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Abstract 

Mitochondrial gene expression is pivotal to cell metabolism. Nevertheless, it is unknown whether it 

diverges within a given cell type. Here, we analysed single-cell RNA-seq experiments from ~4600 

human pancreatic alpha and beta cells, as well as ~900 mouse beta cells. Cluster analysis revealed 

two distinct human beta cells populations, which diverged by mitochondrial (mtDNA) and nuclear 

DNA (nDNA)-encoded oxidative phosphorylation (OXPHOS) gene expression in healthy and 

diabetic individuals, and in newborn but not in adult mice. Insulin gene expression was elevated in 

beta cells with higher mtDNA gene expression in humans and in young mice. Such human beta cell 

populations also diverged in mt-RNA mutational repertoire, and in their selective signature, thus 

implying the existence of two previously overlooked distinct and conserved beta cell populations. 

While applying our approach to alpha cells, two sub-populations of cells were identified which 

diverged in mtDNA gene expression, yet these cellular populations did not consistently diverge in 

nDNA OXPHOS genes expression, nor did they correlate with the expression of glucagon, the 

hallmark of alpha cells. Thus, pancreatic beta cells within an individual are divided into distinct 

groups with unique metabolic-mitochondrial signature.    
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Introduction 

Mitochondrial metabolism is pivotal for the function of all cells, yet it is especially critical for energy 

demanding tissues, such as brain, muscle and pancreatic beta cells. The hallmark of pancreatic beta 

cells activity is insulin secretion, which is compromised in type 1 diabetes, and to a lesser extent in 

type 2 diabetes mellitus (T2DM). Previously it has been shown that insulin secretion was severely 

impaired upon conditional knockout of mitochondrial transcription factor A (TFAM) in beta cells, thus 

strongly suggesting that mitochondrial DNA (mtDNA) regulation is essential for insulin secretion 

(Silva et al. 2000).  

It has been previously suggested, that pancreatic beta cells are heterogenous in terms of gene 

expression, cell surface antigens (Avrahami et al. 2017a), metabolic capacity (Johnston et al. 2016), 

and rates of insulin synthesis (Avrahami et al. 2017b). Although it has been shown that ATP-stimulated 

insulin secretion correlate with mitochondrial signalling (Jitrapakdee et al. 2010; Wiederkehr and 

Wollheim 2012) and relies on active mtDNA regulation (Silva et al. 2000), it is yet unclear whether 

beta cells are homogenous in regulation of mitochondrial gene expression, and whether such putative 

variability affects beta cell activity. To address this question, we conducted hypothesis-free analyses 

of mitochondrial gene expression in three publically available single cell RNA-seq (scRNA-seq) 

experimental datasets of beta and alpha cells from T2DM and healthy human donors, as well as in 

three datasets from mouse.  

 

Results 

Analysis of human scRNA-seq data reveals mtDNA gene expression divergence between alpha 

and beta pancreatic islet cells 

scRNA-seq from human pancreatic beta and alpha cells were analysed in three publicly available   

datasets (Baron et al. 2016; Xin et al. 2016b; Lawlor et al. 2017) (Fig. 1). The single-cell human 

transcriptomic Datasets I (InDrops sequencing protocol) contained ∼10,000 human pancreatic cells 

from four donors isolated from three non-diabetic individuals (ND) and one T2DM patient. Dataset 

II (Fluidigm C1 sequencing protocol) contained a total of 1492 pancreatic cells from twelve ND and 

six T2DM donors, and Dataset III (Fluidigm C1 as in Dataset II) contained 638 pancreatic cells from 

five ND and three T2DM patients. After filtering of Dataset I, while applying quality control 

measures (taking into account zero inflated reads, a minimum of genes' number per cell, maximum 

representation of rRNA transcripts, propensity for doublet cells - see details in Methods), we were 

left with a total of 2776 cells (1827 alpha cells and 949 beta cells) with ~2500 informative genes on 
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average per cell. For Datasets II and III, cells with less than 3,000 genes were excluded (due to the 

different sequencing technology as compared to Dataset I, and the higher sequencing depth of the 

Fluidigm C1 platform). This resulted in 1396 cells from Dataset II (928 alpha cells and 468 beta 

cells), and 491 cells from Dataset III (239 alpha cells and 252 beta cells) with ~5,000 and ~6,000 

informative genes on average per cell for subsequent gene expression analysis, respectively (Table 

S1). Cells that were called either alpha or beta cells expressed their characteristic transcript, 

namely either insulin (INS; beta-cells) or glucagon (GCG; alpha-cells) (Dorrell et al. 2011; Baron 

et al. 2016) (Fig. S1, S2).  

 

Figure 1: Workflow of scRNA-seq analysis. Hypothesis free scRNA-seq clustering according to mtDNA 

gene expression. Fastq-files were mapped against the entire genome (GRCh38 for human cells and GRCm38 

for mouse cells). After mapping, we calculated read counts, followed by data quality assessment, clustering 

and differential expression analyses. The RNA mutational heterogeneity data was used to identify mutations 

that characterize each of the identified cell groups per individual (see Methods). 

