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ENVT, INP-Purpan, UPS, 31300 Toulouse, France.
2 IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194,
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Abstract

The correct identification of metabolic activity in tissues or cells under different
environmental or genetic conditions can be extremely elusive due to mechanisms such as
post-transcriptional modification of enzymes or different rates in protein degradation,
making difficult to perform predictions on the basis of gene expression alone.
Context-specific metabolic network reconstruction can overcome these limitations by
leveraging the integration of multi-omics data into genome-scale metabolic networks
(GSMN). Using the experimental information, context-specific models are reconstructed
by extracting from the GSMN the sub-network most consistent with the data, subject
to biochemical constraints. One advantage is that these context-specific models have
more predictive power since they are tailored to the specific organism and condition,
containing only the reactions predicted to be active in such context. A major limitation
of this approach is that the available information does not generally allow for an
unambiguous characterization of the corresponding optimal metabolic sub-network, i.e.,
there are usually many different sub-network that optimally fit the experimental data.
This set of optimal networks represent alternative explanations of the possible metabolic
state. Ignoring the set of possible solutions reduces the ability to obtain relevant
information about the metabolism and may bias the interpretation of the true metabolic
state. In this work, we formalize the problem of enumeration of optimal metabolic
networks, we implement a set of techniques that can be used to enumerate optimal
networks, and we introduce DEXOM, a novel strategy for diversity-based extraction of
optimal metabolic networks. Instead of enumerating the whole space of optimal
metabolic networks, which can be computationally intractable, DEXOM samples solutions
from the set of optimal metabolic sub-networks maximizing diversity in order to obtain
a good representation of the possible metabolic state. We evaluate the solution diversity
of the different techniques using simulated and real datasets, and we show how this
method can be used to improve in-silico gene essentiality predictions in Saccharomyces
Cerevisiae using diversity-based metabolic network ensembles. Both the code and the
data used for this research are publicly available on GitHub1.

1https://github.com/MetExplore/dexom
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Introduction

Metabolism and its regulation is an ensemble of intrincated and tightly coordinated
processes involving hundreds to thousands of enzymes, reactions, metabolites and genes,
whose interactions define complex networks that are unique for each species. This
complexity grants organisms the flexibility to adapt their energetic functions and growth
requirements to a wide variety of conditions. Changes in nutrient availability, conditions
of cellular stress, or any other change in the environment can induce a rapid metabolic
reprogramming of cells, rewiring their metabolism to adjust to the requirements of the
new situation. Dysfunction of these mechanisms play a central role in the development
of many diseases, but most notably in cancer, where cancer cells exploit metabolic
reprogramming on their own benefit [1] to sustain a rapid proliferation rate and survive
in conditions of hypoxia, nutrient depletion, or even develop therapy resistance [2].
Being able to accurately detect these changes or deregulations in metabolism would be
beneficial not only for a better understanding of biological systems but to develop more
targeted therapies and treatments for many diseases [3–5].

One of the reasons why this task remains elusive is the complexity of the multiple
processes that participate in the regulation of the metabolism [6]. More specifically,
post-transcriptional control of mRNA, post-translational modifications of enzymes, as
well as biochemical constraints —including for example the laws for mass and charge
conservation, cell growth requirements, biomass composition and nutrient availability—
make the identification of which pathways are altered between conditions very
complicated by the mere observation of changes in gene expression or changes in
metabolite concentrations. Instead, integrating and analyzing together all those
different levels of information is key to improve the predictive models and to provide a
more accurate mechanistic view of the system under study.

Genome-scale metabolic networks (GSMN) are suitable computational models for
the integration of these multiple levels of knowledge. These models are automatically
built and manually curated networks that encode all reactions with their stoichiometric
coefficients, metabolites, enzymes, gene annotations and biochemical constraints that
are known for an organism. GSMNs are generic models of an organism, independent of
the type of tissue, cell or condition. In order to generate more accurate models for
specific tissues or conditions, experimental data such as gene or protein expression can
be integrated on top of GSMNs using context-specific network reconstruction methods.
Taking into account the different levels of expression of genes between conditions, a
sub-network from the GSMN is extracted by finding a steady-state flux most consistent
with the experimental data. This process allows the generation of metabolic networks
specifically tailored to the condition, to highlight for example differences in metabolism
between tissues [7–9] or to discover novel drug targets or essential genes in cancer
cells [10–12].

Several methods were proposed in the literature to automatically reconstruct
context-specific metabolic networks from gene or protein expression [7–9,13–17]. This
process is done by solving an optimization problem to find the sub-network from the
GSMN that maximizes the agreement with the experimental data. This agreement is
defined in different ways: some methods such as [7,15] use data to classify reactions into
reactions associated to highly expressed enzymes (or core reactions) or reactions
associated to lowly expressed enzymes, whereas others [8, 14] assign different scores
(weights) to reactions based on data and other experimental evidence. The optimization
problem is then defined as that of finding the sub-networks that can carry a
steady-state flux through the reactions that maximize the overall score. However, a
major limitation that is frequently neglected is that the available information is usually
not sufficient to fully and unambiguously characterize the corresponding metabolic
sub-network for a given condition. Instead a range of different optimal metabolic
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sub-networks may exist, offering slightly different hypotheses of the possible metabolic
state. Ignoring this variability can not only lead to incorrect or incomplete explanations
of the biological experiment, but also causes valuable information to be lost that could
be used to improve predictions. Although this limitation is starting to be
acknowledged [18], there is still a lack of studies that provide methods to analyze and
explore the optimal space of alternative networks.

One of the initial works that exploits the idea of multiple context-specific networks
to improve predictions is EXAMO [19]. In this work, authors perform an enumeration of
optimal metabolic networks using iMAT [7]. The enumeration is done using the same
strategy proposed in iMAT for assigning confidence scores to reactions, followed by a
post-processing step using the MBA [13] algorithm to generate a single consensus network
including the reactions predicted to be active. A similar strategy was applied by Poupin
et al. [18], but instead of generating a single consensus network, the whole set of
networks derived by forcing fluxes through each reaction in the model is preserved as
alternative hypotheses of the metabolic state. This enables a better characterization of
the metabolic shifts that occur during hepatic differentiation.

The procedure of generating alternative networks by forcing or blocking flux through
each reaction has however some limitations. First, it can generate many duplicated
solutions. For example, if there exist only one optimal metabolic network with a linear
pathway of 10 reactions, forcing the activation of each reaction in the linear pathway
will generate always the same optimal solution, wasting computational resources.
Second, it cannot recover the whole set of possible optimal metabolic networks, as not
all possible combinations of reactions are tested. Third, there is no guarantee that the
solution set is representative and diverse of the full space of possible networks. A simple
brute force algorithm that could be used to prevent this would be to test every possible
combination between variable reactions. However, this approach does not scale as the
number of problems to solve grows exponentially with the number of variable reactions.
As an alternative to this approach, authors in [20] present a strategy to generate
alternative metabolic networks. Of particular interest is their CorEx algorithm, which in
a similar fashion as Fastcore method [15], calculates the smallest flux-consistent
sub-network that preserve the reactions in the core set, but solving the problem exactly
instead of the LP-based fast approximations used in Fastcore. CorEx also incorporates
a mechanism to enumerate optimal networks by maximizing the dissimilarity with the
previously found solution, a process that can be repeated iteratively to discover new
optimal networks. However, without a mechanism that prevents the generation of
duplicated solutions, the enumeration process can get stuck in a small region in the
space of optimal solutions. Some issues still remain with this enumeration strategy,
mainly regarding its effectiveness to get a representative set of the possible metabolic
networks and also how to take advantage of the set of networks to improve predictions
more than just only observing the variability in terms of reactions that can appear or
not in the different optimal sub-newtorks.

