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Abstract

Mass Spectrometry Imaging (MSI) provides a useful tool to divide a tissue
section into sub-regions with similar molecular profiles, namely tissue seg-
mentation. However, owing to the lack of ground truth, there is no reliable
evaluation approach to assess the validity of unsupervised segmentation out-
comes of MSI. We propose a novel solution grounded on a presumption that a
segmentation is reliable if it can be reproduced using distinct bio-information
extracted from independent sources. Specifically, besides molecular informa-
tion from MSI data, we also obtain morphological information over a tissue
section from its Hematoxylin-Erosin (H&E) stained histopathological image.
MSI has high molecular specificity but low spatial resolving power, the H&E
image has no molecular specificity but it can capture microscopic details of
the tissue with a spatial resolution two magnitudes higher than MSI. The
whole H&E image is split into an array of small patches, which correspond
to the spatial pixels of MSI. A spectrum of informative morphological fea-
tures is computed iteratively for each patch and spatial segmentation can be
generated by clustering the patches based on their morphological similarities.
Adjusted Mutual Information (AMI) score measures the degree of agreement
between MSI-based and H&E image-based segmentation outcomes, which is
defined by us as an objective and quantitative evaluation metric of segmen-
tation validity. We investigated various candidate morphological features:
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a combination of Deep Convolution Neural Network (DCNN) features and
handcrafted Threshold Adjacency Statistics (TAS) features finally stood out.
The most appropriate number of tissue segments was also determined accord-
ing to AMI score. Moreover, we introduced Co-Clustering algorithm to MSI
data to simultaneously group m/z variables and spatial pixels, so potential
biomarkers associated to each sub-region were discovered without the need
of further analysis. Eventually, by integrating the segmentation outcomes
based on MSI and H&E image data, the confidence level of the segment as-
signment was displayed for each pixel, which offered a much more informative
and compelling way to present the segmentation results.

Keywords: Mass Spectrometry Imaging, Digital pathology, Segmentation,
Deep Learning

1. Introduction1

Automatically segmenting a tissue sample into medically-relevant sub-2

regions is of particular interest in pathological and clinical applications[1][2][3].3

To achieve this goal, certain type of biological imaging modality capable of4

characterizing the spatial heterogeneity of a tissue must be used. Mass Spec-5

trometry Imaging (MSI) is a rapidly rising molecular mapping technology[4][5].6

A mass spectrometer ionizes chemical compounds, separates them according7

to their mass-to-charge ratios (m/z), and eventually generates a mass spec-8

tra consisting of m/z variables and their respective abundance. By scan-9

ning an ionization probe over a 2-D tissue section, MSI can simultaneously10

measure the in situ spatial distribution of different sorts of chemicals in a11

single experiment without any prior tagging of the molecular targets. The12

development of soft ionization methods such as Matrix Asisted Laser Desorp-13

tion/Ionization [6] and Desorption Spray Ionization (DESI)[7] significantly14

expands the range of analyzable molecular species including but not lim-15

ited to proteins, peptides, lipids, metabolites, and drugs[8][9][10][11]. Their16

spatial variations can be correlated with underlying anatomical structures,17

metabolic pathways, pathological phenotypes, and so on, which may lead to18

the discovery of new bio-markers or molecular interactions. For instance,19

DESI-MSI was used in [12] to delineate the boundary of tumor tissues and20

further divide them into three tumor sub-types according to their distinct21

molecular profiles. Therefore, MSI, which characterizes the spatial hetero-22

geneity of a biological sample based on the molecular profiles (mass spectra)23
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collected from various locations, has the potential as an automatic segmen-24

tation tool for tissues.25

MSI-based tissue segmentation relies on an effective exploitation of rich26

molecular information in MSI-generated big data: MSI data comprise 104
27

mass spectra along with their corresponding spatial locations on sample and28

each spectrum records 102−104 m/z variables along with their relative abun-29

dance. Unsupervised clustering analysis is one of the most commonly used30

data-mining methods to handle the high dimensionality and complexity na-31

ture of MSI data[1]. For a set of objects, clustering analysis separates them32

into several groups in such a way that objects in the same group (namely33

a cluster) are similar to each other than to those in other groups (clusters).34

In contrast to conventional MSI data analysis approach, unsupervised clus-35

tering doesn’t require manually selected ions or regions. Therefore, hidden36

data structure as well as unforeseen trend/correlation in the image or spec-37

tral domains can be explored, which provides an approach to fully exploit38

the label-free strength of MSI technique. Pixels (i.e. ion sampling locations)39

can be clustered based on their mass spectral similarity (i.e. similarity in40

terms of molecular profiles), which leads to a spatial segmentation of a tissue41

section along image domain. Labeling each pixel by the color assigned to42

its cluster id provides an overview of the variation of molecular content of43

a MSI dataset. However, a variety of factors may affect the final segmenta-44

tion result: noise or instabilities in the data acquisition process, the choices45

