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Abstract 

Objective: To identify, characterize, and automatically classify hypoperfusion-related changes in          

the blood oxygenation level dependent (BOLD) signal in acute stroke using spatial independent             

component analysis of resting-state functional MRI data.  

Methods: We applied spatial independent component analysis to resting-state functional MRI           

data of 37 stroke patients scanned within 24 hours of symptom onset, 17 of whom received                

follow-up scans the next day. All patients also received dynamic susceptibility contrast MRI.             

After denoising and manually classifying the components, we extracted a set of temporal and              

spatial features from each independent component and used a generalized linear model to             

automatically identify components related to tissue hypoperfusion.  

Results: Our analysis revealed “Hypoperfusion spatially-Independent Components” (HICs)        

whose BOLD signal spatial patterns resembled regions of delayed perfusion depicted by dynamic             

susceptibility contrast MRI. These HICs were detected even in the presence of excessive patient              

motion, and disappeared following successful tissue reperfusion. The unique spatial and temporal            

features of HICs allowed them to be distinguished with high accuracy from other components in               

a user-independent manner (AUC = 0.95, accuracy = 0.96, sensitivity = 1.00, specificity = 0.96).  

Interpretation: Our study presents a new, non-invasive method for assessing blood flow in acute              

stroke that minimizes interpretative subjectivity and is robust to severe patient motion.  

Keywords: 

spatial independent component analysis, blood oxygenation level dependent signal, resting-state          

functional magnetic resonance imaging, stroke, perfusion 
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Introduction 

Imaging blood flow in acute ischemic stroke is important in directing treatment decisions. In              

clinical practice, MRI-based blood flow imaging is typically performed using dynamic           

susceptibility contrast MRI (DSC-MRI). This method is well-established and correlates well with            

the in-vivo perfusion imaging gold-standard, 15O-water positron emission tomography (PET) 1,2.           

However, it requires the use of intravenously administered contrast agents, which are            

contraindicated in patients with kidney impairment 3 and can accumulate in tissues with repeated              

use 4.  

BOLD functional MRI has been proposed as an alternative to DSC-MRI. At rest,BOLD signal              

oscillations reflect a combination of different signal sources, including the hemodynamic           

response to spontaneous neural activity (neurovascular coupling), peripheral physiology         

(respiratory and cardiac function), fluctuations in blood carbon dioxide 5,6, and head motion 7.              

Disturbed cerebral blood flow is associated with changes in BOLD signal fluctuations in multiple              

ways. One of the best studied perfusion-related changes in the BOLD signal is BOLD delay 8–17,                

which utilizes relative phase lags in low frequency oscillations (LFOs) of the BOLD signal              

originating from outside the brain (systemic LFOs) in underperfused brain regions 18. Disturbed             

perfusion is known to affect other BOLD signal features, including a shift to lower LFO               

frequencies 19–21 and a decrease in LFO amplitude 22. These findings suggest that regions of               

disturbed perfusion may have a unique set of BOLD signal characteristics that distinguish them              

from normally perfused tissue. Using this BOLD “signature” to rapidly and reliably identify             

abnormally perfused tissue would be of great diagnostic and prognostic utility. 

Spatial independent component analysis (spatial ICA) is a data-driven method for decomposing            

complex signals into statistically-independent subcomponents 23. In fMRI, it has been used to             

remove non-neuronal signal contributions such as head motion, large vessel pulsations, and            

scanner instabilities 24. Using spatial ICA, researchers can isolate functionally distinct           

resting-state networks (RSNs) such as visual cortical areas and the sensory-motor cortex 25.  

Considering spatial ICA’s ability to separate statistically-independent sources of variance in the            

BOLD signal, we investigated whether spatial ICA would detect hypoperfusion-related changes           
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in the BOLD signal in acute stroke patients. Specifically, we aimed 1) to identify spatial ICA                

components corresponding to tissue hypoperfusion, 2) to characterize the temporal and spatial            

properties of these “Hypoperfusion spatially-Independent Components” (HICs), and 3) to          

determine whether HICs can be identified in a fully automated manner.   
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Methods 

Patients 

This study analyzes data from a subset of ischemic stroke patients from 1000Plus 26              

(clinicaltrials.gov identifier: NCT00715533) and LOBI-BBB (clinicaltrials.gov identifier:       

NCT02077582), two prospective cohort imaging studies conducted at Charité         

Universitätsmedizin Campus Benjamin Franklin (Berlin, Germany) between January 2009 and          

March 2016.  