Regarding this last question, it was shown that the use of ensembles of draft
networks reconstructed using Gap Filling methods with multiple media conditions and
random perturbations can improve flux-based predictions [21]. Although the application
is different, predictions using context-specific network reconstruction methods could be
also improved using ensembles of optimal metabolic networks, and diversity can play an
important role in the quality of the ensemble models.

As a response to the current limitations, in this work we develop and analyze
different techniques for enumeration of optimal metabolic networks, and we evaluate
how well they perform in terms of diversity of the solutions and predictive capabilities
(Fig. 1). Based on this analysis, we introduce DEXOM, a novel method for diversity-based
exploration of context-specific metabolic networks. Using experimental data for a
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Fig 1. Summary of the approach. The process starts with some experimental data
(e.g., gene expression for a given condition and organism) and a GSMN model for the
organism. Data is mapped onto the GSMN and the proposed methods are used to
generate multiple optimal context-specific metabolic networks. Each set of optimal
solutions is compared in terms of diversity, and projected into a 2D embedding to
visualize which parts of the space of optimal metabolic networks is explored by each
method. The set of optimal networks obtained with each method are used to build
ensembles and predict essential genes in yeast.

particular condition and organism, we first construct an initial set of sub-networks by
testing single variations of reactions that may or may not be present in the networks
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without affecting the optimality. This set is then expanded to explore combinations of
reactions by sampling new sub-networks from the unknown space of possible optimal
sub-networks, maximizing diversity in order to detect as much differences as possible.
The sampling process is required to obtain a representative set of solutions that cannot
be retrieved by exhaustive search due to a combinatorial explosion problem. We
evaluate and compare all the methods in terms of 1) diversity of the solution set, and 2)
predictive capabilities of ensembles of optimal networks built with each method for the
prediction of essential genes in Saccharomyces Cerevisiae under aerobic conditions.

Methods

In this section we define the problem of context-specific reconstruction of optimal
metabolic networks. We introduce the problem of enumeration of networks, we propose
and analyze different strategies for enumeration, and we discuss the advantages and
limitations of each approach. Finally we introduce DEXOM, our proposed method for
context-specific metabolic network reconstruction and enumeration.

Optimal context-specific metabolic network reconstruction

Here we consider the reconstruction of optimal context-specific metabolic networks as
the selection of a subset of reactions from a global genome-scale metabolic network for a
particular organism, in a way that maximizes the agreement with experimental data,
i.e., reactions in the model with evidence of being active in a given context should be
preserved, and reactions with evidence of being inactive should be removed from the
model. The selection of this subset of reactions is also subject to flux-based constraints,
which constrain the space of possible ways in which those reactions can be selected.
More formally, given:

• G = {R,M,S}, an initial genome-scale metabolic network G for a given model
organism, where R = {R1, . . . , Rn} is the set of reactions in the network,
M = {M1, . . . ,Mm} is the set of metabolites, and S is the stoichiometry matrix
of size m× n

• f(x) : {0, 1}n → R, a linear objective function of the form cTx that returns a
score for a candidate subset of reactions indexed by a binary vector x ∈ {0, 1}n,
indicating whether reaction Ri is selected or not, so that the subset of selected
reactions from R is defined as Rc = {Ri ∈ R | xi = 1, ∀i ∈ 1 . . . n}

The goal is to find the binary vector x (or equivalently the subset Rc) such that
f(x) is maximized. Reactions included in the Rc set have to carry a non-zero flux under
steady state conditions. This problem can be stated as a Mixed Integer Linear
Programming (MILP) problem with the following form:

max f(x) = cTx
s.t. S · v = 0

xi ∗ vmin,i ≤ vi ≤ xi ∗ vmax,i

v ∈ Rn, x ∈ {0, 1}n
(1)

where xi ∈ {x1, . . . , xn} are the binary variables representing if reaction Ri is
present or not, vi ∈ {v1, . . . , vn} the variables representing the flux through each
reaction Ri, and vmin and vmax the lower and upper bounds for the flux through each
reaction. Note that what is subject to optimization is the selection of the reactions but
not the fluxes. Fluxes are constrained within some bounds vmin and vmax, and forced
to be in steady state (S · v = 0). Reactions can be included (xi = 1) only if they can
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carry some non-zero flux, and reactions not included (xi = 0) are forced to carry a zero
flux. In the following, we shall use this notation to introduce different MILP problems
for context-specific reconstruction of metabolic networks.

The objective function f(x) calculates the agreement between the experimental data
and the selected reactions. One common strategy is to divide reactions in two disjoint
sets based on experimental evidence, namely reactions associated with highly expressed
enzymes (RH ⊆ R) and reactions associated with lowly expressed enzymes (RL ⊆ R),
and then defining f(x) as:

f(x) =
∑

i|Ri∈RH

xi +
∑

i|Ri∈RL

1− xi (2)

This is the strategy described in iMAT, in which the selection of one reaction in RH

or the removal of one reaction in RL contribute in the same way to the score. Other
strategies such as Fastcore, enforce the inclusion of all the reactions in RH , and so
f(x) evaluates only the number of selected reactions in RL to minimize it.

In practice, the binary vector x is extended to account also for reversible reactions in
the RH set that can be active carrying a negative flux. Also, a tunable parameter ε
corresponding to the minimal amount of flux a reaction has to carry to be considered
active is usually included in the optimization problem. In the original iMAT formulation,
a reaction Ri ∈ RL which is not selected (which carries no flux) has a value of xi = 1
representing a match with the experimental data, and so Eq. 2 simplifies to just
f(x) =

∑
i xi. Full problem specification is described in Eq. 3:

max
∑

i xi
s.t. S · v = 0

vi + x+i (vmin,i − ε) ≥ vmin,i ∀i | Ri ∈ RH

vi + x−i (vmax,i + ε) ≤ vmax,i ∀i | Ri ∈ RH

vi + xoi · vmin,i ≥ vmin,i ∀i | Ri ∈ RL

vi + xoi · vmax,i ≤ vmax,i ∀i | Ri ∈ RL

v ∈ Rn,
x+,x−,xo ∈ {0, 1}|R|
x = (x+,x−,xo) ∈ {0, 1}3|R|

(3)

In the following sections, for practical reasons, and without loss of generality, we use
the original set of iMAT constraints and objective function as the base MILP problem
for network enumeration, since: 1) it relies on a MILP formulation, which can be easily
adapted to optimally solve different optimization problems and objectives; and 2) the
default objective function optimizes a trade-off between the coverage of reactions
associated with highly expressed genes and reactions associated with lowly expressed
genes, which has been proven in practice a good general strategy that only requires gene
expression data. This trade-off introduces flexibility in the optimization process,
allowing us to predict that some reactions are not active even though they are
associated with highly expressed genes, something important to account for
post-transcriptional events.

The problem of enumerating optimal metabolic networks

The enumeration problem arises naturally in context-specific reconstruction of
metabolic networks due to the discrete nature of the selection of reactions.

The enumeration problem can be easily illustrated using the toy example depicted in
Fig. 2. The figure shows a toy metabolic network using a Direct Acyclic Graph (DAG)
representation with L layers of N metabolites. Each metabolite mi,k in layer Lk is
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Fig 2. Example of an abstract artificial metabolic network

connected to each metabolite mj,k+1 in Lk+1 by single reactions Rijk = (mi,k,mj,k+1)
with only one substrate and product. The model includes two extra metabolites ms as a
source and mt as a sink node to centralize the import and export reactions and simplify
the model. The number of total metabolites, including ms and mt is 2 +N · L, and the
number of total reactions is 2N +N2 · (L− 1).

