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Abstract 

Deep proteomics profiling using labelled LC-MS/MS experiments has been 
proven to be powerful to study complex diseases. However, due to the dynamic 
nature of the discovery mass spectrometry, the generated data contain a 
substantial fraction of missing values. This poses great challenges for data 
analyses, as many tools, especially those for high dimensional data, cannot deal 
with missing values directly. To address this problem, the NCI-CPTAC 
Proteogenomics DREAM Challenge was carried out to develop effective 
imputation algorithms for labelled LC-MS/MS proteomics data through crowd 
learning. The final resulting algorithm, DreamAI, is based on an ensemble of six 
different imputation methods. The imputation accuracy of DreamAI, as 
measured by correlation, is about 15%-50% greater than existing tools among 
less abundant proteins, which are more vulnerable to be missed in proteomics 
data sets.  This new tool nicely enhances data analysis capabilities in 
proteomics research. 
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Introduction 

Proteins are responsible for nearly every task of cellular life and are important 
molecules for disease diagnosis, prevention and treatment. The technique of 
Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) using isobaric 
labeling methods, including isobaric tags for absolute and relative quantification 
(iTRAQ) and tandem mass tags (TMT), allows detection and quantification of 
thousands of proteins and tens of thousands of their post-translational 
modifications (PTM) in a given biological sample [1,2]. Isobaric labeling not only 
greatly enhance the precision of quantification, but also improve the throughput 
[3,4], as multiple samples can be combined into one multiplex and profiled 
simultaneously. These technology developments greatly accelerate the 
application of proteomics to study various diseases [1,2,5-8].     

Due to the proteome complexity of many biological samples, in combination with 
the stochastic sampling procedure and limited duty cycle of mass spectrometry 
based discovery proteomics, only a subset of peptides and PTMs in a sample 
can be detected and quantified in each LC-MS/MS experiment, and the 
members of this subset vary from experiment to experiment. Thus, when 
proteomics profiles from a collection of LC-MS/MS experiments are analyzed 
together, a substantial number of missing values are present [9]. In addition, in 
isobaric labeling experiments, the missingness is correlated with the multiplex 
structure since the detection of a peptide is done together for all samples in MS1 
within the multiplex. Consequently, a peptide is either observed or missing 
simultaneously for all samples analyzed together.  This type of experimental 
induced multiplex-level missing constitutes the majority of missing events when 
using isobaric labeling. For example, in proteomics data sets generated in 
CPTAC ovarian cancer study with iTRAQ platform[2], among all detected 
proteins and phosphosites, 31.1% proteins and 98.3% phosphosites had 
missing values in at least one sample (Fig. 1a-b, Supplemental Fig. 1a-b). And 
more than 95% or 99% of total missing events in the whole global or phospho-
proteomics data sets are multiplex-level missing (Fig. 1c). This multiplex-level 
missing is also prevalent in data from TMT platforms, as illustrated in Fig. 1a-b  
based on  data examples from the CPTAC ovarian cancer confirmatory study [7] 
(Supplemental Fig. 1a-b) 
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Moreover, as indicated in previous works [10-12], missing in mass spectrometry 
(MS) based proteomics data is non-random: probabilities of a peptide being 
missing depend on their abundances in the sample, such that peptides with 
higher abundance tend to have lower missing rates. Furthermore, the degree of 
this dependence often varies across different experiments and studies (Fig. 1d-
e, Supplemental Fig. 1c-d). This dependence between the propensity of a 
value to be missing and its values is referred to as MNAR --- missing not at 
random [13]. It has been well established in the statistical literature that analysis 
based on the observed data only in the presence of MNAR shall lead to biased 
estimates and incorrect inference[13].    

The substantial missing rates combined with multiplex dependent MNAR bring 
great challenges to the downstream data analysis. The common strategy of 
focusing only on proteins observed in all samples [1,2] makes the downstream 
data analysis convenient, but abandons a large amount of information from 
hundreds or thousands of proteins in each proteomics data set. These 
abandoned proteins could, unfortunately, be very interesting for understanding 
disease mechanisms, as disease-relevant proteins are often low abundant or 
subtypes specific and therefore less likely to be measured in all samples.  

Thus, there is a pressing need to have strategies other than simply ignoring 
proteins and PTMs with missing values in proteomics data analysis. Two 
commonly used methods for handling data with missing values are: 1. to 
substitute missing values with some constants (e.g., a small number or an 
estimated mean/median value)[14]; and 2. to perform analysis using observed 
data only [1,2]. The constant imputation, as well as its enhanced variation 
(Perseus [15]) which fills in missing values with random variables independently 
drawn from a pre-specified Gaussian distribution, obviously, will not work for 
labelled proteomics data, due to the experimentally induced multiplex-level 
missing patterns. On the other hand, for mass spectrometry data with MNAR, it 
is dangerous to perform analyses based on observed data points only, which 
could lead to biased estimates and incorrect inferences [10,13]. In addition, for 
multivariate and high-dimensional analysis, a subset of samples with completely 
observed data in multiple features could be small or non-existent.  

A more sensible solution is to perform stage-wise learning: firstly use 
information from observed data points to “learn” the unobserved data points, i.e. 
impute the missing values; and then conduct statistical analysis based on the 
imputed matrices. Since proteins and PTMs that interact with each other usually 
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have correlated abundances, the measured abundances in a given sample 
contain substantial information of other unobserved proteins and PTMs. 
Information of other samples with shared properties can also be useful in this 
learnings step. A few imputation strategies have been proposed to handle 
missing values in high dimension omics data sets in the past decades. Some of 
the strategies take advantage of local similarity of the data set. For example, the 
commonly used KNN imputation predicts missing values based on information 
from K nearest neighbors (proteins or samples) [16,17]. This strategy has been 
applied to a few proteogenomics studies [5]. To better accommodate the MNAR 
in proteomics data, in another work [6], the authors proposed a modified KNN 
algorithm, ADMIN, which employs weighted average incorporating abundance 
dependent missing mechanisms in proteomics data [6]. In addition, MissForest, 
which builds Random Forest models to predict missing values of one feature 
based on observed values of all other features [18], is another effective local 
similarity based imputation strategy and has been adopted in multiple genomic 
studies [19,20].  