Comparison of mtDNA gene expression between alpha and beta cells, in healthy and T2DM donors, 

revealed significantly higher mtDNA transcript levels in beta cells both in healthy and in T2DM 

patients as compared to alpha cells in all studied datasets (Table S2) (Fig. S3-5). These findings are 

consistent with known metabolic functional differences between alpha and beta cells in humans 

(Rorsman et al. 2014). Notably, we could not directly compare healthy and diabetic individuals, as 

well as assess heterogeneity of the donors in terms of ethnicities and gender, due to the very small 

sample size (Table S2). The consistency of these findings with previously-published studies 
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encouraged us to continue our analysis further into investigating the subpopulations within each of 

the tested cell types.  
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Figure 2: Human mtDNA gene expression analysis revealed two distinct beta cell clusters with either 

high or low mtDNA gene expression (designated HE and LE, respectively). (A-B) tSNE distribution of 

beta cells from the four donors (Dataset I) showing two subgroups of beta cells with high and low mtDNA 

gene expression. Colour codes in (A); subgroups of cells with either high (HE - in yellow) or low (LE - in 

blue) mtDNA gene expression; (B) Donor identity are colour coded as indicated. (C-D) Heatmap showing the 

significant differentially expressed genes per cell cluster, per individual (after FDR correction). (C) mtDNA-

encoded transcripts, (D) Upper panel -OXPHOS structural genes; Middle panel -OXPHOS assembly genes; 

lower panel- genes involved in insulin regulation. Colour codes: purple- low expression, yellow- high 

expression.  

 

Human beta cells diverge according to expression of mtDNA and nuclear DNA OXPHOS genes  

The function of pancreatic beta cells relies on mitochondrial activity. Nevertheless, it is unclear 

whether beta cells are homogenous in mitochondrial regulation. As a first step to address this question, 

we performed hypothesis-free cluster analysis of beta cells from the four donors in Dataset I using 

Seurat (Butler et al. 2018). This analysis identified two clearly distinct beta cells' clusters across all 

tested donors, which differed in mtDNA gene expression per donor (i.e. two groups with either high 

or low gene expression, designated HE and LE, respectively) (Fig 2A-C). The beta cell subgroups 

were consistently identified even when analysing all the individuals per dataset grouped together (Fig 

2B). Accordingly, the latter analysis revealed that ~84% of the cells in Dataset I remained in their 

original subgroups, regardless of the donors, thus further supporting the robustness of these clusters. 

We next analyzed Datasets II and III to determine the robustness of these sub-groups. To avoid sample 

size issues, we controlled for sample sizes per donor, and limited our analysis to donors with a 

minimum of high quality RNA-seq from at least 40 beta cells (Table S1). Despite the small cell 

number per donor, our findings revealed sharp division into two cell clusters which diverged in the 

levels of mtDNA gene expression (Fig S6A-B). When analysing all the individuals per dataset 

together such subgroups were consistently identified as in Dataset I (Fig S6C-D), namely ~86% and 

87% of the cells in Datasets II and III, respectively, remained in their original subgroups, regardless 

of donors. This supported the robustness of these cell clusters, which were identified regardless of the 

sequencing platform used. It is worth noting, that this result did not differ between the sequence 

mapping methods used, i.e. unique or default mapping (Fig S7). 

Since mitochondrial activities are coordinated between the mtDNA and the nucleus (Barshad et al. 

2018), we asked whether the expression of nuclear DNA-encoded (nDNA) genes associates with our 

observed beta cells populations. As a first step to address this question we analysed genes that 

consistently differentially expressed between the subgroups across all four donors in a selected set of 

∼300 nDNA-encoded proteins which are translated in the cytoplasm and are imported into the 
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mitochondria (Wolf and Mootha 2014; Barshad et al. 2018). This set of genes included all known 

factors that regulate mtDNA replication, transcription, translation and RNA stability, as well as 

assembly factors and structural subunits of the mitochondrial OXPHOS system (Pagliarini et al. 2008). 

Our analysis of Dataset I revealed that the expression of OXPHOS structural genes (complexes I, III, 

IV and V) consistently diverged between the LE and HE beta cell populations across all four donors 

(Fig 2B, Table S3). Notably, although to a lesser extent, certain assembly factors of OXPHOS 

complexes I and III also correlated with these cell populations. To identify differentially expressed 

genes across individuals in Datasets II and III, we applied the same analysis to the six individuals 

available from these datasets. The combined analysis of the total samples of beta cells per dataset, 

revealed expression divergence of OXPHOS structural genes between the HE and LE cellular sub-

groups (Fig S8, Table S3), including genes that were consistent between the three tested datasets. 

Therefore, our results indicate the discovery of novel sub-populations of human pancreatic beta cells 

that diverge in mito-nuclear OXPHOS gene expression.  

The two beta cell sub-populations diverge in Insulin gene expression  

Next, we asked whether our identified beta cell subpopulations associate with the expression of other, 

additional genes across the human genome. To test for such, we extended our analysis to the entire 

human transcriptome. Given the set of differentially expressed nDNA genes from the combined 

analysis (beta cells from all four donors of Dataset I; Table S3) we applied an enrichment analysis to 

explore which biological processes (GO terms) differentially expressed in the two beta cell subgroups 

(Table S3). As expected, the analysis revealed that ATP metabolic process and OXPHOS were in the 

top-ten of the gene list that were upregulated in the HE sub-group of cells (Table S3). We noticed, that 

the full list of significant processes also included genes involved in insulin regulation and secretion. 