In this example, we want to extract the context-specific metabolic network, given the
following conditions:

•
∑

i |vi| > 0, i.e., there is a non-zero steady state flux from ms to mt. This is
commonly assumed in order to avoid having an empty network.

• RH = ∅, RL = R, i.e., there are no reactions associated to highly expressed
enzymes, and all the reactions are associated with lowly expressed enzymes.

It can be seen that a metabolic network with optimal f(x) in this case is the one
that carries flux from ms to mt using the minimum number of reactions (since they are
all in the RL set), which corresponds to a shortest path from ms to mt. Since there are
no loops in the network, the shortest length for the path is L+ 2 (including the path
from ms to L1 and from LN to mt). This also implies that there is no single solution,
but instead any path from ms to mt is an optimal solution, i.e., a context-specific
reconstruction network with optimal f(x) given the previously defined conditions. Since
there are N different paths to go from any metabolite in layer Lj to any metabolite in
layer Lj+1, that makes NL possible optimal networks in this particular example, that is,
the number of possible optimal solutions in this example grows exponentially with the
number of layers. Note also that since the number of reactions for a fixed number of
metabolites grows linearly with the number of layers, the number of possible solutions
grows also exponentially with the number of reactions.

This example illustrates that there are instances of the enumeration problem for
which the number of optimal solutions grows exponentially with the size of the network.
Thus, in general, enumerating the full set of optimal metabolic networks can be
impractical, especially considering the size of networks such as Recon 3D [22] with
13,543 reactions, or the recent Human1 network [23] with around 13,000 reactions.

More formally, it can be shown that the enumeration of all optimal metabolic
networks is a type of vertex enumeration problem. Let MP be the general MILP
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problem for context specific reconstruction using a GSMN with n reactions and with
objective function cTx that we want to maximize, as defined in Eq. 1. Let Ω be the set
of all 0/1-vectors representing the feasible solutions for the MILP MP that satisfy all
the constraints defined in Eq. 1. From a geometric point of view, the space of possible
networks can be viewed as vertices of the hypercube Cn = {0, 1}n, and the set of
feasible solutions Ω as a subset of vertices of Cn, where its convex hull is a 0/1-polytope
P , that is, P = conv(Ω). Let z∗ be the optimal value of MP , i.e., ∀x ∈ Ω, cTx ≤ z∗.
We are interested in the set of all optimal feasible solutions
Ω∗ := {x∗ | x∗ ∈ Ω ∧ cTx∗ = z∗}, where P ∗ = conv(Ω∗) ⊆ P is the 0/1-subpolytope of
interest in H-representation (as the intersection of half spaces defined by all the
constraints) from which we want to obtain the V-representation, that is, the set of
vertices as vectors of 0/1 coordinates (the optimal context-specific networks), which is
the definition of the vertex enumeration problem.

Vertex enumeration [24] is a classical problem in the field of combinatorial
optimization for which some specific techniques were proposed [25]. For the special case
of 0/1-polytopes [26], some notable approaches are Binary Decision Diagrams [27–29],
tree search-based methods [30,31] and techniques based on branch-and-bound and
cutting planes, extensively exploited in commercial solvers such as IBM CPLEX and
Gurobi. In fact, as a general enumeration mechanism, these solvers incorporate the
concept of a pool of optimal solutions, in which the tree of feasible solutions continues
to be explored until a specific number of optimal feasible solutions have been found.

However, as discussed before, the number of optimal metabolic networks for a given
problem can be extremely large, and so classical vertex enumeration techniques are not
suitable for this task. One reason is that, given the potential vast number of possible
solutions and a fixed amount of time to generate a variety of optimal solutions, there is
no guarantee that these methods will generate a diverse set of solutions. In fact, the
opposite is more likely: similar solutions (e.g., small variations in reactions on the same
pathway) will probably be closer in the search space. Also, due to symmetries
introduced by loops and other patterns in metabolic networks, chances are that the
enumeration gets trapped performing enumeration in small dense regions of the search
space that can be more related to artifacts than to solutions with true biological
meaning.

Instead, we advocate for generating a diverse set of solutions, that is, given some
experimental condition for which we cannot characterize the metabolic state with just
one optimal network, we want to obtain a sample O ⊆ Ω∗ of this largely unknown set of
possible networks in a way that covers well the range of possibilities. In other words: if
large differences in metabolism can be explained by the same experimental data, we
want to obtain a diverse set of these optimal networks that capture those different
metabolic states. This usually means exploring distant solutions with changes that
correspond also to distant pathways.

The concept of diversity of optimal solutions of a MILP problem is not well explored
in metabolic network reconstruction, and only marginally analyzed in combinatorial
optimization. Of special interest is the sequential MILP approach proposed by Danna et
al. [32], in which they propose an enumeration strategy which incorporates the concept
of diversity by maximizing the distance to previously found solutions at the same time
that they discard visited solutions. The closest concept to this general strategy applied
to the enumeration of optimal context-specific metabolic networks can be found in [20],
where Robaina et al. incorporate the idea of maximizing the distance to the previous
solution, but without a mechanism that would remove already explored solutions.

Although maximizing the distance may seem like a good idea a priori, in practice it
can lead to oscillations in the search, in which the search process jumps between two
distant clusters of possible networks, with large inter-cluster distance but very small
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intra-cluster distance. That is why the concept of diversity in metabolic networks must
be carefully analyzed with synthetic and real data that allow observing the behavior
and quality of the solutions. In the following sections we present some enumeration
strategies and analyze their advantages and drawbacks. Based on these limitations we
introduce a new way to generate diverse solutions that we later evaluate in the context
of prediction of essential genes, by constructing ensembles of diverse optimal networks.

It should be noted that we limited to a set of generic techniques that can be
implemented on top of general MILP solvers and can be easily integrated in the existent
pipelines for network reconstruction. One disadvantage of this is that each solution is
obtained by constructing and solving a new MILP problem. Ad-hoc search strategies for
the enumeration of MILP solutions based on custom branch-and-cut methods or more
advanced tree search exploration, although they might be more efficient in some
situations, are out of the scope of this work.

Enumeration of optimal networks by inclusion or exclusion of
reactions (Rxn-enum method)

A simple way to generate alternative optimal metabolic networks can be achieved by
directly manipulating the flux bounds of each reaction to force it to carry some positive
flux, some negative flux (if reversible), or no flux, as in [18,19]. The original method
traverses all the reactions in the model testing forward (or backward flux if the reaction
is reversible) or blocking flux in order to generate a new solution with a different
activation for each reaction. Solutions that are still optimal after the modification are
added to the set of optimal solutions. This method has however two major limitations:
1) it only explores variations in single reactions (if they can be active or inactive in an
optimal solution), leaving the vast space of combinations between reactions completely
unexplored; and 2) it generates many duplicated solutions, wasting computation time.

A very naive modification to this basic algorithm to alleviate the second issue
consists in tracking the activation or inactivation of each reaction in the set of
alternative optimal networks during the search process. If forcing the flux through a
reaction Rijk results in an optimal sub-network with another reaction Ri,j+1,k+1 active,
then there is no need to force flux through Ri,j+1,k+1 as it is not guaranteed that this
operation is going to generate a new sub-network (unless the solver is adjusted to
increase randomness in the solutions returned).

One advantage of this approach is that it tests every reaction in the model to see if
its presence or absence affects the quality of the solution. This generates alternative
networks with modifications in every possible pathway of the metabolic network, which
makes this technique a good starting point for more advanced enumeration methods (for
example, to generate a set of initial candidate optimal solutions).

