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Abstract

Scientific datasets are growing rapidly in scale and complexity. Consequently, the task of understanding
these data to answer scientific questions increasingly requires the use of compression algorithms that
reduce dimensionality by combining correlated features and cluster similar observations to summarize
large datasets. Here we introduce a method for both dimension reduction and clustering called VAE-SNE
(variational autoencoder stochastic neighbor embedding). Our model combines elements from deep
learning, probabilistic inference, and manifold learning to produce interpretable compressed
representations while also readily scaling to tens-of-millions of observations. Unlike existing methods,
VAE-SNE simultaneously compresses high-dimensional data and automatically learns a distribution of
clusters within the data — without the need to manually select the number of clusters. This naturally
creates a multi-scale representation, which makes it straightforward to generate coarse-grained
descriptions for large subsets of related observations and select specific regions of interest for further
analysis. VAE-SNE can also quickly and easily embed new samples, detect outliers, and can be optimized
with small batches of data, which makes it possible to compress datasets that are otherwise too large to
fit into memory. We evaluate VAE-SNE as a general purpose method for dimensionality reduction by
applying it to multiple real-world datasets and by comparing its performance with existing methods for
dimensionality reduction. We find that VAE-SNE produces high-quality compressed representations with
results that are on par with existing nonlinear dimensionality reduction algorithms. As a practical
example, we demonstrate how the cluster distribution learned by VAE-SNE can be used for unsupervised
action recognition to detect and classify repeated motifs of stereotyped behavior in high-dimensional
timeseries data. Finally, we also introduce variants of VAE-SNE for embedding data in polar (spherical)
coordinates and for embedding image data from raw pixels. VAE-SNE is a robust, feature-rich, and
scalable method with broad applicability to a range of datasets in the life sciences and beyond.

1 Introduction

Modern scientific research generates large, high-resolution datasets that are complex and
high-dimensional, where a single observation from an experimental system can contain measurements
describing hundreds, or thousands, of features. For example, neuroscientists measure electrical activity
across thousands of individual neurons simultaneously (Jun et al.,[2017;/Stringer et al.}2019alb) — even
across the entire brain (Ahrens et al.,[2012,{2013); cell biologists and bioinformaticians routinely
sequence the transcriptome for thousands of genes across large populations of single cells (Samusik
et al.,[2016;|La Manno et al.}|2018;|Becht et al.,2019;|Linderman et al.,2019)); behavioral scientists
measure the high-dimensional body posture dynamics of animals and humans (Stephens et al.,2008,
2011;|Kain et al.,|2013;[Berman et al.}|2014; Wiltschko et al.;2015; Klibaite et al.;|2017;|Costa et al.;|2019;
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« [Cande et al.}[2018}|Mathis et al.,|2018}|Chambers et al.,[2019}|Gunel et al.,|2019;|Graving et al.|[2019;

s |Klibaite and Shaevitz}|2019;|Nath et al.;|2019; Pereira et al.,[2019;|Bala et al.;|2020; Ebbesen and Froemke|
s [2020;Karashchuk et al.,2020); and evolutionary ecologists measure complex morphological patterns
¥ across sizeable collections of animal specimens (Cuthill et al.,[2017,{2019;|[Ezray et al.,[2019;Wham et al.,
s |2019;/Zhang et al.}[2019). While there are many benefits to measuring real-world systems accurately and
s completely for answering scientific questions, this added complexity poses problems for conventional
« data analysis methods — especially those commonly used in the life sciences, like linear models (Bolker
« et al.}2009) — that are designed for small, low-dimensional datasets and typically rely on simplified

«2 models with strong, often unrealistic, assumptions for making statistical inferences.

3 To deal with the complexity of modern data, researchers in many fields have begun to use

« machine-learning methods known as dimensionality reduction and clustering to help interpret large,

»s high-dimensional datasets. These algorithms distill correlated features down to a smaller set of

s components (dimensionality reduction) or group large subsets of observations into a smaller set of

«# classes based on similarity (clustering). Together these methods offer scientists a way to compress

s data, where compression is typically performed with the goal of reducing the size and complexity of a
4+ dataset while making only minimal, or very general, a priori assumptions about the true distribution of the
so data. Because these algorithms derive their compressed representations directly from the structure of
s the data itself, without human supervision, they are typically known as unsupervised learning algorithms.
5 Across many scientific disciplines, unsupervised algorithms are rapidly becoming a commonly-used
s tool for visualizing and interpreting high-dimensional data distributions as well as summarizing large
s« datasets with coarse-grained descriptions and identifying specific subpopulations and regions of

ss interest within the data for further downstream analysis. Researchers have applied these methods to
ss demonstrate how the brain organizes behavior (Stephens et al.|[2008}2011; Brown et al.} 2013} |Wiltschko!
s et al.[2015;|Berman et al.,|2016; Billings et al.,|2017;|Cande et al.,|2018;|Markowitz et al.,|2018;|Costa et al.,
ss |2019;[Stringer et al.}2019ab); describe how cells grow and develop over time (La Manno et al.,[2018);
ss document new and rare types of cells (Grin et al.,[2015; [Linderman et al.},2019); gain insights into cancer
o treatment (Tirosh et al.,[2016); and reveal fundamental principles of evolution (Cuthill et al.,|2019; Ezray
& et al,|2019;Wham et al.}|2019). Therefore, as scientists begin to regularly rely on these algorithms for
&2 analyzing complex datasets, the task of ensuring the quality, robustness, and utility of the compressed
& representations they produce is an issue of considerable importance — as is the ability to scale these
« methods to increasingly large datasets.

65 While existing methods for dimension reduction produce high-quality compressed representations
e (Becht et al.,|2019; Kobak and Linderman|2019), they typically lack features for identifying groups of

& similar data (i.e., learned clusters; but see |Pezzotti et al.[2016;Robinson and Pierce-Hoffman|2020), and
s (despite much progress to improve scalability of existing algorithms (Linderman et al.,|2017;|McInnes

o et al}/2018;/Linderman et al.;[2019), some of the most widely-used methods are still limited in their ability
7 to scale beyond a few million observations without specialized, high-performance hardware — especially
n in the case of large, out-of-core datasets that cannot fit into memory. Recent applications of deep

7 learning (Goodfellow et al.,[2016), and deep generative models in particular (Appendix Kingma and
72 Welling|2013; Rezende et al.[2014), have begun to address these issues (Ding et al.,2018;|Szubert et al.,
72 12019;|Ding and Regev,|2019). Nevertheless, even with the low memory and computational cost of deep
75 learning methods that can be trained with small batches of data on consumer-grade hardware, these
7 new algorithms are still significantly slower to fit to data than more popular methods because they

7 require costly nearest neighbor or pairwise distance calculations (Becht et al.}[2019;Ding et al.,|2018;

7 |Szubert et al.,[2019). The majority of these methods also do not provide any built-in mechanism for

7 detecting outliers, which could potentially bias any downstream results and cause statistical errors

s When testing hypotheses.

8 There has also been a flurry of recent work on advanced methods for clustering data (e.g.,/Campello
&2 |et al.[2013}/Jiang et al.[2016; Xie et al.[2016;|Guo et al.[2017;|MclInnes et al.[2017}|Fogel et al |[2019} Yang
ss et al.|2019;Robinson and Pierce-Hoffman|2020; and numerous others), including efficient methods that
s rely on deep learning and deep generative models. However, the vast majority of these methods impose
s strong assumptions about the shape of the clusters and require the user to manually select the number
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s Of clusters fitted to the data — or, alternatively, involve complex computations that do not scale well to
&7 large datasets. Determining how many clusters to fit is typically a non-trivial, unintuitive, and

ss computationally-intensive task for datasets where the number of clusters is not known a priori (Milligan
s |and Cooper, 1985;/Pham et al.,[2005;[Fang and Wang;|2012; Todd et al.},2017). Many recently proposed
o clustering algorithms are also only evaluated with relatively small “toy” datasets, such as the MNIST

o handwritten digit database (LeCun et al.,[2010), where the data typically have very little noise, no outliers,
o2 and the number of clusters is often known a priori. This lack of rigorous real-world assessment casts
s doubt on the practical utility of these algorithms in cases where datasets have a large number of

« Observations, are naturally noisy or contain outliers, and the number of clusters is unknown, such as

os those commonly used in the natural sciences.

% Here we aim to address many of the limitations outlined above and unify some of the key

o7 methodological concepts from previous work into a single modeling framework. To accomplish this, we
e introduce a deep generative model for both dimensionality reduction and clustering. We then compare
9o our model with existing methods for dimensionality reduction, and importantly, to ensure that it has

w0 practical utility, we demonstrate the application of our method using empirical examples with real-world
o data from multiple domains. In comparison to existing dimension reduction methods, our proposed

02 method produces low-dimensional data representations with similar, or better, quality while also offering
03 several key improvements. Notably, our approach provides the ability to scale to datasets containing
04 tens-of-millions of observations without specialized, high-performance hardware and automatically

s learns an interpretable cluster distribution from the data without any manual tuning or expensive

s computations to determine the number of clusters. Together these results demonstrate that our

w7 proposed method is a robust, feature-rich, and scalable tool for data analysis and is widely-applicable to
08 a variety of tasks.

« 2 Results

w  We make three main contributions in this paper: (1) First, we introduce a deep generative model for both
m dimensionality reduction and clustering called variational autoencoder stochastic neighbor embedding
m  (VAE-SNE; Fig. [T} Methods). VAE-SNE can produce a variety of different compressed representations and
ns readily scales to out-of-core datasets with tens-of-millions of observations. Our model builds on

w4 numerous ideas from past work by synthesizing methods from a class of generative models known as
ns  variational autoencoders (VAEs; Kingma and Welling|2013)), the popular dimensionality reduction

w algorithm (t-distributed) stochastic neighbor embedding (SNE/t-SNE;Hinton and Roweis|2003;|van der
w |Maaten and Hinton[2008) and its many extensions (van der Maaten,|2009;|Wang and Wang, 2016;|Chien
ws and Hsu,[2017;|Ding et al.,|2018), as well as recent advances in variational inference (Kingma et al.,{2014;
ne [Burda et al.}|2015; Dilokthanakul et al.},|2016;/Cremer et al.,[2017; Tomczak and Welling,2017) and

w  clustering methods (Todd et al.}[2017). (2) Second, we apply VAE-SNE, and a variety of other popular

w dimensionality reduction methods, to compress real-world datasets from different domains (Fig. [2). We
122 then quantitatively assess how each algorithm performs in preserving important aspects of the data —
23 including information about local, global, and temporal structure. We also assess generalization to new,
e out-of-sample data and compare processing speeds for each algorithm. Additionally, we show how the
1s likelihood score produced by VAE-SNE can be used to detect outliers when embedding out-of-sample
s data. (3) Third, we show how VAE-SNE can be used to automatically cluster large datasets into a small
17 set of interpretable classes. As a practical example, we apply VAE-SNE to a dataset of 21.1 million

18 Observations describing the high-dimensional body posture dynamics of a commonly-used model

1o organism — the fruit fly (Drosophila melanogaster) — to automatically discretize these data into motifs
w  Of stereotyped behavior for further analysis (Fig. [3} Berman et al.|2014;|Pereira et al.[2019). These results
w  illustrate how VAE-SNE can be used as a type of automated ethogram for describing the full behavioral
w2 repertoire of animals (reviewed by Anderson and Perona|2014; Berman|2018; Brown and De Bivort|2018;
13 |Datta et al.[2019), while also providing several advantages over existing methods for this task.

4 Our approach (Fig. [1f Methods) builds on VAEs as a base model for performing dimensionality

1
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Figure 1. Overview of the VAE-SNE model. a-f, Observed samples from a high-dimensional data distri-
bution x ~ p(x) (a) are probabilistically embedded (b) into a low-dimensional latent distribution pe(z)
(e) using an encoder deep neural network DNN : x — z to generate an approximate latent poste-
rior distribution ¢4 (z|x). Samples from the latent distribution z ~ ¢4 (z|x) or z ~ pe(z) (c) are then
transformed (f) using a generative decoder deep neural network DNNg : z — x to probabilistically
reconstruct the high-dimensional data distribution pg(x|z). Given a set of observed high-dimensional
data {x1,x2,...,xy} the model parameters for the encoder and decoder {0, ¢} are optimized so that the
approximate posterior for the encoder matches the true posterior from the generative decoder as best as
possible, or ¢4 (z|x) ~ pe(z|x), which then creates a functional mapping between the high-dimensional
and low-dimensional distributions. To improve local structure preservation during optimization, pairwise
distances between vectors in the high-dimensional and low-dimensional space are optimized using
pairwise similarity kernels (e), a probability density function of distance, so that the local neighborhoods
around each observation match as best as possible, or p(x|x;) ~ ¢4 (z|z;). This preferentially weights
the preservation of local neighborhoods over global relationships by assigning more probability mass to
nearby neighbors during optimization. The prior for the latent distribution pg(z) is also a learned Gaussian
mixture distribution (¢) that is jointly optimized with the encoder and decoder to fit the observed data
and can be used to cluster the latent distribution (d) into a small set of discrete classes pg(y|z) — where
highly-overlapping modes (mixture components) within the distribution are automatically merged into
the same class label using sparse watershed assignment (Methods; Todd et al.|2017)
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s reduction (Appendix , which, like other types of autoencoders (Hinton and Salakhutdinov,|2006),

13 model high-dimensional data using two deep neural networks: one to encode data to a compressed

w latent representation, and another to decode the latent vectors and reconstruct the data. However, VAEs
1 are distinct from other autoencoders in that the encoder is used to parameterize continuous

ue  distributions of latent vectors — from which latent vectors are then probabilistically sampled — rather
w than embedding each high-dimensional observation as a single point in the latent space. This type of
w model offers an attractive dimensionality reduction framework because the objective function (Appendix
142 naturally imparts a trade-off between the complexity of the encoded description and the overall

13 accuracy of the decoded reconstruction (Alemi et al.}|2016). However, these models suffer from multiple
us  Jong-standing issues including a phenomenon known as posterior collapse (Alemi et al.,|2017;|Dieng

us |et al.}|2019a) where the latent coordinate space becomes arbitrarily organized and no longer preserves
s any statistical features of the high-dimensional data distribution. There has been a string of recent work
w 1o address these issues including some relatively straightforward solutions (Higgins et al.,[2016; Dieng
us et al.}|2019a)) that achieve varying levels of success, as well as new objective functions that involve

ue regularizing the mutual information between the high-dimensional data and latent distribution (e.g.,

w0 [Zhao et al.|2017;|Rezaabad and Vishwanath|2019; reviewed by|Poole et al.|2019).

