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Abstract 

Historically, membrane protein systems have been considered as one of the most 

challenging systems to study with experimental structural biology techniques. Over the 

past years, increased number of experimental structures of membrane proteins have 

become available thanks in particular to advances in solid-state NMR spectroscopy and 

cryo-electron microscopy. This has opened the route to modeling the complexes that 

those membrane proteins form by methods such as docking. Most approaches 

developed to date are, however, not capable of incorporating the topological 

information provided by the membrane into the modeling process. Here, we present an 

integrative computational protocol for the modeling of membrane-associated protein 

assemblies, specifically complexes consisting of a membrane-embedded protein and a 

soluble partner. It combines efficient, artificial intelligence-based rigid-body docking by 

LightDock with a flexible final refinement with HADDOCK to remove potential clashes at 

the interface. We make use of an equilibrated coarse-grained lipid bilayer to represent 

the information encoded in the membrane in the form of artificial beads, which allows 

to target the docking towards the binding-competent regions. We demonstrate the 

performance of this membrane-driven protocol on eighteen membrane-associated 

complexes, whose interface lies between the membrane and either the cytosolic or 

periplasmic regions. In addition, we evaluate how different membrane definitions 

impact the performance of the docking protocol and provide a comparison, in terms of 

success rate, to another state-of-the-art docking software, ZDOCK. Finally, we discuss 

the quality of the generated models and propose possible future developments. Our 

membrane docking protocol should allow to shed light on the still rather dark fraction 

of the interactome consisting of membrane proteins. 
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Introduction 

Membrane proteins (MPs) play crucial roles in many biological functions within the cell. 

Commonly, MPs are classified based on their association mode with biological 

membranes into two main groups: Peripheral membrane proteins that are located on 

either side of the membrane and are attached to it by non-covalent interactions, and 

integral membrane proteins (IMPs) that are inserted into the membrane and can be 

either exposed on only one side of the membrane (monotopic membrane proteins) or 

span the entire lipid bilayer. The latter, known as transmembrane proteins (TMs), are 

structurally categorized as α-helical bundles or β-barrels1. TMs mostly function as 

regulators of complex biochemical pathways (receptors and transducers) and/or 

transporters of molecules (channels and carriers). Only transmembrane proteins can 

function at both sides of the membrane by forming larger complexes. As such they are 

not simply passive membrane spanning proteins but play important roles in protein-

protein interactions (PPIs), thus making them valuable targets for drug discovery 

(around 60% of current drug targets are MPs2. A well-known example are G-protein 

coupled receptors (GPCRs) which are involved in many diseases3. Those are collected in 

a specific database (GPCRdb; https://www.gpcrdb.org/)4. 

Over the past years, development of cutting-edge technologies has facilitated 

the study of previously inaccessible MPs, advancing the field of membrane structural 

biology. Obtaining high-quality crystals suitable for X-ray crystallography is still far from 

trivial. Solid-state NMR spectroscopy, and especially cryo-electron microscopy (cryo-

EM), reaching near-atomic resolution, have become central tools to study membrane-

associated protein complexes5,6. However, experimental conditions such as low 

expression profiles and/or high instability outside the native membrane still makes their 
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structural characterization challenging7. Despite their large representation in the 

proteome (in human, nearly a quarter of the genome encodes for MPs8), roughly only 

1% of all deposited protein structures in the Protein Data Bank9 (PDB) corresponds to 

MPs, with 1099 unique protein entries as of July 2020:  

https://blanco.biomol.uci.edu/mpstruc/. Even less of those have been experimentally 

solved in complex with their counterpart(s). For all these reasons, membrane protein 

systems, which are increasingly attracting attention, have been traditionally considered 

as one of the most difficult type of systems to study by experimental structural biology 

techniques. 

Computational methods offer an attractive alternative for studying membrane 

systems10. Many efforts have been made to develop efficient tools to computationally 

predict the 3D atomic structures of membrane-associated proteins and their 

complexes11. Some rely on secondary structure or topology prediction and make use of 

either knowledge-based statistics or evolutionary information to generate 3D 

models12,13. The simplest computational methods are based on homology modeling. In 

short, these approaches require a template structure (or multiple) with high sequence 

similarity to the target sequence, and usually produce very reliable “core” models 

(corresponding to the TM domains) and less accurate predictions for the extracellular 

loops. Methods such as MEDELLER14 and Memoir15 have greatly benefited from the 

increasing availability of cryo-EM derived structures in the PDB and are inspired on the 

well-known homology modeling tool MODELLER16.  

