (15b)

= logEqφ(z|x)

[
pθ(x, z)

qφ(z|x)

]
(15c)

≥ Eqφ(z|x)

[
log

pθ(x, z)

qφ(z|x)

]
= ELBO(θ,φ). (15d)

To learn the latent distribution given the model and the data, the ELBO is then maximized to909 optimize the model parameters. Here we write this as a minimization of the negative ELBO, which can910 be further decomposed into separate terms for the log-likelihood and the divergence between the911 approximate posterior and the prior over the latent distribution, or:912

arg min
θ,φ

−ELBO(θ,φ) = arg min
θ,φ

Eqφ(z|x)

[
log

qφ(z|x)

pθ(x, z)

]
(16a)

= arg min
θ,φ

Eqφ(z|x)

[
log

qφ(z|x)

pθ(z)pθ(x|z)

]
(16b)

= arg min
θ,φ

−Eqφ(z|x) [log pθ(x|z)] + Eqφ(z|x)

[
log

qφ(z|x)

pθ(z)

]
(16c)

= arg min
θ,φ

−Eqφ(z|x) [log pθ(x|z)]︸ ︷︷ ︸
likelihood

+KL[qφ(z|x)‖pθ(z)]︸ ︷︷ ︸
divergence

. (16d)
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The derivation of the ELBO has also been discussed at length elsewhere (e.g., Kingma and Welling913 2013; Kingma et al. 2014; Burda et al. 2015; Alemi et al. 2016; Dilokthanakul et al. 2016; Alemi et al. 2017;914 Ding et al. 2018; also see Kingma and Welling 2019 for a comprehensive introduction).915

A.3 Importance-weighted ELBO916

While we use only a single Monte Carlo sample from the approximate posterior per training batch, we917 also include a hyperparameter for multiple samples per training batch using the importance-weighted918
ELBO from Burda et al. (2015), which modifies how the expectation in Eq. 16c is calculated to produce a919 tighter bound on the loss by implicitly increasing the complexity of the posterior (Cremer et al., 2017).920 However, we did not see any obvious performance improvements when using the importance-weighted921 objective, and increasing the number of Monte Carlo samples per batch also increases training time.922 The general utility of calculating a tighter bound is also unclear (Rainforth et al., 2018) but this may be923 related to the generalization ability of the model. We leave further exploration of this hyperparameter for924 future work.925

B Stochastic neighbor regularization926

For computing pairwise similarities, we largely follow Hinton and Roweis (2003) and van der Maaten and927 Hinton (2008) by modeling local neighborhoods as the probability of transitioning from a landmark point928 to its nearby neighbors when performing a random walk initialized from the landmark. By modeling local929 neighborhoods as probability distributions and then minimizing the divergence between the930 neighborhood distributions in high- and low-dimensional space, we preserve more local structure within931 the low-dimensional embedding than a standard VAE (Ding et al., 2018).932

High-dimensional transition probabilities To accomplish this, pairwise transition probabilities in933 high-dimensional space t(xj |xi) are modelled by applying a Gaussian kernel to convert the pairwise934 distances between data points d(xi,xj) into conditional probabilities — with self transitions set to935
t(xi|xi) = 0. While Ding et al. (2018) use these asymmetric conditional probabilities t(xj |xi) directly for936 the high-dimensional similarities, van der Maaten and Hinton (2008) show that symmetrizing the937 pairwise similarities so that p(xj |xi) = p(xi|xj) reduces susceptibility to outliers, which can become938 ill-determined in the low-dimensional embedding with an asymmetric kernel. Therefore, we use the939 symmetrized conditional probabilities, which are computed as:940

p(xj |xi) =
t(xj |xi) + t(xi|xj)∑
n t(xn|xi) + t(xi|xn)

(17a)
t(xj |xi) =

N (xj |xi, ς
2
i )∑

nN (xn|xi, ς2i )
=

exp
(
−d(xi,xj)