Exhaustive enumeration of optimal networks (integer-cut
method)

One simple way to perform a full enumeration of the set of optimal networks is by
adding integer-cuts [33]. Starting with a default optimal solution x∗ to the MILP
problem defined in Eq. 3, a new solution is generated by adding a new constraint to the
original problem to cut x∗ from the set of feasible optimal solutions. This process is
repeated for each new solution, adding a new constraint per solution. A new solution is
accepted if there is at least one different reaction in the candidate sub-network, that is:∑

i

|xi − x∗i | ≥ 1 (4)
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Although this constraint is not linear due to the absolute value, it can be linearized
by considering separately the ones from the zeros. Two solutions are equal if they have
the same set of active reactions and the same set of inactive reactions. Thus, for each
x∗i = 1, we expect to have xi = 1, and for each x∗i = 0, we expect xi = 0 if both the
previous solution and the candidate are equal. Under this situation, summing up all the
ones from xi for which x∗i = 1 should be equal to

∑
(x∗i ) (except if there is one or more

differences), and in the same way, summing up all the zeros from xi for which x∗i = 0
should be equal to zero. If this does not happen, then there is some difference between
the candidate solution xi and a previous optimal solution x∗. More formally, the
linearization of Eq. 4 can be written as:

∑
i∈A

xi −
∑
i∈B

xi ≤

(∑
i

x∗i

)
− 1

A = {i | x∗i = 1}, B = {i | x∗i = 0}
(5)

By adding this constraint for each new x∗ returned by the solver, we exclude all the
previous solutions that have been found so far. The generation of new solutions stops
when the problem becomes infeasible, that is, there are no more feasible optimal
solutions. Note that this cut can be modified to cut feasible optimal solutions that differ
in more than one reactions, i.e., to cut solutions that are at some specific hamming
distance.

The advantage of this method is that it enumerates all possible solutions since it
removes one by one every optimal feasible solution. It is straightforward to see that this
method enumerates all the feasible optimal solutions by observing that: 1) each cut
removes one optimal solution; 2) the number of constraints that are added grows
monotonically with every new optimal solution; and 3) the number of solutions is finite.
Let us assume that for a given problem, the set of optimal feasible solutions Ω∗ contains
N different solutions, i.e., for every pair {x∗, y∗} ⊂ Ω∗,

∑
i |x∗i − y∗i | ≥ 1 (there is at

least one different reaction between any two optimal solutions). For the sake of the
proof, let us assume that after N steps of the algorithm, and after adding N integer
cuts, one per optimal solution, the last MILP problem is still feasible, i.e., solving it
returns a solution z∗, thus: 1) z∗ is different to any other solutions in at least one
reaction, which means that there are at least N + 1 solutions, contradicting the initial
assumption; or 2) z∗ is a duplicated solution, that is, there exist a solution x∗ ∈ Ω∗ such
that

∑
i |z∗i − x∗i | = 0, which contradicts the definition of the integer cut.

However, in practice, it is not possible to enumerate the entire space of solutions due
to the potential number of possible optimal solutions. Although this technique can be
used also to generate a sample of optimal solutions (stopping the search after a desired
number of solutions was found), the method is not well suited for this task since: 1) the
number of constraints grows linearly with the number of solutions, which increases the
difficulty with each new solution; 2) the algorithm can get trapped enumerating
solutions in a small region of the whole space of possible optimal solutions, and so
diversity in the set of solutions is not guaranteed; 3) even if a new optimal solution
exists, due to numerical instabilities or precision errors, the search process can
prematurely stop at the first incorrectly detected infeasible problem.

Enumeration of optimal networks with maximum dissimilarity
(maxdist method)

Another strategy for the enumeration of optimal solutions is to search the most
dissimilar metabolic network to a previous optimal one. This idea, already explored in
the context of Integer Programming problems [32,34], has been also proposed for
metabolic networks [20]. The strategy requires to solve a bilevel optimization problem
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in which the inner optimization problem solves the original problem and the outer
optimization maximizes dissimilarity. This particular bilevel optimization can be
implemented as a standard MILP problem, by introducing a constraint that corresponds
to the original objective function. First, an optimal solution x∗ with optimal score
f(x∗) = z∗ is calculated using the problem defined in Eq. 3, and then the original
objective function is replaced by the minimization of a function g(x,x∗) which
measures the similarity between the candidate solution x and a reference optimal
solution x∗. In order to guarantee that the new solution to this new problem is still
optimal in the original problem, a new constraint f(x) =

∑
i(xi) = z∗ has to be added

to preserve optimality.
Although the idea of returning the most dissimilar optimal network is interesting,

one of the limitations is that it can easily oscillate between a small set of optimal
networks that are the most distant to each other, since only the previous optimal
solution is discarded. In order to break this oscillatory pattern, we can introduce integer
cuts to discard already visited solutions. This modification prevents trivial oscillations
between already visited solutions and enumerates the space of solutions starting from
the most extreme differences. The objective function g can be defined as the
minimization of the overlapping of ones between x and x∗. Note that the optimality
constraint guarantees that the solutions must have the same number of ones (same
score), and so removing one overlap (for example by not including a reaction in RH

which is present in the reference solution) has to be compensated by including another
reaction in the set of RH not present in the reference solution, or by removing one
reaction in the RL set which is present in the reference solution, in order to preserve the
original optimal score. Minimization of the overlapping of ones between x and x∗ with
this constraint is essentially the same as finding the most extreme vertices of the
0/1-polytope of feasible optimal solutions using the hamming distance.

min
x

g(x,x∗) =
∑

i|x∗
i =1

xi

s.t. S · v = 0∑
i∈A

xi −
∑
i∈B

xi ≤

(∑
i

x∗i

)
− 1∑

i

xi = z∗

vi + x+i (vmin,i − ε) ≥ vmin,i ∀i | Ri ∈ RH

vi + x−i (vmax,i + ε) ≤ vmax,i ∀i | Ri ∈ RH

vi + xoi · vmin,i ≥ vmin,i ∀i | Ri ∈ RL

vi + xoi · vmax,i ≤ vmax,i ∀i | Ri ∈ RL

(6)

The expected behavior of this algorithm is the following: starting from the default
solution x∗, the search process generates the most distant network with the same
optimal score. This process is repeated, changing the x∗ in each iteration to the one
previously found, pushing away the search to the boundaries of the space until the most
distant networks in the space of optimal solutions are discovered. The integer-cut

constraint prevents search loops, and so once the extremes are found, the distance of the
new discovered solutions decreases progressively.

This method has also limitations that may prevent its use for generating a diverse
sample of optimal solutions. Concretely, even though the integer-cut constraint prevents
generating repeated solutions, the density of similar metabolic networks at the
boundaries can be large enough to never explore other areas. This increases the risk of
ending up oscillating between a small group of clusters of networks with a large
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inter-cluster distance but a very small intra-cluster distance. In addition to this, the
method is computationally more expensive than the previous ones.

Measuring diversity

Given the unknown volume of the 0/1-polytope comprising the optimal solutions, it is
not possible to directly estimate its size without sampling solution from it. In order to
measure how diverse are the set of solutions obtained with different methods, we need
to rely instead on indirect measures. Since solutions are indexed by 0/1 coordinates, one
reasonable metric to use is the hamming distance:

δh(x,y) =
1

|x|

n∑
i=1

|xi − yi| (7)

For each pair of solution vectors x,y ∈ {0, 1}n obtained from the set of optimal
solutions Ω∗, we compute the hamming distance (i.e., how many reactions are different
between any two solutions) and we average across all the distances to obtain the average
pairwise distance δ̄h. One way to promote diversity is to maximize this measurement:
between two different sets of optimal solutions (of a similar size), the set with a larger
average pairwise distance contains solutions that are, on average, more diverse.

However, relying only on the average pairwise distance might not be informative
enough in some situations. For example, as mentioned before, if the enumerative
strategy discovers at the beginning the most two distant solutions, and then enumerates
similar solutions to those initial maximal distant solutions, the average pairwise distance
is going to be maximal at the beginning of the search. Under these circumstances, it is
easy to have the false impression that the set of solutions is diverse, but instead it will
contain only the two initial different solutions with very small variations.