Another representative subset of computational methods geared towards 

modeling complexes are docking-based approaches. Docking commonly includes two 

different steps, namely sampling and scoring. Sampling is usually referred to as the 
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process of generating (tens of) thousands of possible conformations of a given 

(bio)molecular complex. This can be done through a number of well-established 

techniques such as Fast Fourier Transformation (FFT)-based methods included in various 

docking software such as GRAMM-X17,18 , ClusPro19, pyDock20 and ZDOCK21. These 

methods, however, do not allow for explicit flexibility of the modeled partners due to 

intrinsic limitations of the FFT sampling. Although this limitation can be partially solved 

by using ensembles of conformers, it implies higher computational cost. Energy 

minimization, in HADDOCK22 and ATTRACT23 for example, Metropolis Monte Carlo 

optimization, e.g. in RosettaDock24, or artificial intelligence-based algorithms, such as 

implemented in SwarmDock25 and LightDock26, are also used. The sampling process is 

often followed by a refinement of the docked models for which molecular dynamics- or 

Monte-Carlo-based protocols are the most commonly used. The generated models are 

scored with the aim of discriminating between biologically-relevant (native) and non-

relevant models. This is typically done with a scoring function, which can be based on 

either physico-chemical properties and/or statistical potentials27. Nowadays, with the 

increasing availability of large pools of docking models such as provided in the 

CAPRIDOCK28 (http://cb.iri.univ-lille1.fr/Users/lensink/Score_set/), PPI4DOCK29 

(http://biodev.cea.fr/interevol/ppi4dock/) and DOCKGROUND30 

(http://dockground.compbio.ku.edu/) databases, machine(deep)-learning scoring 

functions are gaining interest31. Sampling and scoring might be coupled (scoring-driven 

sampling) or work as independent steps (sampling and then scoring). In the context of 

membrane protein docking, software such as Rosetta32, DOCK/PIERR33 and Memdock34 

include built-in specific protocols to model transmembrane domains using implicit 

membrane potentials. Besides RosettaMP35 (for membrane protein design), none of the 
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available membrane-specific computational methods allow for an explicit 

representation of the lipid bilayer and, therefore, cannot harvest the topological 

information encoded in it. 

In this work, we present an integrative computational approach for modeling 

membrane-associated protein assemblies (complexes consisting of a membrane-

embedded protein and a soluble partner) that combines an efficient, swarm-based rigid-

body docking by LightDock with a flexible final refinement with HADDOCK to remove 

potential clashes at the interface. To introduce the topological information provided by 

the lipid bilayer we make use of an equilibrated coarse-grained membrane into the 

docking calculations. In that way we can focus the docking towards binding competent 

regions, excluding all irrelevant regions prior to the simulation. This membrane 

representation has been implemented within the LightDock framework26. The sampling 

in LightDock is based on an artificial intelligence-based swarm approach that relies on 

the metaphor that, in nature, glowworms (which represent ligand poses) feel attracted 

to each other depending on the amount of emitted light (scoring, energetic value of a 

docking pose). In this way, the docking poses, which constitute the swarm of 

“glowworms” in LightDock, are optimized towards the energetically more favorable 

ones through the translational, rotational and Anisotropic Network Model (ANM) 

spaces. The latter is, however, not available in the membrane docking mode. Sampling 

and scoring in LightDock are tightly interconnected since the optimization process is 

score-driven. In its latest official release (version 0.8.0; pypi.org/project/lightdock), 

LightDock supports the use of information such as mutagenesis and/or bioinformatic 

predictions to bias the sampling36. The LightDock-generated membrane protein models 

are then refined with HADDOCK via an efficient coarse-grained (CG) protocol37. This 
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protocol, originally designed to backmap coarse-grained models to atomistic resolution 

by morphing atomistic models onto the coarse-grained ones using distance restraints, is 

very efficient in removing steric clashes while maintaining the original geometry of the 

docked models. 

We demonstrate the efficiency and performance of this two-step (docking and 

refinement) membrane-driven protocol on the 18 membrane protein complexes from 

the MemCplxDB benchmark set38 (https://github.com/haddocking/MemCplxDB) whose 

interface lies between the membrane and either the cytosolic or periplasmic regions. 

We also evaluate how different choices for defining the membrane topology affect the 

sampling of our protocol, and assess the quality improvement of the generated models 

after the HADDOCK refinement step. We compare the success rate of this integrative 

approach and the quality of the generated models with that of another state-of-the-art 

docking software, ZDOCK21, for which we test several docking scenarios penalizing 

(“blocking”) regions during sampling and therefore explicitly accounting for the 

information provided by the membrane. Finally, we discuss the quality of the side-chains 

at the interface of the generated models and propose future developments that could 

be made for improving the current results. 

 

Results 

Integrative modeling approach for membrane-associated protein complexes 

We have developed a computational approach for modeling the interaction of 

membrane-associated protein complexes that accounts for the topological information 

encoded in the membrane. First, we insert the atomistic transmembrane protein into a 

pre-equilibrated coarse-grained model of the protein in a lipid bilayer provided by the 
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MemProtDB database39 (http://memprotmd.bioch.ox.ac.uk/) (see Material and 

Methods; Preprocessing of input structures) and then remove all lipid beads except 

those representing the phosphate groups. Using this beads layer, we automatically 

generate a group of independent simulations known as swarms over the solvent-

exposed receptor surface. Using the capability of the LightDock framework, we thus 

discard irrelevant sampling regions (see Fig. 1-3 where the geometrical centers of the 

swarms are depicted as blue beads). Next, each swarm is populated with 200 starting 

random orientations of the soluble ligand (200 is the default number of glowworms, the 

agents of the sampling algorithm). This procedure effectively biases the sampling 

towards the binding-competent regions on the membrane protein (either cytosolic or 

periplasmic) and excludes those within the boundaries imposed by the membrane. 