of clustering algorithm (such as hierarchical clustering, k-means, DBSCAN,46

etc.), key parameters for the clustering algorithm (such as a predefined num-47

ber of clusters K in KMeans), and data preprocessing steps (such as dimen-48

sion reduction methods[1]): PCA, pLSA, NMF, t-SNE, etc.). When no prior49

knowledge about the sample tissue (such as manual labeling by histology50

experts) is available, it is difficult to assess the quality of the segmentation51

and thus difficult to optimize the setup of the clustering pipeline in an ob-52

jective and rigorous way. As a result, doubts may be raised concerning the53

robustness and reliability of segmentation outcomes using MSI.54

We propose a novel solution to the above issue through an integration55

of multi-source bio-information. A tissue section is analyzed with regards to56

both its molecular and morphological variations, where molecular informa-57

tion is extracted with MSI and morphological information with HE staining58

histo-pathological image. The whole slide HE image is split into an array59

of small patches and each corresponds to a pixel of the MSI data. For each60

patch, a list of morphological features is computed to build a ”morphological61
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spectrum” using both handcrafted feature extractors (such as Haralick fea-62

tures to encode texture) and Deep Convolutional Neural Networks (DCNN,63

such as deep layers of VGG-16 to encode highly abstract vision concepts).64

Clustering analysis is performed on the mass spectra data as well as the65

morphological spectra data respectively and produces a pair of segmenta-66

tion outcomes. Based on an intuitive assumption that a segmentation is67

more likely to be true if it can be well replicated by different bio-information68

modalities, Adjusted Mutual Information is used to gauge the resemblance69

of segmentation and the clustering pipeline can be improved by maximizing70

such resemblance. Moreover, we introduce co-clustering algorithm into MSI,71

which concurrently cluster both pixels and m/z variables. Salient bio-markers72

can therefore be determined for each sub-region without the hassle of addi-73

tional statistical analysis. Finally, a confidence map is generated to visualize74

the reliability of the automatic segmentation by integrating the MSI-based75

and H&E-based outcomes.76

2. Related works77

2.1. Tissue segmentation with MSI78

G.McCombie et al. pioneered the application of clustering analysis in MSI79

data to facilitate the definition of distinct spatial regions[13]. Two MALDI-80

MSI datasets acquired from a Alzheimer’s disease brain section and a com-81

plete rat head section respectively were analyzed by three different cluster-82

ing algorithms (hierarchical clustering (HC), KMeans, and ISODATA) with83

Euclidean distance metrics. Prior to clustering, the authors used principal84

Component Analysis (PCA) to reduce the dimension and noise level of the85

datasets. Linear Discriminative Analysis (LDA) were employed to extract86

differential m/z variables between clusters. Deininger et al. analyzed gastric87

cancer tissue sections with HC and successfully divided tumorous and non-88

tumorous tissues into separate clusters, which agreed reasonably well with89

histology [14]. To reduce nonbiological pixel-to-pixel variability and improve90

the smoothness of spatial segmentation maps, spatial or neighboring infor-91

mation in MSI data has been incorporated during clustering analysis. In92

[15], Alexandrov et al. applied an adaptive, edge-preserving denoising algo-93

rithm to each m/z channel before clustering. In a later work[16], the same94

group developed a spatially aware clustering approach, which defined a new95

distance between two pixels as a weighted sum of all spectral distances be-96

tween counterpart neighbours surrounding each of them. The segmentation97
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methods proposed in [15] and [16] were tested on two MSI datasets: a rat98

brain section and a section of a neuroendocrine tumor. More recently, Be-99

mis et al[17] proposed a spatial shrunken centroids clustering method, which100

combines nearest shrunken centroid classification (a method for extracting101

subsets of informative features from highly multivariate data) with the above102

spatially aware clustering. Several biological tissues were segmented in [17] ,103

including a pig fetus cross-section and three rodent brain datasets.104

Due to the lack of ”ground truths”, none of the above works evaluated105

their tissue segmentation results in an objective and quantitative way. Im-106

portant algorithm parameters, such as the number of clusters, were chosen107

either by expert[14][15], which was hard and subjective, or sophisticated in-108

ternal criteria[? ][18][? ], which was purely based on information extracted109

from MSI data itself. A reliable evaluation method, where no human inter-110

vention is required but informative external reference is introduced, would111

therefore be ideal to assess the validity of unsupervised clustering results.112

Bio-information acquired for the same sample but with different bio-imaging113

modalities such as H&E image is supposedly correlated to that acquired by114

MSI and can be used as a trustworthy external reference.115

2.2. Histopathology Image Analysis116

Along with the digitization of histological tissue slides and the dramatic117

growth of computational power, a considerable amount of efforts has been de-118

voted to the computer-aided analysis of pathology images[19]. A wide range119

of handcrafted features have proven their efficacy in quantitatively extract-120

ing histopathologically relevant information from a H&E image for automatic121

diagnosis/prognosis tasks. Interested readers are referred to [19] and [20] for122