To discriminate better between these situations, we use also the average nearest
neighbor distance δ̄nnh defined as:

δ̄nnh (O) =
1

|S|
∑
x∈O

min
y∈O\{x}

δh(x,y) (8)

That is, for each optimal solution in the solution set O ⊆ Ω∗ obtained with some
enumeration method, we measure the distance to all other solutions and we take the
distance to its closest solution (nearest neighbor). Then, we average all those distances
to have the average nearest neighbor distance.

The average nearest neighbor distance measures how spread the solutions are. We
want solutions that are spread to cover a wider range of different solutions and avoid
the enumeration of clusters of very similar solutions.

Considering these two metrics, we can devise four situations when comparing the
solution sets obtained by different methods:

• Lower δ̄h and lower δ̄nnh : this situation corresponds to a low diversity. Solutions
are close together and sampled from a small region of the search space.

• Larger δ̄h and lower δ̄nnh : low dispersion of the solutions, even though solutions
are distant from each other.

• Lower δ̄h and larger δ̄nnh : solutions are dispersed but only in a smaller region of
the search space.

• Larger δ̄h and larger δ̄nnh : better diverse set of solutions in which solutions are
scattered across the space of optimal networks.
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Under these terms, we say that one method is more diverse than another if the
distance of both measurements is higher for a sample of optimal solutions of
predetermined size.

Diversity based extraction of optimal metabolic networks (DEXOM
method)

Based on the previously identified problems and improvements for each method, we
propose a new method to generate a set of diverse optimal metabolic networks,
combining the advantages of the techniques described before. The basic steps of DEXOM
are:

1. Generate an initial set of optimal solutions using the Rxn-enum method with
integer cuts to avoid duplicated solutions.

2. Pick an initial solution x(0) from this set.

3. Use the selected solution to create a template vector and to find a solution
maximizing the dissimilarity with the given template, using the maxdist method.
That is, initialize a vector of zeros as a template and copy n random reactions
from the selected solution to the template (copy n random ones from the selected
vector to the template). Maximizing the distance to this template will result in a
new solution x(1) with maximal distance to the selected reactions. The number of
chosen reactions (the step size) depends on the current iteration i and a
parameters ds. As the search progresses, more reactions are picked from the
selected solution and the new generated solutions are increasingly different from
each other.

4. Set the new solution x(1) as the new initial solution and repeat from 3 until the
desired number of solutions has been reached or until there are no more solutions.

Algorithm 1 DEXOM algorithm

1: procedure DEXOM(iters, ds, f)
2: x(0)

r , . . . ,x(k)
r ← initial solutions with the rxn-enum method

3: i← 0
4: x(i) ← x(k)

r

5: z∗ = f(x(i))
6: while i < iters and f(x(i)) = z∗ do
7: y(i) ← vector of 0s of same size as x(i)

8: pick prob← 1− exp(ds, i)
9: for j | x(i)j = 1 do

10: sample u ∼ U(0, 1)
11: if u ≤ pick prob then
12: y

(i)
j ← 1

13: s← solve maxdist MILP min
s
g(s,y(i)) (Eq. 6)

14: i← i+ 1
15: x(i) ← s
16: return x(0)

r , . . . ,x(n)
r ,x(1), . . . ,x(i).

A detailed version of the algorithm is described in Alg. 1. DEXOM combines the
advantages of the previous techniques. It starts computing an initial set of solutions
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using the Rxn-enum method avoiding duplicated solutions. This guarantees that single
variations of reactions across all pathways are explored. Then, starting for any solution
from this initial set, the algorithm explores solutions in the vicinity of the selected
solution, using it as a template. The vicinity distance is controlled by the parameter ds,
which controls how fast the step size increases over time. Using a ds value close to one
(e.g. ds = 0.99), the search concentrates at the beginning with more probability in the
close vicinity of the selected solution. This occurs because at the beginning (e.g.
iteration i = 2), the probability of picking a reaction from the selected solution to the
template is pick prob = 1− exp(0.99, 2) = 1− 0.9801 = 0.0199, which is close to 0, and
none or very few reactions are going to be selected. Then, the Maxdist method is used
to find an alternative solution minimizing the overlapping against the randomly selected
reactions in the template y. As the search progresses, the radius of the exploration
increases (more reactions are selected, and the distance of the new solution to the
selected solution increases), as well as the average distance of the new solutions. As
pick prob starts to approach to 1, the search process starts to behave more like the
Maxdist method.

Essential gene prediction and metabolic network ensembles

Context-specific metabolic networks can be used to make predictions about the
metabolism of a cell or tissue in a specific experimental condition. Of a particular
interest is the prediction of essential genes. An essential gene is a gene that is
indispensable for the organism to survive. Some genes are absolutely required for
survival, whereas other genes are conditionally essential, meaning that they are essential
depending on the environmental conditions. For example, in Saccharomyces Cerevisiae,
gene ARG2, which encodes glutamate N-acetyltransferase —a mitochondrial enzyme
that catalyzes the first step in the biosynthesis of the arginine— is essential only in the
absence of arginine in the medium.

Many essential genes that are related to metabolism (those related to enzymes) can
be predicted using metabolic networks. However, conditionally essential genes are
particularly hard to predict since they cannot be predicted without integrating
experimental data or knowledge related to the condition. Context-specific metabolic
networks are able to predict them indirectly, by extracting first the sub-network which
is most consistent with the experimental data. After removing all the reactions that are
predicted to be inactive in a given context, conditionally essential genes that were not
essential in the generic network might be now predicted to be essential.

YDL205C       0           1           0          1

Gene   Net1   Net2   Net3   Ens.

YDR232W       1           0           1          1

YDR376W       1           1           1          1

YBR218C       0           0           0          0

YGL055W      1           1           0         1

Optimal networks Ensemble prediction

Only network Net2 predicts 
gene YDL205C as essential

Fig 3. Example of essential gene classification for three optimal networks and the
result for the ensemble combining the prediction by performing a logical OR.
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Predictions of essential genes using metabolic networks can be done by comparing
the maximum flux through the biomass reaction —an artificial reaction that encodes
the minimum requirements of the organism to sustain a basic metabolic activity— using
Flux Balance Analysis (FBA) [35] before and after knocking out a gene in the metabolic
network. If the flux through the biomass reactions is below a certain threshold after KO
(e.g., below 1% with respect to the wild-type) then the gene is considered essential.

However, as explained before in this section, it is common to find more than one
optimal context-specific metabolic network for a given condition, each one representing
a slightly different hypothesis of the metabolic state. Each network may predict
different essential genes. Since all networks fit the experimental data equally well, there
is no clear way to decide a priori which of these predictions may be true. In this
situation, a reasonable strategy is to consider that if a network predicts a gene to be
essential, then the ensemble decides that the gene is essential, in order to maximize the
number of true essential genes (at expenses of increasing the false positives), similar to
what has been done in [21] with Gap-Filling methods.

Figure 3 shows an example of how the procedure works. For each gene, a KO is
simulated by maximizing the flux through the biomass reaction after knocking out the
reaction or reactions associated to the gene (based on the Gene-Protein-Reaction rules),
using the singleGeneDeletion method from the COBRA Toolbox. If the ratio between
the KO and the wild type is below 0.01 (flux after KO below 1%), the gene is classified
as essential. This process is repeated for all genes and for all optimal networks, and then
results are combined by performing a logical OR of the predictions across networks.