While LightDock can allow for flexibility during docking through normal modes, this 

option is not supported for membrane-embedded proteins. The only limited flexibility 

introduced in the protocol is that of the final refinement using HADDOCK. 
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Fig. 1. Membrane protein integrative modeling workflow. 1) The representative coarse-
grained membrane snapshot from the MemProtMD database is selected39 
(http://memprotmd.bioch.ox.ac.uk/)  2) The coarse-grained transmembrane receptor is 
replaced by its corresponding atomistic structure. 3) The binding-competent regions are 
sampled with LightDock using the membrane defined by beads corresponding to the 
phosphate positions. The resulting top 100 docked models are selected for final 
refinement. 4) Refinement with HADDOCK following a coarse-grained to all atom 
protocol and final scoring. 
 

For the scoring during the docking simulation with LightDock, we use an adapted 

version of the DFIRE40 scoring function that penalizes models penetrating the 

membrane, specifically those overlapping with any membrane bead (see Material and 

Methods; Implementation of an explicit membrane representation into LightDock). We 

select the top 100 models from the optimization of all swarms for a final refinement 

stage with HADDOCK in order to remove clashes at the interface. This is achieved using 

an efficient coarse-grained refinement protocol: In short, we first generate the 

corresponding MARTINI-based41 coarse-grained representation for each of the docked 

models to be refined; then, by a combination of energy-minimizations and short 

molecular dynamics stages, the protocol37 fits the atomistic structure of each of the 
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components onto the generated CG model of the complex and optimizes the system to 

remove clashes. This final refinement is performed in the absence of the membrane. 

The resulting models are then scored and ranked according to the HADDOCK score. 

Although in this work our protocol only makes use of the membrane as 

information source during the modeling, it is fully compatible with the use of a variety 

of experimental data in the form of residue restraints if this source of information is 

provided42. 

 

Overall performance on the membrane docking dataset  

We have tested the performance of our membrane-driven protocol on the 18 

transmembrane-soluble protein complexes of the MemCplxDB benchmark (see Material 

and Methods; Membrane docking dataset and Fig. 2) and compared it with the results 

of a full sampling in the absence of the topological information provided by the 

membrane (i.e. Blind docking – see next section). The docking was performed starting 

from the unbound structures of each constituent, except for 2bs2, 2vpz and 4huq for 

which no unbound state structures are available. The success rate was defined as the 

percentage of cases for which an acceptable or better model was obtained within the 

top N ranked models (see Material and Methods; Metrics for the evaluation of model 

quality and success rate). 
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Fig. 2. View of the 18 transmembrane-soluble protein complexes of the MemCplxDB 
database38 (https://github.com/haddocking/MemCplxDB) used in this work. The cases 
are classified as: A) Antibodies (the soluble partner is either an antibody or a nanobody), 
B) β-Barrel (the transmembrane receptor is a β-sheet barrel) and C) α-Helical (the 
transmembrane receptor consists of a bundle of α-helices). The receptors (the 
membrane proteins) are depicted in orange and the ligands in blue. 
 

For the two most representative top N (T5 and T10), our Membrane protocol 

shows an overall success rate of 61.1%, 11 out of 18 complexes, with 3 cases having 

medium quality models as shown in Fig. 3. It reaches a maximum of 88.9% for the top 

100 predictions. High quality models are obtained for one α-Helical case within the top 

20 (3x29) with the best docking pose (ranked at the 12th position) having 70% of the 

native contacts and 1.0Å/2.0Å i-RMSD/l-RMSD from the reference crystal structure. The 

highest success rate for either T5 or T10 is achieved for α-Helical complexes. For those, 
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acceptable or higher quality models are generated for 71.4% of the complexes (5 out 7 

cases). This performance, however, drops for the β-Barrel category with 40% success 

rate for T5/10 and 80% for T100 (4 out of 5 cases). Not surprisingly, our protocol fails to 

deliver near-native models for the case with the largest conformational change (3v8x; i-

RMSD of 3.42Å between unbound and bound structures), classified as β-Barrel. For 

Antibodies (6 cases), we used the CDR loops to pre-orient the molecules at the setup 

step42, but these were not specifically used for the scoring. For these cases, our protocol 

generates acceptable and medium quality models for all complexes (100% success rate 

for T50) with a 33.3% success rate considering the top ranked model (T1) and 66.7% for 

T5/10. 