151 For VAE-SNE, we provide an effective solution to this problem with the addition of a stochastic

w2 neighbor regularizer (Appendix|B}van der Maaten and Hinton|2008; van der Maaten|2009;/Chien and Hsu
s 2017 Ding et al.|2018) that optimizes pairwise similarity kernels between the high- and low-dimensional
1 distributions to strengthen local neighborhood preservation and more explicitly retain a useful

15 representation. We also draw on other theoretical and practical improvements from the literature to

1 enhance the performance of VAE-SNE (Methods). For example, we use a Gaussian mixture prior for

w7 learning the latent distribution (Kingma et al.,|2014; Dilokthanakul et al.,[2016;[Tomczak and Welling|

18 |2017). This choice of distribution allows for better local structure preservation and, when combined with
e sparse watershed assignment to merge overlapping mixture components (Fig. [1; Methods;|Todd et al.
wo [2017), serves as a flexible method for clustering data — without the need to manually define the number
w Of clusters orimpose strong assumptions about cluster shape. We employ several other advances to
w2 further improve structure preservation. For instance, we apply a perplexity annealing technique (Kobak
s [and Berens}|2019) to slowly decay the size of the local neighborhoods optimized by the model during
e training, which helps to preserve structure across multiple scales. Moreover, we extensively optimize the
s algorithms underlying our model by applying parallel computations on the CPU and GPU that

s dramatically improve processing speed compared to previous work (Ding et al.,{2018).

167 In addition to our three main contributions, we further extend VAE-SNE to demonstrate its flexibility
s as a framework for dimensionality reduction. To accomplish this, we introduce a von Mises-Fisher

s variant of VAE-SNE (Appendix [C.1} Fig. [S10}[Video S8}[Video S9) that embeds data in polar coordinates
w  (rather than Euclidean coordinates) on a 3-D unit sphere, which is potentially a more natural

i representation for many high-dimensional datasets (Davidson et al.,[2018) and solves the “crowding”
w2 problem common to some methods (van der Maaten and Hinton}|2008;|Ding and Regev,(2019). Finally,
v we also apply a modified convolutional version of VAE-SNE (Appendix|C.2j Figs. to visualize
wa natural history images of animal specimen collections (Cuthill et al.,|2019; Zhang et al.;|2019) by directly
vs embedding the raw pixel data. Our results for these two extensions are described in Appendix|[C]

w 2.1 Comparisons with other dimension reduction algorithms

w7 Current methods for dimensionality reduction generally fall into two classes known as linear and

ws nonlinear algorithms. Linear algorithms, such as principal components analysis (PCA), compress

7 high-dimensional data by learning linearly weighted combinations (affine transformations) of the

wo original feature set. Typically these algorithms are optimized to preserve the global structure of the data,
w  where local neighborhood relationships are distorted in order to maintain the full coordinate system of
w the original features as best as possible. On the other hand, nonlinear algorithms (sometimes called
s manifold learning algorithms) such as t-SNE (van der Maaten and Hinton|2008) and uniform manifold
1w approximation and projection (UMAP; Mclinnes et al.[2018) typically take the opposite approach of
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s prioritizing relative relationships between data points rather than the global coordinate system. This
s approach allows local neighborhoods to be preserved while potentially sacrificing information about the
w larger-scale relationships between data points in the global coordinate space — although, as we

ws demonstrate here, the global distortion imposed by many of these algorithms is actually comparable to
1o that of PCA.

190 To validate VAE-SNE as a general-purpose method for dimensionality reduction, we quantitatively
11 compare its performance with other dimension reduction algorithms — both linear and nonlinear — using
w2 two datasets from different domains (see Methods) describing animal body part dynamics (Berman
w3 |et al.}|2014}/2016;[Pereira et al.,[2019) and single-cell RNA-seq expression profiles for hippocampal

wa Neurons (La Manno et al.;|2018). We benchmark multiple variants of VAE-SNE with different pairwise
s similarity kernels for preserving local neighborhood information (including kernel functions with learned
ws parameters; Appendix[B), and we compare these results with those from two high-performance variants
w7 of t-SNE (van der Maaten and Hinton,|[2008) known as FIt-SNE (Linderman et al.;2017,{2019) and

s Barnes-Hut-SNE (van der Maaten||2014), as well as UMAP (Mclnnes et al.,[2018), and two other deep
e neural network-based dimension reduction methods: scvis (Ding et al.}[2018)), and ivis (Szubert et al |
200 |2019). We also apply PCA in 2, 5,10, and 100 dimensions for a linear baseline comparison. We fit each
20 algorithm with a training set and also embed an out-of-sample test set to assess generalization to new
202 data. For both the training and test sets, we then quantitatively assess each algorithm's ability to

23 preserve different types of information about the high-dimensional data when compressing the data to
204 two dimensions, including local, global, fine-scale, and temporal information (Methods). We quantify
20s local information preservation for each algorithm by measuring the preservation of both metric

26 (distance- or radius-based) and topological (nearest neighbors-based) neighborhoods that are

207 approximately 1% of the total embedding size; we measure global information preservation by

28 calculating the correlation between pairwise distances in high- and low-dimensional space; we assess
209 fine-scale information by measuring neighborhood preservation for multiple neighborhood sizes < 1%
no  Of the total embedding size; and we evaluate temporal information preservation by computing the

an - correlation between high- and low-dimensional temporal derivatives in a timeseries dataset. Overall the
2z qualitative properties of the embeddings produced by each algorithm are strikingly similar within

=5 datasets (Fig. [2), which likely indicates shared mathematical properties of how the latent distributions
214 are modelled. However, we do find potentially important quantitative differences between these

zs  algorithms in terms of information preservation and processing speed. We summarize our overall

26 assessments of each nonlinear dimension reduction algorithm in Tables[S1}[S2}[S3]

a7 2.1.1 Local structure preservation

28 We find that VAE-SNE compares closely to FIt-SNE (Linderman et al.,|2017), Barnes-Hut-SNE (van der
20 |Maaten,[2014), and UMAP (Mclnnes et al.},|2018) in preserving local structure for both the training set
20 (Figs.[STh,[S2k.[S5R) and test set (Figs.[S3p,[S4R), while scvis (Ding et al.}[2018) and ivis (Szubert et al.|
an [2019) perform slightly worse. Our results show that VAE-SNE with a t-SNE similarity kernel (van der

22 |Maaten and Hinton|2008) performs the best for preserving local structure, but VAE-SNE with a Gaussian
223 SNE kernel (Hinton and Roweis,[2003) also performs well — similarly to scvis (Ding et al.,|2018) and ivis
24 (Szubert et al.}[2019). We also find that learning the similarity kernel parameters (for both Gaussian and
»s  Student’s t kernels) as a function of each data point does not improve performance for our local

26 preservation metrics. The top performing algorithms for local structure preservation (VAE-SNE, t-SNE,
2z and UMAP) are closely comparable to 5-dimensional PCA for both metrics we used to assess local

28 neighborhood preservation.

20 2.1.2 Global structure preservation

220 We find that VAE-SNE also does well in preserving global structure for both the training set (Figs. ,
2 [S2b,[S5R) and test set (Figs. [S3a,[S4b). VAE-SNE with a Gaussian SNE kernel performs best for this
22 metric, but VAE-SNE with a t-SNE kernel also performs nearly as well. Notably all the
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Figure 2. Embeddings for body posture dynamics and single-cell RNA-seq data. a, 2-D embeddings of
body posture dynamics data from|Berman et al. (2014}|2016); Pereira et al.|(2019) for each algorithm we
tested. The color of each point indicates the logarithm of the total amplitude (overall movement) of body
parts for each observation. b, 2-D embeddings of single-cell RNA-seq data of developing hippocampal
neurons from|La Manno et al.|(2018) for each algorithm. The color of each point indicates the cell type
for that observation as described by La Manno et al.|(2018).
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23 neural-network-based methods (VAE-SNE, scvis Ding et al.[2018, ivis(Szubert et al.[2019) outperform
2. both t-SNE and UMAP (Mclnnes et al.,|2018) in preserving global structure for both datasets we tested.
»s  This is perhaps not surprising given that recent work has shown neural network models tend to learn the
26 Same axes as PCA (Rolinek et al.}|2019). Additionally, these results show that learning the similarity

257 kernel parameters as a function of each data point does improve global structure preservation for

238 VAE-SNE with a t-SNE kernel — likely because it is optimized to be more similar to the Gaussian kernel
»s  used to calculate high-dimensional similarities (Appendix[B). The top performing algorithms for this

20 Metric are comparable to 2-dimensional PCA, which demonstrates that nonlinear algorithms are capable
an - Of preserving the same global information as PCA while also better preserving local structure. On one
22 hand, The scvis (Ding et al.}|2018) algorithm in particular excels at preserving global structure for the
s single-cell RNA-seq dataset we tested (Fig. [S5g). On the other hand, ivis (Szubert et al.,[2019) performs
22« much more poorly than the other neural network algorithms for this dataset, and FIt-SNE (Linderman
s |et al.}|2017,[2019) and Barnes-Hut-SNE (van der Maaten,|2014) perform even worse. We also show that
26 UMAP (Mclnnes et al.,2018) with PCA initialization better preserves global structure than the default
27 Laplacian Eigenmap initialization.

#s  2.1.3 Fine-scale structure preservation

29 In addition to local and global structure preservation, we evaluate the ability of each algorithm to

0 preserve very fine-scale neighborhood information (Figs. [S1p,[S3p,[S5p). We find that both FIt-SNE

25 (Linderman et al.,|2017) and Barnes-Hut-SNE (van der Maaten||2014) excel at preserving this fine-scale
2 information for the posture dynamics dataset (Figs. , ) while every other nonlinear algorithm

3 performs relatively poorly for both the training and test set. For the single-cell RNA-seq dataset, this

25« distinction is not nearly as large and the algorithms all perform more similarly (Fig. [S5p), which indicates
255 performance varies depending on the dataset. Performance for the ivis algorithm (Szubert et al.}|2019)
25 IS especially poor for this metric on the single cell RNA-seq dataset. However, neighborhood

»s» - membership for neighborhoods between 1% and 10% of the total embedding size are all similarly

s well-preserved for each algorithm.

29 2.1.4 Temporal structure preservation

%0 Because one of the datasets we use for benchmarking is a behavioral timeseries, for these data we also
21 assess the temporal structure preservation of each algorithm (Figs. [S3p, [S4k) on the out-of-sample test
%2 set (the training set is randomly sampled across multiple timeseries, so temporal information is not

3 preserved). We find that VAE-SNE (particularly the SNE kernel variant), FIt-SNE (Linderman et al.;|2017),
4 Barnes-Hut-SNE (van der Maaten, 2014), scvis (Ding et al.},[2018), and ivis (Szubert et al.,[2019) perform at
s the same level as 5-dimensional PCA in preserving temporal structure, while UMAP (Mclnnes et al.;[2018)
s performs relatively poorly in comparison to the other algorithms — even worse than 2-dimensional PCA.

7 2.1.5 Speed comparisons

2%s  In addition to assessing information preservation, we also compare the speed the of each algorithm
% both when fitting the algorithm to the training set (Figs. [STc,[S5c) and when embedding an out-of-sample
oo test set (Figs. , ). We find that training time increases approximately linearly with the size of the
on  dataset for each algorithm. UMAP (Mclnnes et al.}|2018) has the fastest training time (approximately as
a2 fast as PCA), followed by FIt-SNE (Linderman et al.,|2017) and Barnes-Hut-SNE (van der Maaten,(2014),
27z and then VAE-SNE. While VAE-SNE is slower for fitting the training set than both UMAP (Mclnnes et al.,
222 |2018) and t-SNE, it is much faster than the other two neural network methods scvis (Ding et al.,[2018)
s and ivis (Szubert et al.,[2019). We also demonstrate that VAE-SNE, and the other neural network

2 methods, can quickly embed out-of-sample test data (Figs. [S3k,[S5€). The time needed for embedding
27 new data is much higher for both t-SNE and UMAP, and while the elapsed time for embedding the test
28 set scales linearly with the number of samples for all algorithms, we also find that it increases with the
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279 size of the training set for both UMAP (Mclnnes et al.}|2018) and Barnes-Hut-SNE (van der Maaten,[2014)
x0  (Fig.[S3[). This is almost certainly because adding new data for these algorithms requires calculating
251 approximate nearest neighbors between the out-of-sample data and the training set, which consequently
22 Fequires more computation time for larger training sets. Unexpectedly, FIt-SNE (Linderman et al.;[2017)
23 does not exhibit this behavior despite using similar nearest neighbor calculations to Barnes-Hut-SNE
220 (van der Maaten,|2014). On the other hand, VAE-SNE and other deep learning algorithms do not suffer
255 from this limitation. Finally, while we do not comprehensively assess memory complexity of different
26 algorithms in this paper, we stopped our speed comparisons at data subsets with 232,000 (x 1500

27 dimensions) observations because UMAP began to cause out-of-memory errors for larger subsets —
s While all of the other algorithms we tested could still successfully run under the same conditions. This
29 helps to illustrate the key advantage of deep learning-based methods, which naturally maintain very low
200 Memory complexity by applying optimization using small batches of data.