After obtaining the predictions for each gene, the True Positive Rate (TPR,
sensitivity) and the False Positive Rate (FPR, 1-specificity) are calculated by comparing
the predictions against the true essential genes for Saccharomyces Cerevisiae (included
in the repository of the code), and applying the following formula:

TPR =
TP

TP + FN
(TP = True Positives, FN = False Negatives) (9)

FPR =
FP

FP + TN
(FP = False Positives, TN = True Negatives) (10)

Results & Discussion

In Section Methods we show how the problem of context-specific metabolic network
reconstruction is subject to significant variability due to the vast number of possible
optimal metabolic networks that explain the same experimental data. This variability
makes the interpretation of the metabolism using a single metabolic network not very
reliable, since many equally valid alternative hypotheses are disregarded.

In this section, we analyze the performance of each of the proposed methods to
generate a diverse sample of optimal metabolic networks, assuming that in practice it is
not possible to fully enumerate the total unknown space of optimal solutions, as is
generally the case. For this purpose, first we evaluate the diversity of the recovered
samples with each method when the true number of optimal solutions is known. We use
the DAG model introduced in Section Methods as a ground truth generator to construct
a problem with a fixed number of possible alternative optimal metabolic networks.
Afterwards, we evaluate the different methods in a more realistic setting using the Yeast
6 model. Using this GEM, we select random sets of highly expressed and lowly
expressed enzymes to generate problems in which the total number of optimal solutions
is not known a priori, and we compare the samples generated with each method in
terms of diversity. Finally, we evaluate the predictive capabilities of each method for
in-silico prediction of essential genes. Using real gene expression data for Saccharomyces
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Cerevisiae under aerobic conditions [36] and the Yeast 6 model, we enumerate
thousands of optimal networks with each method and we asses the performance by
predicting which genes are essential using both the individual networks and ensembles
of networks constructed by combining the predictions of the individual networks.

DEXOM improves the diversity of recovered optimal networks

We measure how well each method performs to generate diverse samples of optimal
solutions. To do so, we generate samples of fixed size with each method and we measure
the diversity of the sample using the average hamming distance and the average nearest
neighbor that were introduced in Section Methods. We consider two different scenarios:
1) obtaining a sample of optimal metabolic networks in a simulated scenario where the
number of total optimal solutions is known; and 2) obtaining a sample of optimal
solutions in realistic scenarios where the total number of optimal solutions is unknown.

Evaluation in a simulated scenario with a known number of possible
optimal solutions

One of the difficulties of measuring the diversity of the solutions obtained by different
methods is the absence of a ground truth to compare with, as the full set of optimal
solutions is in general not known. However, the DAG network model introduced before
can be used as a simple ground truth generator, since the full set of optimal solutions is
easy to determine.

In order to assess the coverage and diversity of a sample of optimal networks, we
used the DAG network model with 5 layers and 4 metabolites per layer (74 reactions
and 22 metabolites in total), which contains a total of 1,024 optimal metabolic networks.
The different methods were used to sample from 1 to 250 optimal solutions (around 1/4
of the total set of possible optimal solutions).

Fig. 4 shows a low-dimensional projection of the 250 optimal solutions obtained by
each method, where each point is an optimal metabolic network encoded as a binary
vector. The grey points correspond to the 1,024 optimal solutions of the ground truth.

The Rxn-enum method shows a low coverage of the space of optimal solutions,
enumerating only a 7% of the full space of optimal networks. This is due to the fact that
the Rxn-enum method changes the bounds of each reaction in the network independently
from each other. Since each reaction participates in many optimal solutions, the
Rxn-enum can obtain only a subset of all possible optimal networks, missing a large
fraction of optimal metabolic networks that cannot be recovered with this method.

Qualitatively speaking, the 250 solutions obtained with the integer-cut method
are not as spread as the ones obtained with DEXOM and the Maxdist method.
Differences between DEXOM and Maxdist are less obvious and hard to appreciate in a
low dimensional embedding. In order to have a better picture of the diversity of the
solutions, we calculated the evolution of the distances δ̄h and δ̄nnh for each method. We
repeated the process 30 times to obtain different samples of 250 solutions. The results
for the 30 independent runs are shown in Figures 4E and 4F. The average over the 30
runs is represented with a dashed line.

These figures show in a more clear way how DEXOM obtains the most diverse set with
respect the other methods after 150 optimal solutions were enumerated, surpassing the
Maxdist method. It can be seen how the behavior of the algorithm in terms of diversity
changes dramatically after the initial solution set is calculated (around solution 50). At
this point, DEXOM starts to increase the distance progressively, looking for more and
more distant solutions, which is reflected in the increase of both δ̄h and δ̄nnh . In contrast,
Rxn-enum obtains sets of solutions with a very poor diversity. After calculating 74
solutions, the method cannot generate new optimal networks (since there are only 74
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(D) Integer-cut method
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DEXOM
Maxdist
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Integer-cut

Fig 4. Low dimensional representation of the optimal networks enumerated with
different methods (max 250 optimal networks). Each point represents an optimal
metabolic network as a binary vector projected in 2D using UMAP with hamming
distance and 30 neighbors.

non reversible reactions in the network), and the solution set stops growing. Since the
Rxn-enum generates solutions by modifying the constraints of each reaction, one at a
time and independently of each other, solutions are mostly concentrated in a concrete
region of the space of possible solutions, which corresponds to solutions that are similar
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to each other. The Maxdist method shows at the beginning of the search the largest
distance, since the solutions are generated by finding extreme differences. After an
initial set of 25 optimal solutions, the average distance stops increasing. This is
something to expect since the most distant solutions are usually discovered at the
beginning of the search.

Evaluation in realistic scenario with an unknown number of optimal
solutions

In order to evaluate the diversity in a more biological setting, we randomly select
different sets of highly expressed and lowly expressed enzymes of varying size in the
Yeast 6 metabolic model [37] and then we enumerate a maximum of 1,000 optimal
metabolic networks with the different methods.

Figure 5 shows the results of the enumeration of up to 1,000 optimal sub-networks
from a randomly selected set of 120 genes highly expressed and 120 genes lowly
expressed on Yeast 6. Enumeration of optimal solutions was repeated 10 times for each
method. Since in this case the true set of possible optimal solutions is not known, grey
dots represent the union of all discovered optimal networks for all the methods.

Again, a similar pattern of dispersion of the optimal solutions can be observed as
with the DAG model. DEXOM (Fig. 5A) obtains a set of solutions that look well spread
across the space of enumerated solutions. The Maxdist method misses most of the large
set of similar solutions that are recovered by the other methods. Both the Rxn-enum

and the integer-cut enumeration explore a similar and restricted region of the space,
although integer-cut can sample more densely from the same region.

Differences between the methods in this more realistic context are more obvious, and
DEXOM performs comparatively better than the other methods. After DEXOM generates an
initial set of around 600 solutions, both the average distance and the average nearest
neighbor distance start to grow surpassing the other methods. A similar pattern can be
observed for different random sets of selected genes (see Supporting information).

Prediction of essential genes using ensembles is highly
dependent on the strategy used for enumeration

Next, we evaluate the predictive capabilities of the different methods for in-silico
prediction of essential genes in the model organism Saccharomyces Cerevisiae. We used
gene expression measured from yeast in aerobic conditions [36]. Genes were classified
into expressed and not expressed using different combinations of thresholds on the
quantiles of the distribution as it is commonly done in context-specific network
reconstruction. For instance, a threshold of [0.25, 0.75] indicates that genes whose
normalized expression value are below the quantile 0.25 are classified as lowly expressed,
whereas those above the quantile 0.75 are highly expressed. Reactions were splitted into
RH and RL sets using the mapExpressionToReactions method from the COBRA
Toolbox.