more indepth reviews (features used in our work is briefly introduced in Sec-123

tion 3.3). More recently, Deep Learning (DL) based feature extractors have124

also been reported in the area of histopathology image analysis [? ][21][22]125

(see Section 3.3.5 for more details). In [23], J.Baker et al. calculated a list of126

features for each tile of a whole slide image of brain tumor, divided the tumor127

tissue into sub-regions by unsupervisedly clustering the tiles, and selected an128

assembly of representative tiles of each sub-region for following supervised129

tumor type classification task. Our work follows a clustering pipeline simi-130

lar to [23] for tissue segmentation but with a significantly distinct group of131

features.132
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2.3. The Integration of Multi-source Bio-information133

There has been a growing interest in the integration of multimodal bio-134

information data. In oncology, many subtypes of cancer can only be dif-135

ferentiated based on molecular differences and thus ”molecular histology”136

has been developed which uses techniques such as immunohistochemistry137

(IHC) and fluorescence in situ hybridisation (FISH), as well as extraction-138

based molecular diagnostics such as gene sequencing together with classical139

histomorphology[24]. For instance, in [25] and [26], phenotypic traits (such140

as cell morphology) obtained by microscopic HE images were compared and141

combined with molecular traits (such as gene expression and mutations) ob-142

tained by high-throughput genomics in order to establish correspondences143

between them and build integrated feature embeddings for supervised learn-144

ing tasks such as prognosis prediction.145

In the field of MSI, it is also a well-established approach to use micro-146

scopic HE stain images together with MSI for combined histopathological147

and molecular analysis of tissue samples [27]. Conventionally, molecular pro-148

files obtained by MSI are overlaid spatially with the HE images, which en-149

ables the correlation of proteins, peptides, metabolites, lipids, and drugs with150

histopathological features or tissue substructures. Staining has to be done151

after the MSI measurement of a tissue section to avoid mass spectral inter-152

ference from stain chemicals. Moreover, a experimental and computational153

pipeline was proposed in [28] to overlay 3D bio-imaging modality magnetic154

resonance imaging (MRI) with 3D-MALDI imaging data of a mouse kid-155

ney, which opened new doors towards the integration of ex vivo and in vivo156

imaging data.157

Recently, more sophisticated muti-modal data fusion methods have been158

developed to break the inherent lower-resolution limitation of MSI technique.159

In 2015, Raf et al [29] reported a data fusion framework for MSI and HE160

stain microscopy: a multivariate regression model was built to predict m/z161

variables of MSI using RGB variables (and their derivative variables such162

as saturation, hue, PCA, etc.) of a HE image, which improved the spatial163

resolution from 10 µm to 330 nm. F.Vollnhals et al. [30] compared two pan-164

sharpening methods, Intensity–Hue–Saturation and Laplacian Pyramid, and165

demonstrated the latter was more robust for image fusion between Secondary166

Ion Mass Spectrometry and Electron Microscopy.167

To date, there has been no report that compares tissue segmentation168

results based on MSI and HE image data, which offers a way to assess the169
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validity of the segmentation outcome as well as a performance metric for170

evaluating different segmentation routines.171

3. Methods172

The core idea of our work is illustrated in Figure 1. Two biological imag-173

ing modalities, MSI and H&E staining microscopy, are used to respectively174

extract the spatially resolved chemical and morphological information of a175

tissue sample. So we obtain two hyperspectral data cubes: the first two di-176

mensions (X-Y plane) of the data cubes correspond to 2D spatial locations,177

while the third dimension (Z-axis) of the first data cube corresponds to m/z178

variables of MSI data and that of the second one corresponds to morpholog-179

ical features computed from the H&E image. Using clustering analysis, the180

two hyperspectral data cubes generate two independent segmentation of the181

tissue and a comparison between them reveals whether a segmentation can182

be verified by distinct bio-information sources. Critical components of the183

whole segmentation pipeline are introduced in this section.184

3.1. Data Collection185

We used tissue sections of a mouse kidney to illustrate the proposed186

segmentation method. The kidney sample was frozen-preserved at -80◦ before187

being cut into two adjacent slices by cryostatsectioning with thickness of 5188

and 20 µm, respectively. The thinner one went though standard Hematoxylin189

and Eosin (H&E) staining protocol, followed by digital pathology scanning190

with 20× magnification (i.e. 0.5 × 0.5 µ m pixel resolution). Raw MSI191

data was collected over the thicker one with a 100 × 100 µ m step size (or192

pixel resolution) using a DESI ion souce coupled to a Synapt G2-Si mass193

spectrometer (Waters, UK). A mass range of 200 - 1,000 m/z was covered194

with 60,150 mass bins over 13,608 pixels. It is worth noting that we assumed195

most structural features of the two adjacent slices were well conserved slice196

to slice and they could be thought identical.197

3.2. Data Preprocessing198

3.2.1. H&E Staining Digital Pathology Image199

By tissue detection, a binary mask was generated that delineated the200

area occupied by the kidney tissue in the digital pathology image. With201

the tissue mask as an input, Reinhard stain normalization method [31] was202

then used to transfer the colour characteristics of the tissue area to a desired203
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standard with the intent to correct any staining or imaging variations. Both204