o 2.2 Using the likelihood to assess out-of-sample data

22 Because VAE-SNE also calculates a likelihood score for reconstructing the original high-dimensional
203 data, we can use this to assess performance on out-of-sample data, which is an idea originally proposed
20« by|Ding et al.[(2018). To test this, we calculate the likelihood score for real data from the posture

25 dynamics dataset (Berman et al.,[2014,|2016; Pereira et al.;|2019) and randomly-permuted data

26 (randomized across feature columns) from the same dataset. We find that the likelihood score is reliably
27 lower for the randomized data, and the two likelihood distributions are well separated (Fig. [S6f), which
26 Shows this metric could potentially be used to detect outliers. We also compare the entropy of the

200 @approximate posterior distribution for each embedded sample as another potential metric for detecting
w0 outliers. While we find that the entropy is much higher for the randomized data, the distribution is highly
s« overlapping with the entropy for the real data (Fig. [S6p), which indicates the entropy may not be as

sz useful for evaluating the embedding quality.

ws 2.3 Clustering body posture dynamics to reveal stereotyped behavioral
504 organization

s To demonstrate its capabilities as a clustering algorithm, we use VAE-SNE to automatically discretize a
ws dynamical time series dataset describing the high-dimensional body posture and behavioral repertoire of
s 59 freely-behaving fruit flies (D. melanogaster; Berman et al.[2014}/2016; |Pereira et al.[2019) — a

s commonly-used model organism for neuroscience, pharmaceutical, and genetics research. To

a0 accomplish this, we use the annotated training data from (Pereira et al.,[20719) to train a pose estimation
a0 model using deep learning-based software (DeepPoseKit;|Graving et al.[2019). We then use this trained
sn model to automatically track the spatial locations of 10 body parts (head, legs, wings, abdomen) directly
sz from video timeseries data and generate time-frequency spectrograms describing body-part dynamics
a3 for each observation in the timeseries (Berman et al.}2014), which naturally incorporates multi-scale
su temporal information into each data vector. We then apply VAE-SNE to compress the datato a

a5 30-dimensional latent embedding and simultaneously discretize the dynamical posture timeseries into a
as  set of behavioral clusters. We find that, after optimizing the 30-D VAE-SNE model for 5 repeated trials
a7 using the full 21.1 million observation dataset and applying sparse watershed assignment to generate
s cluster labels (Methods; Fig. ; Todd et al.[2017), VAE-SNE consistently learns a total of 26 low-level
s behavioral clusters describing distinct, stereotyped body part movements. We also achieve similar

w20 (nearly identical) results when clustering in 10-D and 50-D space and when varying the number of

an  components in the Gaussian mixture prior used for clustering — provided that the number of

s22 components is large enough (e.g., K > 100).

323 To provide a broad overview of the behavioral structure discovered by VAE-SNE, we manually group
24 these low-level clusters into 6 high-level clusters (Figs. by examining video clips

»s sampled from each cluster (Video S2HVideo S7) and by calculating and visualizing the mean

ws  Spectrograms for each low-level cluster to quantify the average distribution of body part movements

59
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Figure 3. Clustering body posture dynamics. a, The posterior probability density for the full 21.1 million
observation body posture dynamics dataset from|Berman et al.| (2014, 2016)); Pereira et al.|(2019) em-
bedded using a 2-dimensional VAE-SNE model. b, The manually-grouped high-level cluster assignments
produced using the learned prior from a 30-dimensional VAE-SNE embedding visualized in the 2-D em-
bedding, where contours are the largest 90% probability density contour for each cluster distribution.
¢, Mean and 95% bootstrap intervals of the marginal (stationary) probability and mean bout length for
each high-level cluster (n = 59 per cluster). d-i, Visualizations describing the high-level locomotion (d,f h;
Fig. and posterior grooming (e,g,i; [Video S4 Fig. clusters. d-e, The 2-D posterior
probability density for each cluster (left) and the mean spectrogram for each cluster (right). f-i, The
principal component scores for the two largest components of the spectrograms assigned to each
cluster visualized within the 2-D embedding (left), and the eigenvector coefficients describing the linear
contribution of each spectrogram feature (right) for the principal component score.
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sz across frequencies for each behavioral class (Figs. -f,-i). These high-level clusters include:
»s locomotion (Video S2), anterior grooming

(Video S3), posterior grooming (Video S4), wing movements
20 (Video S5), small/slow leg movements (Video S6), and idle behavior (Video S7). Many of the low-level
s Clusters (10 clusters in total) describe distinct slow/small leg movements, while there are 3 low-level
s Clusters for locomotion (Fig. , 3 for anterior grooming, 6 for posterior grooming (Fig. , 2 for wing
sz movements, and 2 for idle behavior. Videos and posture timeseries data sampled from each cluster also
ss  Clearly demonstrate the stereotypy of behaviors within these behavioral classes, which matches well
x4 With previous work describing these dynamics (Berman et al.,2014,[2016; Klibaite et al.,[2017; Klibaite
15 |and Shaevitz}2019;[Pereira et al.,2019). Additionally, the principal components of the spectrograms
s from each high-level cluster (Fig. -i; Fig. [S7d-i) reveal continuous variation related to asymmetrical
s body movements and differences in peak movement frequency. We calculate basic statistics describing
s cluster usage across individuals (Figs. , , ) including the marginal (stationary) probability of
a0 behavioral classes across individuals and the mean bout length, or the average amount of time a
a0 behavior is performed when an individual transitions into that cluster. In particular, the low probability
s and short bout length for wing movements and short bout length for slow/small leg movements (Fig. [3c)
w2 indicate these clusters may be transitional or idiosyncratic behaviors (Todd et al.;[2017). For the low-level
a3 locomotion clusters (Fig. we also calculate the forward component of the leg movement velocity (in
us  body lengths per second, or BL - s71) relative to the egocentric orientation of the animal. We then use
us the forward velocity to classify each leg in the timeseries as “swing” (forward velocity > 0BL - s~ 1) or
s “stance” (forward velocity < 0 BL - s~!) and find that our low-level locomotion clusters show signatures
a7 Of distinct locomotory gaits (i.e., tetrapod and tripod gaits; Mendes et al.|2013; Pereira et al.[2019) with
as  different numbers of legs being used for walking, on average, within each cluster. Together these results
aus  demonstrate that VAE-SNE is able to automatically decompose the dynamics of known complex
0 behaviors (Video S1).
3s1 Due to the many philosophical complexities of objectively evaluating unsupervised cluster
2 representations (reviewed by|Jain et al.[1999; Kleinberg|2003;}/Todd et al.[2017), we forgo any further
s quantitative assessment of our clustering results and instead leave this for future work. For example, it
ssa IS unclear how to best select the number of clusters for many different algorithms; how to properly
s compare algorithms that naturally produce different numbers of clusters and cluster shapes; and what
s metric(s) should be used to meaningfully evaluate a clustering description as generally “good” or
s “useful” other than manual, qualitative validation of the results, which we already provide here — though
s several quantitative descriptors with varying levels of desirability have been recently proposed for
30 behavioral data (Todd et al.}2017). Comparing unsupervised cluster labels with a priori-defined labels —
w0 @S is common practice (e.g., Jiang et al.[2016;(Xie et al.[2016;|Guo et al.[2017;|Yang et al.[2019}Luxem
s et al.|2020) — is also problematic, as human-supervised descriptions may not accurately capture the
2 underlying structure of the data distribution, and this is especially true for datasets where the goal is to
3 potentially discover subtle differences that are undetectable by humans (e.g., Wiltschko et al.[2015).
s Despite the limitations imposed by these complexities, our results still illustrate multiple useful features
s Of VAE-SNE as a general-purpose method.
366 Overall, we demonstrate how VAE-SNE can be used as a practical, scalable, and flexible tool for
s clustering real-world high-dimensional data. In this case, we transform posture data into interpretable
s pehavioral labels that are comparable to those from previous methods (Berman et al.,[2014}2016; Todd
%0 |et al.,[2017; Klibaite et al.}|2017;|Cande et al.,[2018; [Klibaite and Shaevitz,|2019; Pereira et al.,|2019).
s However, in contrast to many of these existing methods, VAE-SNE performs dimension reduction and
sn  clustering simultaneously, and unlike most previously-described algorithms for clustering data (e.g.,
a2 [Jiang et al.[2016; |Xie et al.|2016;|Guo et al.|2017;|Yang et al.[2019)), our method learns a small set of
s decipherable classes without the need to carefully tune the number of clusters fitted to the data, which
s can often be a non-trivial, unintuitive, and computationally-intensive process (Milligan and Cooper,/1985;
a5 |Pham et al.}|2005; Fang and Wang}2012;{Todd et al.,|2017). Instead, any arbitrarily large number will give
w6 similar results due to the sparse watershed assignment procedure we use to combine overlapping
a7 clusters (Methods; Fig. [1d;[Todd et al.[2017). In contrast to methods that impose strong assumptions
ws  about cluster shape, our clustering method has relaxed assumptions and allows for arbitrarily complex
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s (e.g., non-convex) cluster distributions based on the local structure of the data. Additionally, in

s0 comparison to prior methods for unsupervised behavioral analysis, VAE-SNE has the advantage of being
s able to use more than two dimensions for clustering data, which has been shown to provide

sz higher-quality behavioral labels with many potentially-desirable properties (Todd et al.,[2017). Finally, our
3  results further show that there is no need to carefully select a subset of data to use for training (e.g., the
ssa  iMmportance sampling technique described by|Berman et al.[2014), which can also be a time-consuming
s process. Instead, VAE-SNE can be readily applied to large datasets that cannot fit into memory while still
s successfully detecting relatively short-lived and infrequent types of behavior, such as wing movements

s (Fig. [3p-c;[Video S5).

« 3 Discussion

s Here we introduce VAE-SNE, a deep generative model for simultaneously reducing dimensionality and
s0 clustering data. We compare VAE-SNE to existing methods for dimensionality reduction and

s demonstrate its utility and versatility using real-world examples. Our results establish that VAE-SNE is
sz able to generate robust and interpretable compressed representations for data from different domains
ss and is comparable in performance to other nonlinear methods for dimensionality reduction. In contrast
sa  to these existing methods, VAE-SNE has the advantage of being able to automatically cluster similar
ss observations into a small set of classes, which can then be used to summarize large datasets with a
a6 coarse-grained description or select specific subpopulations of data for more detailed analysis. Our

a7 approach can also readily scale to very large datasets by leveraging techniques from deep learning —
s including, and especially, out-of-core data that cannot fit into memory. However, despite these strengths,
s VAE-SNE still has important limitations depending on the goals of the user, and there are many ways in
a0 Which the model could be improved or extended in subsequent iterations. There are also other domains
an  that VAE-SNE could be applied to in the future.

402 VAE-SNE preserves local relationships while also minimizing global structure distortion. Additionally,
w3 While VAE-SNE is not explicitly an autoregressive model, it still preserves a good deal of

«4 high-dimensional timeseries information. However, our results also show that VAE-SNE, and most of the
«s other dimension reduction methods we tested, does not accurately preserve fine-scale structure

ws  (neighborhoods <1% of the total embedding size). For many applications, preserving these details may
«7 be unimportant, but this structure has been shown to be useful for detecting infrequent types of data,
w8 such as rare cell types (Linderman et al.;|2019). Therefore, our results suggest that if researchers wish to
w0 preserve this type of information they should use FIt-SNE (Linderman et al.,[2017,/2019) or

a0 Barnes-Hut-SNE (van der Maaten,[2014) over other algorithms for dimension reduction. We also find that,
. when initialized with PCA over the default initialization, UMAP (Mclnnes et al.,[2018)) preserves global
a2 structure slightly better without noticeably affecting local structure preservation, so PCA may be a more
«s advantageous choice for initializing UMAP embeddings.

a VAE-SNE optimizes faster than existing deep learning methods for dimensionality reduction, but

»s  FI-SNE (Linderman et al.;2017,/2019), Barnes-Hut-SNE (van der Maaten,|2014)), and UMAP (Mclnnes

«6 et al.}|2018) are still faster. However, the training time for deep-neural-network methods like VAE-SNE
«7 and ivis (Szubert et al.,[2019) can be variable due to the use of early stopping criteria that automatically
»s end training when no improvement in the objective function is detected. These early stopping criteria
se could be easily adjusted to further shorten (or lengthen) training time. While we did not assess

w20 performance during the optimization process, much of the training time for VAE-SNE is spent on minor
«  improvements to the objective function, which indicates adequate results can also be achieved with less
a2 training time. Additionally, FIt-SNE (Linderman et al.,[2017,12019), Barnes-Hut-SNE (van der Maaten,

a3 (2014), and UMAP (Mclnnes et al.,2018), are much slower for embedding new data because they

a4 calculate nearest neighbors for the new data and further optimize the embedding, which VAE-SNE does
w5 not require due to its learned encoder function. For smaller datasets that can fit in memory FIt-SNE

a6 (Linderman et al.,[2017,{2019), Barnes-Hut-SNE (van der Maaten,|2014), and UMAP (Mclnnes et al.,[2018)
.7 are still attractive options for dimensionality reduction, but for datasets that do no fit into memory,
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s  VAE-SNE provides some distinct advantages.

420 VAE-SNE has the ability to detect outliers and assess the embedding quality for out-of-sample data.
w0 This provides a straightforward mechanism for identifying new data to include in the training set, which
«n  can further improve performance. Most of the other algorithms we tested, or at least the specific

2 software implementations we tested, provide no mechanism for quantitatively assessing embedding
w3 quality for each observation — with outliers being simply embedded under the assumption that the data
«  are well supported by the training distribution. This can cause problems for any downstream analysis,
w5 especially when using statistical tests to answer scientific questions. Further improvements for outlier
«s  detection might include the use of Bayesian inference (Hafner et al.|2018)) or other methods for

.7 estimating predictive uncertainty (reviewed by |Kendall and Gal|2017).