Besides methods relying on local similarity in the data, there is a collection of 
imputation algorithms utilizing global structure of the data based on low rank 
matrix completion. Those methods stemmed from the field of image de-noising 
[16,21-23], has flourished in a broad range of applications to solve various 
imputation problems, such as completion of single cell RNA-seq data [24] and 
GWAS data [25], as well as prediction of miRNA-Disease association [26]. Low 
rank matrix completion techniques have been recently applied to proteomic data 
imputation too. For example, pcaMethods, a PCA-based method for matrix 
completion [27], has been applied to impute missing values in TMT proteomics 
data sets in a recent publication.[28]  

      Good efforts have been made to evaluate performances of different 
imputation strategies on label free proteomics data [12,29]. Consensus 
conclusions from these studies suggest that local similarity based methods and 
global structure based methods perform better than the constant imputation 
methods in the presence of MNAR [12,29]. In addition, one study [29] reported 
superior performance of methods based on global structure, such as low-rank 
matrix completion [17] and linear model based maximum likelihood estimate [30] 
[31] to those of local similarity based methods (KNN) for label free proteomics 
data. Moreover, as expected, it is more challenging to impute missing values for 
features with missing rate higher than 50% than those with lower missing rates 
[29].  
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Despite these various efforts, there has not been any systematic evaluation 
on whether and how various imputation tools work on labelled LC-MS/MS data 
sets. The pioneer investigation by Palstrøm et. al.[28] is informative and 
confirms the advantage of KNN and low rank matrix completion over constant 
imputation for labelled proteomics data. But this investigation is 
incomprehensive due to the limited number of imputation methods considered 
and the inadequate numerical examples with rather simplified missing 
mechanism assumptions. Therefore it is of great interest to perform more 
systematically assessment on which tools may best solve the missing value 
imputation problem for proteomics data from labelled LC-MS/MS experiments.  

    Towards this goal, we carried out a NCI-CPTAC DREAM Proteogenomics 
Imputation Challenge, aiming to leverage techniques from multiple research field 
such as statistical computation and machine learning, and to achieve a superior 
solution for the data imputation problem for labelled LC-MS/MS proteomics data 
sets through crowd learning (https://sagebionetworks.org/research-projects/nci-
cptac-dream-proteogenomics-challenge/). 

    The Challenge included a competition phase and a collaborative phase. In the 
competition phase, participants were invited to submit imputation algorithms 
trained on labelled LC-MS/MS proteomics data sets, and the performances of 
these algorithms were evaluated on a collection of test datasets generated from 
the CPTAC breast data [1]. In the collaborative phase, together with the three 
winning teams from the competition phase, we further enhanced and integrated 
different imputation techniques and developed the final Aggregation based 
Imputation algorithm --- DreamAI, which is based on ensemble of six different 
imputation methods including two low-rank matrix completion methods, two 
prediction based imputation methods, and two KNN type methods. The 
performance of DreamAI and other imputation tools were then systematically 
evaluated and compared using the CPTAC ovarian proteomics data sets, which 
contains profiles of duplicate tumor samples from the same patients [2]. The 
imputation accuracy of DreamAI, as measured by correlation, is about 15%-50% 
greater than the few leading popular tools, including ADMIN [6], KNN[16,17], 
missForest[18] and pcaMethods[27]. 

To illustrate the usage of imputation in proteomics data analysis, we performed 
proteogenomic integrative analysis using a newly published data of deep TMT 
proteomic profiling of 103 clear cell renal cell carcinoma (CCRCC) samples and 
80 adjacent normal tissue samples[32]. We observed better RNA-protein 
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concordances between transcriptomic data and proteomic data with imputation 
than that without imputation. When evaluating the power to detect proteins 
having significantly different abundances in tumor and adjacent normal tissues, 
we further observed an advantage of using data with DreamAI imputation over 
that with KNN imputation or no imputation.    

In summary, this work represents a landmark crowdsourced community effort to 
address the problem of imputation for labelled LC-MS/MS proteomics data sets. 
The R package of DreamAI is provided through github. This tool can benefit 
data analysis practice in a broad range of proteomics research. 

 

Result 

Challenge overview 

The NCI-CPTAC DREAM Proteogenomics Imputation Challenge was carried 
out to develop a benchmark imputation strategy for labelled LC-MS/MS 
proteomics data sets through crowd learning. The challenge consists of two 
phases: a challenging and a community phase. In the challenging phase, 
participants were invited to build their own imputation algorithms and winners 
were identified based on performances of submitted imputation algorithms on 
test data sets. In the community phase, top-performing participants worked 
jointly to develop a benchmark imputation strategy for labelled LC-MS/MS 
proteomics data. In both phases, imputation performances were assessed 
based on two metrics: protein-wise correlation and normalized root mean 
squared error (NRMSD) between imputed and true values.  

The challenging phase 

Since imputation is an unsupervised learning, to objectively evaluate different 
imputation algorithms, in the challenge phase, we implemented a simulation 
framework to generate decoy data sets with missing patterns mimicking that of 
the real data sets, based on protein profiles from labelled LC-MS/MS 
experiments in CPTAC breast cancer studies.[1,8] Specifically, we started with 
subsets of protein intensity matrices with complete measurements and 
superimposed pseudo missing data points generated from a probability model, 
which incorporates both biological and instrumental missing events, with the 
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probability of the latter depending on protein abundance measurements (see 
Online Methods).  

In total 10 training data sets and 100 testing data sets were generated. The 
large number of test data sets is to allow a thorough evaluation of performances 
of submitted imputation algorithms (Fig 2a, see Online Methods). Specifically, 
training data sets were generated based on global proteome data from CPTAC 
retrospective breast cancer study [1] and were shared with participants, while 
testing datasets were based on global proteomics from CPTAC breast cancer 
confirmatory study[8] and were not shared with participants. Each participant 
team needed to firstly develop an imputation algorithm based on training data 
sets, and then submit their final algorithm to Synapse to be evaluated on the 
testing data sets. The final ranking of participating teams during the challenge 
phase was determined by a tie breaking strategy (see Online Methods and 
Supplementary Table 1-2).  

Among 21 teams participating in this challenge, 17 got valid scores on the final 
leaderboard. Names and affiliations of all participants were listed in 
Supplementary Table 3. The corresponding 17 imputation methods include 6 
methods based on prediction models, 5 using matrix completion techniques, 2 
relying on constant imputation, 2 employing multiple strategies and 2 other 
method without algorithm strategies reports in the survey. The performances of 
these 17 algorithms were illustrated in Fig. 2b, 2c. Interestingly, diverse 
performances were observed for teams employing the same category of 
methods. For example, among the five low-rank matrix completion based 
imputation methods by five different teams, two showed superior performance, 
but the other three got much worse results than KNNimpute [16,17], a baseline 
imputation method (Fig. 2b). This observation suggests that customized 
treatment for labelled proteomics data in employing these imputation techniques 
is important to assure good performance. Also, as expected, the two methods 
based on constant imputation showed poor performances, suggesting this 
simple treatment does not work well for proteomics data with complicated 
missing mechanisms.    