The patients included in this study had a clinical and radiological diagnosis of acute              

supratentorial ischemic stroke, and had received both dynamic susceptibility contrast magnetic           

resonance imaging (DSC-MRI) and resting-state functional MRI (rs-fMRI) scans within 24 hours            

of symptom onset as part of a standard stroke imaging protocol 26. All patients showed perfusion                

deficits on their time-to-maximum (Tmax) maps at baseline. Where available, follow-up scans            

from the same patients, acquired approximately 24 hours after the baseline scans, were also              

included in the analysis. Exclusion criteria were any contraindications to MRI or gadolinium             

contrast agent. Patients provided written informed consent prior to participation, and all            

procedures were approved by the local ethics committee and were performed according to the              

Declaration of Helsinki. 

Thirty-seven acute ischemic stroke patients who met our inclusion criteria were included in this              

study. The baseline scans of twenty-two of these patients were previously analyzed in a              

comparison between time shift analysis of rs-fMRI data (BOLD delay) and DSC-MRI 9 and             

twelve patients (and their follow-up scans) from the current study were previously investigated in              

a study of the longitudinal evolution of perfusion deficits detected using BOLD delay10.  

Imaging 

Acquisition 

All imaging was performed on a Siemens (Erlangen, Germany) Tim Trio 3 Tesla MRI scanner.               

The sequence parameters were as follows, rs-fMRI; repetition time (TR) = 2300 ms, echo time               

(TE) = 30 ms, flip angle (FA) = 90° , matrix = 64 x 64, voxel dimensions = 3 x 3 x 3 mm3, 1 mm                         

slice gap, 33 slices and 150 volumes (acquisition time=5 min. and 50 s). The rs-fMRI scan was                 
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performed prior to the administration of the contrast agent and patients were requested to relax,               

lie still, and close their eyes for the duration of the scan.  

DSC-MRI was performed after injection of a bolus of 5ml Gadovist ® (Gadobutrol, 1M, Bayer              

Schering Pharma AG, Berlin, Germany) followed by a saline flush at a flow rate of 5ml/s. The                 

sequence parameters were: TR = 1390 ms, TE = 29 ms, FA = 60, matrix = 128 x 128, voxel                    

dimensions = 1.8 x 1.8 x 5 mm, 0.5 mm slice gap, 21 slices and 80 volumes (acquisition time = 1                     

min and 58 s).  

Other imaging included diffusion-weighted imaging (DWI), time-of-flight MR angiography, and          

fluid-attenuated inversion recovery (FLAIR) scans, as described previously 26.  

Dynamic susceptibility contrast MRI 

Maps of time-to-maximum of the tissue residue function (Tmax) were generated from the             

DSC-MRI data using Stroketool (version 2.8; Digital Image Solutions – H.J. Wittsack) after             

deconvolution of the concentration-time curve through block-circulant singular value         

decomposition 27. The arterial input function (AIF) was selected from 5-10 voxels in the distal               

branches of the middle cerebral artery on the hemisphere contralateral to the acute infarct 28.               

Artifacts in the cerebrospinal fluid (CSF) were automatically removed from the Tmax maps using              

CSF masks derived from T2-weighted B0 images.  

Resting-state functional MRI  

Preprocessing 

Preprocessing of the resting-state data was performed using tools from Analysis of Functional             

NeuroImages (AFNI) and the FMRIB Software Library (FSL). The first four volumes of each              

time series were discarded for signal equilibration. After correcting for slice-timing effects, the             

remaining volumes were skull-stripped, realigned to the mean functional image of each            

individual, and linear and quadratic trends were removed. Images were spatially smoothed            

(Gaussian kernel of full-width-at-half-maximum = 6 mm), but left temporally unfiltered to            

include the full range of signal frequencies for spatial independent component analysis. 

6 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 18, 2020. ; https://doi.org/10.1101/2020.07.17.208058doi: bioRxiv preprint 

https://paperpile.com/c/Ls63iW/4XuNE
https://paperpile.com/c/Ls63iW/eYjr0
https://paperpile.com/c/Ls63iW/mGIT2
https://doi.org/10.1101/2020.07.17.208058
http://creativecommons.org/licenses/by-nc/4.0/


Hu et al. 

ICA decomposition 

Spatial ICA is a data-driven approach for multivariate data analysis and representation. It was              

implemented in this study using FSL’s Multivariate Exploratory Linear Optimized          

Decomposition into Independent Components - MELODIC 23. Spatial ICA models          

four-dimensional fMRI data as a linear combination of unknown source signals (referred to as              

“independent components”), each described by a spatial map and an associated time course. It              

dissects out the different source signals by assuming their mutual, statistical independence and             

non-Gaussianity 23. In this study, spatial ICA was implemented using MELODIC’s default            

Bayesian dimensionality estimation, which estimates the number of source signals within the data             

automatically 23. This means that the number of independent components outputted by            

MELODIC can differ between patients and scanning sessions in this study.  