 

The membrane integrative modeling protocol outperforms blind predictions 

For the Blind, membrane-free predictions, LightDock-HADDOCK reaches an overall 

success rate of 16.7% for the T100 (11.1% of medium quality models), with a moderate 

performance for T5 and T10 (5.5% and 11.1%, respectively). For one bound case (4huq) 

and one with the second lowest conformational change (3x29; 0.67Å), the Blind protocol 

does manage to generate models with more than the 30% of the native contacts.  For 

the remaining cases, acceptable models are found only for 2gsk with the first near-

native model ranked at the 39th position with a l-RMSD of 9.47Å. The top1 and top10 

performance are similar to what has been reported for HADDOCK using a blind docking 

scenario38. Altogether, the results of the Blind predictions are considerable worse than 

that of our Membrane protocol in terms of both overall performance and CAPRI-based 

quality of the generated models. This clearly shows that the use of the membrane 
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topological information to drive the modeling process has a significant impact on the 

docking performance. 

 

 

Fig. 3. Performance of the membrane protein integrative modeling protocol on the 18 
cases of the membrane docking benchmark. Success rates are presented for each of the 
benchmark categories (α-Helical, β-Barrel and Antibodies) as well as Overall (including 
all three different categories). Color coding from blue to green (Membrane) and 
grayscale (Blind) indicates the model quality (from acceptable to high) as defined based 
on CAPRI criteria. 
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Impact of different membrane definitions on the docking performance 

The results presented so far have been obtained by either defining the membrane based 

on the phosphate beads positions taken from MemProtDB (Membrane) or by fully blind 

predictions (i.e. without any membrane). We investigate here how different definitions 

of the membrane might impact our docking protocol. For that purpose, we have 

generated two additional artificial bead representations of the membrane based on the 

average (Average) or minimum (Minimum) z-axis coordinate provided by the 

equilibrated MemProtDB membrane model. We have compared the docking 

performance of those different membrane scenarios on the 18 cases from the 

membrane docking benchmark. As previously, we assess the performance in terms of 

success rate for each of the selected N tops (See Material and Methods; Metrics for the 

evaluation of model quality and success rate). For the sake of simplicity, we only report 

the success rate for acceptable or better models. 

 

On average, in the Membrane scenario our simulations have 99 ± 34 starting swarms 

(ranging from 32 to 170), while for Average and Minimum this increases to 134 ± 28 and 

164 ± 34, respectively. This roughly translates into an increase of 7,000 and 13,000 in 

the number of glowworms (agents of the algorithm representing possible ligand poses) 

that are handled by the optimization algorithm during the sampling and scoring 

processes as compared to the Membrane scenario. As shown in Fig. 4A, for the two most 

representative tops (T5 and T10) the success rates drop from 61.1% to 44.4% and 27.8% 

for Average and to 50% and 33.3% for Minimum. This pattern is observed along all 

selected top N models, which suggests that there is a negative correlation between the 

number of swarms (and glowworms) and the docking performance. This effect is 
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expected, since the larger the pool of generated poses, the larger the number of possible 

false positives which can be selected by the scoring function. For this reason, the 

optimization of the poses might not always converge towards biological relevant states. 

 

 

Fig. 4. Analysis of the impact of different membrane definitions onto the docking 
performance. A) Bar plot of the performance of the different membrane setups on the 
18 cases of the membrane protein docking dataset (i.e. before refinement with 
HADDOCK). The success rate is defined as the percentage of cases for which an 
acceptable or higher quality model was found within the selected top N. B) Illustration 
of the different membrane setups on a representative case of the benchmark (1k4c). 
 

Penalizing models penetrating the membrane leads to better predictions 

We have also investigated the effect of the scoring penalty on the optimization 

algorithm during the docking. To do so, we have designed an additional scenario 

(Filtered), in which the membrane was only used to initially filter the swarms over the 

receptor surface, but not considered for penalizing models penetrating the membrane 

(see Fig. 4B). In this case, the success rate of the top 10 is similar to that of Average 

scenario (50%). However, for higher tops such as T1 and T5, the Filtered scenario 

performs considerably worse as compared to Membrane (5.5% and 38.8% vs 33.3% and 
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61.1% respectively). This clearly suggests that, while the membrane plays an important 

role to narrow the conformational search it has also a big impact on the scoring:             

First, it guides the optimization protocol towards more binding-competent regions and 

second, it helps identifying near-native states out of the pool of generated docked 

models.  

 

The structural quality of the docked models improves after HADDOCK refinement 

We have assessed the quality of the docked models in terms of intermolecular steric 

clashes. To do so, we have quantified and compared the number of clashes (See Material 

and Methods; Metrics for the determination of steric clashes in a protein complex) 

present in our docked models before (LightDock only) and after refinement with 

HADDOCK. On average, the top 100 LightDock models have a significant number of 

clashes (28.5 ± 10.0) compared to those after refinement (0.6 ± 0.5) as shown in Fig. 5A. 