Three methods --- SpectroFM, RegImpute, and Birnn --- demonstrate better 
performance than the baseline algorithm KNNimpute [16,17]. Both SpectroFM 
and Birnn use matrix completion techniques, while RegImpute employs 
prediction models. Please see next section and Online Methods for more 
details. The corresponding teams of the three winning algorithms --- SpectroFM, 
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RegImpute, and Birnn --- were then invited to participate in the community 
phase. 

The community phase 

In the community phase, the goal is to construct a consensus imputation 
algorithm by integrating multiple methods with diverse strategies. We not only 
utilized the winning algorithms from the challenging phase, but also leveraged 
existing tools that provide complementary strengths. We extensively evaluated 
different integration strategies, and developed a bagging based aggregation 
framework that enhances the robustness of the final algorithm ---DreamAI: 
Aggregated Imputation algorithms based on bagging procedure. Please see 
next Section for methodology and performance details of DreamAI.  

We utilized protein profiles of 32 pairs of duplicate tumor samples quantified by 
two independent proteomics labs in the CPTAC ovarian study [2] to evaluate 
imputation performances. Specifically, one set of the 32 tumor samples were 
processed by the Pacific Northwest National Lab; and the duplicate set of the 32 
tumors were processed by a proteomics lab from John Hopkins University. We 
thus referred to these two data sets of 32 samples as PNNL-data and JHU-data 
respectively.   

All imputation methods were firstly applied to the PNNL-data of 3027 genes 
(n=32) and the results were then evaluated against corresponding data points in 
JHU-data, which is regarded as good approximation for the true values that was 
missing in PNNL-data. There are 3700 missing values in the PNNL-data, and 
most (>99%) of them were not missing in the JHU-data. In addition, to account 
for technical and biological factors contributing to different protein abundance 
measurements in PNNL- and JHU data sets, we employed scaled correlation 
and NRMSD-δ as performance evaluation. Specifically, for each protein, 
background correlation and NRMSD were obtained using paired data points 
observed in both PNNL- and JHU-data. Scaled correlation was then calculated 
by dividing the correlation between imputed values and ground truths with the 
background correlation of each protein. NRMSD-δ was calculated as the 
NRMSD performance of the imputed values minus the background NRMSD. In 
addition, to ensure robust evaluation, we select a subset of 289 proteins which 
have at least 5 missing data points and background correlation between PNNL 
and JHU-data greater than 0.3 for imputation performance evaluation.  
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DreamAI: Methodology and Performance 

DreamAI utilizes an aggregated imputation framework [33] including three steps 
(Fig. 3a): generates 100 bagging sets with pseudo missing values based on the 
original data; imputes each bagging set with a consensus imputation strategy; 
and averages imputated values of each missing spot across different bagging 
sets.  

The consensus imputation strategy 

The central piece of DreamAI --- the consensus imputation strategy, is based on 
results from six imputation algorithms: the three winning algorithms in the 
challenging phase (spectroFM: Team DMIS_PTG; RegImpute: Team Jeremy 
Jacobsen; Birnn: Team BruinGo) and 3 baseline algorithms (ADMIN[6], 
KNN[16,17], missForest[18]) (Fig. 3b).  

Both spectroFM and Birnn are based on low rank matrix completion methods. 
Specifically, spectroFM employs LibFM, a factorization machine library [34] to 
approximate the normalized protein abundance matrix (with missing values) with 
the product of two dense latent low rank matrices corresponding to proteins and 
samples respectively. In addition, a regularized MCMC algorithm is implemented 
in spectroFM to solve the optimization problem. Birnn, while employs a similar 
low rank matrix decomposition framework, uses a different regularization 
technique --- the smoothly clipped absolute deviation (SCAD) penalty [35] --- to 
constrain the ranks of the decomposed matrices, and implements an iteratively 
reweighted nuclear norm (IRNN) [36] algorithm to solve the optimization 
problem (see Online Methods).          

Similar as missForest [18], RegImpute tackles the problem of imputation through 
prediction. The idea is to use observed abundances of other proteins (samples) 
to estimate the missing abundance of a given protein (sample). While random 
forest models are used by missForest, ridge regressions [37] are utilized by 
RegImpute (see Online Methods). Specifically, RegImpute incorporates an 
iterative procedure to refit the prediction models leveraging the imputed values 
from the last iteration. This iterative procedure helps to improve the prediction 
accuracy, and usually converges after 10 iterations.             

KNN based imputation, the most commonly used imputation strategy in omics 
studies, can also be viewed as a prediction approach: a small set of features 
(samples) in the neighborhood of the feature (sample) to be imputed are used to 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 22, 2020. ; https://doi.org/10.1101/2020.07.21.214205doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.21.214205
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

fit a prediction model, which often takes the form of a linear combination 
(weighted average). ADMIN [6] is an enhanced version of KNN. It specifically 
models the abundance-dependent missing mechanism in proteomics data set, 
and uses the joint likelihood of protein abundances and missing mechanisms to 
calculate the optimal weight for predicting the missing values (see Online 
Methods).  

In addition, when selecting baseline methods to be included in DreamAI 
aggregation, we also considered pcaMethods [27], a low-rank matrix completion 
method that has been applied to missing value imputation of labelled proteomics 
data [28]. However, the performance of pcaMethods is substantially worse than 
that of KNN, MissForest, and ADMIN on the CPTAC2 ovarian cancer data set 
(Fig S3). Thus we did not include this algorithm in the final consensus of 
DreamAI.  

All selected methods provide complementary strengths. While the low rank 
matrix completion based methods take good advantage of the strong global 
covariance structure among proteins, the prediction-based methods provide 
more flexible imputation solution to small neighbors (individual features) in the 
data. In addition, missFroest helps to capture non-linear relationship among 
proteins, and ADMIN utilized the abundance-dependent missing trend in 
proteomics data. Thus, by aggregating all these strategies in an effective way, 
we expect to achieve more optimal and robust imputation performance. 
Specifically, we propose to average the imputation results of all the 6 methods 
on one data set as the consensus imputation strategy. The bagging procedure, 
described below, makes this simple average rather robust and effective.              