2/2ς2i
)∑

n exp (−d(xi,xn)2/2ς2i )
, (17b)

for n = 1, . . . , N and n 6= i, where d(·, ·) is a user-selected distance metric, such as the Euclidean941 distance. The landmark data point xi can then be considered the mean, and ς2i is the variance of the942 Gaussian kernel describing the local neighborhood around xi — thereby assigning more probability943 mass to nearby neighbors. The variance ς2i is selected for each data point via binary search such that944
2Hi ≈ P, where P is the desired perplexity (a user-defined hyperparameter), 2Hi is the perplexity of the945 kernel for the ith data point, which approximately corresponds to the number of nearest neighbors946 considered by the kernel, and Hi is the Shannon entropy in bits, or:947

Hi =
∑
j

t(xj |xi) log2 t(xj |xi). (18)
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Low-dimensional transition probabilities The low-dimensional similarities qφ(zj |zi) are then948 calculated according to Hinton and Roweis (2003) and van der Maaten and Hinton (2008) using a kernel949 function wφ(zj |zi) to convert pairwise distances into conditional probabilities:950

qφ(zj |zi) =
wφ(zj |zi)∑
n wφ(zn|zi)

. (19)
As in high-dimensional space, self transitions are set to qφ(zi|zi) = 0. Here we test two kernel functions951 for preserving Euclidean similarities.952

t-SNE kernel First is the heavy-tailed Student’s t-distributed kernel used for the t-SNE algorithm953 (van der Maaten and Hinton, 2008) with the log probability function written as:954

logwφ(zj |zi) = log T (zj |zi, νi, τi) = −
(
νi + 1

2

)
log

(
1 +
‖zi − zj‖2

τiνi

)
− Zi (20a)

Zi = log τi +
log(νiπ)

2
+ Γ

(νi
2

)
+ Γ

(
νi + 1

2

)
, (20b)

where τi is the scale, νi is the degrees of freedom, which varies the heavy-tails of the kernel, and Γ(·) is955 the gamma function. We write this as a log probability to more clearly show the relationship with the956 similarity loss term derived later in this section (Eq. 23c). The Student’s t-distribution is used primarily to957 alleviate the “crowding problem” (van der Maaten and Hinton, 2008) that can occur with other nonlinear958 embedding algorithms, including the original SNE algorithm (Hinton and Roweis, 2003), where points are959 too densely packed in the low-dimensional space and moderately distant points are “crushed” together960 as an artifact of the embedding algorithm.961

SNE kernel Secondly, we test a Gaussian kernel — the kernel used for the original SNE algorithm962 (Hinton and Roweis, 2003; van der Maaten and Hinton, 2008) — with the log probability function:963

logwφ(zj |zi) = logN (zj |zi, η2i ) =
−‖zi − zj‖2

2η2i
+ Zi (21a)

Zi = log ηi + log
√

2π, (21b)
where η2i is the variance.964

Setting the kernel parameters The kernel parameters for the low-dimensional similarities are typically965 set to a constant value, such as τi = νi = ηi = 1 (van der Maaten and Hinton, 2008), or are scaled966 linearly with the dimensionality of the latent embedding (van der Maaten, 2009), but we also test967 similarity kernels where these parameters are learned for each data point, parameterized by the encoder968
DNNφ(x) — an idea proposed by van der Maaten (2009). When the kernel parameters are constant969 across all data points, the log normalization terms (Eqs. 20b, 21b) used for calculating the log970 probabilities can be omitted as an additive constant that has no effect on the calculations after971 normalization. However, this term is potentially important for optimization when learning these972 parameters as a function of each data point, so we include it in our calculations.973

Reinterpreting the similarity loss term To maximize numerical stability when optimizing the similarity974 term, we substitute the cross-entropy between the high-dimensional and low-dimensional similarities975
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H[p(xj |xi), qφ(zj |zi)], which is proportional to the Kullback-Leibler divergence and, after dropping the976 expectation, can be derived as follows:977