Strikingly, we found that the cell cluster with higher mtDNA gene expression showed significantly 

higher expression of INS, encoding the insulin transcript (p<1x10-50, Dataset I; FDR correction). To 

assess whether the differential expression of the insulin regulatory pathway is more prominent than 

other pathways, we assessed differential expression of selected gene pathways between the HE and 

LE groups of cells: regulation of insulin secretion, cell proliferation, glycolysis and cell cycle. This 

analysis revealed, that the HE cells' group showed significantly high expression of genes involved in 

regulation of insulin secretion, including the following: Firstly, SLC30A8, encoding a zinc-efflux 

transporter (zinc transporter 8 (ZnT8)) which mediates uptake of zinc into secretory granules (p<0.05, 

Dataset I, FDR correction) (Davidson et al. 2014); secondly, SLC25A4 and SLC25A6 which 

translocate ADP from the cytoplasm into the mitochondrial matrix and ATP from the mitochondrial 

matrix into the cytoplasm (Gutierrez-Aguilar and Baines 2013); third, ENSA which encodes an alpha-
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endosulfine, a regulator of the beta-cell K(ATP) channels (p<0.05, Dataset I, FDR correction) (Heron 

et al. 1999), and HADH gene, a negative regulator of Insulin secretion (Pepin et al. 2010) (Fig 2D). 

Finally, PTPRN, which participates in the beta cells proliferation pathway and normal accumulation 

of secretory vesicles (p<1x10-8, Dataset I; FDR correction) (Stutzer et al. 2012) was also upregulated 

in the HE subgroup. Notably, PPP1R15A, an unfolded protein response (UPR) gene, that was 

previously associated with low INS gene expression levels in mouse beta cells (Lipson et al. 2006; Xin 

et al. 2018), was upregulated in the beta cells group with lower mtDNA gene expression (LE) 

(p<0.0032, Dataset I; FDR correction). Notably, the expression of INS was also consistently higher in 

the HE subgroup of beta cells in Datasets II and III (p<1x10-5, Dataset II, FDR correction; p<0.005, 

Dataset III, FDR correction), thus further attesting for the robustness of this result. It is worth noting, 

that while examining additional mito-nuclear genes we found that the expression of MEF2D -  a 

transcription factor that was shown to regulate both nDNA and mtDNA gene expression (She et al. 

2011), was higher in the HE subgroup (p<1x10-6, Datasets II, FDR correction; p<1x10-11, Dataset III, 

FDR correction), thus suggesting an attractive candidate regulator, which explains differences between 

the HE and LE subgroups. Taken together, our mito-nuclear co-expression analysis strengthen the 

interpretation that pancreatic beta cells are divided into sub-populations which diverge in 

mitochondrial gene expression. This divergence is not only limited to mitochondrial activities, but also 

associates with the expression and regulation of insulin – the hallmark of beta cells' function. To our 

knowledge, these results serve as the first demonstration of mitochondrial regulatory involvement in 

physiologically relevant variability of beta cells activity.  

Beta cells heterogeneity was previously mentioned in context of specific antigens and their expression 

(Dorrell et al. 2016); although the identified subgroups of cells in Dorrell et al are not apparently 

associated with mitochondrial function, we assessed whether our identified groups of cells correlate 

with this published sub division of human beta cells. Our analysis did not support correlation between 

the expression of the antigens identified by Dorrell et al. with our identified sub-groups of beta cells 

(Fig S9). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 22, 2020. ; https://doi.org/10.1101/2020.07.21.213801doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.21.213801
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

 

Figure 3: mtRNA mutation patterns display higher mutational repertoire and lower conservation score 

in the HE subgroup. (A)  Box plot showing the comparison of the protein coding region mutational 

repertoire between the two subgroups, per dataset (Datasets II and III). (B) Box plot of the conserved ratios 

distribution of LE and HE groups, per dataset. 

 

RNA mutational repertoire is elevated along with mtDNA expression 

The divergence of beta cells according to the expression of both mtDNA and certain nDNA genes 

suggests that human pancreatic beta cells are divided into two populations with distinct mitochondrial 

profiles. Since unlike the nDNA, the mtDNA resides in multiple cellular copies that may differ in 

sequence (heteroplasmy) we asked whether our observed differential mtDNA gene expression between 

the two beta cell groups also display differences in mitochondrial RNA (mt-RNA) sequences. Notably, 

mt-RNA sequence heterogeneity could stem from mtDNA sequence variation, RNA sequence 

heterogeneity (due to RNA polymerase errors) and RNA modifications, as we recently discovered 

(Bar-Yaacov et al. 2013; Bar-Yaacov et al. 2016; Safra et al. 2017). To identify mt-RNA mutations 

with high confidence, we determined RNA heterogenetic mitochondrial mutations with a 
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computational pipeline that utilized individual per-base sequence differences, while employing quality 

control measures to avoid sequencing errors. As mentioned above, due to low sequence coverage at 

the non-coding mtDNA region, we focused our analysis on the protein coding mtDNA sequences. 