For some cases, 2bs2, 2gsk, 3csl and 1ots, few refined models ranked at positions ≥ 95 

still have a moderate number of those (> 25), but these are penalized at the level of the 

HADDOCK score which ensures that clashing models will never be ranked at top ranking 

positions. Overall, this coarse-grained refinement protocol is able to refine and remove 

more than the 98% of the total number of clashes. As an example, a model before and 

after refinement is shown in Fig. 5B. 
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Fig. 5. Analysis of the quality of the membrane-associated protein models before and 
after refinement with HADDOCK. A) Stacked bar plot of the top 100 generated models 
for each of the benchmark cases (18 in total) ranked by their respective score (left – 
LightDock DFIRE docking score, right - HADDOCK score). For each complex the left bar 
corresponds to the unrefined models and the right bar to the refined models. The color 
coding (from green to red) indicates the number of clashes. B) Illustration of a complex 
before and after refinement. Green spheres represent atomic clashes. The 
corresponding side chains are shown as sticks in the refined model. C) i-RMSD 
comparison of all models with an i-RMSD ≤ 6Å before and after refinement (183 in total). 
Points above the diagonal indicate an improvement in i-RMSD value. 
 

Ideally, a refined complex should not structurally deviate too much from its 

unrefined counterpart. If this is not the case, the refined interface might significantly 

differ from the predicted one and therefore loose a relevant predicted state. We have 

investigated whether our refined models differ from their starting conformations in 

terms of their interface RMSD of the backbone (i-RMSD). For this, we selected all 

LightDock models with an i-RSMD ≤ 6Å from the top 100 predictions for all cases (183 

models in total) and compared them to their counterpart after refinement with 

HADDOCK. As shown in Fig. 5C, the vast majority of points are along the diagonal, which 

indicates that the backbone of the refined complexes has not significantly moved during 

the refinement. It is mainly the positions of side chains at the interface that have been 
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optimized (See Fig. 5B and Fig. S2). Points above the diagonal, indicate models that have 

improved in terms of i-RMSD after refinement. The changes are however limited. Two 

models (from 2vpz and 3csl), however, show a significant improvement of 1.09Å and 

1.85Å respectively. In summary, these results show that our coarse-grained refinement 

protocol is very efficient in removing steric clashes without compromising the quality of 

the backbone conformation of near-native models. 

 

Using membrane topological information to drive the docking performs better than 

post-sampling filtering approaches 

We have also analyzed how our membrane-driven protocol compares to other state-of-

the-art docking software. To this end, we selected ZDOCK21 as docking algorithm of 

reference for several reasons. First, it is a well-established docking program whose 

scoring protocol is being trained and continuously tested on a large and relatively 

heterogeneous benchmark of protein-protein complexes43. Second, it allows to mask 

regions not belonging to the interface. And third, its standalone version (3.0.2) is a fast 

and easy-to-use tool for systematic benchmarking. Despite that the current version of 

ZDOCK does not allow to use an explicit representation of the membrane, we have 

designed three different scenarios in which various levels of information are used to 

include information about the membrane. In order to mimic our Membrane scenario, 

we have masked all surface accessible residues below the maximum z coordinate 

provided by our membrane implementation (ZDOCK-max). Similarly, to compare with 

our Average and Minimum scenarios, we have masked those residues below the average 

(ZDOCK-avg) or minimum (ZDOCK-min) z coordinate (Fig. S1). For the Antibodies 

subcategory, we have also masked all non CDR loops residues. Finally, we run the 18 
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cases of the membrane docking benchmark in fully blind (default) mode to define the 

baseline of ZDOCK.  

 

 

Fig. 6. Comparison of the performance of the membrane protein integrative modeling 
protocol (Membrane) with the best ZDOCK scenario (ZDOCK-avg) on the 18 cases of the 
membrane docking benchmark. Success rates are presented for each of the benchmark 
categories (α-Helical, β-Barrel and Antibodies) as well as Overall (including all three 
different categories). Color coding from blue to green (Membrane) and grayscale 
(ZDOCK-avg) indicates the model quality (from acceptable to high) according to CAPRI 
criteria. 
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The results for all those scenarios are shown in Fig. S3. The best performance is 

obtained for the ZDOCK-avg scenario. Comparing this scenario to our Membrane 

protocol shows that both protocols have an equivalent success rate of 27.7% for the top 

1 model, but our protocol clearly performs best for T5/T10 with 61.1% as compared to 

38.8% for ZDOCK (Fig. 6). Our protocol reaches 88.8% of near-native models for the top 

100 compared to the 55.5% for the best performing scenario in ZDOCK. These 

differences are more remarkable for α-Helical and Antibodies complexes with 71.4% and 

66.6% for the top 5 (and top 10), respectively, compared to 28.5% and 33.3% for ZDOCK. 