∑
j

SNEj|i(xi,xj ,φ) =
∑
j

KL[p(xj |xi)‖qφ(zj |zi)] (22a)
=
∑
j

p(xj |xi) log
p(xj |xi)

qφ(zj |zi)
(22b)

=
∑
j

p(xj |xi) log p(xj |xi)︸ ︷︷ ︸
−entropy

−
∑
j

p(xj |xi) log qφ(zj |zi)︸ ︷︷ ︸
cross entropy

(22c)

= constant−
∑
j

p(xj |xi) log qφ(zj |zi) (22d)
∝ −

∑
j

p(xj |xi) log qφ(zj |zi) =
∑
j

H[p(xj |xi), qφ(zj |zi)]. (22e)
Consequently, the Kullback-Leibler divergence for the similarity term can be reinterpreted as the978 cross-entropy between the pairwise similarities up to an additive constant (the negative entropy of the979 high-dimensional similarities), which can be omitted for the purposes of optimization. To further980 improve numerical stability for this computation, the cross-entropy is decomposed into attractive and981 repulsive forces using the unnormalized similarities (following Ding et al. 2018; Kobak and Berens 2019),982 which is written as:983

−
∑
j

p(xj |xi) log qφ(zj |zi) = −
∑
j

p(xj |xi) log
wφ(zj |zi)∑
n wφ(zn|zi)

(23a)
= −

∑
j

p(xj |xi) logwφ(zj |zi) +
∑
j

p(xj |xi) log
∑
j

wφ(zj |zi) (23b)
= −

∑
j

p(xj |xi) logwφ(zj |zi)︸ ︷︷ ︸
attract

+ log
∑
j

wφ(zj |zi)︸ ︷︷ ︸
repel

. (23c)

This may also help to clarify why we wrote the low-dimensional kernels as log-probability functions in984 Eqs. 20a, 21a.985

C Extensions of VAE-SNE986

C.1 Spherical embeddings with a von Mises-Fisher kernel987

In addition to embeddings with Euclidean geometry, we introduce a version of VAE-SNE that uses polar988 geometry and embeds high-dimensional data on the surface of a 3D unit sphere. We calculate the989 high-dimensional similarities according to Appendix B, but we alter the calculations for the transition990 probabilities by using the cosine similarity for the high-dimensional pairwise metric. After normalization,991 this is equivalent to using a (hyper)spherical von Mises-Fisher distribution as the similarity kernel, or:992

t(xj |xi) =
F(xj |xi, κi)∑
n F(xn|xi, κi)

=
exp

(
x̂i · x̂T

j κi
)∑

n exp (x̂i · x̂T
nκi)

, (24)
where x̂i = xi/‖xi‖2 and κi is the concentration parameter (the inverse variance κi = ς−2i ), which is993 selected using binary search to match the perplexity to a desired value (see Appendix B for details). We994
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then calculate the low-dimensional similarities using a 3D von Mises-Fisher kernel to create a spherical995 embedding:996

logwφ(zj |zi) = logF(zj |zi, ρi) = ẑi · ẑTj ρi + Zi (25a)
Zi = log ρi − log sinh ρi − log 4π (25b)