438 We demonstrate that results produced by VAE-SNE can serve as a highly-interpretable coarse-grained
.0 description of tens-of-millions of observations — with several advantages over existing methods for

a0 clustering data. Applying VAE-SNE to future research in the behavioral sciences could help to reveal the
«  genetic, environmental, and neural underpinnings of animal behavior (Berman;|2018; Brown and

w2 |De Bivort,|2018;|Datta et al.,[2019) — especially when combined with recent advances in behavioral

«s  measurement (Mathis et al.;|2018;|Pereira et al.;|2019;|Graving et al.,|2019;|Giinel et al.,[2019) as well as
«a  genetic (Ran et al.;[2013; Doudna and Charpentier,|2014), sensory (Stowers et al.,[2017), and neural (Bath
ws |et al.,[2014;|Cande et al.,[2018) manipulations. The clustering capabilities of VAE-SNE could also be

«s applied to other types of data, such as single-cell RNA-seq data (Ding et al.;|2018; La Manno et al.}[2018)
«7 and natural history images (Cuthill et al.},|2019;(Zhang et al.},|2019), but we leave this as future work for
ws  other researchers and domain experts to explore and validate. VAE-SNE might also be further improved
o by the use of more complex hierarchical clustering distributions (Tomczak and Welling||2017;|Roberts
0 et al.}[2018;Razavi et al.,[2019), where additional scales with finer- or coarser-grained descriptions can
st be selected from the model for post-hoc analysis. Recent work has also shown that iteratively adjusting
s the parameters of the t-SNE similarity kernel can be used to generate a hierarchy of clusters in the latent
«ss - embedding (Robinson and Pierce-Hoffman,;|2020), which could be potentially applied to VAE-SNE as well.
454 To demonstrate the flexibility of VAE-SNE as a deep learning model, we introduce a variant for

»ss  embedding data in polar coordinates on a unit sphere (Appendix|C.1). We find that VAE-SNE successfully
w6 preserves structure in a spherical embedding as well (Fig. Video S8 |Video S9), which may be a

s7  more natural way to model some high-dimensional data sets (Davidson et al.;|2018) since it avoids the
sz crowding” problem common to other embedding methods (van der Maaten and Hinton,|2008; Ding and
a0 [Regev,|2019). While we focus on the Euclidean and cosine distances for calculating local neighborhoods,
w0 any differentiable distance function could potentially be substituted to create different embedding

w1 geometries, and, while we focus on kernels from the location-scale family of probability distributions (i.e.
2 Gaussian, Student’s t), other log probability functions could potentially be used as well.

463 We also introduce a convolutional version of VAE-SNE for embedding images directly from raw pixel
ws data (Appendix . After applying this model to natural history images, we find that it groups

s perceptually-similar images based on complex sets of image features that correspond with taxonomic
w6 groupings (Figs. . These results indicate that convolutional VAE-SNE may be useful for tasks
4«7 such as relating distributions of complex animal coloration patterns to ecological, evolutionary, and

«s behavioral function (Cuthill et al.}2017,(2019; [Ezray et al.,[2019; Wham et al.},|2019). Future applications
w0 might include applying VAE-SNE to audio data (e.g.,|Oord et al.[2016;/Sainburg et al.[2019).

470 There are multitude of ways in which VAE-SNE could be further improved or extended. Naturally,

«n  future work could apply more recent advances in variational and probabilistic inference like normalizing
a2 flows (Rezende and Mohamed}2015; [Kingma et al.} 2016} [Papamakarios et al.,[2017), which allow data to
.z be modeled with a more direct invertible mapping from the latent posterior to the data distribution, while
a4 also employing flexible, arbitrarily-complex distributions. The latent distribution used for VAE-SNE could
w5 also be modeled using many other types of representations such as quantized (Van Den Oord et al.|

a6 |2017) or categorical (Jang et al.||2016;Maddison et al.,[2016)) distributions. Recent progress in

7 generative adversarial networks (GANs;|Goodfellow et al.[2014), may also provide further enhancements
s for modeling complex feature dependencies within the data distribution (Larsen et al.}2016;|Srivastava
a9 |etal}2017;Dieng et al.;2019b). Timeseries data could be explicitly modeled using autoregressive deep
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0 neural networks (e.g.,|Oord et al.|2016) for the encoder and decoder similar to Wiltschko et al.|(2015);
s Johnson et al.|(2016b);|Sussillo et al.| (2016); [Markowitz et al.|(2018);|Pandarinath et al. (2018);[Luxem
«2 et al.|(2020), and the latent distribution can be optimized to accurately predict future observations,

«s Which has been shown to be a useful framework for modeling behavior (Berman et al.,[2016; Luxem et al.|
«s |2020). Additionally, computational efficiency might be further improved by applying recent advances in
s metric (Sohn||2016) and contrastive learning (Chen et al.}|[2020), which may reduce or eliminate the need
s 1o perform expensive pairwise computations. Recent work on density-preserving versions of t-SNE and
7 UMAP (Narayan et al.,|2020) could also be incorporated to further improve the embedding quality.

488 Explicitly modeling hierarchical structure caused by variance across individual trials and subjects
s (Pandarinath et al.||2018) and batch effects due to variance in sampling procedures (Ding and Regev,
a0 |2019) is also important for improving VAE-SNE in the future. These effects could be accounted for with
41 more complex, hierarchically-parameterized models (Sussillo et al.}[2016; Pandarinath et al.,{2018),

«2 hierarchical latent distributions (Tomczak and Welling}2017; Roberts et al.,[2018;|Razavi et al.,[2019), and
w3 New similarity kernels — such as the conditional t-SNE kernel recently proposed by Kang et al.[(2019).
w4 The general use of conditional (e.g.,Van den Oord et al.|2016)) or supervised (e.g., Alemi et al.[2016)

«s |labels when optimizing the model could also help to integrate additional prior information about the data
w06 distribution into the latent distribution, the latter of which is already a feature of both UMAP (Mclnnes
«7 |et all|2018) and ivis (Szubert et al.,|2019).

498 In summary, VAE-SNE is a general-purpose deep learning model for both dimension reduction and
w9 clustering that can be applied to many different types of data and readily scales to large datasets.

so0  Together our results illustrate that it is a robust, feature-rich method with multiple distinct advantages
s that make it an effective tool for analyzing real-world datasets across disciplines.

« 4 Methods

s 4.1 The VAE-SNE model

sos  VAE-SNE is a variational autoencoder (VAE; Appendix with a learned Gaussian mixture prior (Kingma
sos |et al.,|2014; Dilokthanakul et al.,[2016;[Tomczak and Welling,2017) that is optimized using the ELBO
s0s Objective function (derived in Appendix with an additional local neighborhood regularizer (Hinton
sv |and Roweis} 2003} |van der Maaten and Hinton||2008;|van der Maaten,|2009; Ding et al.,|2018)). The

ss likelihood and divergence terms from the ELBO objective can be broadly considered as an information
s0 theoretic trade-off between reconstruction accuracy (distortion) and compression (rate) respectively
so  (Alemi et al.,|2016;|Chalk et al.},|2016; Alemi et al.}|2017), which makes VAEs an attractive solution for

sn dimensionality reduction. However, there are implicit problems with the ELBO objective (reviewed by
sz Alemi et al.|2017;|Dieng et al.|2019a) that may prevent the model from learning a useful latent

sis representation — e.g., a powerful, overparameterized decoder can simply ignore the compressed latent
su codes but still produce high-quality reconstructions. These issues render VAEs problematic as a general
ss method for reducing dimensionality, as the primary purpose of dimensionality reduction is to create

sis compressed representations that preserve important statistical features of the original data distribution.

sv 4.1.1 Regularizing the ELBO to improve structure preservation

sis  We address the problems outlined above by optimizing VAE-SNE with a regularized version of the ELBO.
se  This modification introduces a pairwise similarity regularizer derived from the (t-distributed) stochastic
20 Nneighbor embedding (SNE/t-SNE) objective (Hinton and Roweis} 2003} van der Maaten and Hinton,2008;
s»van der Maaten,2009). This idea of using the SNE objective for regularizing the latent space of VAEs
s2 was first proposed by |Chien and Hsu| (2017), which they called variational manifold probabilistic linear
s discriminant analysis (vm-PLDA), and later independently proposed by|Ding et al.|(2018) with their scvis
s« model. However, the idea of applying the SNE objective to autoencoders, and deep neural networks in
s2s general, was introduced much earlier by van der Maaten|(2009) with parametric t-SNE (pt-SNE), who
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s26  proposed to use this objective in conjunction with an autoencoder to jointly learn a latent embedding.
s The pt-SNE model (van der Maaten|2009) was also recently combined with advances from the

ss  Barnes-Hut-SNE algorithm (van der Maaten,[2014) under the name net-SNE (Cho et al.,[2018).

s Additionally,|Moody| (2017) developed one of the first publicly-available pieces of software to combine
s0 the SNE objective with variational inference (variational t-SNE, or vt-SNE; and topic-SNE) but did not use
s a deep neural network to amortize inference across a set of shared parameters. Im et al.| (2018) also
s.2  proposed a variational bound on the t-SNE objective to improve optimization.

533 Here we apply the SNE objective to a VAE in a similar fashion to|Ding et al.|(2018). That is, we use the
ssa SNE objective as a method of better preserving structure in the latent embedding produced by our VAE,
s which improves the usefulness of the compressed representation (approximate posterior) produced by
ss  the ELBO. When combined into a single objective, we call this the stochastic neighbor evidence lower
s» bound, or SNELBO. Generalizing from|Ding et al.|(2018), given a high-dimensional data matrix

s8 X = {x1,...,xy} and model parameters {0, ¢}, the SNELBO objective is written as:

1
arg min —SNELBO(X, 0, ¢) = argmin — — Z ELBO;(x;,0, ¢) — a SNE;(X, ¢) (1a)
0,0 6,9 N p
ELBO;(xi, 0, @) = 7Eq, g4 (zlx,) 108 o (xi|2i)] — S KLIge(z[x:)|pe(2)] (1b)
distortion rate
SNE;(X, ) = Eqimgg(aper) | D SNE;s(xi,%;, ¢) (1c)

zj~qe(zlx;) |

= Ez'i”\“q:t(z‘xz) ZKL{p(XﬂXi)Hth(zj‘zi)] (1d)

zj~qe(zlx;) |

pairwise similarity

s fori,j=1,...,N andi # j, where N is the number of observations in the N x M matrix X € RM. Thus
s vectors x; and x; are the ith and jth row in X, while z; and z; are Monte Carlo samples from the

sn  approximate low-dimensional posterior z; ~ g4 (z|x;) and z; ~ g, (z|x;) respectively (Eq. -

s«o  sampled using the reparameterization trick from |Kingma and Welling| (2013), or z; = p + o ® ¢, where ¢
ss IS an auxillary noise variable ¢ ~ A/(0,1) and @ is the element-wise product (see Appendixfor further
sas  discussion).

545 The objective function (Eq. consists of three terms, which can be interpreted as follows: (1) the
ss expected log likelihood of the decoder distribution (Eq. [1b} distortion) minimizes distortion between the
sv  observed ground truth x; and reconstruction, or maximizes accuracy, and preserves global structure in
s« the embedding; (2) the divergence between the approximate posterior and the prior distribution (Eq.
s0 rate) constrains the global coordinate space of the embedding and restricts the rate of information

0 (relative to the prior) that can be transmitted through the compressed space; and (3) the expected

ss1  divergence between pairwise similarities (Eq. in high-dimensional space p(x;|x;) and those in

sz low-dimensional space ¢4 (z;|z;) acts as a regularizer to preserve local neighbor relationships between
ss  data points. Further details of this stochastic neighbor regularizer are derived in Appendix[B]

554 The Lagrange multipliers v, 3, and « are used to weight the distortion, rate, and pairwise similarity
sss  terms respectively, which we include as hyperparameters for the model. These multipliers can be

sss adjusted to produce different forms of the objective for optimizing the model — e.g., increasing or

ss»  decreasing the rate with the 8 multiplier (Higgins et al.,2017) — but in practice we set v = 8 = 1, while «
ss  is set (following|Ding et al.|2018) to the dimensionality of the data o = M to match the distortion term,
ss9  Which scales with the size of the input, or log pe(x|z) = Z%zl log pe(zm|2).
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o 4.1.2 Learning a Gaussian mixture prior

s« For optimizing the VAE-SNE objective (Eq. , we use a learned, or empirical, Gaussian mixture prior for
s2 e (z) which allows for an arbitrarily complex distribution (similar to Kingma et al.[2014; Dilokthanakul
ss3 et al.[2016; Tomczak and Welling|2017). Using a more complex distribution allows for a tighter bound on
s« Objective, and, after optimization, approaches the true posterior distribution as the complexity of the
ss  distribution is increased (Kingma et al.,[2014; |Dilokthanakul et al.;|2016;[Tomczak and Welling,[2017;

sss (Cremer et al.}|2017). The Gaussian mixture distribution is written as the weighted mixture of K Gaussian
sz components:

= > Nl 1), @

k=1

sss The mean u,, € M and mixture weight w, € w of each component are learned as model parameters
se0  {M,w} € 6 subject to a softmax normalization constraint Zle wy, = 1. We also regularize the prior
so  distribution by minimizing the divergence between the mixture distribution used to weight each

s component and a maximum-entropy mixture distribution, or:

arg!1 min Z wy, log wy, + wy, log K. (3)
k=1

s2  This prevents the prior from degenerating to a small number of modes (a problem described in more
s3 detail by Kingma et al.|[2014; Dilokthanakul et al.|2016) by increasing the entropy of the mixture

s+ distribution. A higher entropy mixture distribution forces to model to utilize more of the components
ss  within the distribution, which increases the number of clusters and, consequently, the level of detail of
s, the final clustering description (Still and Bialek;|2004). An analogous maximum entropy regularizer was
s7 also recently applied to solve the long-standing mode collapse problem common to generative

ss  adversarial networks (GANs; Dieng et al.[2019b).