Essential genes in Yeast 6 were curated using most updated information from
YDPM database and the SGD project [38]. Genes that are essential due to mechanisms
not directly related to metabolism were excluded from the set, as they cannot be
predicted using FBA. In total, 188 genes out of the 900 in Yeast 6 are considered to be
essential under aerobic conditions.

A maximum of 2,000 optimal networks were enumerated for each combination of
threshold and method, using a time limit of 8h per threshold/method, and 5 min.
timeout for each MILP problem. The lower bound of the biomass reaction was
constrained to carry a small positive flux, in order to prevent the generation of networks
in which knockouts on essential genes cannot be simulated using FBA. In-silico
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Fig 5. Enumeration of a maximum of 1,000 optimal metabolic networks on Yeast 6
model using a random set of 120 highly expressed genes and 120 lowly expressed genes.
Enumeration was repeated 10 times for each method. The grey dots represent the union
of all the solutions found by all the methods.

predictions of essential genes were carried out using COBRA Toolbox v3.0.6, classifying
each gene as essential if the flux through the biomass reaction was below 1% after KO.

Essential genes were predicted for each optimal network within the set of the
optimal networks obtained by each method and threshold, but also for the ensemble of
networks, by taking the union of the predictions as shown in Figure 3. That is, if a gene
is predicted as essential by a single optimal network from a set of optimal networks
enumerated using a given method and threshold, then the gene is classified as essential
by the ensemble. Thus, in total, we generated 16 ensembles per method, one for each
threshold.
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Threshold Method TPR FPR Threshold Method TPR FPR
Dexom 0.7234 0.1264 Dexom 0.7181 0.1194

Rxn-enum 0.7181 0.1053 Rxn-enum 0.7128 0.1025
Maxdist 0.4255 0.0730 Maxdist 0.4734 0.0969

0.10 0.90

Integer-cut 0.4681 0.0815

0.20 0.90

Integer-cut 0.4628 0.0576
Dexom 0.6755 0.0871 Dexom 0.6649 0.0927

Rxn-enum 0.6649 0.0829 Rxn-enum 0.6649 0.0843
Maxdist 0.4521 0.0674 Maxdist 0.5053 0.0702

0.10 0.85

Integer-cut 0.3617 0.0604

0.20 0.85

Integer-cut 0.4096 0.0365
Dexom 0.7128 0.0688 Dexom 0.6755 0.0520

Rxn-enum 0.7128 0.0716 Rxn-enum 0.6596 0.0716
Maxdist 0.4149 0.0379 Maxdist 0.4521 0.0337

0.10 0.80

Integer-cut 0.4096 0.0534

0.20 0.80

Integer-cut 0.3670 0.0562
Dexom 0.6649 0.0843 Dexom 0.6702 0.0590

Rxn-enum 0.6649 0.0744 Rxn-enum 0.6702 0.0520
Maxdist 0.4096 0.0548 Maxdist 0.4096 0.0632

0.10 0.75

Integer-cut 0.3723 0.0548

0.20 0.75

Integer-cut 0.3670 0.0534
Dexom 0.7287 0.1053 Dexom 0.7713 0.1334

Rxn-enum 0.7234 0.1096 Rxn-enum 0.7340 0.1194
Maxdist 0.4681 0.0758 Maxdist 0.5213 0.1067

0.15 0.90

Integer-cut 0.4628 0.0983

0.25 0.90

Integer-cut 0.4787 0.0913
Dexom 0.7128 0.0829 Dexom 0.6862 0.0885

Rxn-enum 0.7128 0.0576 Rxn-enum 0.6649 0.0843
Maxdist 0.5000 0.0927 Maxdist 0.4574 0.0730

0.15 0.85

Integer-cut 0.3617 0.0576

0.25 0.85

Integer-cut 0.4202 0.0590
Dexom 0.7021 0.0885 Dexom 0.6702 0.0871

Rxn-enum 0.7021 0.0815 Rxn-enum 0.6702 0.0576
Maxdist 0.3989 0.0323 Maxdist 0.4096 0.0590

0.15 0.80

Integer-cut 0.3670 0.0548

0.25 0.80

Integer-cut 0.4521 0.0534
Dexom 0.6649 0.0506 Dexom 0.6755 0.0843

Rxn-enum 0.6649 0.0801 Rxn-enum 0.6702 0.0801
Maxdist 0.4309 0.0534 Maxdist 0.4096 0.0604

0.15 0.75

Integer-cut 0.4043 0.0562

0.25 0.75

Integer-cut 0.4096 0.0548

Table 1. True positive Rate (TPR) and False Positive Rate (FPR) of the ensembles for
the prediction of essential genes in Yeast 6, for the different methods and thresholds.
Ensembles were generated by taking the union of the predictions of all enumerated
networks per method and threshold.

Table 1 shows the True Positives Rate (TPR, sensitivity) and False Positive Rate
(FPR, 1-specificity) of these ensembles. DEXOM achieves the best TPR for all thresholds,
with the best overall TPR of 0.7713 for the threshold [0.25, 0.90], which corresponds to
the correct classification of 145 genes out of the 188 essential genes in the dataset.
These results are followed by the Rxn-enum method, which achieves the same TPR as
DEXOM in 8 out of 16 tests, with a slightly lower FPR in 6 out of those 8 tests. In
contrast, Maxdist and Integer-cut ensembles are not very well positioned in terms of
TPR, although both methods achieve the lowest rates of false positives. Concretely, the
Integer-cut method obtained the lowest FPR in 9 out of the 16 tests.

Differences between ensembles can be better assessed by placing each ensemble in a
ROC space (Figure 6), in which each point is an ensemble represented by its TPR and
FPR. The upper part of the figure is dominated by DEXOM and the Rxn-enum method,
whereas the Maxdist and Integer-cut ensembles are characterized by a lower ratio of
true and false positives.

One reason that explains these differences between the methods is the systematic
generation of alternative solutions by testing every reaction in the model. If one
reaction associated to a gene that is essential is not present in any of the set of optimal
networks, the gene is not predicted to be essential. However, if there exist at least one
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optimal solution in which this reaction is present and essential, both Rxn-enum and
DEXOM have more chances to detect it as they are going to test if there exist an optimal
network with that reaction being active. Maxdist and integer-cut methods leave
many of these solutions unexplored. DEXOM, in contrast, uses the Rxn-enum strategy to
have an initial set of solutions with variations in single reactions, from which it expands
the search incrementally, increasing the chances of detecting even more essential genes.

0.02 0.04 0.06 0.08 0.10 0.12 0.14
FPR

0.4

0.5

0.6

0.7

0.8

TP
R

Method
DEXOM
Rxn-enum
Maxdist
Integer-cut

Fig 6. Ensembles of optimal metabolic networks in the ROC space. Each point
represents an ensemble of networks built using a method and a concrete threshold for
gene expression.

Differences in TPR and FPR for the ensembles and the individual networks are
shown in Figures 7 and 8 respectively. One interesting observation is that the individual
networks generated by the different methods achieve a similar rate of true positives and
false positives, and so the higher rates scored by the ensembles using DEXOM and
Rxn-enum are driven by a more diverse set of predicted essential genes. That is,
individual networks enumerated by these methods are able to correctly predict different
sets of true essential genes, and so the union of those predictions include a more diverse
set of detected essential genes. Concretely, the median TPR for the ensembles generated
with DEXOM and Rxn-enum increase 142% with respect the median TPR of their
individual networks, whereas the TPR of the ensembles built with Maxdist and
Integer-cut increase only 54% and 51% respectively.

The computational cost of the methods is also different. One factor that affects the
performance is the number of variables of the MILP problem, and this also depends on
the threshold selected. For example, if the number of genes is 1,000 and the threshold
for the lowly expressed genes and highly expressed genes is [0.10, 0.90], then only 20%
of the genes (200 genes) are used, whereas if the threshold is [0.25, 0.75], 50% of the
genes are used. Mapping a bigger set of genes into the networks will translate into
larger sets of RH reactions to maximize and RL reactions to minimize, and thus bigger
MILP problems with more binary variables to optimize.