the preprocessing procedures described above were realized in python using205

HistomicsTK package [32].206

3.2.2. Mass Spectrometry Imaging207

Raw MSI data was preprocessed through a sequence of standard opera-208

tions: (1) Total-ion-count (TIC) normalization is widely used in literature209

[33][34] to project spectra of varying intensity onto a common intensity scale210

and therefore handle the experimentally introduced pixel-to-pixel variation211

of MSI data. The spectral profile of each pixel are scaled based on an as-212

sumption that the TIC collected on every pixel should be identical. (2)213

Spectral smoothing was obtained with a Gaussian kernel (window = 5 and214

standard deviation = window/4); (3) Baseline reduction algorithm inter-215

polated a baseline from local minimas and subtracted it from the original216

spectral profile. (4) Peak picking (aka peak detection) identified meaningful217

m/z peaks by seeking local maxima above certain predefined signal-to-noise218

(SNR) threshold (SNR=6) in a sliding window (window width=5). In our219

case the adaptive noise was estimated by local mean absolute deviations220

(MAD).(5) Peak alignment, in order to eliminate tiny m/z-value shift due221

to instabilities of MS instruments, peaks with proximate m/z-values were222

matched given a tolerance threshold (200 ppm). (6) Peak binning, the inten-223

sity of a selected peak was represented with the sum of intensities between224

the two nearest local minima in both directions around its m/z-value. (7)225

Peak filtering determined the proportion of pixels where a peak was detected226

at a given m/z-value and only retained peaks with frequencies greater than227

1%. Cardinal 2 package [35] in R was used to implement all the above-228

mentioned procedures, which eventually output a MSI dataset consisting of229

a list of m/z-values for each picked peak (532 unique m/z-values), a list of230

the corresponding positions for each pixel (13,608 pixels), and a matrix of231

peak intensities (13, 608 × 532 ).232

For MSI dataset, a binary mask was also produced to indicate pixels233

corresponding to the tissue sample (rather than background). Based on an234

assumption that there should be more large biological molecules residing in235

the tissue area than in the background, the sum of peak intensities between236

500 and 1000 m/z were calculated for each pixel, and one would be tagged237

as ’1’ (’tissue’) if its sum was above a manually-set threshold and vice versa.238

To further reduce the set of m/z-values, t-tests were used to select ions that239

were significantly more abundant in the tissue than in the background. Con-240

8

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2020. ; https://doi.org/10.1101/2020.07.17.208025doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.17.208025
http://creativecommons.org/licenses/by/4.0/


sequently, 171 more informative peaks were retained for subsequent analysis.241

3.3. Feature construction for H&E image242

”Features” are a series of measurable properties to characterize an ob-243

ject in a data set. For MSI data set, it is rather straightforward that the244

m/z values are the features sufficient for extracting chemical composition245

information for each spatial pixel. However, constructing features to en-246

code morphological information from H&E image isn’t as trivial. Traditional247

textural descriptors used to be most commonly found in the literature of248

digital pathology [20], but recently using deep convolutional neural networks249

(DCNN) as feature extractors is becoming increasingly popular in the era250

of Deep Learning. In our work, both conventional texture-related features251

and DCNN-extracted features were computed and combined for each spatial252

pixel. In this section, we briefly describe the essence of all the morphological253

features fed into the following clustering algorithm, including gray-level co-254

occurrence matrix (GLCM) [36], threshold adjacency statistics (TAS) [37],255

intensity statistics, as well as transfer learning based DCNN features [38].256

3.3.1. Gray-Level Co-Occurrence Matrices257

GLCM are used to describe image texture[36]. Each element of GLCM258

is the probability that pixels of certain gray levels are spatially adjacent to259

each other. In our work, eight gray levels and four adjacency directions260

(horizontal, vertical, left and right diagonals) were used to construct the261

GLCM. 13 Haralick’s texture features were computed from GLCM [36]: an-262

gular second moment, contrast, correlation, sum of squares, variance, inverse263

difference moment, sum average, sum variance, sum entropy, entropy, dif-264

ference variance, difference entropy, information measures of correlation 1,265

and information measures of correlation 2. Averaging in the four directions266

resulted in a final 13-D feature vector for each gray scale image.267

3.3.2. Threshold Adjacency Statistics268

In TAS[37], 3 different threshold ranges are applied to the input image269

to create three binary images: [µ + σ, µ - σ], [µ - σ, 255], and [µ, 255],270

where µ is a threshold determined by the Otsu algorithm, and σ is the stan-271

dard deviation of the above threshold pixels. A normalized histogram of 9272

bins is generated for each binary image by counting the number of pixels273

surrounded by a given number (zero to 8) of white neighbours. Eventually274

TAS concatenates the above histogram with its bitwise negated version and275

outputs a 18-D feature vector.276
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3.3.3. Intensity statistics277