Model aggregation through bagging 

A modified bagging strategy is adopted in DreamAI to improve the robustness 
and accuracy of imputation algorithms. Instead of sub-sampling subjects or 
proteins, DreamAI generates “bagging” (perturbed) data matrices by setting a 
small subset of observed data points in the original data matrix as pseudo NAs. 
Specifically, these data points were selected according to a probability model 
reflecting the abundance-dependent missing mechanism with parameters 
estimated based on the original data matrix (see Online Methods). Then 
DreamAI applies imputation algorithms on a collection of bagging matrices with 
both true and pseudo missing values, and reports the average of the imputed 
values of each missing spot across all bagging matrices as the final imputed 
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values. For the application on the PNNL-data, we utilized 100 bagging matrices, 
and set the missing rates in the bagging matrices to double that of the original 
data set.  

Performance evaluation 

We first illustrated the benefit of bagging aggregation on imputation. We applied 
individual imputation method with or without bagging aggregation on the PNNL 
data. For each method, correlation between imputed values and the observed 
“true” values from the JHU data set of the corresponding data points for protein 
groups based on different stratification criterions were used for evaluation. 
Specifically, proteins were divided into multiple groups with different (a) protein 
closeness in observed data, (b) NRMSD of pseudo missing data from all 
bagging sets and (c) average protein abundances in observed data.  Note, 
protein closeness measures correlation strength between each protein and its 
neighboring proteins (see Methods). As shown in Fig. 3C, the results based on 
bagging aggregation showed overall improved correlations compared to those 
without using bagging aggregation. And the improvement is more dramatic for 
baseline methods than the winning algorithms from the challenging phase.  

We then compared the performance of DreamAI to that of the individual 
imputation algorithm (with bagging). The average scaled correlation and 
NRMSD based on all proteins are shown in Fig. 3d. DreamAI achieves higher 
correlation and lower NRMSD than all the six individual imputation methods.  
Specifically, the imputation accuracy of DreamAI, as measured by scaled-
correlation, is about 20% greater than KNN and ADMIN, and 15% greater than 
missForest. In addition, the performance of DreamAI was also compared to that 
of pcaMethods, and a 50% improvement on performance in term of correlation 
was observed (Fig S3). In addition, the dashed line in the NRMSD plot 
represents the reference NRMSD based on all paired data points observed in 
both the PNNL and the JHU data sets. Interestingly, NRMSD of DreamAI is 
smaller than the reference NRMSD, implying superior performance of DreamAI.  

As illustrate in Fig. 3d, the three winning algorithms from the Challenge all 
outperformed the three baseline methods, which is consistent with what we 
observed in the challenge phase. An immediate question, then, is whether it 
helps, in the aggregation exercise, to include any or all of the baseline methods, 
which have suboptimal performances. We thus also evaluated strategies of 
aggregating none or a subset of the baseline methods in DreamAI. As illustrated 
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in Supplementary Fig. 2a, without any of the baseline methods, the scaled 
correlation of imputation result is about 13% lower than the result from 
aggregating all 6 methods. This clearly demonstrates the benefit of aggregating 
methods with complementary strengths. Moreover, ADMIN appears to be a 
more important player than KNN and missForest, such that the scaled 
correlation drops more if ADMIN was left out from the aggregation than when 
missForest or KNN was left out. This illustrates the benefit of incorporating the 
abundance dependent missing mechanism, a common feature of proteomics 
data, in the imputation framework. Between KNN and missForest, KNN is less 
helpful in the aggregation, such that the method by leaving KNN out achieves 
even slightly better performance in terms of scaled correlation. More detailed 
investigation further suggests that KNN helps only for proteins with close 
neighbors and high abundances (supplementary Fig. 2b-c).           

In practice, DreamAI R-package provides the flexibility for users to specify any 
combination of the 6 individual methods to perform DreamAI imputation. When 
the data dimension or computational cost is not a concern, one may choose to 
include ADMIN and missForest, in addition to the three winning algorithms, to 
achieve the optimal performance. When the data matric has a large dimension, 
computational time required by missForest could be substantial, and the users 
may choose to include ADMIN and KNN instead of missForest to balance the 
tradeoff between performance and computational burden. 

To further understand the impact of various protein characteristics on the 
imputation performances, we compared imputation results of different protein 
groups stratified by three criterions: (a) protein closeness based on observed 
data; (b) NRMSD of pseudo missing across all bagging sets; and (c) average 
protein abundances based on observed data. Please see Methods for details. 
Average scaled-correlation and NRMSD-δ are calculated for each protein group. 
The results are shown in Fig. 4.  

Imputation performance of DreamAI, in term of (scaled-)correlation, shows an 
increasing trend with protein closeness. Moreover, the improvement of DreamAI 
over KNN is the most dramatic, more than 65%, for the protein cluster with the 
lowest closeness, suggesting the advantage to leverage the information in the 
whole data set for data points with uninformative neighbors when performing 
imputation (Fig. 4a). Similar pattern is observed based on NRMSD-δ as well.    
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Across the four protein clusters with different pseudo missing performance 
evaluations, both DreamAI and KNN showed better imputation accuracy in term 
of correlation for the cluster with the best pseudo missing performance than the 
others. The improvements of DreamAI over KNN, however, are quite 
comparable across the four clusters (Fig. 4b). 

Protein abundance, a metric correlates with imputation performance of KNN, 
however does not show obvious association with performance of DreamAI (Fig. 
4c). And DreamAI showed the biggest improvement over KNN for the protein 
group with the lowest abundances. NRMSD-δ of both DreamAI and KNN 
appeared to be negatively associated with the protein abundance, which seems 
to imply that NRMSD depends on the scale of the value to be imputed, and thus 
its interpretation needs to be taken with cautious.  

Imputation helps to gain biological insights 

To illustrate the improvement of data analysis power based on proteomics data 
with proper imputation, we applied DreamAI to a large TMT proteomics data set 
from a newly published proteogenomic study of clear cell renal cell carcinoma 
(CCRCC) [32]. In this study, 103 treatment naïve renal cell carcinoma and 80 
paired normal adjacent tumor (NAT) tissue samples were profiled using a 
proteogenomic approach wherein each tissue was homogenized via 
cryopulverization and aliquoted to facilitate genomic, transcriptomic, and 
proteomic analyses on the same tissue sample. In the global proteomics TMT 
experiments, protein abundance measurements of 9209 genes were obtained in 
at least 50% of the samples, with 2059 genes having missing abundance 
measurements in at least one sample. The overall missing rate of the protein 
abundance matrix of these 2059 genes was 20.4%, and sample wise missing 
rate ranges from 2.5% to 7%. The abundance dependent missing (MNAR) 
trends in proteomics data of tumor and NAT samples are illustrated in Fig. 5a, 
S4a respectively.  