579 The covariance for each component distribution could be learned as free parameters, but we find
ss0 that using a simpler identity covariance matrix I allows for a sufficiently expressive prior distribution
sss  Without adding additional complexity — and is less prone to cluster degeneracy during optimization.

s2 Using a highly-flexible (i.e., K > 1) learned distribution as the prior for the latent space allows for better
ss3  Structure preservation, as non-convex structures are not distorted by the use of an overly simple prior.
ss«  Also note that the special case of K = 1 mixture component is equivalent to the standard VAE prior

sss  (Kingma and Welling,[2013), or pg(z) = N (z|0, I), which is the prior used by |Ding et al.|(2018).

sss  Calculating the rate loss term The parameters for the Gaussian mixture prior {M,w} € 6 are then

s learned from the data via the rate term in the VAE-SNE objective (Eq. [1b). For the special case of K = 1
sss  we compute the Kullback-Leibler divergence analytically; however, because there is no analytical solution
s0 for a Gaussian mixture distribution with K > 1, we instead approximate this term numerically using

so Monte Carlo integration. In this case we use the expected log-density ratio for calculating the rate

=1 (Appendix|A.2), which is written as:

KL[ge(2z|x;)||pe(z /q¢ z|x;) log p(g(|z);z) dz (4a)
= Ezingg (zlx) [Iqu¢(zz|Xz) log e (zi)] - (4c)
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s2 Clustering data with the Gaussian mixture prior After optimizing the parameters for the prior, we can
ss then use the learned Gaussian mixture to assign embedded data to discrete clusters. In other words, we
s« Wish to calculate the conditional distribution pg(y|z), where y is a vector of class labels, or

ss Yy = {y1,%2, ..., YK }- However, the Gaussian mixture prior can contain highly-overlapping component
sss  distributions, which can cause undesirable side-effects. On one hand, this renders the parameterized
svmode for each overlapping component an unreliable descriptor of the surrounding local density, as each
ss component is then simply a degenerate sub-mode within a non-Gaussian density cluster rather than a
so9 distinct subpopulation within the distribution delineated by the structure of the data. On the other hand,
00 a Gaussian mixture distribution can have any arbitrary arrangement of weighted components, which

s Makes the task of directly calculating the true local density mode for each embedded point both

«2 analytically and numerically intractable. Therefore, to circumvent these problems, we apply the sparse
sz Watershed assignment procedure described by Todd et al.|(2017) to find the true local maximum for

s« each component in the distribution — rather than for every embedded observation — through numerical
s Optimization, which requires only a nominal amount of additional computation. We can then merge

«s oOverlapping components and assign embedded data to a mode that more accurately reflects the

sz underlying (potentially non-Gaussian) region of local density.

608 Because this sparse watershed procedure produces clusters with an arbitrary number of weighted
509 components, calculating the full posterior probability pg(y|z) for each data point is computationally

s complex. So for the sake of simplicity, we perform hard label assignment. In other words, we calculate
en the mode of the cluster distribution for each value of z, or:

l; = arg gnaxyoe(yz ), (5)

ez forl=1,..., K,wherel; is the assigned label for the latent vector z;. This hard label assignment

s procedure is performed in 3 steps: (1) latent vectors are initially assigned to the nearest (highest local
su density) component in the Gaussian mixture prior; (2) the Gaussian mixture distribution is further

&5 optimized to combine overlapping mixture components using sparse watershed assignment (Todd et al.,
s 2017); and (3) the initial cluster assignments are then recursively updated using the learned hierarchy of
&7 overlapping components to ensure each latent vector is assigned to the mode that best represents the
«s underlying density of the local neighborhood for that observation. To accomplish these steps, the

sv expected value of the approximate posterior for each data point is initially assigned to a single mode in
&0 the Gaussian mixture distribution by calculating the weighted mixture component with the maximum
e likelihood (minimum distortion), which is written as:

i = arg max w N (Elgg (2]:)] 144 1), (6)

s22  Where k; is the initial cluster assignment for the sth data point x;. We then combine degenerate

23 (highly-overlapping) modes from the distribution by applying the sparse watershed procedure described
24 by|Todd et al. (2017). Using this procedure, the initial cluster assignments are further combined by

s Optimizing the mean of each component to ascend to its local maximum within the Gaussian mixture
26 prior, which we write as a minimization of the negative log-likelihood, or:

. . 1 K K
M" = arg min —7- I; IOgl:lelN(ﬂk|Nl7 D), 7)
sz Where u} € M* is the optimized mean of each component. We optimize this objective numerically with
s the Adam optimizer (Kingma and Ba;|2014) with a learning rate of 1 x 10~3 until the objective (Eq.
s2s  stops improving for 100 training steps. We then merge cluster assignments based on whether the mode
e for the initial cluster assignment k; has moved within the basin of attraction for another mixture
sn component in the distribution (after optimizing Eq. , or:

l; = arg {nax w[./\/(liz,i |Hla I) (8)
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sz Where [; is the sparse watershed label assignment for the ith data point x;, which was assigned to the
e k;th mode of the distribution p, in the initial cluster assignment step (Eq. @ We then repeat this

s assignment procedure K times to ensure all label assignments to degenerate modes are reassigned to
sss  the mode with the highest local density:

l; == argmaxwiN (py [py, 1) for k=1,... K. 9)
!

sss Note that, for data assigned to non-degenerate modes in the initial step, typically the cluster assignment
s7 remains unchanged, where [; = k;.

< 4.2 Comparing dimensionality reduction algorithms

39  We compared VAE-SNE to other dimensionality reduction algorithms including PCA (scikit-learn v0.23.0;
«0 |Pedregosa et al.[2011), --SNE (van der Maaten and Hinton}2008), UMAP (v0.4.0;Mclnnes et al.|2018),
s scvis (Ding et al.;2018), and ivis (v1.7.2;/Szubert et al.[2019). Our main comparisons involve compressing
«2 datato two dimensions for visualization purposes, but VAE-SNE (and other algorithms) can be used for
«3 dimensionality reduction more generally.

ss  4.2.1 openTSNE and t-SNE variants

s For t-SNE we used the openTSNE (v0.4.0) implementation from |Policar et al.|(2019), which includes

s improvements fromvan der Maaten| (2014); Linderman et al.|(2017,{2019) to maximize speed and

s« scalability, as well as methods for embedding out-of-sample data described by|Policar et al.[(2019) (see
«s also[Berman et al.[2014; Kobak and Berens|2019). We tested two versions of openTSNE using both the
s Barnes-Hut approximation (Barnes-Hut-SNE) from|van der Maaten| (2014) and the Fourier interpolation
0 approximation (FIt-SNE) from Linderman et al.[(2017,2019). However, FIt-SNE, the fastest version of

st 0penTSNE, is practically limited to very low dimensional embeddings (i.e., 1-D or 2-D) due to the Fourier
s2 interpolation algorithm used for approximating the gradient during optimization, and therefore cannot be
3 Used for more general-purpose dimensionality reduction (Linderman et al.},2017,/2019).

s 4.2.2 scvis as a special case of VAE-SNE

s We found the original implementation of scvis (Ding et al.,[2018)) difficult to use for our comparisons
ess  Without extensive modification, as it relies on outdated software dependencies and is limited to specific
es» data file formats for using the code. However, scvis (Ding et al.,|2018) can be considered a special case
sss  of VAE-SNE with specific hyperparameter settings, so instead we used VAE-SNE with hyperparameters
5o Matched to those described by|Ding et al.|(2018) for making comparisons. In particular, we used the
e0 network architecture for the encoder and decoder networks described by|Ding et al.[(2018), along with
e ELU activations (Clevert et al.,[2015). We also use the asymmetric similarity kernel for the

s2 high-dimensional similarities (Eq. , and we set K = 1 for the number of components in the prior

e  distribution (Eq.[2). For benchmarking the processing speed of scvis (Ding et al.|[2018), we disabled our
e« added parallel computations (Section[4.5) to match the speed of the original implementation from Ding
sss €t al.|(2018), and we calculated training time based on the original recommendation from Ding et al.

sss  (2018)) for training with batch size of 512 for 100 epochs.

7 4.2.3 Setting hyperparameters for comparisons

s For each algorithm we used Euclidean distances for calculating pairwise similarities (the default for all
s Of the algorithms tested) along with the default settings for all other hyperparameters with some

e0 exceptions. For t-SNE, we set n_jobs=-1 to enable parallel processing. For UMAP, we also compare PCA
en initialization for the low-dimensional embedding (vs. the default Laplacian Eigenmap initialization),

sz Which is not a default option but improves global structure preservation. For ivis (Szubert et al.}2019),
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&3 we used the default model and followed recommendations from|Szubert et al.|(2019) to adjust the early
e74  Stopping criteria for different dataset sizes.

675 The hyperparameters for different methods could, of course, be adjusted ad infinitum to produce

o6 different types of embeddings and could bias performance for different datasets in many ways; however,
e7 the comparisons we make in this paper are not meant to be exhaustive, only informative in terms of

e validating VAE-SNE as a comparable method. In the end, researchers will have to decide for themselves
so which algorithm is most useful for their specific application. It is also worth considering that, for some
e Of the algorithms tested, adjusting the hyperparameters can dramatically alter computational and

e memory requirements — for example, increasing the perplexity hyperparamater for FIt-SNE (Linderman
es2 €t al.,|2017) and Barnes-Hut-SNE (van der Maaten, 2014) or the n_neighbors hyperparameter for UMAP,
83 increases number of nearest neighbors that are computed and, consequently, the size of the nearest
s« neighbors graph used to optimize the embedding. Our decision to use default settings is also especially
es reasonable for the -SNE variants we tested given that the openTSNE package (Policar et al.},|2019) uses
sss hyperparameter suggestions from|Kobak and Berens|(2019), which have been empirically shown to work
7 well across many datasets.

s 4.2.4 VAE-SNE hyperparameters

s We tested multiple variants of VAE-SNE in our comparisons, but across these variants we use similar
s0 hyperparameters for training. For the encoder and decoder networks we use 4 densely-connected layers
sn each with 256 units (with biases). For each layer we apply the nonlinear SELU activation function and
22 Use the appropriate random initialization for the weights described by Klambauer et al.[(2017). We train
3 €ach VAE-SNE model for a maximum of 100 epochs with an initial batch size of 512 using the Adam

s« Optimizer (Kingma and Ba, 2014) with a learning rate of 0.001. For the perplexity hyperparameter, we
ss calculate this as a function of the batch size used during training, which we call the perplexity ratio, such
s that P = bo where P is the perplexity, b is the batch size, and g is the perplexity ratio. To improve global
7 Structure preservation, we begin training with ¢ = 0.1 and then anneal to ¢ = 0.01 by exponentially

s decaying o after each training batch (similar to the perplexity annealing technique described by|Kobak
e |and Berens|2019). After the perplexity ratio is fully annealed to the target value, we then perform early
70 stopping if pairwise similarity loss stops improving by at least 0.001 per epoch with a patience of 5

m  epochs (lack of progress is ignored for 5 epochs before stopping training). While it is common practice
72 to decrease the learning rate after training stagnates to further improve performance, we instead

w3 increase the batch size, which has been shown to provide similar improvements (Smith et al.;|2017).

s Therefore after training stagnates and early stopping is initiated for the initial batch size of 512, we

7s increase the batch size to 1024 and continue training until early stopping is initiated again using the

706 Same criteria. For the Gaussian mixture prior we set the number of components to K = 100, but we

w7 found that any arbitrarily large number of components produced similar (nearly identical) results.

708 We tested 4 variants of VAE-SNE with different similarity kernels. We tested VAE-SNE using a t-SNE
e similarity kernel with (1) constant kernel parameters (v = = = 1) as well as (2) learned kernel parameters
no  (van der Maaten|2009). We also tested VAE-SNE variants using a SNE kernel with (3) constant (n = 1)
m and (4) learned parameters as well. Otherwise the hyperparameters for each variant were kept constant,
ne  as described above.

ns  4.2.5 Local structure preservation

ne  After embedding the data with each algorithm we assessed local structure preservation with two
ns measures of preservation that define local neighborhoods in different ways. For both of these metrics
ne We targeted neighborhoods that correspond to ~ 1% of the total embedding size.

7  metric-based neighborhoods First, we used a metric-based measure of local neighborhood
ne  preservation, where neighborhoods are defined based on distance (a fixed radius) to a cluster center.
no  Following|Becht et al.[(2019)) we applied the k-means clustering algorithm (with & = 100 clusters; using
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720  scikit-learn v0.23; Pedregosa et al.|2011) to the high-dimensional data and the low-dimensional

= embedding for each method, which effectively divides the data into small Voronoi regions. We then

2 calculated the normalized mutual information (reviewed by |Vinh et al.[2010; see also|McDaid et al.[2011)
23 between the high-dimensional and low-dimensional cluster assignments (using scikit-learn v0.23;

74 |Pedregosa et al.[2011). This provides a symmetric and permutation invariant measure of how well local
75 neighborhood memberships from the high-dimensional space are preserved by each embedding method
76— with similarity ranging from 0 (no overlap, or random) to 1 (perfect overlap). We performed 5 replicates
77 of this for each trial.

78 topological neighborhoods Second, we assessed local neighborhood preservation topologically by
79 calculating the exact nearest neighbors for 1000 randomly selected data points and then defining the
720 local neighborhood for each point as k& nearest neighbors, where % is selected such that % ~ 0.01, and
= N is the total embedding size. We then computed the proportion of the neighbors that are assigned to
72 the correct local neighborhood in low-dimensional embedding, which ranges from 0 (no neighbors

723 preserved) to 1 (all neighbors preserved). We performed 5 replicates of this for each trial.