In the case of β-Barrel, ZDOCK-avg, however, performs best with 60% in the top1 (3 out 

5) while our protocol starts at 20% for top 1 to reach a maximum of 80% in T20. Based 

on the well-established CAPRI quality criteria (See Material and Methods; Metrics for 

the evaluation of model quality and success rate), ZDOCK builds high quality models for 

the 16.6% of the tested cases (3 out of 18, while only one high quality model is obtained 

in our case) with 2 of them ranked within the top 10 predictions. These two cases 

correspond to the β-Barrel complex with the smallest conformational change (2hdi; i-

RSMD of 0.361Å between unbound and bound structures) and a α-Helical bound case 

(4huq). 

 

Discussion 

In this work, we have developed and tested a new integrative modeling protocol to build 

membrane-associated protein assemblies. The protocol, which specifically accounts for 

the topological information encoded in the membrane, combines the capability of the 

LightDock framework to discard non-binding regions prior to the docking, with an 

efficient coarse-grained refinement via HADDOCK to remove clashes. As previously 
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demonstrated, including information during docking not only outperforms the scenario 

where data are only used to discard models (post-simulation approaches), but also 

reduces significantly the computational cost42, in this particular case by an average 

factor of 75% over the 18 complexes considered. Our membrane-driven protocol shows 

a much better performance in generating native-like structures for the vast majority of 

the tested cases than when the membrane is neglected (Blind). It achieved this by both 

filtering the initial swarm configurations and including a membrane penalty term into 

the scoring which helps both the optimization algorithm and the scoring of the docked 

models. Altogether, our findings reinforce the well-accepted notion that the integration 

of (experimental) data, in this case membrane topological data, into the docking 

calculations improves the performance of modeling approaches. 

 We have also investigated how different ways of defining the membrane 

topological information across the z-axis affect the sampling of the conformational 

space. Our protocol performs best when an equilibrated and simulated bilayer is 

incorporated into the sampling. This limits the number of swarms (and therefore 

glowworms), which, in turns, allows the optimization algorithm to identify more 

biological relevant states compared to less restricted scenarios such as Average and 

Minimum. This behavior is explained by the fact that in LightDock, sampling and scoring 

are closely interconnected since the optimization of the ligand poses (in rotational and 

translational spaces) is driven towards better scoring conformations. In other words, the 

reduction of potential false positives leads to an increase in the performance of the 

search algorithm. 

 We have analyzed the quality improvement of our docking predictions after 

refinement using a simple definition of steric clashes. We have shown that our 
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refinement protocol leads to the removal of (almost) all clashes while keeping the 

backbone conformation almost unaltered, with no more than 0.25Å i-RMSD for the most 

altered conformations (rare cases). As a consequence of the refinement, the side chains 

might suffer from bad conformations introduced by the removal of clashes and move 

away from the native conformation in the complex.  To check this, we have analyzed the 

impact of the coarse-grained refinement on the side chain i-RMSD and the fraction of 

native intermolecular contacts they form. As shown in Fig. S2, the refined models do not 

significantly loose native intermolecular contacts as estimated by the Fnat metric and 

their side-chain i-RMSDs even slightly improve. 

 In this work, we have only focused on the modeling of membrane-associated 

protein assemblies. In cellular environments, however, some soluble proteins might 

associate with membranes in order to stabilize and/or carry out their function. These 

types of interactions have only been studied in a handful of systems such as signaling 

factors or nuclear receptors, due to the lack of more generic approaches that can be 

used to characterize a broader range of lipid-protein interactions44. Our work could be 

extended to build realistic models of membrane-associated protein complexes. This 

would require extra effort to develop a scoring function that accounts for protein-lipid 

interactions. Such membrane-specific scoring functions have been already shown 

appropriate for membrane protein structure prediction and design purposes45 and 

might also represent a significant advance for membrane-associated protein docking 

protocols. Looking ahead, a larger benchmark set will enable broader energy function 

development and optimization, which should eventually cover protein-lipid interactions 

too. In terms of software integration, LightDock, as a sampling algorithm, could be 

included within the future modular version of the HADDOCK software and eventually 
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offer an alternative to its default rigid-body sampling step. This would further extend 

HADDOCK modeling capabilities to account for the use of membrane-based bilayers. 

Note that HADDOCK has already been used with explicit membranes (nanodisks or 

micelles) to study the binding and orientation of proteins onto the lipid surface46–48. 

These are however isolated cases and no systematic testing as performed here has yet 

been done. 

 In summary, we have developed an integrative modeling protocol for 

membrane-associated protein assemblies that accounts for the topological information 

provided by the membrane in the modeling process. It makes use of a membrane-

derived bead bilayer during the sampling step with LightDock. Clashes resulting from the 

rigid-body docking are successfully removed by refinement with HADDOCK while 

preserving the quality of both backbone and side chains conformations at the interface. 

Importantly, while the present protocol only makes uses of the membrane to drive the 

modeling, it is fully compatible with the use of other sources of information such as 

mutagenesis and/or bioinformatic predictions in the form of residue restraints to 

further guide the docking. 