Then, we verified that each tested individual had more than a 1000 mtDNA positions with high 

sequence coverage (>400x). This requirement enabled analysing the sequences generated in Datasets 

II and III, but not in Dataset I, which displayed lower per base coverage (Datasets I contained on 

average 100,000 reads for each analysed cell as compared to an average sequencing depth 0.95 ± 0.46 

million reads and 34 million reads in Datasets II and III, respectively). While interrogating the 

repertoire and distribution of the RNA heterogenic mutations we found greater mt-RNA mutational 

repertoire in the HE group as compared to the LE cell cluster in both Datasets II and III (p<0.005, 

Dataset II; p<1x10-16, Dataset III) (Fig 3A, Table S4). Additionally, we noticed lower number of 

overlapping mutations as compared to unique mutations of the subgroups (Table S4). Next we divided 

the mt-RNA mutations into candidate inherited mutations (i.e., shared between alpha and beta cells 

from the same individual) and 'others'. As intuitively expected, the percentage of candidate inherited 

mutations in each beta cells group was found to be higher in the overlapping mutations between the 

groups as compared to the unique mutations in each group), per individual (Table S4(, and the 

proportion of these mutations was higher in the LE group as compared to the HE group in five out of 

six individuals. To better understand the functional potential of the mutations in each subgroup, we 

tested whether RNA heterogenic mutations occurred randomly throughout the mtDNA, per subject. 

Interestingly, the observed mutational conservation score was lower than expected by chance in both 

groups, although the LE group had significantly higher score as compared to the HE group in both 

datasets (p<0.05) (Fig 3B) and a tendency towards higher score in all six tested individuals (Fig S10). 

Thus, the two beta cells sub-groups differ in mitochondrial mutational repertoire, and in the potential 

impact of such mutations, suggesting a stronger signature of negative selection acting on mt-RNA 

mutations in the HE beta cells group. 

 

Glucagon and OXPHOS genes do not consistently co-express in human pancreatic alpha cells 

subpopulations 

As a first step to assess the generality of the distinct beta cell sub-groups to other pancreatic cell types, 

we took advantage of scRNA-seq data of pancreatic alpha cells from the same three datasets, 

considering only individuals with more than 40 alpha cells each. These criteria left us with all donors 

from Dataset I, seven human donors in Dataset II, including the three individuals that had sufficient 
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numbers of beta cells; two human donors in Dataset III, excluding one individual in our above-

described beta cells analysis. After applying the same approach used for beta cells analyses, although 

alpha cells could be divided into sub-groups according to mtDNA gene expression (Fig S11A, Fig 

S12, S13) they co-expressed with certain nDNA-encoded OXPHOS genes across two datasets out of 

three (Datasets I and II) (Fig S11B, Fig S14), yet such subgroups did not display significant expression 

of glucagon (GCG) between the two subgroups (Fig S11C, Fig S14). Notably, GO terms analysis 

revealed a weaker association with the OXPHOS and ATP metabolic processes as compared to beta 

cells (Table S5). In summary, although both pancreatic alpha and beta cells could be divided into 

subgroups according to mitochondrial gene expression, alpha cells display weaker association of 

nDNA-OXPHOS genes with such cellular population division, and do not correlate with their hallmark 

gene expression. Therefore, while considering human pancreatic islets, the association of 

mitochondrial gene expression with the hallmark of cellular gene expression is limited to beta cells.  
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Figure 4: Pancreatic beta cells from newborn, but not adult mice, are divided into two clusters 

according to mtDNA expression. (A) tSNE profile of mtDNA gene expression pattern (protein-coding 

genes) in beta cells from 8 weeks old mice (mouse Dataset I). (B) tSNE of mtDNA gene expression pattern 
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(as in A) from beta cells from 3-7 month old mice (mouse Dataset II). (C) Gene expression heatmap of 

mtDNA gene expression in beta cells reveal cellular sub-groups in newborn mice (1, 7, 14, 21 and 28 days 

postnatal – mouse Dataset III). (D)  Ins2 gene expression in beta cell sub-groups in each of the tested postnatal 

days (mouse Dataset III).  (E) Box plot of the conserved ratio of beta cells from new-born mice, per postnatal 

day (mouse Dataset III). Significance: * - p<0.05, ** - p<0.001, *** - p<1X10-5.  

 

Mito-nuclear gene expression and insulin define beta cell sub-groups in new-born, but not in 

adult mice 

We next asked whether the phenomenon of two distinct beta cell sub-groups, which are divided 

according to mtDNA gene expression, is conserved in evolution. The available scRNA-seq mouse 

datasets originate from three studies of the C57Bl6 mouse strain (termed Datasets I,II,III) (Baron et al. 

2016; Xin et al. 2016a; Zeng et al. 2017), with Dataset I yielding 551 single beta cells (Baron et al. 

2016), 314 single beta cells in Dataset II from 3-7 month-old mice (Xin et al. 2016a) and 387 beta cells 

from multiple postnatal time points in Dataset III collected from new-born mice (e.g., 84 cells collected 

from day 1, 87 cells from day 7, 88 cells from day 14, 68 cells from day 21, and 60 cells from day 28 

postnatal) (Zeng et al. 2017). Similar to humans, mouse Dataset I was sequenced by the InDrops 

platform, whereas Datasets II and III were sequenced by Fluidigm C1. After quality control analysis 

(see Methods), 264 single beta cells remained for further analysis from mouse Dataset I, while 

considering ~1600 genes genome-wide on average per cell. Filtering cells and genes in mouse Dataset 

II resulted in 309 single beta cells with an average of ~5700 informative genes per cell. In mouse 

Dataset III (new-born mice) a total of 304 beta cells remained, including 70, 62 ,69 ,53 and 50 single 

cell for mice from day 1, day 7, day 14, day 21 and day 28, respectively, with ~6500 informative genes 

on average, per cell. As in humans, the InDrops platform (Dataset I) enabled us analysing mtDNA 

protein-coding transcripts with >10 PolyA nucleotides (excluding Nd4l, Atp8 and Nd6; Table S6) 