A list of intensity-derived features can be computed from an image, such278

as minimum, maximum, mean, median intensity of object pixels; differ-279

ence between mean and median intensities; standard deviation, inter-quartile280

range, median absolute deviation, skewness and kurtosis of the intensities of281

pixels; energy and entropy of the intensity histogram of pixels. So, a total of282

12 features was generated according to intensity statistics of each gray scale283

image.284

3.3.4. Nuclei Densities285

Nuclei were detected and segmented by combining adaptive multi-scale286

LoG filter and local maximum clustering method. Then, 24 nuclei density287

related features were calculated including neighbor count within different288

radius and minimum distance to enclose count neighbors.289

3.3.5. Deep convolutional neural network290

Last 8 years has seen a phenomenal success of DCNN in a variety of291

different image understanding tasks including the recognition, object detec-292

tion, and semantic segmentation of images[39]. Unlike traditional approaches293

where images are characterized by domain-specific “handcrafted” features,294

DCNN takes a domain agnostic approach that combines both feature discov-295

ery and implementation to encode most useful properties of an image for the296

following tasks. Moreover, DCNN trained on large-scale computer vision data297

sets, such as ImageNet and Coco, have proven to be excellent, off-the-shelf298

feature extractors, capable of generating a set of generic features even for a299

distinct but reasonably relevant task. This is a widely accepted idea called300

”transfer learning”[38]. In our work, we used the VGG-16 network [40] pre-301

trained using the well-known ImageNet database which contains 1.28 million302

images in 1,000 classes. After being resampled to match the 256 × 256 × 3303

input size required by VGG-16, H&E images were forward propagated to the304

last convolutional layer of block 4. And the activations at that layer were 2-D305

globally average-pooled and extracted as 512-D feature vectors. The hierar-306

chical structure of DCNN fully exploits the compositional nature of images,307

where higher-level features are obtained by combining lower-level ones: local308

edges assemble into motifs, motifs form parts, and parts form objects [39]309

[41]. Therefore, the features extracted by the deeper convolutional layer cor-310

respond to complex and abstract vision concepts, which are complementary311
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to those handcrafted textural features. However, it is not self-evident to de-312

cide which layer is the most appropriate one for H&E image analysis. We313

compared clustering results using DCNN features extracted from different314

layers with that using MSI features and chose the one that resulted in the315

most similar segmentation.316

To calculate the GLCM, TAS, and intensity statistics features for nuclei317

and cytoplasm separately, we deconvolved a RGB H&E image patch into two318

gray scale images that corresponded to the hematoxylin and erosin stains319

respectively. So the total number of morphological features was 2 × 13 +320

2 × 18 + 2 × 12 + 512 = 598. The calculation of the GLCM and TAS321

features was implemented by the Mahotas package, intensity statistics by322

the HistomicsTK package, and DCNN by Keras.323

3.4. Mapping between MSI pixels and H&E image patches324

The pixel size of MSI was 200 times larger than that of H&E image,325

so each MSI pixel corresponded to a 200 × 200 patch of the whole slide326

image(Mwhole). We established an one-to-one mapping between a MSI pixel327

(Dmsi[i, j, :]) and a H&E image patch through the spatial registration tech-328

nique: (1) the binary tissue mask of MSI data M0 was up-sampled by 200329

times (M
′
0) to have the same resolution as H&E image; (2) using M

′
0 as330

fixed image and the binary tissue mask of H&E image M1 as moving im-331

age, an optimal Euler 2D transform matrix (Mtrans) was obtained with the332

gradient descent algorithm, which minimized the mean square metric be-333

tween M
′
1 (M1 after transformation) and M

′
0; (3) applied Mtrans to Mwhole334

and output M
′

whole. So M
′

whole was in the same spatial coordinate sys-335

tem with M
′
0, or in other words, the tissue area of M

′

whole overlapped with336

that of M
′
0; (4) consequently Dmsi[i, j, :] was mapped to H&E image patch337

M
′

whole[i : i + 200, j : j + 200, 3]. While iterating over every pixel, if it was338

labeled as tissue by M0 and no less than 90% of its corresponding H&E im-339

age patch was labeled tissue by M
′
1, morphological features were calculated340

according to the image patch and stored along with its mass spectral features341

to form a new data frame: 9,999 rows corresponding to eligible pixles and 769342

columns corresponding to 171 m/z values plus 598 morphological features.343

Spatial registration was realised by the SimpleITK library of python.344

3.5. Clustering algorithms345

Mining the sub-regions of a tissue section from its MSI data is achieved346

by clustering the pixels according to the similarity of their mass spectral pro-347
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files. Spectral co-clustering algorithm simultaneously groups the rows and348