 

 

 

 

 

 

 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 21, 2020. ; https://doi.org/10.1101/2020.07.20.211987doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.20.211987
http://creativecommons.org/licenses/by-nd/4.0/


Materials and Methods 

Membrane docking dataset 

We selected all complexes from the MemCplxDB database38 

(https://github.com/haddocking/MemCplxDB) whose interface lies between the 

membrane and either cytosolic or periplasmic regions. This selection yielded a dataset 

of 18 cases (See Fig. 2) which were further classified into: 

● α-Helical: complexes whose receptor assemblies as a α-helical bundle. 

● β-Barrel: complexes whose receptor forms an antiparallel β-sheet composed 

tandem of repeats. 

● Antibodies: complexes whose soluble ligand is an antibody or nanobody. 

 

Pre-processing of input structures 

We make use of an equilibrated coarse-grained representation of the membrane to 

include topological information in our modeling procedure. For this, for each benchmark 

case, we obtain a representative coarse-grained snapshot of the transmembrane 

protein inserted into a simulated lipid bilayer (MARTINI representation49) from the 

MemProtMD database (Fig.1 – Step 1)39 (http://memprotmd.bioch.ox.ac.uk/). For the 

sake of simplicity and for saving computational resources, we remove all lipid beads 

except those representing the phosphate groups, which, to some extent, represent the 

most external layers. Then, we replace the coarse-grained TM receptors by their 

corresponding atomistic structure (Fig.1 – Step 2). When needed, we remove beads 

overlapping or clashing (< 2.5Å distance) with any heavy atom of the transmembrane 

protein once inserted into the membrane (1ots, 2gsk, 2hi7, 4m48, and 3wxw). 
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Implementation of a coarse-grained membrane in LightDock 

To allow for the use of a coarse-grained membrane within the LightDock framework, we 

added new logic for the two different stages namely: The internal preparation of the 

molecules (at the setup level) and the actual simulation (at the scoring level). In the first 

stage, setup, we have added a new flag (-membrane) to activate the filtering of initial 

swarms (independent centers of simulation) according to the topological information of 

the membrane (no swarms will be generated below it). The protocol will detect the 

number of bead membrane layers provided by the user and select the upper one. For 

that purpose, it is expected that the user will provide the structure in PDB format and 

by a cenital plane point of view (the Z-axis is perpendicular to the membrane plane, that 

is the default view when saved by PyMol50 for example). In case the lower layer is the 

target of interest, the system should be rotated by 180° around the X or Y-axis. During 

the simulation, we have included a term into the scoring scheme so that docking models 

in which the ligand penetrates the membrane are penalized and will be forced to 

optimize towards more favorable poses. In our case, we have defined a very unfavorable 

potential value for the membrane beads in the DFIRE scoring function used by LightDock 

(-999.0 - the more negative the value is, the worse becomes the score), in order to 

penalize models whose ligand’s position is incompatible with the provided membrane 

model. 

 

Running LightDock in membrane mode 

LightDock execution consists of two steps: setup and simulation. In the first step, setup, 

the user provides to the lightdock3_setup.py command line tool the receptor and ligand 

structures in PDB file format, together with the number of swarms, glowworms per 
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swarm and other options such as removing hydrogen atoms and/or enabling ANM. In 

this new version of LightDock, a -membrane flag has been implemented in order to filter 

out swarms not compatible with the simulated coarse-grained membrane. For each of 

the filtered swarms, if residue restraints information is provided (as it is the case for the 

CDR loops for antibody-antigen complexes), this is used for pre-orienting the ligand 

poses as previously described42. In this work, the number of initial swarms used is 400 

(default - many of them will be filtered by the membrane protocol) and the number of 

glowworms 200 (default). Hydrogen atoms are also removed as they are not supported 

by the DFIRE scoring function. When the setup step finishes, the docking simulation is 

ready to be started. A second command line tool, lightdock3.py, performs the simulation 

for the number of steps provided by the user (100 in this work) using the DFIRE scoring 

function and running in parallel depending on the number of cores specified. Once the 

simulation finishes successfully, predicted poses are generated 

(lgd_generate_conformations.py) and clustered (lgd_cluster_bsas.py) according to the 

default LightDock protocol. Finally, the lgd_rank.py command line tool generates a 

ranking of the top clustered predictions according to LightDock. An exhaustive tutorial 

of the different steps of the protocol can be accessed online at 

https://lightdock.org/tutorials/membrane/. 