(Ruzzenente et al. 2012). To control for high similarity (99.9%) of the mouse mtDNA sequences 

overlapping the genes Nd3, Nd4l, Cox2, Cox3, Atp6, Atp8 with several nuclear mitochondrial mouse 

pseudogenes (NUMTS) (Calabrese et al. 2012), we first limited our analysis to the seven remaining 

mtDNA protein-coding gene. This analysis revealed a single group of beta cells in adult mice (mouse 

Dataset I, II) (Fig 4A-B). In contrast, Dataset III (new-born mice) displayed two subgroups of beta 

cells (Fig 4C) in each of the available postnatal days, with one beta cells cluster showing higher 

mtDNA gene expression levels (in all tested mtDNA-encoded genes). Differential expression analysis 

of the orthologues nDNA-encoded OXPHOS genes in new-born mice revealed co-expression of 

certain structural genes, which differed among the postnatal days (Table S7). Specifically, Day 1 

showed significantly high expression of certain structural and assembly genes in the LE subgroup, 
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which were upregulated in the human HE subgroup. Day 7, and more prominently cells from days 14-

28, displayed significant overexpression of certain OXPHOS structural genes in the HE group as in 

humans, although certain structural and assembly genes that were markers of the HE group in human 

were upregulated in the LE group of cells from these days. When we extended the analysis to the entire 

genome we found significantly higher expression of Ins2 at postnatal day 1 (p<0.001) in the LE group 

and higher expression of Ins1 gene (p<1X10-5) in the HE group. In contrast, this analysis revealed 

significantly higher expression of Ins2 in the HE subgroup as compared to the LE subgroup at postnatal 

days 14 (p<0.001), 21 (p<1X10-5) and 28 (p<0.05) (Fig 4D), and with significantly higher expression 

of Ins1 at day 14 (p<0.01) (Table S7). Finally, unlike our analysis in human beta cells, comparison of 

the mt-RNA mutational repertoire between the mtDNA gene expression of the beta cell clusters from 

the new-born mice (Dataset III) at postnatal days 14 and 28 revealed significantly higher mutational 

repertoire in the LE group (i.e., with the lower mtDNA gene expression) as in the tested adult mouse 

(p<0.005, day 14; p<1X10-10, day 28) (Fig S15), while day 1 and day 21 showed higher mutational 

repertoire in the HE subgroup as in human. Notably, similar to human, the percent of the overlapping 

mutations was lower than the percent of the unique mutations of the subgroups (Table S4). 

Nevertheless, conservation analysis of these mutations revealed that the observed ratios of each group 

were insignificant and inconsistent among the postnatal days (Fig 4E). It is worth noting that the results 

withstood a different mapping approach, namely mapping solely against the mtDNA, which enabled 

including all protein-coding mtDNA genes in the analysis (see methods, Fig S16, Table S4, Fig S17). 

In summary, these findings revealed clustering of mito-nuclear gene expression within new-born 

mouse beta cells, suggesting that although mt-RNA gene expression divided beta cells into 

subpopulation in both human and young mice, other attributes of these sub-group of cells (such as mt-

RNA mutational repertoire and conservation score) diverge. 

 

Discussion 

Taken together, this work revealed mitochondrial gene expression clustering in human pancreatic beta 

cells. Such heterogeneity was reflected by two distinct sub-populations of cells which diverged by 

mtDNA gene expression, nDNA OXPHOS and Insulin gene expression, and in patterns of negative 

selection acting on mt-RNA mutational repertoire. Since all mtDNA protein-coding genes comprise 

essential subunits of the OXPHOS, such differences between the sub-groups of beta cells most likely 

reflect previously overlooked beta cell populations divergence in terms of mitochondrial regulation, 

and activity. This interpretation is consistent with the positive correlation that we found with insulin 
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gene expression. This yields a testable hypothesis - it would be of interest to test whether our observed 

sub-populations of beta cells correlate with beta cells activity, such as the presence of so-called insulin 

secreting hubs (Johnston et al. 2016) and the presence of 'extreme' beta cells with elevated mRNA 

levels of insulin versus 'non-extreme' beta cells that were identified in mouse (Farack et al. 2019). 

While human beta cells presented with a profound mitochondrial regulatory difference between two 

cellular sub-groups, pancreatic alpha cells did not. Specifically, although we observed an apparent sub-

division into cells with different mtDNA gene expression, the expression correlation with nDNA 

OXPHOS genes was weaker, and the connection to the inherent function of the cell – glucagon 

expression, was not evident. This suggests that the mitochondrial subdivision of beta cells into 

subgroups is not common to all islet cell types. Furthermore, as insulin secretion has been clearly 

shown to rely on mitochondrial function, and alpha cells function rely more on anaerobic glycolysis 

(Schuit et al. 1997; Quesada et al. 2006; Mulder 2017), it is plausible that heterogeneity in 

mitochondrial regulation within a given cell type relies on the centrality of mitochondrial function to 

the tested cell type. Therefore, there is great interest in assessing mitochondrial regulatory 

heterogeneity in other additional cell types and tissues.    