We first evaluated gene-wise correlations between RNAseq and global 
proteomics data with or without DreamAI imputation among tumors samples. 
For 2012 proteins with at least one missing value in tumor samples, we 
observed improved protein-RNA concordance in proteomic data with DreamAI 
imputation than that without imputation, including significantly higher gene-wise 
protein-RNA correlations (wilcox test pvalue<10e-16) (Fig 5b), as well as 
greater numbers of genes with significantly non-zero protein-RNA correlation at 
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various p-value cutoffs (Figs 5c, 5d). Parallel analysis applied to proteogenomic 
data of NAT samples reveals similar improvement of protein-RNA concordance 
based on proteomic data with DreamAI imputation over that without imputation 
(Fig. S4).    

We then evaluate whether different treatment of missing values may impact 
statistical powers to detect proteins associated with normal-tumor status. 
Specifically, we focused on a subset of 49 genes in the CCRCC proteomic data, 
whose imputed protein abundances by KNN and that by DreamAI are rather 
different (the NRMSD between the imputed abundance by KNN and that by 
DreamAI is greater than 0.5). As illustrated in Fig. S5a, the distribution of p-
values from Wilcox two-sample t-tests comparing tumor and NAT samples 
based on proteomic data with imputation by DreamAI is more significant than 
that by KNN as well as that based on data without imputation. Similar benefit of 
power gain by DreamAI imputation over KNN as well as no-imputation is also 
observed in Fig. S5b when screening for proteins associated with four different 
immune subtypes of CCRCC samples[32] using Kruskal–Wallis tests. These 
examples illustrate the advantage of using proteomic data with DreamAI 
imputation in downstream statistical analysis over other alternative strategies.        

Discussion 

How to handle missing values in MS based proteomics data has been a long-
standing challenge in proteomics research. The larger the study size is, the 
worse the issue of missing will be, as data from more mass spectrometry 
experiments need to be merged together. The isobaric labelling technique, 
which on one hand greatly enhances the quantitation precision and experiment 
throughput, on the other hand, further exacerbates the missing data problem. 
With experimental induced multiplex-level missing pattern as well as the 
abundance dependent missing trend, proteomics data from labelled MS 
experiments cannot be properly or effectively analyzed by using observed data 
only (either ignoring all features with missing values or ignoring subsets of 
samples with missing data points in feature-wise modeling).     

Another strategy to handle missing data is through imputation, which has been 
widely adopted in many research fields, such as image processing, single-cell 
RNAseq studies, as well as label free proteomics data analysis. Its usage in 
proteomics data from labelled MS experiments is still limited, largely due to a 
lack of a benchmark imputation method suitable for this type of data. Because of 
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the complicated missing structure in labelled proteomics data, imputation tools 
developed for other data types do not apply or does not perform well.      

The goal of this study is to develop a benchmark imputation algorithm for 
labelled proteomics data sets. Specifically, we conducted the NCI-CPTAC 
DREAM Proteogenomics Imputation Challenge to achieve this goal through 
crowd learning. 21 teams from a broad range of research fields participated in 
the Challenge and contributed diverse expertise. As expected, many general 
imputation algorithms used in other disciplines/applications do not perform well 
on labelled proteomics data sets. Indeed, only a subset of teams achieved 
better performance than the KNN imputation on Challenge data sets, suggesting 
customized treatment of the imputation algorithm for labelled proteomics data is 
important in order to effectively tackle this problem. 

The three winning teams from the Challenge further participated in a 
collaborative phase, and we jointly developed the final algorithm --- DreamAI --- 
an ensemble based imputation method. DreamAI employs a bagging framework 
to aggregate results from 6 diverse imputation methods: three winning 
algorithms from the Challenge (two based on low-rank matrix completion and 
one based on prediction model fitting), as well as three baseline imputation 
methods --- KNN, ADMIN, and missForest, which have been used in previous 
proteogenomics data analysis [5,6,19,20]. This ensemble strategy of DreamAI 
leads to greatly improved performance compared to that of individual algorithm: 
the imputation accuracy of DreamAI in terms of correlation is 15-50% better than 
that of individual baseline tool, or 9-15% better than that of the individual 
winning algorithm on an ovarian cancer proteomics data set.       

The bagging framework in DreamAI not only enhances the imputation 
performance, but also helps one gain insights on imputation quality of each 
feature. Specifically, for a given feature, DreamAI estimates its imputation 
quality using the correlation between the true and imputed values of pseudo 
missing data points of this feature across different bagging iterations. In the 
CPTAC ovarian data application, the correlation assessment for the protein 
group with the best pseudo missing performance is 0.75, at least 26% higher 
than the rest protein groups. Therefore, the pseudo missing performance score 
of each feature is informative to shed light on feature-specific imputation quality.      

Since imputation is an unsupervised learning problem, it has been a challenging 
task to objectively assess the performance of imputation methods. Thus, one of 
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the major efforts during the Dream Challenge was to create high-quality bench-
mark simulation data sets to objectively evaluate imputation performances. 
Specifically, simulations were set up to mimic missing patterns in real 
proteomics data sets as closely as possible. Multiple testing data sets with 
varying proportions of biological and experimental missing rates, as well as 
different degrees of abundance dependent missing trend were generated based 
on two CPTAC breast cancer proteomics data sets.[1,8] Moreover, to 
complement the usage of simulated data sets during the Challenge phase, in 
the community phase, we utilized the CPTAC ovarian cancer proteomic data set 
[2], which contains proteomics profiles of two replicate biological samples of 32 
ovarian tumors. This provides a unique opportunity to directly assess imputation 
performances on real missing data points in cancer proteomics studies.  