columns of a data array, which is originally proposed to solve the documents-349

words co-clustering problem[42] but is also well suited to MSI data. The350

co-clustering task is modeled as a bipartite graph partitioning problem and351

solved by finding minimum normalized cut vertex partitions in the bipar-352

tite graph between rows and columns. Although finding a globally optimal353

partition is computationally prohibitive, it has been proved that the real354

relaxation of this NP-complete problem can be solved with the second left355

and right singular vectors of a dataset-derived matrix. More details can be356

found in [42]. One strength of spectral co-clustering over other clustering357

algorithms is its intuitive visualization and interpretation: by rearranging358

the MSI data matrix to make co-clusters contiguous, we can easily see that359

pixels are grouped together because certain m/z are significantly more abun-360

dant in their spectra and m/z variables are grouped because they have more361

abundance in the same bunch of pixels. Before co-clustering, the abundance362

was scaled for each m/z feature to have the same median and quantile range.363

Both the spectral co-clustering and scaling were implemented by scikit-learn364

library [43] in python. H&E image patches were clustered using the stan-365

dard K-means algorithm in scikit-learn with cosine distance as multi-variable366

similarity metric.367

4. Results368

4.1. Optimizing segmentation pipelines369

Based on an assumption that the segmentation of a tissue is more re-370

liable if it can be corroborated by bio-information data from independent371

sources, we used Adjusted Mutual Information (AMI) score as evaluation372

metric to select features for morphological-features-based segmentation and373

to determine clustering algorithm for MSI-based segmentation. AMI score374

is a gauge to compare two sets of clustering results: perfect agreement gives375

an AMI score of 1.0 and random labeling gives an AMI score close to 0.0.376

Rooted in probability theory and information theory, AMI corrects the effect377

of agreement solely due to chance.378

4.1.1. Selecting DCNN output layer379

As aforementioned, different convolution layers describe different levels of380

vision concepts: shallower layers tend to describe simpler concepts and deeper381

layers more complex ones. Since we use DCNN as morphological feature382

12

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2020. ; https://doi.org/10.1101/2020.07.17.208025doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.17.208025
http://creativecommons.org/licenses/by/4.0/


extractors, a natural question is which layer better fits our segmentation task.383

The pooling layers of the 3rd, 4th, and 5th blocks of the pretrained VGG16384

were chosen as candidates and used to compute output arrays for each H&E385

image patch (block 5 is the last convolution block before the fully connected386

layers). After applying global average pooling on each output array, we387

constructed three feature vectors with a length of 256, 512, and 512 for the388

3rd, 4th, and 5th blocks respectively. Then each feature was scaled to have389

zero median and unit variance across patches. The dimension of the feature390

vectors was reduced to 3 using UMAP algorithm before conventional KMeans391

clustering analysis. For MSI data, the abundance of each m/z variable was392

centered to its median along pixels and scaled according to an interquartile393

range 25% to 75%. Again, KMeans algorithm was used to cluster the MSI394

pixels. The AMI score was calculated and plotted against the number of395

clusters K which rose from 2 to 9. It is clear that block 4 prevails in all K396

values. A possible explanation is that those features extracted by block 5 may397

be too specific to the object recognition task of ImageNet and thus not quite398

relevant to our histopathological analysis, while block 3 features are perhaps399

too basic and thus uninformative. This conclusion is also consistent with [44],400

where models trained using deep inner layer features showed better accuracy401

in digital pathology classification tasks than those using last layers or shallow402

inner layers. We also tested another DCNN structure called Xception and its403

performance was considerably inferior to VGG16. Besides, there is a trend404

in Figure 2 that AMI score decreases in an asymptotic way as K increases,405

which indicates that the reliability of the unsupervised segmenation decreases406

as the number of clusters K increases, so K=2 or K=3 are probably the most407

appropriate number of sub-regions on the kidney tissue sample. This is in408

accordance with the anatomical structure of a kidney, which can be roughly409

segmented as pelvis, renal cortex, and renal medulla. The dependence of410

AMI scores on K are called ”AMI score curves” thereafter.411

4.1.2. Selecting handcrafted morphological features412

Conventional handcrafted features have been widely used in the analysis413

of digital H&E image [23][20]. So, in order to dig as much useful morphologi-414

cal information as possible from a H&E image patch, a variety of handcrafted415

features was concatenated with DCNN features as the final morphological fea-416

ture vector. Four sets of morphological features were investigated including417

Gray-Level Co-Occurrence Matrices (GLCM), Threshold Adjacency Statis-418

tics (TAS), Intensity statistics (IS), and Nuclei Densities (ND) (see section419
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3.3 for more details). Clustering analysis followed the same procedures as420