While considering mitochondrial regulatory heterogeneity in mouse beta cells, new-born mice 

displayed sub groups of cells which, similar to humans, diverge in their mtDNA gene expression 

patterns and correlated with Insulin gene expression. However, the characteristics of the subgroups in 

terms of nuclear gene expression changes during the development of the neonates, as days 14-28 

displayed a more similar expression pattern to human as compared to days 1 and 7. This can stem from 

the immature metabolic phenotype of the neonatal beta cells in mice (Yoshihara et al. 2016). In 

contrast, while considering mitochondrial gene expression, the adult mice (8 weeks and 3-7 month) 

displayed a more homogenous population of beta cells. The observed differences between human and 

adult mouse beta cells might stem from the islets architecture (Cabrera et al. 2006) and the difference 

in longevity of the beta cells (Cnop et al. 2010). Thus, it will be of interest to explore whether the beta 

cell mitochondrial sub-groups in humans also appear in children, and if they do, whether they correlate 

with expression of nDNA-encoded mitochondrial genes, as well as with the expression of Insulin.  

The identification of the human beta cells subgroups in both healthy and type 2 diabetes individuals 

support the fundamental importance of such subpopulations of cells for life. As the sample size of 

humans tested is relatively small, future increase in sample size is required to draw any conclusion 

about the implications of our observations to disease conditions. With this in mind, it would be of 

interest to eventually study beta cells mitochondrial subdivision of gene expression in type I diabetes 

patients, and see whether any of the identified subgroups is more prone to dysfunction in patients.   
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The positive correlation of mtDNA gene expression in the identified beta cells subgroups with insulin 

gene expression lends a first clue for the physiological importance of these subgroups. Specifically, 

our findings suggest that human beta cells diverge into functionally different groups already at the 

gene regulatory level, and not only physiologically (Johnston et al. 2016). Nevertheless, it still remains 

to be found whether the nature of the subgroups and their composition will change upon exposure to 

mitochondria-related environmental conditions. Previous reports demonstrated the contribution of 

oxidative stress and reactive oxygen species (ROS) to insulin secretion in response to changing glucose 

levels, and in embryogenesis  (Leloup et al. 2009; Hoarau et al. 2014). Notably, the latter is also 

correlated with the expression of the transcription factor Jun-D (Laurent et al. 2008), which has 

recently been shown not only to regulate gene expression in the nucleus but also be imported into 

human mitochondria and bind the mtDNA (Blumberg et al. 2014). These findings tempt us to ask 

whether manipulation of JunD, or other factors that are candidates to modulate the bi-genomic 

regulation of gene expression, will alter the composition of the two beta cells groups and their response 

to certain environmental conditions. These future experiments will enable better understanding of the 

role of beta cells mitochondrial heterogeneity in health and in disease conditions.   

 

Online Methods 

Available samples for analysis 

scRNA-seq data from mouse and human pancreatic beta cells were obtained from five studies. 

Datasets were downloaded from the following sites; 

Human and mouse Dataset I: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84133 

Human Dataset II: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81608 

Human Dataset III: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE86473 

Mouse Dataset II: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE77980 

Mouse Dataset III: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE86479 

Processing of scRNAseq data 

For Dataset I of human and mouse, the bioinformatics pipeline of the data processing was carried out 

as previously reported (Baron et al. 2016).  

For Datasets II and III of human and mouse sequenced reads were trimmed using Trim Galore 

(version 0.4.5; https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) while employing 

default parameters, in addition to the  following parameters: [--clip_R1 n] and [--
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three_prime_clip_R1 n] (n – representing 5% of the read length)  to avoid low quality bases and 

potential adapter contamination. Trimmed reads were mapped against the reference human genome 

(GRCh38  for human cells and GRCm38  for mouse cells) using STAR (version 2.5.3) (Dobin et al. 

2013). Mapping of the sequencing reads in the human datasets was performed using default 

parameters, in addition to the [—outFilterMultimapNmax 1] parameter, to achieve unique mapping, 

as previously performed (Cohen et al. 2016) to avoid contamination of expressed mitochondrial 

pseudogenes – mtDNA fragments that were transferred to the nucleus during the course of evolution 

(NUMTs, see dedicated section below) (Mishmar et al. 2004). Non-unique mapping was also 

performed for comparison and assessment of such potential contamination. As mouse NUMTs were 

longer and more similar to the active mtDNA, sequencing reads from six mtDNA genes were 

erroneously filtered out while applying the unique mapping protocol. To overcome such problem, , 

sequencing reads from the mouse datasets were mapped solely against the mtDNA genome using 

bwa with aln parameter (BWA-backtrack algorithm) (Li and Durbin 2009); this enabled subsequent 

analysis for all mtDNA encoded-genes.  Expression levels of all genes were counted using HTSeq-

count v0.11.2 (Anders et al. 2015), using default parameters and employing the [-f bam] parameters. 

For quality control filtering, gene count values as defined by HTSeq-count were concatenated into a 

resulting gene expression matrix for each library, which then was loaded into R for subsequent 

computational analysis. Seurat objects were created using the function “CreateSeuratObject” (Butler 

et al. 2018). Additionally, for quality control filtering of Dataset I (inDrops platform), cells and 

genes were filtered as previously reported (Baron et al. 2016) In brief, for further analyses we used 

cells having at least 3,000 detected transcripts, with a maximum of 20% ribosomal genes. For all 

datasets cell doublets were excluded (i.e., cells that were assigned to a given cell type – beta or alpha 

cell, yet express a mixture of cell type-specific markers – both Glucagon and Insulin those) (Fig S1, 

S2). Cells with either more than 15% mtDNA reads, or less than MEAN-2.5*SD % mitochondrial 

reads or with zero inflated mtDNA reads (in at least mtDNA-encoded gene) were removed. These 

measures were taken since overrepresentation of mtDNA genes expression could either associate 

with stress, and with cell death (Ilicic et al. 2016). 