Figure 9 shows the number of solutions over time for the thresholds used in the
evaluation that take the minimum number of genes ([0.10, 0.90], 20% of genes) and the
maximum number of genes ([0.25, 0.75], 50% of genes). Figure 9A shows the solutions
obtained over time for the case when only 20% of the genes is classified as highly
expressed or lowly expressed. In this situation, DEXOM, Maxdist and Integer-cut follow
a similar trend. Rxn-enum is the fastest method, taking less than 10 minutes to finish
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Fig 7. Distribution of the TPR achieved by the individual networks and the ensembles
for each method.
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Fig 8. Distribution of the FPR achieved by the individual networks and the ensembles
for each method.

the enumeration. This is due to the fact that solving each MILP problem has almost no
extra cost with respect to the original problem, since only a single constraint to force
the inclusion or removal of one reactions is added to the original problem. In contrast,
the other methods solve a more complex optimization problem, and the number of
constraints grows monotonically, making more difficult the enumeration over time.

Differences between the techniques become more extreme as the number of genes
increases. Figure 9B shows the but for the threshold [0.25, 0.75], in which 50% of genes
are mapped in the networks. Rxn-enum is again the fastest method, followed by
Integer-cut, DEXOM and Maxdist. Concretely, Rxn-enum takes again less than 10
minutes to complete, whereas Integer-cut takes around 1.5h, DEXOM 5h and Maxdist
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around 8h. Maxdist is heavily penalized by the increase in the number of selected genes.
This is due to the fact that Maxdist searches for the most distant vector at each step,
and the dimension of this vector correspond to the number of reactions in the RH and
RL sets, which are bigger in this case. DEXOM is less penalized since at the beginning of
the search, only a few components of the vector are used to maximize the distance.
However, the performance degrades as the distance increases over time, until the
distance is maximal. At this point, the performance of DEXOM is similar to Maxdist.
The total time for the evaluation, including all methods and calculation of in-silico
predictions of essential gene for each optimal network took around 150 hours in an Intel
Core i7 4790 @ 3.60 GHz (8 threads) with CPLEX 12.8 and Matlab 2015 academic.
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(A) Time taken for the threshold [0.10, 0.90]
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Fig 9. Total number of solutions enumerated over time for the different techniques for
two different thresholds. A) Using a gene threshold of [0.10, 0.90]. B) Using a gene
threshold of [0.25, 0.75].

One important limitation of enumerating optimal solutions is the heavy
computational cost involved in the search process. If the number of highly expressed
genes and lowly expressed genes is very large, obtaining a single optimal metabolic
network can be computational demanding or even not feasible in reasonable time, since
obtaining an optimal solution involves solving a MILP problem, which is in general
NP-Hard. In this context, enumerating multiple optimal solutions can be prohibitively
expensive in some cases, especially with techniques like Maxdist or DEXOM. One thing
that can be done in these situations to alleviate the computational burden is to reduce
the integer optimality tolerance of the solver to stop looking for better solutions once
the solver has found a feasible integer solution proved to be, for example, within 1% of
optimal.

Conclusion

Context-specific metabolic network reconstruction is a widely used approach to
integrate different layers of experimental data into metabolic networks. This process
allows to capture the metabolic sub-network that corresponds to the active part of the
metabolism of an organism in a given condition. Using this reconstructed model, more
advanced techniques such as Flux Balance Analysis, Pathway Enrichment, Network
Visualization or Gene Essentiality Prediction can be used to get an integrated view of
the metabolic behavior.

One important limitation with this methodology is that context-specific metabolic
network reconstruction is subject to significant variability due to the large number of
optimal metabolic networks that can be reconstructed for the same experimental data,
among other factors. This variability, which is commonly neglected, can contain
relevant information and can offer alternative hypothesis of the metabolic state in terms
of different combinations of reactions that are predicted to be active or inactive. Thus,
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the report of results using only a single optimal context-specific metabolic network can
be highly biased and can overlook information relevant to the experiment. While this is
an important issue, the analysis of the alternative set metabolic networks is a topic not
well explored.

In this study we analyze the problem of enumeration of multiple optimal
context-specific metabolic networks both from a theoretical and practical perspective.
We show how it is common to have multiple different context-specific metabolic
networks that optimally explain the same observed experimental data. The set of
optimal solutions constitute different hypotheses of the metabolic state and therefore
must be taken into account to reduce bias in the interpretation of results.

We analyze the advantages and disadvantages of different methods that can be used
for enumerating alternative optimal networks and we introduce DEXOM, a novel method
for diversity-based enumeration of context-specific metabolic networks. Instead of
randomly enumerating optimal networks, DEXOM focuses on sampling optimal solutions
that are as representative as possible of the space of the unknown possible optimal
solutions.

We evaluate the methods both with simulated and real data based on two criteria: 1)
diversity of the optimal solutions obtained with each method, using two different
distance metrics to evaluate diversity; and 2) predictive capabilities of metabolic
networks and metabolic network ensembles generated with each method for the
prediction of essential genes in Saccharomyces Cerevisiae.

In terms of diversity, DEXOM is the method that recovers a more widespread set of
optimal solutions, capturing a more diverse set of different reactions among the
metabolic networks but equally consistent with the experimental data.

With respect to predictive capabilities of essential genes using the Yeast 6 model, on
an individual basis there are no noticeable differences in terms of True Positive Rate
(TPR) and False Positive Rate (FPR) between the individual optimal metabolic
networks obtained by each method. However, when the results are combined using
ensembles of optimal metabolic networks, the TPR of the ensemble obtained with
DEXOM increases by 140% compared to the median TPR of the individual networks,
whereas ensembles generated with the methods that generate less diverse sets of
solutions achieved only an increment of 50%. DEXOM was also the method the best
overall TPR of 0.7713, which corresponds to 145 out of 188 correctly classified essential
genes, for a FPR of 0.1334 (95 false positives out of 712 non essential genes). These
differences are explained by a more diverse set of essential genes captured by the
individual optimal networks enumerated with DEXOM.

Overall, this work provides a better method to enumerate optimal context-specific
metabolic networks, and highlights the importance of analyzing the space of optimal
metabolic networks in a diverse manner, in order to capture as much as possible the
variability that is inherent in the reconstruction process.

Supporting information

S1 Fig. Enumeration in Yeast 6 with 200 random genes. Enumeration of a
maximum of 1,000 optimal metabolic networks on Yeast 6 model using a random set of
100 highly expressed genes and 100 lowly expressed genes.

S2 Fig. Enumeration in Yeast 6 with 160 random genes. Enumeration of a
maximum of 1,000 optimal metabolic networks on Yeast 6 model using a random set of
80 highly expressed genes and 80 lowly expressed genes.
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S3 Fig. Enumeration in Yeast 6 with 120 random genes. Enumeration of a
maximum of 1,000 optimal metabolic networks on Yeast 6 model using a random set of
60 highly expressed genes and 60 lowly expressed genes.
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S1 Fig. Enumeration of a maximum of 1,000 optimal metabolic networks on Yeast 6
model using a random set of 100 highly expressed genes and 100 lowly expressed genes.
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S2 Fig. Enumeration of a maximum of 1,000 optimal metabolic networks on Yeast 6
model using a random set of 80 highly expressed genes and 80 lowly expressed genes.
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S3 Fig. Enumeration of a maximum of 1,000 optimal metabolic networks on Yeast 6
model using a random set of 60 highly expressed genes and 60 lowly expressed genes.
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