Manual classification of independent components 

For a subset of the data (20 out of 37 baseline scans; the FIX training dataset , see below),                  

independent components from MELODIC were manually classified by consensus of two raters            

(A.A.K and J-Y.H.) into the following classes: resting-state networks (RSNs), likely           

hypoperfusion independent components (HICs), noise (including head motion and scanner noise),           

or “unknown” if the independent component could not be clearly identified. Manual classification             

of the RSNs, noise, and unknown components was carried out according to published guidelines              
29 by inspecting the thresholded spatial maps (|Z| > 2.33), the power spectrum, and the time                

courses. HICs were identified as components that were unilateral and corresponded roughly to             

the location of the patient’s infarct on DWI.  

A total of 896 independent components were generated using MELODIC from the subjects in the               

FIX training dataset. The median number of independent components per subject was 45 (IQR =               

43 – 47). The mean (± SD) contribution of each component class (% out of the total number of                   

components) for subjects in the FIX-training dataset are as follows: noise (79.8% ± 9.4%),              

resting-state networks (9.2% ± 5.9%), and likely hypoperfusion independent component(s) (HIC;           

2.6% ± 1.5%). “Other” components that could not be unambiguously classified into any of the               

other three categories formed 8.4% ± 4.8% of the training dataset. Of the 20 subjects in the FIX                  

training dataset, 14 had a single HIC, 3 had two HICs, 1 had three HICs, and 2 had no HICs. 
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Data denoising 

To reduce the number of components by removing non-signal independent components, we used             

FMRIB’s ICA-based X-noiseifier (FIX), a machine-learning algorithm that automatically         

classifies signal and artifact components in rs-fMRI data using 186 spatial and temporal features              
30. Minor modifications were made to FIX to accommodate our data: we substituted T1-weighted              

magnetization-prepared rapid gradient-echo (MPRAGE) scans used in calculations of FIX          

features with B0 images (T2-weighted spin-echo EPI), as MPRAGEs are not routinely acquired             

as part of our acute stroke MR imaging protocol 26. Tissue segmentation maps needed for these                

features were generated from these images using FSL’s FMRIB Automated Segmentation Tool            

(FAST). All segmentations were visually assessed for quality.  

FIX was trained on the FIX training dataset. The accuracy of FIX for separating signal from noise                 

in the FIX training dataset was investigated using leave-one-out cross-validation. An optimal            

threshold of 20 was selected for the classification of independent components in our training data,               

as this was the highest threshold at which no HICs were incorrectly classified by FIX as noise. At                  

this threshold, FIX achieved a mean true positive rate (TPR; percent of true signal independent               

components correctly classified) of 90.9%, and a mean true negative rate (TNR; percent of true               

noise independent components correctly classified) of 84.6%. The output of FIX denoising was a              

“shortlist” of components classified by FIX as being “non-noise”. After training, FIX was applied              

to the full dataset (n = 2337 independent components from 51 subjects). FIX reduced the number                

of independent components to a list of likely-signal independent components by 77.4% (total, n =               

528 independent components from 51 subjects).  

Image registration 

All images (including Tmax maps, resting-state data, and spatial ICA maps) were registered to a               

custom echo planar imaging (EPI) template in MNI 152 standard space using a rigid body spatial                

transformation (3 rotations and 3 translations, implemented using FSL FLIRT) for further            

processing. This template was derived from the EPI scans of 103 stroke patients and details of                

how it was generated can be found in the Supplementary Materials of 9. 

8 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 18, 2020. ; https://doi.org/10.1101/2020.07.17.208058doi: bioRxiv preprint 

https://paperpile.com/c/Ls63iW/yfFd1
https://paperpile.com/c/Ls63iW/4XuNE
https://paperpile.com/c/Ls63iW/VuEqE
https://doi.org/10.1101/2020.07.17.208058
http://creativecommons.org/licenses/by-nc/4.0/


Hu et al. 

Feature extraction  

We extracted a set of relevant spatial and temporal features from the shortlisted independent              

components (i.e. after data denoising by FIX) to examine how HICs may differ from other signal                

components. The following features were extracted: 

1. Temporal delay to a reference signal: Temporally delayed BOLD signals, calculated           

using time shift analysis 8, have been found to correspond to hypoperfused brain regions.              

We thus explored whether the temporal delay between the mean time courses of the              

independent components and a reference time course was different between HICs and            

independent components representing normally perfused tissue. We used two different          

reference time courses: the whole brain (global) signal 8,11 and the signal from within the               

major venous sinuses 9,12,31, the latter of which was automatically extracted using a venous              

sinus template in MNI space (details described in the Supplementary Materials of 9).             

Positive delay values indicate the component’s BOLD signal time course followed the            

reference time course, while negative delay values indicate the component’s BOLD signal            

time course preceded the reference time course. 