 

Cluster identification using Seurat 

To identify cluster of pancreatic beta cells which share patterns of mitochondrial gene expression, 

Seurat pipeline was utilized (Butler et al. 2018). The data matrices were imported and processed with 

Seurat R package version 3.0.2. To account for the possibility that individual cell complexity leads to 
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cluster separation and subsequent reduction in the number of total read counts per cell, we used the 

“vars.to.regress” parameter in scaling function of Seurat. PCA was performed for each separate 

individual (for both human and mouse experiments) using the mtDNA-protein coding mRNA genes. 

Although the mtDNA codes for 37 genes, of which 13 encode essential protein-subunits of the 

oxidative phosphorylation (OXPHOS) system, 2 rRNA genes (12S, 16S) and 22 tRNA genes, the 

RNA-seq libraries of all datasets enabled analysis of only longer transcripts, while excluding 

transcripts with short 3' poly-A (i.e. <10A) in the inDrops platform, which selected for PolyA+ 

transcripts (Dataset I) (Slomovic et al. 2005). This limited our analysis to the 13 mtDNA-encoded 

protein coding genes for the Fluidigm C1 platform and to 9 of the 13 mtDNA-encoded OXPHOS 

subunits (excluding ND5, ND6, ND4L, ATP8 which have a short polyA tail) in the inDrops platform 

(Table S6). Although the mtDNA is transcribed in strand-specific polycistrons, it is not obvious that 

mtDNA transcripts will express in the same levels mainly due to post-transcription processing; 

therefore, multidimensional clustering was performed. Using the first two principle components as 

input, density clustering was performed per individual to identify groupings in the data and t-

distributed statistical neighbour embedding (tSNE) to visualize. A range of values (0.1-1) were 

examined to assess differences in mitochondrial gene expression. To gain statistical power, the cells 

of all individuals were clustered and the percent of cells that were consistent with their group identity 

was calculated and these cells were used for subsequent analyses. Using further Seurat functionality 

applications, marker genes for each respective cluster were identified and used for subsequent 

analysis. The specific markers for each cluster identified by Seurat were determined using the 

“FindAllMarkers” function, using only highly expressed genes (non-zero genes above 0.25 of cells).  

 

   

 

Statistical analyses 

Statistical analysis for categorical groups comparisons was performed by unpaired Wilcoxon test 

with Jack knife re-sampling test that was performed to ensure uneven groups comparisons are 

correct with 1000 test repeats. Mutation repertoire and conserved ratio differences were tested 

using ANOVA test.  Differential expression of genes was tested using “negbinom” test for Dataset 

I which identifies differentially expressed genes between every two groups by performing a 

likelihood ratio test of negative binomial generalized linear models and the “bimod” test for Datasets 
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II and III which developed for measurements from the Fluidigm platform (McDavid et al. 2013). 

Differential expression of genes was corrected with FDR correction for multiple comparison.  

 

Mitochondrial sequence extraction 

Bam files were indexed using default parameters of Samtools v1.3.1 (index command). To create 

multiple sequence alignment, we generated pileup files using the Samtools mpileup command 

(default parameters).  In addition, we used the -r MT parameter in order to determine read counts 

per cell, per-base; to facilitate the usage of this parameter for each studied sample we used a 

custom-made Python script for each sequenced sample. For each given mtDNA position, with 

sufficient read coverage that passed our quality control filters (see below), the base frequency was 

calculated by dividing the number of reads which display a certain base by the total coverage per 

position.  

Variant quality control and filtering 

We counted base changes (RNA mutations), only in mtDNA positions covered by at least 400 

sequencing reads. A mutation was considered trustworthy only if it was covered by at least two 

sequencing reads from each direction (e.g., forward and reverse) and if the identified mutation 

was not in the end of the sequencing read. Secondly, high quality variants per sample, per position 

were determined if the total coverage of the position was >400 with the mutation represented by 

>1% coverage in a given nucleotide position. To avoid low coverage errors, only cells with at 

least 1000 covered mtDNA positions in the protein coding region were included in the variant 

analyses. Due to low coverage in the non-coding mtDNA region (D-loop), only mutations in the 

mtDNA coding region were used for subsequent comparison of mutational repertoire between 

cells. While considering the mtDNA mutational repertoire, bootstrap analysis (with 1000 repeats) 

was performed by resampling 1000 high quality positions per iteration, per cell. Mutations 

percentage per subgroup was calculated by summing the variants per subgroup and dividing by 

1000 X #of cells per iteration. 

Identification of personalized sub-group mutations 
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To identify mutations that are more prevalent in one group of cells as compared to the other per 

individual, or per tested condition, frequencies of mutations and heteroplasmy percentage (mean 

plus SD) were determined in each of the cell groups (Table S4). Additionally, candidate inherited 

mutations were identified if they were shared between alpha and beta cells isolated from the same 

individual. For each individual the percent of candidate inherited mutations was determined by 

dividing the number of such by the total number of mutations, per cell subgroup, per individual.  