4.1.1. As shown in Figure 3, AIM scores are mostly comparable for differ-421

ent combinations of feature sets. Since the combination of DCNN and TAS422

outperforms DCNN-only at K=2 and K=3 (which correspond to the most re-423

liable segmentation outcomes), we choose DCNN and TAS to build the final424

morphological feature set. TAS uses pixel-wise statistics to describe image425

texture, which is complementary to the relatively complex vision concepts426

described by the deep layers of DCNN.427

4.1.3. Selecting clustering algorithm for MSI data428

After optimizing the morphological feature set for H&E images, we used429

the segmentation results obtained using the morphological features as ”pseudo430

ground truth” to evaluate different clustering algorithms for MSI data. AMI431

score was used again to measure the agreement between MSI-based clustering432

and the pseudo ground truth. KMeans is one the most commonly used clus-433

tering algorithms for MSI data. In practice, people often needs to determine434

which m/z variables are the key discriminants (molecular biomarkers) be-435

tween clusters. However, KMeans algorithm doesn’t directly provide useful436

information to answer this question, so we have to resort to other techniques437

such as LDA. As mentioned in section 3.5, co-clustering algorithm associates438

each m/z variable to a pixel cluster id, which means it allows spatial sub-439

regions (pixel clusters) and m/z variables co-localized with each sub-region to440

be discovered simultaneously. Figure 4 (A) displays part of the original data441

matrix, where columns represent m/z variables, rows represent pixel ids, and442

value at each matrix element corresponds to the scaled abundance of certain443

m/z at certain pixel. The data matrix seems chaotic and it is hard to rec-444

ognize any spectral pattern. However, after Co-Clustering, if we rearrange445

the data matrix by moving m/z variables and pixels of same cluster id to be446

contiguous, a chess board pattern appears as in Figure 4(B). It immediately447

becomes interpretable: m/z variables of the upper-left/lower-right square are448

more abundant for pixels of cluster 1/2 and, in a different perspective, pixels449

of the upper-left/lower-right square are clustered together because they have450

high abundance in a same group of m/z variables.451

MSI-based clusters obtained by KMeans and Co-Clustering respectively452

are compared in Figure 5 according to their AMI scores at different prede-453

fined cluster numbers K. Co-Clustering has a higher AMI score at K=2 and454

KMeans performs better at K=3 and K=4, while from K=5 to 9 they become455

nearly identical. The results indicate that Co-Clustering is competitive with456
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KMeans and is a handier tool due to its simultaneous determination of poten-457

tial biomakers. Figure 6(A) displays the mean mass spectrum of the kidney458

tissue sample, blue peaks are assigned to pixel cluster 1 and red peaks are459

assigned to pixel cluster 2. Figure 6(B) and (C) show the spatial distribution460

of “top” m/z variables associated to each of the clusters 1 and 2. [42] defines461

the top column variables as those whose internal edge weights in a bipartite462

graph are the greatest. Specifically in our case, the top m/z variable of a463

cluster is the one whose sum of scaled abundance over all pixels assigned to464

that cluster is the greatest. It should be observed that m/z 140.08 clearly465

co-localizes with pixel cluster 1 (which corresponds to pelvis),and m/z 738.52466

co-localizes with the outer part of pixel cluster 2 (which corresponds to renal467

medulla).468

4.2. Integrated tissue segmentation469

For a piece of tissue section, two correlated but not necessarily identical470

segmentation results can be obtained based on the MSI-derived m/z spectra471

data and the H&E image-derived morphological features data. In order to472

fully exploit the bio-information in the two independent data sources, their473

clustering analysis results should be integrated to produce a more informa-474

tive and reliable segmentation of the tissue sample. The integration approach475

was proposed as follows: (1) each pixel on the 2D tissue section was assigned476

a false colour according to its MSI-based cluster id (this is a typical visual-477

ization scheme for the clustering results of MSI data); (2) for each pixel, if its478

MSI-based cluster id and H&E-based cluster id were not identical, the trans-479

parency of this pixel was set to 20%. The MSI-based clustering was done by480

Co-Clustering algorithm described in section 4.1.3 and the H&E-based clus-481

tering followed the DCNN+TAS protocol described in section 4.1.2. Before482

the integration process, the two sets of cluster ids had to be matched up so483

that the same ids corresponded to roughly the same regions on tissue section.484

By increasing the transparency of pixels that are assigned to different clusters485

based on different data source, we can visualize the confidence level of the486

clustering result: solid colour means two data sources have consensus, so we487

are more confident about the assignment, while transparent pixel means two488

data sources have dissensus, so we are less confident about the assignment.489

In Figure 7, integrated segmentation maps are shown for K of 2,3, and 4. In490

(A), pixels whose cluster id = 1 are assigned red, pixels whose cluster id =491

2 are assigned blue. In (B), green is added to represent cluster id 3 and grey492