2. Power in frequency bands: Ischemia shifts BOLD signal oscillations towards lower           

frequencies 19–21. For each independent component, we calculated the percentage of total            

spectral power in six different frequency ranges (0 – 0.01 Hz, 0.01 – 0.025 Hz, 0.025 –                 

0.05 Hz, 0.05 – 0.1 Hz, 0.1 – 0.15 Hz, 0.15 – 0.20 Hz) after fast Fourier transform of the                    

time courses 30. 

3. Percent restriction to a single vascular territory: Ischemic stroke-related hypoperfusion          

is most commonly restricted to a vascular territory supplied by a single major artery. This               

makes the percent restriction of an independent component’s spatial map to a single             

vascular territory a potential feature of interest. We thus calculated the percentage of each              

independent component’s volume that exists within a single vascular territory. For this            

analysis, only independent components with >50% of their volume within a single            

vascular territory were considered. The vascular territories were defined according to a            

custom vascular territory atlas in MNI template space, described in further detail in the              

Supplementary Materials of 9. 
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4. Mean Tmax delay:  To compare the results of the spatial ICA with the level of perfusion 

revealed by DSC-MRI in the area covered by each independent component, we calculated 

the mean Tmax delay of all voxels in the Tmax map overlapped by the independent 

component’s spatial map. 

Automated identification of HICs 

Model training 

We used a Generalized Linear Model (GLM) on the extracted features to estimate the probability               

that a given independent component is a HIC. To mitigate multicollinearity effects we selected an               

elastic net regularized GLM 32.  

Disregarding components classified as noise, HICs form about 10% of the components per             

dataset. To address this problem of extreme class imbalance 33, which can bias GLM results, we                

first sub-sampled our dataset to contain 50% HICs (number of components = 57), and 50%               

non-HICs (number of components = 57). From this model dataset , which undersamples the             

majority (non-HIC) class, we randomly selected 80% of the independent components to be the              

training dataset (containing 43 HICs and 48 non-HICs).  

For the model training, components were classified as HICs if their model probabilities were              

above a probability threshold determined by Youden’s index, which gives equal weight to             

sensitivity and specificity. The shrinkage parameter lambda was estimated using leave-one-out           

cross-validation on the training dataset. 

Model testing 

The test dataset contained all the HICs (number of components = 14) and non-HICs (number of                

components = 414) remaining after selection of the training dataset. From this, we randomly              

subsampled 5 HICs and a set of non-HICs according to the mean ratio between HICs and                

non-HICs in individual MELODIC outputs in the FIX shortlist (about 1:10). This random             

selection was repeated 50 times and the model’s performance is reported as the median of these                

iterations (see below for metrics of model performance). 
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Statistical analysis 

Radar plots were created using the “radarchart” function from the fmsb R package 34 to visualize                

feature values. Raincloud plots, which combine dot plots, box plots, and violin plots, are used to                

visualize the distribution of continuous variables 35.  

The elastic net regularized GLM used in this study was implemented using the “cv.glmnet”              

function from the glmnet R package 36.  

Model performance is reported using the following metrics: 

● Area-under-the-curve of the receiver operating ROC curve (AUC): The probability that           

the model will assign a higher probability of being a HIC to a randomly chosen HIC than                 

to a randomly chosen non-HIC. ROC curves were visualized and their AUCs were             

calculated using the pROC R package 37 

● Accuracy: The proportion of true positives and true negatives, or the proportion correctly             

classified by the model 

● Sensitivity: The true positive rate, or the proportion of HICs correctly classified by the              

model as being HICs 

● Specificity: The true negative rate, or the proportion of non-HICs correctly classified by             

the model as being non-HICs 

● Cohen’s kappa: The agreement between the model’s classification and the          

“true”/”reference” classification, beyond that expected due to random chance. This was           

calculated using the irr R package 38.  

The GLM coefficients were converted into Odds ratios (Odds ratio = ecoefficient). Since elastic net,               

like all penalized regression models, provides biased estimators, no meaningful standard errors            

can be calculated 39 and therefore p-values are not reported in this analysis. Instead, the model                

produces penalized coefficients through bootstrapped cross-validation. Variables whose        

contribution to the outcome is negligible have penalized coefficients of zero (i.e. Odds ratios of               

1). 
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Data availability  

The data and code for the training and testing of the model can be found at                

https://github.com/ahmedaak/spatial_ICA_stroke.   
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Results 

Patients 

The study sample consisted of 17 women and 20 men (mean age = 71 years, SD = 14 years).                   

Their median NIHSS was 7 (IQR 3 - 14) and the median time from symptom onset to MRI was 7                    

hours (IQR 2 - 16 h). Intravenous thrombolysis was administered to 19 (51%) patients. Fourteen               

patients received follow-up scans on the second day following stroke onset, resulting in a total of                

51 scans. Tissue reperfusion was successful in 3 of the 14 patients with follow-up scans, as                

demonstrated by the complete resolution of time-to-maximum (Tmax) lesions observed on their            

baseline scans. 