The benefit of using imputed data in downstream analyses stems from the 
improvement of sample size and thus the analysis power. As illustrated in the 
CCRCC application, imputation helps to capture more molecular features in 
proteomics data and improves the RNA-protein concordance overall. In the real 
data analysis, we removed features with missing rates higher than 50% in 
imputation and downstream analysis. The choice of 50% cutoff is a tradeoff 
between imputation accuracy and information (data feature) loss in the 
downstream analysis. For features with high missing rate, the tasks to 
accurately identify close neighbors or to fit prediction model based on observed 
data points become very challenging due to the sample size limitation.  It has 
been suggested that, in general, imputation methods perform better on features 
with less missing values  (<50%) than on features with more missing values 
(>50%)[29]. Also, in downstream analyses, it’s preferred that the observed data 
points out weight the imputed data points to ensure robustness. Thus, we 
settled with a cutoff of 50%.   

Although we provided NRMSD values on all examples, we used Spearman 
correlation as the main metric for evaluating imputation performance. NRMSD 
measures the distance between the imputed values and the true values of 
missing data points normalized by the varying range of abundances of each 
protein. Despite being a normalized distance measurement, NRMSD still 
depends on the scale and distribution of the protein abundances. On the other 
hand, Spearman correlation is a scale free measurement which is robust to any 
outliers and the absolute scale of the data distribution. As illustrated in Fig. 4c, 
among protein groups with different mean abundance levels, performance 
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based on correlation is very stable, but NRMSD has an obvious trend to be 
positively associated with protein mean abundances.  

For data analysis of label free proteomics data, it has been suggested that 
directly model peptide abundance could be more efficient than performing 
imputation at the protein abundance level [12]. This is because the summary (or 
average) based peptide-protein intensity roll-up used for label free proteomics 
data is vulnerable to many confounding factors, and then modeling the peptide 
level abundances directly could effectively get around the variabilities induced in 
the  roll-up step. However, in isobaric labeled proteomics experiments, rolled-up 
from peptides to proteins can be performed at the log-ratio intensity level (i.e. 
log-ratio between intensity of a target sample and that of the reference sample 
in the same TMT multiplex for one peptide). This strategy greatly improves the 
robustness and precision of protein quantification, while at the same time, 
effectively reduces the missing data percentage in protein level data compared 
to the peptide-level data. Thus, for isobaric labeled global proteomics 
experiments, we recommend working with protein/gene level data. For 
phosphorproteomics experiment, since phosphosite-site is the meaningful 
biological unit for downstream analysis, we actually work with the quantification 
at phosphor-site level and perform imputation on phosphor-site level data 
directly.  

Although DreamAI has a general framework and can be applied to other 
proteomics data from label free experiments, its performance on those 
applications warrants future study. In addition, for proteomics data from targeted 
mass spectrometry experiments, such as MRM (multiple reaction monitoring), 
imputation could be less of a concern due to the relatively low missing rate. 
However, MRM experiments right now can handle at most a few hundred 
proteins/peptides in one run, and thus are not suitable for deep profiling in 
discovery studies. 

An R package of DreamAI has been implemented and is available to public at 
Github (https://github.com/WangLab-MSSM/DreamAI). Performing DreamAI 
imputation with this R package on the CCRCC data matrix with 9209 genes and 
183 samples took 4.3 hours on a PC with Intel Core i7-7700HQ CPU (2.80GHz).  
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ONLINE METHODS 

Design and Data Sets of Challenging Phase 

Multiple stages were set up in the challenging phase: two leaderboard rounds, 
and one final ranking round, to allow self-correction on the algorithm of each 
participant and also to achieve fair competition for the final ranks. 

The process of generating data matrices with missing value is the same in both 
training and testing. We collect protein with complete observation as the basis 
matrix of underlying truth (7927 proteins of 80 samples from CPTAC2 breast 
cancer retrospective study for training data and around 8203 proteins of 83 
samples from CPTAC2 breast cancer confirmatory study for testing data). 

Biological missing spots were assigned to basis matrix with missing spot 
correlated among proteins with protein intensity correlation of the basis matrix. 
Basis matrix with biological missing was considered as underlying truth. Since 
biological missing are difficult to identify from the missing data, to raise the 
challenge of imputation in the synthetic data set we set the biological missing 
rate to be much higher than the non batch level missing rate in real data set. 

Next, we simulate instrumental missing with abundance dependent missing 
mechanism, learned from the real data set. Both instrumental missing and 
biological missing were indicated as ‘NA’ in the observed data sets. 

Imputation algorithm will be applied on the observed data sets and evaluated on 
the missing spot with underlying truth. We setup multiple replicates of training 
and testing data sets to assess robust evaluation on the imputation algorithms. 
In total, we generated 10 training data sets with same missing mechanism and 
200 data sets of testing with same instrumental missing mechanism but diverse 
level of biological missing rate (Fig. 2b). 

After opening of the challenge competition, we released the 10 training data set 
to public, participants were allowed to build and train their algorithms in the 
training data. Leader board were presented and updated during the period of 
Round 1 and 2 by evaluating algorithms of participants using 100 testing data 
sets. Final Score ranking were generated in the final round by evaluation on the 
other 100 testing data sets. 
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Evaluation of Imputation performance and Tie Breaking for Final Round 
Leaderboard 

Performance of imputation algorithms are evaluated through normalized root-
mean-square errors (NRMSD) and correlation coefficients between imputed 
data and underlying truth. NRMSD is calculated on all missing spots of each 
protein, and correlation is calculated on instrumental missing spots of each 
protein. 

Given X to be imputed value and Y to be underlying true value, 

 

, . 

 

Evaluation metrics of 100 different observed data sets in the final round were 
compared to identify the winning team. Specifically, we compared NRMSD first, 
and if there are ties on NRMSD, we will compare the correlation to break the tie. 
Significance of score differences is tested using two criteria: 

  1. Confidence Intervals For each team, we computed 95% Confidence 
Intervals (CI) across different data sets. Since difference of biological missing 
rate will lead to different levels of scores, to make the variance estimation more 
meaningful we calculate CI for 4 groups with different biological missing rate 
separately. We declared two teams statistically different, when one team has 
(all) CI non-overlapped with (and higher than) the corresponding interval of the 
other team. 

   2. Bayes Factor Given two teams, we estimated the Bayes Factor (BF) via a 
100 paired imputed matrix. Each pair came from the results of the same 
observed data set. We declared two teams statistically different if the Bayes 
Factor of their scores is larger than 10 or smaller than 0.1. 
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We consider the four teams having the lowest average NRMSD scores across 
100 data sets, since the baseline method KNN will beat the 5th team with our tie 
breaking criterion. Those teams are Hongyang Li and Yuanfang Guan, 
DMIS_PTG, BruinGo, Jeremy.  