Assessing the functional potential of mutations in mtDNA transcripts 

To assess whether RNA mutations occurred randomly throughout the mtDNA, or were subjected to 

constraints, the conservation score averages of all the detected position was compared to random 

distribution. To this end, 100-way phastCons (Siepel et al. 2005; Pollard et al. 2010) score per human 

and mouse mtDNA position was downloaded from the UCSC website (http://genome.ucsc.edu/), 

and the average score of all RNA heterogenic positions was calculated for each sample. The scores 

of random distribution were calculated by sample-specific bootstrapping. For each sample, the 

original number of detected heterogenic positions was resampled ten thousand times, and the average 

score of all the resampled positions in each iteration was calculated. Next, the expected random 

value was calculated by averaging the score of all iterations. The ratio between the observed score 

average, and the expected random average, was calculated to compare between the distributions of 

the two cellular sub-populations, per subject. Sample specific p-values were calculated based on the 

bootstrap scores, as the fraction of iterations that had either lower or higher score averages than the 

observed average (when the observed-expected ratio was lower or higher than 1, respectively). 

Mitochondrial nDNA pseudogenes (NUMTs) likely did not impact expression differences 

It has been known for some time, that nDNA harbors a repertoire of mtDNA sequence fragments 

(NUMTs) that were transferred from the mitochondria during the course of evolution. NUMTs 

potentially pose an obstacle to mtDNA gene expression assessment, as a subset of RNA reads might 

originate from NUMTs rather than from the active mtDNA. As a first step to control for such a 

scenario, we performed both unique and non-unique mapping in the human datasets. Similarly, in 

mus musculus there is a large NUMT covering a substantial part of the mtDNA (~4.5 kb), with high 

sequence similarity to the corresponding mitochondrial reference genome (99.9% across this 

sequence) (Calabrese et al. 2012). As leaving this part out will result in data loss for 6 mtDNA genes 

in mouse, we used bwa mapping only for the mtDNA genome sequence. To test the levels of 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 22, 2020. ; https://doi.org/10.1101/2020.07.21.213801doi: bioRxiv preprint 

https://genome.ucsc.edu/index.html
https://doi.org/10.1101/2020.07.21.213801
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

potential NUMTS in the unique mapping data, the percent of NUMT reads (+/- SD) were calculated 

per cell, per base (Table S8). In addition, whole genome differential expression analysis further 

filtered out pseudogenes to avoid noise. 
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Supplementary information: 

Tables S1-S8: 

Table S1 - Details of individuals. 

Table S2 - Comparisons of cell type and health status. 

Table S3 – Marker gene expression of beta cells subgroups. 

Table S4 – mtRNA mutations per human subject/mouse postnatal day. 

Table S5 – Marker gene expression of alpha cells subgroups. 

Table S6 – Human and mouse polyA tail of mtDNA transcripts. 

Table S7 - Marker gene expression of new-born mouse beta cells subgroups. 

Table S8 - percentage of NUMT reads (+/- SD). 

Figures S1-S17: 

Figure S1 - Violin distribution plots of expression of selected marker genes in pancreatic alpha and 

beta cells, in Dataset I. 

Figure S2 - Violin distribution plots of expression of selected marker genes in pancreatic alpha and 

beta cells, in Datasets II and III. 

Figure S3 - Beta cells display higher mtDNA gene expression regardless of diabetes status in Dataset 

I. 

Figure S4 - Beta cells have higher mtDNA gene expression regardless of diabetes status (non-unique 

mapping) in Datasets II and III. 

Figure S5 - Beta cells have higher mtDNA gene expression regardless of diabetes status (unique 

mapping) in Datasets II and III. 

Figure S6 – Beta cells from Datasets II and III (unique mapping) diverged according to mtDNA gene 

expression into high (HE) and low (LE) subgroups. 

Figure S7 – Beta cells from Datasets II and III (non-unique mapping) diverged according to mtDNA 

gene expression into high (HE) and low (LE) subgroups. 

Figure S8 – Human mtDNA gene expression analysis revealed two distinct beta cell clusters with 

either high or low mtDNA gene expression (assigned as HE and LE, respectively). 

Figure S9 - Plots showing lack of association between the expression of nuclear antigens CD9 and 

ST8SIA1 in the LE and HE cellular subgroups. 

Figure S10 – Human mtRNA mutation patterns display a tendency towards higher mutational 

repertoire and lower conservation score (see Online Methods) in the HE subgroup in each of the tested 

six individuals. 

Figure S11 – Pancreatic alpha cells are divided into two sub-groups according to mtDNA gene 

expression. 

Figure S12 – Pancreatic alpha cells are divided into two sub-groups according to mtDNA gene 

expression (non-unique mapping). 
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Figure S13 – Pancreatic alpha cells are divided into two sub-groups according to mtDNA gene 

expression (unique mapping).   

Figure S14 – Heatmap reveals that pancreatic alpha cells are divided into two sub-groups according to 

mtDNA gene expression. 

Figure S15 - mtRNA mutational pattern analysis in mouse datasets- unique mapping. 

Figure S16 – Adult mice (8 weeks and 3-7 month) did not show subgroups of beta cells, while new-

born mice displayed two subgroups of beta cells according to mtDNA gene expression. 

Figure S17 – mtRNA mutational pattern analysis- bwa mapping (mapping solely against the mtDNA 

genome) of mouse Dataset III. 
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