7 4.2.6 Global structure preservation

75 T0 assess global structure preservation we follow|Becht et al. (2019) by calculating the Pearson

16 correlation between pairwise squared Euclidean distances for 10,000 points in the high-dimensional

77 space and the low-dimensional embedding for each method (for a total of 49.995 million distances). As
7 distances have a lower bound of zero and tend to follow a log-normal (or Gamma) distribution, we first
79 log transformed the distances in order to homogenize the variance and better match the assumptions of
0 Pearson’s correlation score. The Pearson correlation then provides a measure of the global structure
w  preservation ranging from -1 (anti-correlated) to 1 (correlated). We performed 5 replicates of this for

2 each trial.

us  4.2.7 Fine-scale structure preservation

74 Because our metrics for local structure preservation only account for a single scale but not the

s fine-scale structure within local neighborhoods, we also assessed topological structure preservation for
16 smaller neighborhood sizes. As before, we calculated the exact nearest neighbors for 1000 randomly
7 selected data points. We then computed the proportion of points assigned to the correct neighborhood
1s  across 14 dyadically (log,) spaced neighborhood sizes ranging from k& = 2! to k = 2'“. Neighborhood
s sizes were then normalized as a proportion of the total embedding size, or % We performed 5 replicates
70 Of this for each trial and neighborhood size.

7w  4.2.8 Temporal structure preservation

72 Because the largest dataset we use is also timeseries data, we assess temporal structure preservation
7s for the test set by calculating Euclidean distances between sequential time points in high-dimensions
74 and low-dimensions for each method. We then calculate the Pearson correlation coefficient of the log
755 transformed distances (same as for assessing global structure preservation) for 50 randomly selected
76 10 minute subsets (60,000 observations) within the full timeseries. This then provides a measure of how
77 well temporal derivatives are preserved in the low-dimensional embedding ranging from -1

s (anti-correlated) to 1 (correlated).

70 4.2.9 Hierarchical bootstrap for statistical comparisons

70 To compare each information preservation metric statistically we performed hierarchical bootstrapping
71 (see|Saravanan et al.[2019|for a recent review). Every trial for each dimension reduction method has
72 Multiple observations per metric, which creates hierarchical dependencies in the data. To account for

20/53


https://doi.org/10.1101/2020.07.17.207993
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.17.207993; this version posted July 17, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

73 this, we use seaborn v0.10.1 (Waskom et al.,2020) to calculate and plot hierarchical bootstrap estimates
764 Of the mean for each information preservation metric — resampling (with replacement) both within trials
765 and across trials (n=1000 bootstrap samples). We then plot the 95% intervals of the bootstrap

76 distribution to compare the performance of each dimension reduction method statistically. Rather than
77 attempting to make decisions regarding the statistical “significance” of these bootstrap distributions
78 based on an arbitrary threshold, we instead simply treat them as a measure of the uncertainty (variance)
70 in effect size for each information preservation metric. The computational experiments from which the
70 information preservation metrics are derived could be run ad infinitum to achieve statistical significance,
= which is effectively a measure of statistical resolution based on the number of observations, but this is
72 not necessarily informative in practice.

= 4.3 Datasets
7+ 4.3.1 Animal body posture dynamics

75 The largest dataset we used for comparisons is a behavioral dataset from Berman et al.| (2014}/2016);
76 |Pereira et al.|(2019) consisting of ~1-h video recordings (at 100Hz) for 59 freely-behaving individual fruit
m  flies (Drosophila melanogaster) for a total of ~21.1 million observations (downloaded from:

7 http://arks.princeton.edu/ark:/88435/dsp01pz50gz79z). We tracked the full body posture of each

79 individual with DeepPoseKit v0.3.6 (Graving et al.;|2019) using the procedures described by|Graving et al.
70 (2019) to train a deep convolutional pose estimation model using the keypoint annotations from |Pereira
m |et al.|(2019) as training data. For each video this produced a multivariate time series of the Euclidean
72 coordinates describing 32 body part positions in the video — including the head, neck, eyes, thorax,

7s abdomen, wings, and 24 leg joints. We then rotationally and translationally aligned the posture data at
78+ each timepoint to the major body axis (neck-thorax vector) and calculated the sine and cosine of the
785 keypoint angles for the 30 body parts not used for alignment. This resulted in a 30 x 2 = 60 dimensional
786  posture timeseries. To transform the spatial posture data into a dynamical spatio-temporal

7 representation, we then applied a normalized Morlet wavelet transform from|Berman et al.[(2014)) using
78 the behavelet Python package v0.0.1 (Graving, 2019) to generate a multi-scale time-frequency

780 spectrogram of the body posture dynamics for each time point. FollowingBerman et al.|(2014); Pereira
70 |et al.[(2019), we used 25 dyadically (log,) spaced frequencies ranging from 1Hz to 50Hz (the Nyquist
= frequency of the signal), which expanded the dimensionality of the timeseries from 30 x 2 = 60 to

792 30 x 2 x 25 = 1500.

7 Dimension reduction comparisons To generate a training set for benchmarking the different

704 algorithms, we uniformly randomly sampled a subset of data from the body posture dynamics timeseries
75 for 58 of 59 individuals while excluding one randomly selected individual to use as a test set. We tested
76 4 training set sizes: 58 x 500 = 29, 000; 58 x 1000 = 58, 000; 58 x 2000 = 116, 000; 58 x 4000 = 232, 000,
77 above which we encountered out-of-memory errors when running UMAP (Mclnnes et al.,[2018) on larger
78 Subsets of data. Each test set contains ~ 360, 000 sequential observations. We then applied each

79 dimension reduction method to the training set and subsequently embedded the test set. For training
g0  VAE-SNE we used the cross-entropy loss as a log likelihood function, as it matches well with the

s normalized time-frequency data, but we also found that other likelihood functions work similarly well.

s Behavioral clustering To simplify the dataset for performing our clustering analysis, we used the sine
sz and cosine of the keypoint angles for the 6 legs (the distal tips of each leg), 2 wings, head, and abdomen
s for atotal of 10 body parts and a 10 x 2 = 20 dimensional posture timeseries. As before we applied the
ss time-frequency transform which expands the dimensionality of the timeseries from 10 x 2 = 20 to

sws 10 x 2 x 25 = 500. We then applied VAE-SNE with a t-SNE kernel (Appendix[B} v = 7 = 1) to compress
s7 the spectrogram data to 30 dimensions. We used the cross-entropy between normalized time-frequency
e vectors, or H[x;,x;] = — > x; log x;, as our metric for calculating high-dimensional similarities

0o (Appendix , as this provides a more natural measure of divergence between the normalized
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s spectrograms than Euclidean distance. The cross-entropy is closely related (up to a constant) to the

en  Kullback-Leibler divergence — the metric originally used by Berman et al.|(2014) — but is slightly faster to
sz calculate, which reduces training time. When visualizing the spectrograms we integrate (sum) across
sz the wavelet coefficients for the sine and cosine for each body part in the spectrogram.

su  4.3.2 Single-cell RNA-seq

a5 10 test the application of VAE-SNE to single-cell RNA-seq data, we used data from|La Manno et al.|(2018)
s Which consists of 18,213 observations describing the development and cell fate of hippocampal neurons.
sv  We preprocessed these data using the velocyto.py (v0.17.17) package from|La Manno et al.[(2018). We
ss compressed the raw expression values to 500 dimensions using PCA before applying subsequent

s dimension reduction algorithms. We applied each dimension reduction algorithm to the full dataset and
s20 then re-embedded the training set in place of a test set in order to evaluate the speed for embedding new
s data. We report information preservation metrics only for the training set, as no test set was used due to
s22 the relatively small size of the dataset. For training VAE-SNE on this dataset we use a Student-t

23  likelihood function, but found other likelihood functions work similarly well.

s« 4.3.3 Natural history images

s2s  We also applied a convolutional variant of VAE-SNE to natural history images, and to test this we used
ws two datasets: a set of 59,244 shell images from|Zhang et al. (2019) and a set of 2,468 butterfly images
sz from|Cuthill et al. (2019). All images were preprocessed by applying local adaptive thresholding to detect
228 and remove the background. Images were then zero-padded to create a 1:1 aspect ratio and resized to a
&0 resolution of 192 x 192. We trained convolutional VAE-SNE using the same hyperparameters as the

g0 dimension reduction experiments, but using batches of only 256 images.

= 4.4 Computing hardware

sz All performance comparisons were conducted on a high-end consumer-grade workstation equipped with
g3 an Intel Core-i9-7900X CPU (10 cores, 20 threads @ 3.30GHz), 32GB of DDR4 RAM, a 4TB NVMe solid
s« State drive, and a NVIDIA GeForce GTX 1080 Ti GPU (11 GB GDDR5X VRAM).

= 4.5 Parallelizing pairwise computations to improve performance

sss 10 improve performance of pairwise computations over|Ding et al.|(2018), we reimplemented the

s underlying algorithms for training VAE-SNE. The largest performance bottleneck for VAE-SNE is the

sss  recursive binary search algorithm for computing high-dimensional pairwise similarities (Appendix.
s However, the computations for this algorithm are embarrassingly parallel, so we reimplemented it to run
a0 Fecursion loops in parallel across multiple CPU threads. This was accomplished by JIT-compiling the
en code using the numba library (Lam et al.,|2015), which resulted in massive speed improvements. We
s also reimplemented all pairwise distance calculations on the GPU using PyTorch (Paszke et al.,[2019),
sas  Which further improved performance.

« 4.6 Code availability

ss  The code for VAE-SNE is freely available at https://github.com/jgraving/vaesne under a permissive

ss  Open-source license. The library is written primarily using PyTorch v1.5.0 (Paszke et al.,[2019)) and

sz includes a scikit-learn-style API (Buitinck et al.,[2013) for fitting the model (model.fit ()) and predicting
ss  ON New data (model.predict()).
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Table S1. Ranked information preservation metric performance for nonlinear dimension reduction
algorithms. Rankings for each nonlinear dimension reduction algorithm in terms of general performance
for local, global, fine-scale, and temporal structure preservation (lower is better).

name citation local
VAE-SNE (t-SNE) this paper 1
VAE-SNE (SNE) this paper 2
FIt-SNE Linderman et al. (2017) 1
Barnes-Hut-SNE  van der Maaten (2014) 1
UMAP (LE init) Mclnnes et al. (2018) 1
UMAP (PCA init) Mclnnes et al. (2018) 1
scvis Ding et al. (2018) 2
ivis Szubert et al. (2019) 2

global

_,L, NN

WNNN==DNN

fine-scale

_“NWWNN=DN

temporal

Table S2. Ranked processing speed performance for nonlinear dimension reduction algorithms. Rank-
ings for each nonlinear dimension reduction algorithm in terms of general performance for training time
and test time (lower is better), as well as whether or not test time increases as a function of training set

size.
name citation train time
VAE-SNE this paper 4
FIt-SNE Linderman et al. (2017) 2
Barnes-Hut-SNE  van der Maaten (2014) 3
UMAP Mclnnes et al. (2018) 1
scvis Ding et al. (2018) 6
ivis Szubert et al. (2019) 5

test time

N=_wuol b=

test time « train size

no
no
yes
yes
no
no

Table S3. Additional features for nonlinear dimension reduction algorithms. A summary of potentially
useful additional features for each nonlinear dimension reduction algorithm including batch training
for applying dimension reduction to large out-of-core datasets, non-Euclidean embeddings for different
types of compressed representations, whether the algorithm is tractable in higher dimensions (>2), and

whether the algorithm learns a distribution of clusters within the data.
non-Euclidean

name citation batch training
VAE-SNE this paper yes

FIt-SNE Linderman et al. (2017) no
Barnes-Hut-SNE  van der Maaten (2014) no

UMAP Mclnnes et al. (2018) no

scvis Ding et al. (2018) yes

ivis Szubert et al. (2019) yes

yes
no
no
yes
no
no

>2 dims.

yes
no

yes
yes
yes
yes

clustering
yes

no

no

no

no

no
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Figure S1. Dimension reduction performance for the posture dynamics training set. Plots show perfor-
mance comparisons for the posture dynamics dataset (Berman et al.;|2014,[2016; [Pereira et al.;2019)
using the training set. a, Mean and 95% interval of the bootstrap distribution for local and global structure
preservation. Results are pooled across all training set sizes (for each metric n = 4 training set sizes x
5 trials x 5 replicates = 100 per algorithm). b, Mean and 95% interval of the bootstrap distribution for
fine-scale structure preservation across multiple neighbor sizes (as a proportion of the total embedding
size). Results are from the largest training set size only (n =14 neighborhood sizes x 5trials x 5replicates
= 350 per algorithm). ¢, Training time for fitting each algorithm across different training set sizes (n = 4
training set sizes x 5 trials = 20 per algorithm).
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Figure S2. Dimension reduction performance for the posture dynamics training set across training set
sizes. Plots show performance comparisons for the posture dynamics dataset (Berman et al.,2014}{2016;
Pereira et al.,|2019) using training sets of different sizes. a-b, Mean and 95% interval of the bootstrap
distribution for local (a) and global (b) structure preservation. (for each metric n = 5 trials x 5 replicates
= 25 per training set size per algorithm)
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Figure S3. Dimension reduction performance for the posture dynamics test set. Plots show perfor-
mance comparisons for the posture dynamics dataset (Berman et al.,[2014,|2016; Pereira et al.;2019))
using the test set. a, Mean and 95% interval of the bootstrap distribution for local, global, and temporal
structure preservation. Results are pooled across all training set sizes (for local and global structure n
= 4 training set sizes x 5 trials x 5 replicates = 100 per algorithm; for temporal structure n = 4 training
set sizes x 5 trials x 50 subsamples = 1000 per algorithm). b, Mean and 95% interval of the bootstrap
distribution for fine-scale structure preservation across multiple neighbor sizes (as a proportion of the
total embedding size). Results are from the largest training set size only (n = 14 neighborhood sizes x 5
trials x 5 replicates = 350 per algorithm). ¢, Elapsed time for embedding the test set with each algorithm
across different training set sizes (n = 4 training set sizes x 5 trials = 20 per algorithm).
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Figure S4. Dimension reduction performance for the posture dynamics test set across training set
sizes. Plots show performance comparisons for the posture dynamics dataset (Berman et al.,[2014}|2016;
Pereira et al.,[2019) using training sets of different sizes. a-¢, Mean and 95% interval of the bootstrap
distribution for local (a), global (b), and temporal (c) structure preservation (for local and global structure
n = 5 trials x 5 replicates = 25 per algorithm for each training set size; for temporal structure n = 5 trials