Twelve out of the 51 rsfMRI scans exhibited severe head motion, defined according to previous               

studies on the use of rsfMRI for assessing cerebral hemodynamics as a mean framewise              

displacement of >0.4 mm across the scan or a maximum framewise displacement of >3 mm 9,10.                

Head motion was quantified using framewise displacement (FD), which is the sum of the              

absolute value of individual subjects’ six translational and rotational realignment parameters 40.           

Median FD (mean across all scan volumes) in the sample was 0.23 mm (IQR: 0.15 mm) for                 

rs-fMRI, and 0.29 mm (IQR: 0.19 – 0.47 mm) for DSC-MRI. Median FD (maximum across all                

scan volumes) were 1.28 mm (IQR: 0.61 – 2.86 mm) and 0.82 (IQR: 0.49 – 1.89 mm) for                  

rs-fMRI and DSC-MRI scans, respectively. 

Hypoperfusion independent components reflect tissue hypoperfusion 

Of the 37 baseline scans, 34 showed at least one HIC (6 scans showed 2 HICs, 2 scans showed 3                    

HICs). Fig 1 shows the DWI, Tmax, and HIC of three example patients. Maps for the other 31                  

patients may be found at http://dx.doi.org/10.6084/m9.figshare.12612809. Together, these figures         

reveal the striking spatial similarities between HICs and perfusion deficits on Tmax maps.  
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Figure 1. Spatial independent component analysis (spatial ICA) of resting-state fMRI detects            

post-stroke perfusion deficits in the form of hypoperfusion independent components (HICs).           

The figure shows (from left to right) diffusion-weighted imaging (visualization of infarcted            

tissue), hypoperfusion independent components (HICs), and time-to-maximum of the residual          

curve from dynamic susceptibility contrast MRI (Tmax; reflecting perfusion), from three           

representative acute stroke patients with a right-sided posterior cerebral artery infarct (patient            

A), right-sided middle cerebral artery infarct (patient B), and left-sided middle cerebral artery             

infarct (patient C). A corresponding perfusion deficit is seen in the affected vascular territory of               

each patient on the Tmax maps, derived from dynamic susceptibility contrast MRI. In each case,               

spatial ICA reveals a HIC with striking spatial resemblance to the perfusion deficit visible on the                

Tmax maps obtained using a contrast agent. 

 
In addition, 10 out of the 14 follow-up scans showed HICs. Fig 2 illustrates the relationship                

between the spatial ICA results and vessel status (recanalization or persistent vessel occlusion) in              

two patients with follow-up scans. In patient A, we observe the resolution of HICs following               

vessel recanalization and tissue reperfusion, while in patient B, HICs persist with continued             

vessel occlusion and tissue hypoperfusion. This finding suggests that HICs dynamically respond            

to changes in vessel status and perfusion dynamics over time.  
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HICs were identified in most subjects with high head motion during their rs-fMRI scans, as               

shown in an example patient in Fig 3. HICs were identified in 10 out of the 12 patients with high                    

head motion. Overall, there were 4 false negative cases, in which no HIC was visible despite the                 

presence of a perfusion deficit on Tmax maps ( http://dx.doi.org/10.6084/m9.figshare.12612809 ).         

In two of the false negative cases, extremely severe motion was present in the rs-fMRI data,                

exceeding 20 mm maximum framewise displacement. In the other two false negative cases,             

motion during the rs-fMRI scan was much lower (mean FD = 0.25 and 0.14 mm, max FD = 0.56                   

and 0.44 mm).  

HICs identified multiple perfusion deficits located in different vascular territories within the            

same patient (Fig 4). The fact that multiple, spatially remote areas of hypoperfusion within an               

individual patient are captured in a single independent component suggests that these areas share              

a BOLD signal signature that sets them apart from other components.  
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Figure 2. Perfusion assessed using spatial independent component analysis (spatial ICA)           

evolves with vessel status. Baseline images were obtained within 24 hours of symptom onset,              

while follow-up images were acquired the following day. Patient A had a left-sided acute              

posterior cerebral artery (PCA) infarct due to occlusion of the P2 segment of the PCA. A                

perfusion deficit and corresponding hypoperfusion independent component (HIC) were observed          

among 13 other independent components (after automatic denoising) at baseline. Following           

recanalization of the PCA, there is a normalization of the perfusion deficit in the PCA vascular                

territory on the contrast-enhanced Tmax map. Spatial ICA on follow-up imaging generated 20             

independent components after automatic denoising, mostly corresponding to resting-state         

networks, and no HICs. Patient B had a right-sided acute PCA infarct due to occlusion of the P1                  

16 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 18, 2020. ; https://doi.org/10.1101/2020.07.17.208058doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.17.208058
http://creativecommons.org/licenses/by-nc/4.0/


Hu et al. 

segment. A perfusion deficit and corresponding HIC are seen at baseline. Spatial ICA also              

produced 10 other independent components that mostly corresponded to resting-state networks           

(RSNs). Unlike in patient A, patient B’s PCA remained occluded at follow-up. The perfusion              

deficit in the posterior cerebral artery territory persisted on the contrast-enhanced Tmax map,             

and a HIC was seen along with the RSN independent components. This shows that HICs follow                

longitudinal perfusion dynamics corresponding to clinically-relevant events such as changes in           

vessel status.   