 

Coarse-grained refinement in HADDOCK 

For the local installation, models must be converted into their coarse-grained 

representation. This is done via an in-home script included in the CGtools directory of 

the HADDOCK2.4 distribution as: “python aa2cg.py model.pdb”. As output, the script 

generates the MARTINI-based CG model (model_cg.pdb) as well as a restraints file in the 
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form of model_cg_to_aa.tbl, which includes the mapping of the generated coarse-

grained beads to their corresponding atoms. The atom-to-bead restraints files of the 

different CG models must be combined into a single file (e.g. cg-to-aa.tbl) that will be 

used by HADDOCK to restore the atomistic resolution. In order to perform the 

refinement, a handful of parameters within the HADDOCK parameter file (run.cns) must 

be adapted as follows assuming that 100 models will be refined: 

• rotate180_it0=false (to skip sampling 180° complementary interfaces) 

• crossdock=false (to refine receptor – ligand from the structures provided) 

• rigidmini=false (to skip it0 stage) 

• randorien=false (to skip it0 stage) 

• rigidtrans=false (to skip it0 stage) 

• ntrials=1 (to skip it0 stage) 

• structures_0=100 (for it0 stage) 

• structures_1=100 (for it1 stage; must always be ≤ than structures_0) 

• anastruc_1=100 (for analysis purposes at it1 stage) 

• waterrefine=100 (for itw stage; this is the number of final output models) 

• initiosteps=0 (to skip it1 stage) 

• cool1_steps=0 (to skip it1 stage) 

• cool2_steps=0 (to skip it1 stage) 

• cool3_steps=0 (to skip it1 stage) 

• dielec_0=cdie (to switch a constant dieletric constant when CG is used) 

• dielec_1=cdie (to switch a constant dieletric constant when CG is used) 

 

For setting up the refinement on the HADDOCK2.4 webserver version, a tutorial can be 

found at http://www.bonvinlab.org/software/haddock2.4/tips/advanced_refinement/. 

Note that on the server coarse-graining should be enabled under the Input data tab. 

 The refined models are scored and ranked according to the default HADDOCK 

score, which is a linear weighted combination of terms as: 
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𝐻𝐴𝐷𝐷𝑂𝐶𝐾!"#$% = 1.0 ∗ 𝐸&'( + 0.2 ∗ 𝐸%)%" + 0.1 ∗ 𝐸*+, + 1.0 ∗ 𝐸'%!#)&	 

where Evdw and Eelec are the van der Waals and electrostatic energies terms calculated 

using a 12-6 Lennard-Jones and Coulomb potential, respectively, with OPLS nonbonded 

parameters, EAIR is the ambiguous interaction restraints energy, Edesolv is an empirical 

desolvation score51. Note that in this protocol, since we are only refining the model and 

not providing any restraints, the EAIR term is not contributing to the final score. An 

example of the HADDOCK parameter files to run the refinement (run.param and run.cns) 

can be found at: 

https://github.com/lightdock/membrane_docking/tree/master/refinement/example 

 

Metrics for the evaluation of model quality and success rate 
 
The quality of the models is assessed according to the well-accepted CAPRI criteria52. 

Docking models are classified as high (***), medium (**) or low (*) quality according to 

their similarities with the native structure by calculating the interface and ligand root 

mean square deviations (i-RMSD and l-RMSD) and the fraction of native contacts (Fnat) 

as: 

• High: Fnat ≥ 0.5 and i-RMSD ≤ 1Å or l-RMSD ≤ 1Å, 

• Medium: Fnat ≥ 0.3 and 1Å < i-RMSD ≤ 2 or 1Å < l-RMSD ≤ 5Å, 

• Acceptable: Fnat ≥ 0.1 and 2Å < i-RMSD ≤ 4 or 5Å < l-RMSD ≤ 10Å and 

• Incorrect: Fnat < 0.1 or i-RMSD > 6Å or l-RMSD > 10Å. 

The overall success rate is defined as the percentage of benchmark cases with at least 

one acceptable or better model within a given Top N (N= 1, 5, 10, 20, 50 100). 
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Metrics for the determination of steric clashes 
 
We define a steric clash as any heavy atom-heavy atom intermolecular contact shorter 

than 2.5Å (i.e. hydrogens excluded). Using this definition of clashes, we sought to 

investigate whether our coarse-grained refinement protocol in HADDOCK leads to 

higher quality structures (i.e. less absolute number of clashes) as compared to those 

generated from the docking step with LightDock. To do so, for each of the benchmarked 

cases we quantified and compared, on a per model basis, the number of clashes present 

on the top 100 docked models before and after refinement. 
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Supplementary information 

The supplementary information includes a graphical representation of the different 

pseudo-membrane scenarios tested with the ZDOCK software as well the corresponding 

results in terms of success rate. Further, a comparison of unrefined and refined models 

is provided in terms of side chain i-RMSD and Fnat. 
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Fig. S1. Graphical representation of the 1k4c receptor for the different tested scenarios 

in ZDOCK. The residues masked according to the maximum (ZDOCK-max), average 

(ZDOCK-avg) or minimum (ZDOCK-min) z-axis coordinate provided by the MemProtDB 

database are colored in dark gray. The orange regions, thus, represent those residues 

still allowed to contact with their counterpart. 
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Fig. S2. Sidechain i-RMSD (A) and FNAT (B) comparison of all models (backbone) i-RMSD 

< 6Å before (y-axis) and after (x-axis) refinement (183 in total). 
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Fig. S3. ZDOCK success rate for the different tested (pseudo)membrane scenarios in the 

full dataset (18 cases). 
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