is added in (C) for cluster id 4. In agreement with Figure 7, the number of493
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unconfident pixels dramatically increases as K rises from 2 to 4. When K=2,494

most of the pixels are confident ones, which means the tissue segmentation495

based on the spatial heterogeneity of bio-chemical composition (MSI) can496

be closely reproduced based on that of histologic morphology (H&E image).497

Such double authentication guarantees that it is the biologically meaningful498

structure that gets reflected by the segmentation rather than noise or arti-499

facts during data collection process. A closer look at the unconfident pixels500

shows that they very often appear at the boundary between the red and501

blue regions, there are two possible explanations for this: (1) the transitional502

nature of boundary tissue, which makes it sort of a ”mixture” of the two503

sub-regions and therefore harder to be segmented correctly; (2) the tissue504

sections used for MSI and H&E staining may not be strictly identical, so the505

mapping between MSI pixel and H&E patch is not perfectly accurate.506

5. Conclusion507

We provided a more reliable approach to unsupervised tissue segmen-508

tation which exploited bio-information from two distinct data sources MSI509

and H&E image. By maximizing the match between MSI-based and H&E510

image-based clusterings, a morphological feature set, comprised of the pool-511

ing layer outputs of the fourth block of VGG16 and the TAS features, was512

established for histopathology image analysis. Similar approach was followed513

for the MSI data, which selected K=2 as the most probable number of clus-514

ters (i.e. number of sub-regions of the tissue sample) and compared different515

clustering algorithms. Co-Clustering algorithm was chosen due to its ca-516

pability of automatically unearthing characteristic m/z variables associated517

with each sub-regions. For instance, ions with m/z = 140.08 colocalized with518

subregion pelvis and ions with m/z = 738.52 colocalized with subregion renal519

medulla. By integrating the segmentation outcomes on the basis of chemi-520

cal information and morphological information, we evaluated the validity of521

the unsupervised segmentation and visualized the confidence level of cluster522

assignment for each location on the tissue section.523
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Figure 1: The overview of tissue segmentation based on (A) MSI data and (B) H&E
staining microscopic data. In (A), mass spectra collected by MSI can be displayed as
a 3D hyperspectral data cube. The X-Y plane holds the spatial information and the
Z-axis represents the spectral information, namely the m/z variables. So each pixel of
the X-Y plane corresponds to a mass spectrum (as shown by the red, blue, and green
spectra on the left) and each channel of the Z-axis corresponds an intensity map of ions
with certain m/z (as shown by the heat map in (A)). In (B), the high resolution H&E
image is divided into an array of small patches and a set of quantitative morphological
features are computed for each patch. So a similar 3D hyperspectral data cube can be
generated as MSI data, with the only difference that the Z-axis corresponds to a spectrum
of morphological features. Clustering on the basis of the similarity in the spectral domain
result in a segmentation in the spatial domain. The segmentation outcomes based on two
data cubes are correlated but not necessarily identical and comparison between them can
reveal whether a segmentation can be verified by distinct bio-information sources.
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Figure 2: The dependence of AMI score on the number of clusters for 4 DCNN feature
extractors. The pooling layer of the 4th block of VGG16 has shown the highest AMI score
which means its segmentation outcome is in better agreement with the MSI-based one.

Figure 3: AMI score curves obtained with different combination of morphological
features. 6 combinations have been investigated, which include DCNN only as the
baseline, DCNN+GLCM, DCNN+TAS, DCNN+TAS+GLCM, DCNN+GLCM+IS, and
DCNN+TAS+GLCM+IS+DF (see section 3.3 for the full names of the features). TAS
features characterize the texture of an image and show the highest AMI score when con-
catenated with the DCNN features.
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Figure 4: (A) Part of the original data matrix, columns corresponds to different m/z vari-
ables and rows correspond to different pixel ids. (B) new data matrix after co-clustering,
where m/z variables and pixel ids are rearranged to move items of the same cluster con-
tiguous.

Figure 5: AMI score curves obtained with different clustering algorithms. Co-clustering
algorithm shows a comparable performance with conventional KMeans algorithm.
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Figure 6: (A) The mean spectrum of all pixels with m/z peaks assigned to corresponding
segments/clusters (red for cluster id 1 and blue for cluster id 2). (B) Abundance map of
ion 140.08 m/z, which is the characteristic ion of segment 1. (C) Abundance map of ion
738.52 m/z, which is the characteristic ion of segment 2.
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Figure 7: Integrated tissue segmentation map for (A) K = 2, (B) K = 3, and (C) K =
4. A pixel’s colour is solid if both MSI and morphological features assign the pixel to
the same cluster id, and it becomes transparent if there is a disagreement. It is evident
that when K = 2, the tissue segmentation is almost reproduced with the two independent
bio-information sources, which strongly supports its validity.
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