17 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 18, 2020. ; https://doi.org/10.1101/2020.07.17.208058doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.17.208058
http://creativecommons.org/licenses/by-nc/4.0/


Hu et al. 

 
Figure 3. Hypoperfusion independent components (HICs) are detected using spatial ICA           

despite high head motion. In this patient with a right-sided middle cerebral artery infarct (red               

circles on the diffusion-weighted image), the top row demonstrates the framewise displacement of             

the patient’s head over the duration of the resting-state functional MRI scan (maximum motion =               

3.2 mm, mean motion = 0.35 mm). Despite the high motion, a HIC was detected that                

corresponded to the patient’s perfusion deficit detected by dynamic susceptibility contrast MRI.            

Note that this patient has two distinct perfusion deficits within the same vascular territory (right               

middle cerebral artery)—one frontal and one temporoparietal—both of which are reflected in the             

HIC.  

 

18 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 18, 2020. ; https://doi.org/10.1101/2020.07.17.208058doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.17.208058
http://creativecommons.org/licenses/by-nc/4.0/


Hu et al. 

 
Figure 4. HICs detect multiple perfusion deficits affecting different vascular territories in the 

same patient. This patient has multiple infarcts (with corresponding perfusion deficits on the 

contrast-enhanced Tmax maps - bottom row) - in the left posterior cerebral artery territory 

(right) and in the right posterior inferior cerebellar artery territory (left). Spatial independent 

component analysis reveals a single HIC (middle row) that corresponds to both perfusion deficits 

in this patient. This implies that these areas of hypoperfusion, although spatially separated from 

each other, share a common BOLD signal signature. Note that, in the left column, the DWI slice 

showing the PCA infarct does not correspond to the same slice on the Tmax and HIC images, as 

the infarct is not visible on the DWI at the level shown on the Tmax and HIC images. 
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HICs show unique characteristics 

Table 1 shows the feature values (mean across patients) extracted from the independent             

components.  

Table 1. Mean feature values (non-normalized) across patients for HICs and non-HICs  

Feature HICs Non-HICs 

Delay to whole-brain signal (s) 7.24 -0.50 

Delay to venous sinus signal (s) 5.87 -2.24 

Tmax delay (s) 2.15 1.29 

Vascular territory occupancy (%) 51.60 6.22 

Power in frequency bands (%) 
0 - 0.01 Hz  

21.69 17.94 

0.01 - 0.025 Hz 23.89 21.43 

0.025 - 0.05 Hz 22.60 25.84 

0.05 - 0.1 Hz 15.14 17.44 

0.1 - 0.15 Hz  12.49 13.33 

0.15 - 0.2 Hz 4.18 4.02 
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For each patient, min-max normalization was applied to the values of the features extracted from               

each of the independent components using the following equation: 

in(S))/(max(S) in(S))zi = (xi − m − m  

where z is the normalized feature value, x is the original feature value, i refers to the independent                  

component in question, and S refers to the feature values of the entire set of independent                

components from a single patient.  

The mean of the normalized feature values across patients is shown on the radar plot in Fig 5.                  

HICs have a unique feature signature compared to non-HICs, characterized by delayed low             

frequency oscillations compared to the whole-brain and venous sinus references, greater           

restriction to a single vascular territory, larger overlap with areas of hypoperfusion (as assessed              

using Tmax), and more power in the lowest frequency bands (0 - 0.025 Hz).   
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Figure 5. Hypoperfusion independent components (HICs) demonstrate distinct features         

compared to non-HICs independent components. This radar plot shows the feature values for             

HICs (n=57) and non-HICs (n=471). Solid lines represent the mean feature value and dashed              

lines represent the 95% confidence interval around the mean. Compared to non-HICs within the              

same patient, HICs have specific characteristics: higher percentage occupancy within a single            

vascular territory, presence in regions of higher Tmax delay, time courses that show a higher               

temporal delay to the whole-brain and the venous sinus time courses, and higher signal power in                

the lowest frequency bands (0 - 0.01 Hz and 0.01 - 0.025 Hz). This combination of features                 

represents a unique signature for HICs.   
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Hypoperfusion independent components can be automatically identified  

Elastic net regularized GLM was applied to the FIX-shortlisted independent components (i.e. the             

independent components that were classified by FIX as being non-noise) to determine the             

predictive power of a set of features on HIC classification. The model discriminated HICs from               

non-HICs with a median accuracy of 0.96, sensitivity of 1.00, and specificity of 0.96. The median                

Cohen’s kappa for agreement between the model’s classification and the reference classification            

was 0.78 and the median AUC was 0.95. Fig 6 shows the distribution of these performance                

metrics across 50 iterations of the model, using different combinations of HICs and non-HICs. 