x 50 subsamples = 250 per algo

rithm for each training set size).
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Figure S5. Dimension reduction performance for the single-cell RNA-seq dataset. Plots show perfor-
mance comparisons for the single-cell RNA-seq dataset from|La Manno et al.[(2018) using the entire
dataset. a, Mean and 95% interval of the bootstrap distribution for local and global structure preservation
(for each metric n = 5 trials x 5 replicates = 25 per algorithm). b, Mean and 95% interval of the bootstrap
distribution for fine-scale structure preservation across multiple neighbor sizes (as a proportion of the
total embedding size; n = 14 neighborhood sizes x 5 trials x 5 replicates = 350 per algorithm). ¢, Elapsed
time for embedding the training set and re-embedding the training set as a “test” set with each algorithm
(for each metric n = 5 trials x 5 replicates = 25 per algorithm).
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Figure S6. Likelihood and entropy distributions. a, Histograms of the log likelihood scores from the
decoder (Eq. [1b} distortion) for real and randomized data (n = 232,000 for each distribution). b, Histograms
of the log entropy from the approximate posterior (Eq. for real and randomized data (n = 232,000
for each distribution).
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Figure S7. High-level behavioral clusters. Visualizations describing the manually-grouped high-level
clusters for anterior grooming (a,e,g), wing movements (b,e,h) and small/slow leg movements (c f,i). a-c,
The 2-D posterior probability density for each cluster (left), where contours are the largest 90% probability
density contour for each cluster distribution, and the mean spectrogram for each cluster (right). d-i,
The principal component scores of the spectrograms assigned to each cluster visualized within the 2-D
embedding (left) and the eigenvector coefficients describing the linear contribution of each spectrogram
feature (right) for the principal component score.
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Figure S8. Low-level locomotion clusters. Visualizations describing the low-level clusters within the
high-level locomotion cluster. a-b, The 2-D posterior probability density for the high-level cluster (a) and
for each low-level cluster (b), where letters for each cluster label correspond to panels d-f. Contours
are the largest 90% probability density contour for each cluster distribution. ¢, Mean and 95% bootstrap
intervals of the marginal (stationary) probability and mean bout length for each low-level cluster (n =
59 per cluster). d-f, The mean spectrogram (left), example time segments (middle) showing forward
velocity of each leg measured in body lengths (BL) per second and swing (forward velocity > 0 BL - s~!)
or stance (forward velocity < 0 BL - s~1) classification, and histograms (right) showing the number of
legs classified as stance in each timestep assigned to each cluster (n = 0.57 million for slow, d; n = 1.03
million for medium, e; and n = 1.47 million for fast, f) — where the label for each panel in d-f corresponds
to a cluster label in panel b. Example videos for these low-level clusters are shown in
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Figure S9. Low-level posterior grooming clusters. Visualizations describing the low-level clusters within
the high-level posterior grooming cluster. a-b, The 2-D posterior probability density for the high-level
cluster (a) and for each low-level cluster (b), where letters for each cluster label correspond to panels
d-i. Contours are the largest 90% probability density contour for each cluster distribution. ¢, Mean and
95% bootstrap intervals of the marginal (stationary) probability and mean bout length for each low-level
cluster (n = 59 per cluster). d-i, The mean spectrogram for each cluster — where the label for each panel
in d-i corresponds to a cluster label in panel b. Example videos for these low-level clusters are shown in
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Figure S10. Spherical embeddings with von Mises-Fisher VAE-SNE. a-b, Spherical embeddings using
VAE-SNE with a von Mises-Fisher similarity kernel (Appendix|C.1) of the posture dynamics dataset (a;

[Video S8) from |[Berman et al.| (2014, 20165; |Pereira et al.| (2019) and the single-cell RNA-seq dataset

(b; Video S9) from [La Manno et al.|(

2018). c-d, Stereographic (planar) projections of the spherical

embeddings from a-b. Colors for a-d are the same as in Fig. (total amplitude and cell type).
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Figure S11. Embedding shell images. Shellimages from|Zhang et al./(2019) embedded in two dimensions
using convolutional VAE-SNE. Insets illustrate example regions of perceptually similar images from the
taxonomic genera Bradybaena (land snails; top-left), Erosaria (cowries; top-right), Vexillum (sea snails;
bottom-left), and Conus (cone snails; bottom-right). Scatter plot (bottom-center) shows the 10 most
common genera in the dataset.
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melpomene rosina ® erato erato ® dorsal
melpomene vulcanus ® erato hydara ® ventral
melpomene plesseni ® erato cyrbia

melpomene melpomene erato petiverana

erato phyllis @ erato lativitta

Figure S12. Embedding butterfly images. Butterfly (Heliconius spp.) images from Cuthill et al. (2019)
embedded in two dimensions using convolutional VAE-SNE. Insets show example regions of perceptually
similar subspecies (top). Scatter plots (bottom) show labels for the 10 most common subspecies in
the dataset (bottom-left) and the image viewpoint relative to the specimen’s dorso-ventral body axis
(bottom-right).
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Figure Video S1. Video segments labeled with VAE-SNE. Randomly selected video segments (1/2x
speed) labeled with VAE-SNE illustrating the temporal dynamics of movements through the behavioral
space and transitions between high-level clusters within the distribution. a, https://youtu.be/JIbSdKzvLfk;
b, https://youtu.be/uWScG_UuzRQ; ¢, https://youtu.be/T8e_JSoCwMA

Figure Video S2. Samples from the locomotion cluster. Randomly sampled videos (1/3x speed) from
the locomotion cluster showing: a, slow walking (https://youtu.be/hB3JIRF2JGQ); b, medium walking
(https://youtu.be/kNHGJypOGhs); and ¢, fast walking (https://youtu.be/A2sLtgYhHGc). Red lines show
the posture tracking data for all 32 keypoints.

Figure Video S3. Samples from the anterior grooming cluster. Randomly sampled videos (1/3x speed)
from one of the anterior grooming clusters (https://youtu.be/OMT3lb2bJro). Red lines show the posture
tracking data for all 32 keypoints.

Figure Video S4. Samples from the posterior grooming cluster. Randomly sampled videos
(1/3x speed) from the posterior grooming cluster showing: a, bilateral hindleg grooming
(https://youtu.be/O_Tyf4pEQMo); b, right hindleg grooming (https://youtu.be/VTIwZp6d6b4); b, left
midleg grooming (https://youtu.be/0vJvAINbfjw). Red lines show the posture tracking data for all 32
keypoints.

Figure Video S5. Samples from the wing movements cluster. Randomly sampled videos (1/3x speed)
from the wing movements cluster showing: a, wing extensions (https://youtu.be/IE31SeJ7ehY); and b,
wing flicks (https://youtu.be/nsgnFbrk090). Red lines show the posture tracking data for all 32 keypoints.

Figure Video S6. Samples from the small/slow leg movements cluster. Randomly sampled
videos (1/3x speed) from the small/slow leg movement cluster showing: a, small leg movements
(https://youtu.be/ARKkHTuvPBnQ); b, slow leg movements (https://youtu.be/hwL70vNjbBQ); ¢, small left
midleg movements (https://youtu.be/o8vxtgwzx9Q) Red lines show the posture tracking data for all 32
keypoints.

Figure Video S7. Samples from the idle cluster. Randomly sampled videos (1/3x speed) from the idle
cluster (https://youtu.be/OwbdgmuCe_g). Red lines show the posture tracking data for all 32 keypoints.

Figure Video S8. Spherical embedding of the posture dynamics dataset. Rotating view of the posture
dynamics dataset (https://youtu.be/QcDUIQUOvdo) from Berman et al.|(2014,[2016);|Pereira et al.|(2019)
embedded on a 3-D sphere using von Mises-Fisher VAE-SNE. Colors are the same as in Fig. [2 (total
amplitude).

Figure Video S9. Spherical embedding of the single-cell RNA-seq dataset. Rotating view of the single-
cell RNA-seq dataset (https://youtu.be/jylWB6-qye0) from|La Manno et al. (2018) embedded on a 3-D
sphere using von Mises-Fisher VAE-SNE. Colors are the same as in Fig. (ceII type).
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« A Variational autoencoders and the evidence lower bound

« A.1 VAEs as approximate Bayesian inference

so As is common to most dimensionality reduction algorithms, we seek to model a high-dimensional data
e distribution p(x) using a low dimensional latent distribution p(z). Variational autoencoders (VAEs) are

sn one such model that combines both modeling and inference by defining a joint distribution between a

g2 latent variable z and observed samples x. We can accomplish this using a generative model that maps
&3 samples from the low-dimensional latent distribution to the high-dimensional data distribution using a
sa  set of shared parameters 6, which can take the form of a deep neural network model pg(x|z) = DNNg(z)
s With some prior over latent distribution pg(z). We then wish to find the model parameters 6 that

e Maximize the joint likelihood, which can be written as:

arg max pg(x,z) = arg max pg(x|z)pe(z). (10)
6 0

sz Although, to compute the low-dimensional distribution for the data, we then need to derive the latent
s posterior for the model pg(z|x). This can be derived from the likelihood using Bayes’ rule:

pg(X|Z)p9(Z) ) (11)
pe(x)

s However, computing the integral in Eq. pg(x) = [ pe(x|z)pe(z) dz is not tractable in practice.

so  Therefore, we require a way to approximate this latent posterior distribution, which is the exact problem

esn  for which VAEs provide a tractable solution.

882 Like other VAE models (Kingma and Welling,[2013;|Kingma et al.,[2014; Burda et al.;|2015;

g3 |Dilokthanakul et al.,|2016;|Ding et al.}|2018;[Dieng et al.,[2019a)), VAE-SNE performs dimensionality

ssa  reduction by nonlinearly mapping observed high-dimensional data vectors x to a low-dimensional

s embedding z using a deep neural network (DNN) as an encoder function DNN, : x — z (Eq. with

ss the goal of learning an approximate posterior over the latent distribution ¢4 (z|x) (Eq.[12d), where the

7 parameters of the approximate posterior are learned as a function of the data (Eq. d the encoder

s parameters ¢ are then shared across observed samples — known as amortization. The model then

so Maps latent vectors sampled from the low-dimensional embedding (Eq. to reconstruct the original

o0 high-dimensional space DNNp : z — x (Eq. using a generative decoder function we defined earlier

s (rewritten in Eq. [12b). More precisely:

pe(z[x) =

X ~ po(x|z) (12a)

po(x|z) = L (x|DNNg(z)) (12b)

z ~ qg(2z|x) (12¢)

4o (2]x) = N (z|p, diag(o?)) (12d)
(p,logo?) = DNNg(x) (12e)

sz Where £(x]-) is a user-selected likelihood function parameterized by the decoder function DNNg(z), and
s0s N (-|u, diag(o?)) is @ multivariate Gaussian whose parameters p and o2 are a specified by the encoder
4 function DNNg(x).

ss A.2 Deriving the evidence lower bound

ws After defining the generative model, we then wish to optimize the parameters of the encoder ¢ and

s7 decoder @ — given a set of observed samples from a data distribution x ~ p(x) — so that the

0 approximate posterior distribution ¢4 (z|x) matches closely with the true latent posterior from the

s generative decoder, or g, (z|x) ~ pe(z|x). In other words, we wish to minimize the divergence between
w0 the two distributions, or:
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arg min KIL[gy (z|x)||pe(z|x)] = arg min /q¢(z|x) log 4 (2%) dz. (13)
0.6 0.6 . po(z|x)
w1 However, as we have already established, computing the true posterior is intractable, so researchers
w2 have derived a lower bound known as the evidence lower bound, or ELBO (Kingma and Welling, 2013),
w3 to approximate this objective. The ELBO can be derived directly from Eq(Adams, 2020), which is
s04 Written as:

KLl a1 o (1)) = [ go(alx) g 22 (142)
= log pg(x) + /q¢(z|x) log Z)‘ZE;IS dz — log pe(x) (14b)
= logpe(x) + /q¢(z|x) log Z‘ZE;IX dz — /log 44 (2]x)pe(x) dz (14c)
o pe(x 2 lo q¢(Z\X)
= l0zp0(x) + [ ap(af)log 85X (14d)
= logpg (X) — Eq¢(z\x l:log Z ; (146)
= log pe(x) — ELBO(8, ¢). (14f)

«s Because the Kullback-Leibler divergence is strictly non-negative, the ELBO is then a lower bound on the
w6 log marginal likelihood. However, The ELBO can also be derived by applying Jensen'’s inequality, as is
o7 More common in the literature (Kingma and Welling}2013), to directly calculate a lower bound on the log
s marginal likelihood, or:

log pe(x) = log /pg (x,2)dz (15a)
= log/pg(x,z) 4(2/%) dz (15b)
z|x)
pe(x, z)
=logEq, (z|x [ } 15¢
) | g (o) (150
>E log 22(%:%) = ELBO(6, ¢). (15d)
= Lge(2z|x) (Z‘X) )
909 To learn the latent distribution given the model and the data, the ELBO is then maximized to

9

o optimize the model parameters. Here we write this as a minimization of the negative ELBO, which can
an  be further decomposed into separate terms for the log-likelihood and the divergence between the

sz approximate posterior and the prior over the latent distribution, or:

arg min —ELBO(0, ¢) = argmin E,, () {log q¢(zx)] (16a)
0,0 0,0 pe(x,2)
, q¢(z|x) ]
=argminE,, x) |log ———""— 16b
%,qﬁ 4 (z|x) l: gpe(Z)pg(X|Z) (16b)
qu(zlx)}

= argmin —Eg, (x) [lo xX|z)| + E,, (z1x) |log ———= 16¢c

g o (zlx) [log po(x(2)] q¢()|:gp9(z) (16c)

. af%mm —Eq, (z/x) [log pe(x|2)] + KL[gg (z|x)[|pe(z)] - (16d)

® likelihood divergence
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013 The derivation of the ELBO has also been discussed at length elsewhere (e.g., Kingma and Welling
s |2013}|Kingma et al.|2014;[Burda et al.[2015; Alemi et al.[2016; Dilokthanakul et al.[2016; /Alemi et al.|[2017;
«s |Ding et al.|2018; also see Kingma and Welling|2019|for a comprehensive introduction).

s A.3 Importance-weighted ELBO

o7 While we use only a single Monte Carlo sample from the approximate posterior per training batch, we
ss also include a hyperparameter for multiple samples per training batch using the importance-weighted
s ELBO from[Burda et al.|(2015), which modifies how the expectation in Eq. [16cis calculated to produce a
w0 tighter bound on the loss by implicitly increasing the complexity of the posterior (Cremer et al.}2017).
o However, we did not see any obvious performance improvements when using the importance-weighted
o2 objective, and increasing the number of Monte Carlo samples per batch also increases training time.
o3 The general utility of calculating a tighter bound is also unclear (Rainforth et al.,|2018) but this may be
o4 related to the generalization ability of the model. We leave further exploration of this hyperparameter for
os  future work.