 

Comparison of CI was showing in the Supplementary Table 1. If the number 
equals 4, scores of the team at row will be significantly higher than the scores of 
the team at column. From Supplementary Table 1A, we found out none of 
those team can beat any other team by NRMSD. Therefore we look at the 
correlation of them in 1B, and infer that the team DMIS_PTG has the best 
correlation scores based on the confidence intervals. We also compared BF. For 
each team pairs (Supplementary Table 2) If the number is larger than 10, 
scores of the team at row will be significantly higher than the scores of the team 
at column. If the number is smaller than 0.1, scores of the team at row will be 
significantly lower than the scores of the team at column. We found out only 
team DMIS_PTG can beat some of the other teams by NRMSD 
(Supplementary Table 2A), but none of the team is dominant in this criterion. 
Therefore we look at the comparison of correlation (Supplementary Table 2B) 
and infer that the team DMIS_PTG has the best correlation scores based on the 
BFs. In conclusion, this sub-challenge was won by team DMIS_PTG. 

 

Evaluation of Imputation performance in Community Phase 

 

To fully understand the improving of DreamAI from the baseline method KNN, 
and in the mean time to study the impact on the imputation performance by the 
protein behavior, we summarized the performance at cluster level. We defined 
cluster by three different criteria: protein closeness, pseudo missing 
performance, and protein abundance. Those clusters were constructed with 
following procedure 

 

1. Protein Closeness: We calculate the pairwise correlation of all proteins 
having at least one missing datapoint in the PNNL data, and protein 
closeness is calculated using average of largest 50 correlations of each 
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protein(those 50 proteins were considered as its neighbor proteins, and 
the average of correlation is regarded as closeness of that protein among 
all neighbors). We split 289 proteins that are eligible to evaluation into 4 
clusters based on the 4 quantiles, with the average closeness from 
lowest (first cluster) to highest (4th cluster).  

 

2. Pseudo missing performance: NRMSD was calculated between 
pseudo missing values of bagging datasets from the PNNL data and 
corresponding observed value in the same data set. We used NRMSD to 
form 4 clusters of the 289 proteins. These clusters are ordered from low 
performance to high performance by the average pseudo NRMSD 
values, meaning that meaning that the 1st cluster has the highest average 
pseudo NRMSD and the 4th cluster has the lowest average pseudo 
NRMSD.  

 

3. Protein abundance: Finally, we also defined gene cluster by the range 
of observed mean protein abundance and ordered the clusters from 
lowest (first cluster) to highest (4th cluster) mean protein abundances. 
Genes within each cluster have similar protein abundance.  

            

Methods of 3 baseline algorithms  

ADMIN: Abundance Dependent Missing Data Imputation 

The method is designed for imputation of isotopic labeling proteomics data in 
which batch effects exist and missing data is dependent on protein 
abundances.[6] Observed abundance data is assumed to follow a linear mixed-
effect model. Random intercept is accounted for batch effect at protein level. 
Each protein is fitted by the linear regression of its close neighbors regardless of 
the random intercepts in the model. Close neighbors are determined by the 
pairwise correlation. A fixed number of neighbors are included in the linear 
regression for each protein. On the other hand, a non-random missing 
mechanism is assumed: missing rate is exponentially linear correlated with the 
‘true’ abundance. Based on these assumptions, an EM(expectation- 
maximization) based algorithm is employed to iteratively solve the linear 
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prediction of missing values and estimation of the abundance dependent 
missing parameters in one model: given a current estimation of imputation 
values, in next M step random effects and parameters of missing mechanism 
are estimated with both observed and imputed values; in the following E step, 
for a given protein, the missing elements are predicted from the close neighbors 
with linear model on both observed and imputed value after removing the bias 
from missing mechanism and random effect values. To avoid huge computation 
consumption, the default number of neighbors in algorithm is set to be 10. 

 

knn.impute 

impute.knn is a function designed to impute missing values of gene expression 
data, using K-nearest neighbor averaging.[16,17] For each gene with missing 
values, k nearest neighbors were found using a Euclidean distance metric, 
confined to the columns for which that gene is NOT missing. After the k nearest 
neighbors are identified for a gene, imputed value of a missing element is the 
average of those (non-missing) elements of its neighbors. For categorical 
variables the mode of the neighbors is used, and for continuous variables the 
median value is used instead. To increase computation efficiency, gene sets 
over certain threshold (set as 1500 in the package) were broken into blocks 
using two-mean clustering. This is done recursively till all blocks have less than 
the max number of genes. For each block, k-nearest neighbor imputation is 
done separately.  

 

missForest 

missForest is developed to impute missing values particularly in mixed-type 
data: continuous and/or categorical data including complex interactions and 
nonlinear relations.[18] The missing data problem is addressed using an 
iterative imputation scheme by training a Random forest model on observed 
values, followed by predicting the missing values. Imputation problem is solved 
by iteratively fitting and predicting procedure, since the imputed value on 
predictors can help to obtain better prediction. Random forest is chosen to 
model the missing value because it can handle mixed-type data and is known to 
perform very well under conditions like high dimensions, complex interactions 
and non-linear data structures. In case of high-dimensional data some 
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parameters in the algorithm are suggested with a relatively small value, for 
example: number of trees to grow in each forest and number of variables 
randomly sampled at each split to obtain an appropriate imputation result within 
a feasible amount of time. Moreover, it can be run parallel to save computation 
time using an appropriate backend. 

 

 

Methods of top 3 participants  

 

SpectroFM: Matrix factorization-based imputation 
In the computer science domain, the imputation of missing values, which has 
been the focus of many studies, can be considered as a recommendation task 
since a user’s unobserved   preferences are represented as missing values in a 
user-item matrix. Given a user-item matrix, a recommendation system predicts a 
user’s preferences for an item based on other users’ existing preferences for the 
item and the user’s preferences for other items. This is analogous to the task in 
this challenge. If we consider proteins as items and patients as users, it is 
possible to exploit collaborative filtering algorithms. We first apply Z-
normalization to a protein abundance data matrix to make the data fit a normal 
distribution. We save the mean and variance to revert the data to its original 
scale when we perform imputation. We train a low-rank matrix factorization 
model on existing values in the normalized abundance matrix. For the 
implementation of the matrix factorization model, we use LibFM, a factorization 
machine library [34].  Using the calculated latent parameter matrix of proteins 
and the latent parameter matrix of patients in the model, we reconstruct the best 
approximation of the original input matrix by multiplying the two latent matrices. 
Since the latent matrices are dense, the missing values in the original matrix are 
imputed in the reconstructed approximated matrix. We set the dimensions of the 
latent protein and patient matrices to 40. Consequently, the rank of the 
reconstructed approximated matrix is 40. We use a Markov chain Monte Carlo 
(MCMC)[38] algorithm to optimize parameters. One of the advantages of MCMC 
is that it integrates regularization parameters into the model, which allows us to 
skip hyper parameter optimization. After the imputation of missing values by the 
multiplication of the latent matrices, we revert the normalized values to their 
original scale using the saved mean and variance. 
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Algorithm 1: SpectroFM 
Input: binary indicator feature vector x and observed protein abundance values 
yobs 