 

 
Figure 6. Hypoperfusion independent components (HICs) can be automatically distinguished 
from other independent components using machine-learning. Using independent test data with 
different combinations of HICs and non-HICs (that were not used for model training), we ran 50 
iterations of the elastic net regularized generalized linear model (GLM) to classify HICs. The 
overall model performance is shown in the receiver operating characteristic (ROC) curve (A). 
Each iteration of the model is shown in blue and the mean ROC curve is shown as a black dashed 
line. The ROC curve depicts the true positive and false positive rates for each classification 
threshold in the model. The raincloud plot in (B) shows the distribution of different metrics of 
model performance across the 50 model iterations. The lower and upper hinges of the box plot 
represent the 25th and 75 percentiles, respectively and the horizontal bar represents the median 
value. Across all model iterations, the values of area-under-the-ROC-curve (AUC), accuracy, 
sensitivity, specificity, and Cohen’s kappa are depicted. 
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A useful feature of elastic net regularized GLM is that it performs implicit variable selection, and                

thus enhances model interpretability by allowing the assessment of each feature’s relative            

importance for the classification 32. Table 2 shows that 7 out of the 9 extracted features were used                  

by the model to distinguish HICs from non-HICs (i.e. have an Odds ratio ≠ 0). These features                 

included a larger delay in the low frequency oscillations of the HIC relative to the whole-brain                

and venous sinus signals, a larger restriction to a single vascular territory by the HICs, a higher                 

power in the 0 - 0.001 Hz and 0.015 - 0.02 Hz frequency bands in the HICs, and a higher power                     

in the 0.0025 - 0.005 Hz and 0.01 - 0.015 Hz frequency bands in the non-HICs.  

Table 2. Results of the elastic net regularized generalized linear model for the classification of 

hypoperfusion independent components (HICs) based on spatial and temporal features.  

Feature Odds ratio 

Delay to whole brain signal 1.16 

Delay to venous sinus signal 1.15 

Vascular territory occupancy 1.05 

Power in frequency bands  
0 - 0.01 Hz 

1.64 

0.01 - 0.025 Hz 1.00 

0.025 - 0.05 Hz 0.02 

0.05 - 0.1 Hz 1.00 

0.1 - 0.15 Hz 0.005 

0.15 - 0.2 Hz 2.21 x 1016 
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Discussion  

In this study, we present a novel approach for identifying areas of disturbed perfusion in ischemic                

stroke without the use of contrast agents. We demonstrate that, using this method, areas of               

hypoperfusion can be extracted from resting-state fMRI data in a manner that is user-independent              

and robust to patient motion. The results of this study have important implications from both an                

application and methodological perspective.  

We provide several lines of evidence that certain independent components isolated from rs-fMRI             

data using spatial ICA reflect regions of hypoperfused brain tissue. Firstly, there is high visual               

similarity between the spatial maps of HICs and the Tmax maps of individual patients. This is                

noticeable even when patients had multiple perfusion deficits within (Fig 3) and across (Fig 4)               

vascular territories. Secondly, HICs were present in areas of much higher Tmax delay than other               

independent components (Fig 5). Thirdly, HICs observed at baseline disappeared at follow-up in             

patients with successful recanalization and reperfusion, paralleling the reversal of the patients’            

DSC-MRI Tmax lesions (Fig 2). Finally, HICs show BOLD signal characteristics that are             

consistent with those previously described in hypoperfused tissue 8,19–21.  

These spatial and temporal features of HICs help distinguish them from resting-state connectivity             

networks (Fig 5). BOLD oscillations associated with HICs were more temporally delayed in             

relation to the global and venous sinus signals than oscillations associated with resting-state             

networks. Although temporal delays in BOLD LFOs have been shown to occur under             

physiological conditions 31 and differ between resting-state networks 41, the largest delays are             

seen in areas of pathologically reduced perfusion 9,10.  

Additionally, HICs showed more signal power in very low frequency ranges (0 - 0.025 Hz) and                

less signal power in the 0.025 - 0.05 Hz range than resting-state networks. This finding is                

consistent with studies showing that the signal power increases in the <0.01 Hz range in               

hypoperfused tissue 19–21. Our study adds to this in our finding that oscillations associated with               

resting-state networks exist largely towards the higher end of the low frequency range than              

oscillations associated with disturbed perfusion.  
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One disadvantage of spatial ICA is that it outputs potentially dozens of components, and              

browsing through them to visually identify those likely reflecting hypoperfusion can be            

time-consuming, require expertise, and be subject to bias. We therefore combined the            

aforementioned component features with the degree of restriction of the component’s spatial map             

to a single vascular territory and used this set of features to train an algorithm to automatically                 

distinguish HICs from resting-state networks. The algorithm did this with high (>95%) accuracy,             

sensitivity and specificity, showing that HICs can be automatically extracted from the rest of the               

components of spatial ICA.  