= B Stochastic neighbor regularization

o7 For computing pairwise similarities, we largely follow|Hinton and Roweis|(2003) and van der Maaten and
o8  [Hinton|(2008) by modeling local neighborhoods as the probability of transitioning from a landmark point
w9 to its nearby neighbors when performing a random walk initialized from the landmark. By modeling local
w0 heighborhoods as probability distributions and then minimizing the divergence between the

s neighborhood distributions in high- and low-dimensional space, we preserve more local structure within
sz the low-dimensional embedding than a standard VAE (Ding et al.},|2018).

«ss High-dimensional transition probabilities To accomplish this, pairwise transition probabilities in

w4 high-dimensional space ¢(x;|x;) are modelled by applying a Gaussian kernel to convert the pairwise

s distances between data points d(x;, x;) into conditional probabilities — with self transitions set to

w6 t(x;)x;) = 0. While|Ding et al.| (2018) use these asymmetric conditional probabilities ¢(x;|x;) directly for
o7 the high-dimensional similarities, van der Maaten and Hinton|(2008) show that symmetrizing the

e pairwise similarities so that p(x;|x;) = p(x;|x;) reduces susceptibility to outliers, which can become
o0 ill-determined in the low-dimensional embedding with an asymmetric kernel. Therefore, we use the

wo  Ssymmetrized conditional probabilities, which are computed as:

t(x;]xi) + t(xilx;)

ix;) = 17
PSP = 5 S cabea) + e (72
%, 62 —d(x;,%;)? /267
t(Xj|Xi) — N(Xj|xza§z )2 _ exp ( (X XJ) /2§z )2 , (17b)
P N(xnlxi,67) 32, exp (—d(xi, x0)?/267)
w form=1,...,N and n # i, where d(-, -) is a user-selected distance metric, such as the Euclidean

2 distance. The landmark data point x; can then be considered the mean, and ¢? is the variance of the
a3 Gaussian kernel describing the local neighborhood around x; — thereby assigning more probability
s Mass to nearby neighbors. The variance ¢? is selected for each data point via binary search such that
ws 20 =~ P, where P is the desired perplexity (a user-defined hyperparameter), 2/ is the perplexity of the
us kernel for the ith data point, which approximately corresponds to the number of nearest neighbors

o7 considered by the kernel, and H; is the Shannon entropy in bits, or:

H; = Zt(xj|xi)log2 t(x;]xi). (18)

J
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«s Low-dimensional transition probabilities The low-dimensional similarities ¢4(z;|z;) are then
ao calculated according toHinton and Roweis| (2003) and van der Maaten and Hinton| (2008) using a kernel
0 function wy(z,|z;) to convert pairwise distances into conditional probabilities:

2ilg) = We(2|Z)
qd)( J| 2) Enw¢(zn|zz) (19)

s As in high-dimensional space, self transitions are set to ¢4(z;|z;) = 0. Here we test two kernel functions
o2 for preserving Euclidean similarities.

oss  t-SNE kernel First is the heavy-tailed Student’s t-distributed kernel used for the t-SNE algorithm
osa  (van der Maaten and Hinton,[2008) with the log probability function written as:

2
logwe(z;|2;) = log T (z;|2:, v, 1) = — <V12+1> log (1 + W) - Z; (20a)
B log(v;) v; v +1
Zz—10g71+2+1"(2)+1"< . ) (20b)

oss  where 7; is the scale, v; is the degrees of freedom, which varies the heavy-tails of the kernel, and I'(-) is
oss the gamma function. We write this as a log probability to more clearly show the relationship with the
o5 similarity loss term derived later in this section (Eq.[23c). The Student'’s t-distribution is used primarily to
oss  alleviate the “crowding problem” (van der Maaten and Hinton||2008) that can occur with other nonlinear
sss  embedding algorithms, including the original SNE algorithm (Hinton and Roweis,[2003), where points are
w0 100 densely packed in the low-dimensional space and moderately distant points are “crushed” together
s as an artifact of the embedding algorithm.

o2 SNE kernel Secondly, we test a Gaussian kernel — the kernel used for the original SNE algorithm
%3 (Hinton and Roweis,[2003; van der Maaten and Hinton,[2008) — with the log probability function:

2
—llzi — 2]

log wg(z;]2;) = log N (]2, ) = oz + Z; (21a)
Z; = logn; + log V2, (21b)

s« Where n? is the variance.

ss Setting the kernel parameters The kernel parameters for the low-dimensional similarities are typically
%s Setto a constant value, such as 7; = v; = n; = 1 (van der Maaten and Hinton}2008), or are scaled

%7 linearly with the dimensionality of the latent embedding (van der Maaten||2009), but we also test

o  Similarity kernels where these parameters are learned for each data point, parameterized by the encoder
s DNNy(x) — an idea proposed by van der Maaten|(2009). When the kernel parameters are constant

o0 across all data points, the log normalization terms (Egs. used for calculating the log

on probabilities can be omitted as an additive constant that has no effect on the calculations after

o2 normalization. However, this term is potentially important for optimization when learning these

o3 parameters as a function of each data point, so we include it in our calculations.

o2 Reinterpreting the similarity loss term To maximize numerical stability when optimizing the similarity
o5 term, we substitute the cross-entropy between the high-dimensional and low-dimensional similarities
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o H[p(x;]x;), ¢4 (2;|2;)], which is proportional to the Kullback-Leibler divergence and, after dropping the
o7 expectation, can be derived as follows:

D SNE;(xi, %, ) = ZKL ] PACHED) (222)
J
= Zp (xj]x;)log ——= pjxi) (22b)
q¢(z;2i)
= Zp (x;]x:) log p(x;[x;) — > p(x;[x:) log g (z;2;) (22¢)
J J
—entropy cross entropy
= constant — Zp(xj\xi) log o (2;]2:) (22d)
J
o = p(x;]x:) log g (z]2:) ZH[P (x5]x:), 4 (2;]2i)]. (22¢)

J

o Consequently, the Kullback-Leibler divergence for the similarity term can be reinterpreted as the

o Cross-entropy between the pairwise similarities up to an additive constant (the negative entropy of the
0 high-dimensional similarities), which can be omitted for the purposes of optimization. To further

s improve numerical stability for this computation, the cross-entropy is decomposed into attractive and
w2 repulsive forces using the unnormalized similarities (following|Ding et al.[2018; Kobak and Berens|2019),
ss  Which is written as:

_Zp(xj|xi)logq¢(zj\zi) —Zp X7X1)10g% (23a)

- Z p(xx;) logwe(z;|2:) + Z p(x;x;)log Z wg(z;]z;)  (23b)

=— Zp(xj |xi) log we(z;|2;) +log Z we(22;) - (23¢)

attract repel

sea  This may also help to clarify why we wrote the low-dimensional kernels as log-probability functions in

985 Eqs. @ @

« C Extensions of VAE-SNE

« C.1 Spherical embeddings with a von Mises-Fisher kernel

ses  In addition to embeddings with Euclidean geometry, we introduce a version of VAE-SNE that uses polar
ss geometry and embeds high-dimensional data on the surface of a 3D unit sphere. We calculate the

0 high-dimensional similarities according to Appendix[B] but we alter the calculations for the transition
s probabilities by using the cosine similarity for the high-dimensional pairwise metric. After normalization,
o2 this is equivalent to using a (hyper)spherical von Mises-Fisher distribution as the similarity kernel, or:

F(xjlxi, k)  €xp (5(1 ﬁ;rliq)

(XJ|XZ) Z F(X71|Xz,’§z> B Zn €xXp ()A(L XEK“)7 (24)

s Where %; = x;/||x;||> and x; is the concentration parameter (the inverse variance «; = ¢; %), which is
%4 selected using binary search to match the perplexity to a desired value (see Appendix[B|for details). We
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os then calculate the low-dimensional similarities using a 3D von Mises-Fisher kernel to create a spherical
e embedding:

log wg (22:) = log F(2|2i, pi) = 2 - 2] pi + Zi (25a)
Z; = log p; — log sinh p; — log 4w (25b)

o7 Where 2; = z;/||z;||* and p; is the concentration parameter (inverse variance). The log normalization

s term (Eq. can be omitted when p; is set to a constant, but we include it for the purposes of

ws Optimizing p; as a function of each data point.

1000 The idea of using spherical embeddings for dimensionality reduction has been explored previously
oo With the von Mises-Fisher stochastic neighbor embedding (VMF-SNE) algorithm (Wang and Wang;|2016)
w2 as well as more recent work by |Ding and Regev|(2019) who apply this type of embedding to visualize
s single-cell RNA-seq data. The UMAP algorithm (Mclnnes et al.,[2018)) has a similar option to embed data
wos in polar coordinates, as well as other non-Euclidean spaces. VAEs with (hyper)spherical latent variables
w005 have also been explored extensively in the machine learning literature (Davidson et al.|2018; reviewed by
s [Ding and Regev|2019). This type of spherical representation can be useful for data analysis, as

w007 high-dimensional vectors are often more accurately represented in polar coordinates. Similar to a

ws heavy-tailed Student'’s t similarity kernel (van der Maaten and Hinton||2008), a spherical von Mises-Fisher
w0 Similarity kernel can also prevent “crowding” of the data toward the center of the latent coordinate

oo system (Davidson et al.}|2018;Ding and Regev;2019), which is undesirable for visualizing data (van der
won  [Maaten and Hinton||2008)). To test this extension, we use von Mises-Fisher VAE-SNE to embed the

o2 posture dynamics dataset from(Berman et al.[(2014,2016); Pereira et al.|(2019) as well as the single-cell
s RNA-seq dataset from|La Manno et al.[(2018) and visualize the embeddings across the three dimensions
o Of the unit sphere (Fig. [ST0}[Video S8} [Video S9). We find that the results are qualitatively similar to 2-D
s Euclidean embeddings of the same data (Fig. [2), but are instead embedded across a 3-D sphere. Despite
e Not using a heavy-tailed similarity kernel (van der Maaten and Hinton,[2008)) these spherical embeddings
o naturally do not exhibit any crowding problems (Davidson et al.,[2018; Ding and Regev,}2019), which may
s Make this a useful visualization tool for some scenarios.

oo C.2 Convolutional VAE-SNE for image data

020 We introduce a convolutional version of VAE-SNE for embedding image data from raw pixels. This

w21 version of VAE-SNE is modified by first applying a 2-D convolutional neural network CNN, — a

02 SqueezeNet v1.1 (landola et al.,[2016) pretrained on ImageNet (Deng et al.,[2009) — to each image and
w2s  then calculating the pairwise similarity using spatially-pooled feature maps from the CNN output. The
w24 high-dimensional transition probabilities (Appendix B) are then calculated using a Gaussian kernel:

exp (—d(vi, 5)*/26})
>on exp (—d(Vi, V)2 /267)’

w2 Where v; is a vector of spatially-pooled feature maps from the CNN,, output, or v; = CNN4(x;). The
126 approximate posterior is then calculated as a nonlinear function of the pooled feature maps

vz DNNg : v; — 2z;, which is written as ¢4 (z|x;) = V(2| DNN(v;)). For the decoder we use a feed-forward
s network DNNg : z; — ¥, as before, where v, is a reconstruction of the CNN,, output ¥;. We then apply
020 Mean squared error between the pooled feature maps and the reconstruction as the likelihood function
w0 for the distortion loss (Eq. [1b). A convolutional decoder could also be used to fully reconstruct the raw
s image pixels, but we found simply reconstructing the pooled feature maps to be effective for visualizing
02 the distribution of images in two dimensions.

1033 To demonstrate the utility of convolutional VAE-SNE, we embed natural history image datasets of
waa  both shells (Zhang et al.,[2019) and (Heliconius spp.) butterflies (Cuthill et al.,[2019). We then visualize
s these embeddings to qualitatively assess performance of this VAE-SNE variant (Figs. [S11][S12). We find

(26)

t(xjlxi) =
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03 that perceptually similar images are grouped together in the embedding based on complex sets of

0 image features — rather than simple heuristics like color — and these groupings correspond to

03 taxonomic relationships within the dataset, which were not explicitly included as part of the training set.
w3 This variant of VAE-SNE is functionally similar to using the perceptual distance (Johnson et al.|[20164a;
w0 \Wham et al.}[2019) as a similarity metric and likelihood function except that the model can be trained
o end-to-end with small batches of images directly using raw pixels instead of first preprocessing images
w0e2  to produce feature activations. These results demonstrate that VAE-SNE can be used to analyze very
s large image datasets, by loading images in small batches, and can also be extended to images with

e variable resolution, by integrating across feature map outputs from the CNN to remove the spatial

wes  dimension — both of which are typically not possible with other dimension reduction algorithms.
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