where ẑi = zi/‖zi‖2 and ρi is the concentration parameter (inverse variance). The log normalization997 term (Eq. 25b) can be omitted when ρi is set to a constant, but we include it for the purposes of998 optimizing ρi as a function of each data point.999 The idea of using spherical embeddings for dimensionality reduction has been explored previously1000 with the von Mises-Fisher stochastic neighbor embedding (VMF-SNE) algorithm (Wang and Wang, 2016)1001 as well as more recent work by Ding and Regev (2019) who apply this type of embedding to visualize1002 single-cell RNA-seq data. The UMAP algorithm (McInnes et al., 2018) has a similar option to embed data1003 in polar coordinates, as well as other non-Euclidean spaces. VAEs with (hyper)spherical latent variables1004 have also been explored extensively in the machine learning literature (Davidson et al. 2018; reviewed by1005 Ding and Regev 2019). This type of spherical representation can be useful for data analysis, as1006 high-dimensional vectors are often more accurately represented in polar coordinates. Similar to a1007 heavy-tailed Student’s t similarity kernel (van der Maaten and Hinton, 2008), a spherical von Mises-Fisher1008 similarity kernel can also prevent “crowding” of the data toward the center of the latent coordinate1009 system (Davidson et al., 2018; Ding and Regev, 2019), which is undesirable for visualizing data (van der1010 Maaten and Hinton, 2008). To test this extension, we use von Mises-Fisher VAE-SNE to embed the1011 posture dynamics dataset from Berman et al. (2014, 2016); Pereira et al. (2019) as well as the single-cell1012 RNA-seq dataset from La Manno et al. (2018) and visualize the embeddings across the three dimensions1013 of the unit sphere (Fig. S10; Video S8; Video S9). We find that the results are qualitatively similar to 2-D1014 Euclidean embeddings of the same data (Fig. 2), but are instead embedded across a 3-D sphere. Despite1015 not using a heavy-tailed similarity kernel (van der Maaten and Hinton, 2008) these spherical embeddings1016 naturally do not exhibit any crowding problems (Davidson et al., 2018; Ding and Regev, 2019), which may1017 make this a useful visualization tool for some scenarios.1018

C.2 Convolutional VAE-SNE for image data1019

We introduce a convolutional version of VAE-SNE for embedding image data from raw pixels. This1020 version of VAE-SNE is modified by first applying a 2-D convolutional neural network CNNφ — a1021 SqueezeNet v1.1 (Iandola et al., 2016) pretrained on ImageNet (Deng et al., 2009) — to each image and1022 then calculating the pairwise similarity using spatially-pooled feature maps from the CNNφ output. The1023 high-dimensional transition probabilities (Appendix B) are then calculated using a Gaussian kernel:1024

t(xj |xi) =
exp

(
−d(v̂i, v̂j)

2/2ς2i
)∑

n exp (−d(v̂i, v̂n)2/2ς2i )
, (26)

where v̂i is a vector of spatially-pooled feature maps from the CNNφ output, or v̂i = CNNφ(xi). The1025 approximate posterior is then calculated as a nonlinear function of the pooled feature maps1026
DNNφ : v̂i → zi, which is written as qφ(z|xi) = N (z|DNNφ(v̂i)). For the decoder we use a feed-forward1027 network DNNθ : zi → ṽi as before, where ṽi is a reconstruction of the CNNφ output v̂i. We then apply1028 mean squared error between the pooled feature maps and the reconstruction as the likelihood function1029 for the distortion loss (Eq. 1b). A convolutional decoder could also be used to fully reconstruct the raw1030 image pixels, but we found simply reconstructing the pooled feature maps to be effective for visualizing1031 the distribution of images in two dimensions.1032 To demonstrate the utility of convolutional VAE-SNE, we embed natural history image datasets of1033 both shells (Zhang et al., 2019) and (Heliconius spp.) butterflies (Cuthill et al., 2019). We then visualize1034 these embeddings to qualitatively assess performance of this VAE-SNE variant (Figs. S11, S12). We find1035
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that perceptually similar images are grouped together in the embedding based on complex sets of1036 image features — rather than simple heuristics like color — and these groupings correspond to1037 taxonomic relationships within the dataset, which were not explicitly included as part of the training set.1038 This variant of VAE-SNE is functionally similar to using the perceptual distance (Johnson et al., 2016a;1039 Wham et al., 2019) as a similarity metric and likelihood function except that the model can be trained1040 end-to-end with small batches of images directly using raw pixels instead of first preprocessing images1041 to produce feature activations. These results demonstrate that VAE-SNE can be used to analyze very1042 large image datasets, by loading images in small batches, and can also be extended to images with1043 variable resolution, by integrating across feature map outputs from the CNN to remove the spatial1044 dimension — both of which are typically not possible with other dimension reduction algorithms.1045
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