Spatial ICA has certain advantages over existing methods for assessing perfusion using rs-fMRI.             

Instead of assessing the individual characteristics of hypoperfusion-related signals separately,          

spatial ICA extracts components that reflect a combination of changes in frequency, amplitude,             

and temporal delay. In addition, while methods based on cross-correlation, such as time shift              

analysis 8, are sensitive to small, motion-related changes in the BOLD signal, spatial ICA is               

capable of identifying perfusion deficits even in the presence of severe patient motion (Fig 3).               

Finally, unlike time shift analysis, spatial ICA does not require the specification of a reference               

signal, the choice of which is not trivial 9,12,17.  

This study’s findings have two major implications. From a clinical perspective, it introduces a              

new method for assessing blood flow in acute stroke patients that may be relevant for informing                

decision-making regarding recanalization and reperfusion therapies. This method is safer, as it            

does not require the use of exogenous contrast agents, which are particularly problematic in this               

patient population, who are generally older and have a higher prevalence of chronic kidney              

disease 42. The acquisition of the rs-fMRI data, upon which this method is based, is simple and                 

widely available on clinical scanners. Although the rs-fMRI data acquisition took substantially            

longer than DSC-MRI in this study (about six minutes vs two minutes), recent evidence suggests               

that extracting perfusion-related information from rs-fMRI can be achieved with much shorter            

acquisitions43. The method is also user-independent, which avoids the subjective assessment of            

perfusion maps that often leads to inconsistencies between and within experts44 and allows it to               

be seamlessly integrated in routine clinical practice. Finally, the robustness of the method to head               
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motion is a substantial practical advantage, as patients scanned during acute illnesses tend to              

exhibit a lot of motion, which diminishes scan quality and interpretability 45.  

From a methodological perspective, this study underscores the importance of accounting for            

disturbed perfusion as a potential source of confounding in rs-fMRI studies, particularly in             

patients with cerebrovascular diseases. Studies investigating functional connectivity in patients          

with potentially abnormal cerebral perfusion should therefore attempt to disentangle the effects of             

disturbed perfusion on the BOLD signal (e.g. due to vessel pathology) from components of the               

BOLD signal that reflect neuronal activity via local neurovascular coupling. So far, suggestions             

on how to do this have included regressing out the time delays (relative to a reference) from the                  

rs-fMRI data 46 and temporally realigning the BOLD signal time courses according to each              

voxel’s time delay value 47.  

While the spatial distribution of physiological vascular processes overlap with, and are often             

indistinguishable from, the spatial distribution of resting-state networks 41,48,49, we show that the             

influence of disturbed perfusion on the BOLD signal in stroke patients can be readily              

disentangled from other components of the BOLD signal using spatial ICA. There are two              

potential explanations for this. The first is that, in stroke, hypoperfusion is spatially restricted to               

either a vascular territory or part of a vascular territory. On the other hand, physiological vascular                

processes are spatially distributed in a manner similar to resting-state networks 41,48,49, which may              

make their separation using spatial ICA less likely. The second explanation has to do with the                

large difference in the temporal BOLD signal characteristics between hypoperfused and normally            

perfused tissue, which may also facilitate their separation by spatial ICA. In stroke, disturbed              

perfusion tends to be severe compared to the physiological delays in perfusion across different              

brain regions, and this leads to relatively large changes in the temporal characteristics of the               

BOLD signal in hypoperfused regions 9,10,19–21.  

As the first study to describe this method for assessing perfusion, the study has some limitations.                

The study sample is relatively small, owing to the fact that it includes an established, albeit                

relatively invasive, reference standard for assessing perfusion (DSC-MRI) as a comparison.           

Future studies should test the algorithm we developed on larger cohorts with different MR              

sequence parameters and more heterogeneous patient cohorts. Larger cohorts would also allow            
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the investigation of the clinical relevance of perfusion assessed using this method, in terms of               

how it relates to clinical and imaging outcomes and how it potentially influences clinical              

decision-making in acute stroke patients50.  

In summary, spatial independent component analysis is a novel approach for identifying            

hypoperfused tissue in ischemic stroke. It does not require the use of exogenous contrast agents,               

its data can be analyzed without user input, and its results are robust to patient motion. It                 

therefore presents a convenient and promising new alternative to existing perfusion imaging            

methods in acute stroke.  
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