Output: imputed protein abundance values ymiss 

 
Initialize model parameter θ  
Z-Normalize y values to ỹ  using 
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Obtaini optimal parameter: 
For t  in 1,...,7 

1: θ* = MCMCOptimizer(x, ỹ, θ) 
2: θ = θ* 

 
Impute the missing values ỹu,i

miss using 
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Return ỹmiss to original scale values ymiss using 
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RegImpute: Regression-based imputation 

 

A conventional, post-processed proteomics dataset usually takes the form of a 
two-dimensional array. From the perspective of training a regression model, the 
columns of an array can be interpreted as features (dimensions), and the rows 
can be considered as training instances (or vice-versa). The features and 
instances can be used to train a predictive model to impute unobserved contains 
missing values. One solution is to divide data sets into subsets, on which 
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models can be trained. However, this approach can be very time consuming. A 
second approach is to train a model on only complete dataset without missing 
values. The drawback of this approach is that samples with missing values may 
be characteristically different from samples without missing values (e.g., not 
missing at random (NMAR) versus missing at random (MAR)). RegImpute is a 
combination of the two approaches above and uses a simple imputation method 
such as mean imputation on the existing values to generate a complete training 
set. In addition, users can impute missing values using the values (e.g., zeros) 
selected by the users. Then, we use ridge regression, which is a fast and robust 
linear regression technique. Ridge regression is an extension of linear 
regression, and its regularization prevents it from overfitting. Ridge regression 
performs regularization by adjusting weights to avoid focusing on only a few 
features [37]. Using single regression on the dataset may be sufficient if the 
initial guesses are nearly correct or if there are few missing values. However, in 
some cases, the initial regression values are heavily influenced by a prior 
assumption(s). For this reason, performing regression several times may reduce 
estimation errors. At each iteration, we use the imputed missing values from the 
previous imputation to improve regression for the current imputation. At some 
point, usually after ~10 iterations, convergence is reached.  

Algorithm 2: RegImpute 
Input: data matrix Y of protein abundance 
Output: Y* 

For each iteration n: 
1. For each column Yi  in data Y (i = 1,...,n) Split the data into two subsets: 

Ymiss,i: rows with Yi  missing  

Yobs,i: rows with Yi  observed  

2 Fill NAs in Yobs,i with the imputed values of Yobs,i in iteration n-1 (fill in 0s if n=1) 

3 Train ridge regression model on data Yobs,i, to associate ith column with all the 
other columns, obtain β to solve the minimization: 

)()()(min ,,,, cYYYY Ti
iobs

i
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4 Fill in NAs in Ymiss,i with the imputed values of Yobs,i in iteration n-1 (fill in 0s if 
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n=1) 

 for all but not ith column 

5 Use trained model on Yobs,i to predict ith column in Ymiss,i with the other 
columns as predictor 

βi
imiss

i
imiss YY −= ,

*
,  

6 repeat 1 to 5 until convergence of imputed value.  

 

 
Birnn: Matrix completion and Bagging-based imputation 

 
We consider the imputation of missing protein abundances in a protein-sample 
matrix as a matrix completion problem. We assume that all the protein 
abundances have the same data distribution because they are from the same 
type of cancer, and thus the matrix is assumed to have a low rank structure. 
Based on this assumption, we used the iteratively reweighted nuclear norm 
(IRNN)[36] algorithm with the smoothly clipped absolute deviation (SCAD)[35] 
penalty, which is a non-convex penalty function on singular values, to better 
approximate the rank function and enhance low rank matrix approximation. 
Moreover, we use the bootstrap aggregating algorithm to train multiple models 
on sampled sub-datasets of the original dataset. The final prediction is given by 
aggregating the outputs of the multiple models. The bootstrap aggregating 
algorithm can help prevent models from over fitting by reducing model variance, 
which contributes to performance improvement. 

Algorithm 3: Birnn 
Initialize: k = 0, Xk, wk

i, i = 1,2,...,min(m,n) 
Output: X* 
1. while not converge do  
2. Update Xk by solving  

2
),min(

1

))((
2

1
min

F

kk
nm

i
i

k
ix XfsXXw ∇−−+∑

=

σ  

with Weighted Singular Value Thresholding (WSVT). 
Update the weights wk

i, i = 1,2,...,min(m,n) by 
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3. end while 
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Main Figure Captions 

Figure 1. Missing rates and missing patterns in various proteomics data 
sets from CPTAC ovarian studies [2,7]. (a) Distribution of protein level 
missing rates in a 4plex-iTRAQ global-proteomics data set of 112 tumor 
samples and a 10plex-TMT global proteomics data set of 120 tumor samples. 
The iTRAQ and TMT data sets consist of 7126 proteins and 8290 proteins 
respectively. (b) Distribution of phosphosite-level missing rates in a 4plex-iTRAQ 
phospho-proteomics data set of 92 samples and a 10plex-TMT phospho-
proteomics data set of 120 samples. The iTRAQ and TMT data sets consist of 
20746 and 45625 phosphosites respectively. (c) Percentage of multiplex-level 
and non multiplex-level missing data in iTRAQ global- and phospho-proteomics 
data sets. (d) Scatter plot of protein-level missing rates v.s. mean protein 
abundances based on observed data in the iTRAQ global-proteomics data set. 
(e) Scatter plot of phosphosite level missing rates v.s. mean phosphosite 
abundances based on observed data in the iTRAQ phospho-proteomics data 
set. 

 

Figure 2. Proteomics Data Imputation Challenge competition design and 
performance results of participants (a): Design of data simulation in 
challenge phase. (b): Correlation and NRMSD evaluations of 17 submitted 
imputation algorithms. Different colors and shapes represent different imputation 
strategy categories. The dotted lines illustrate the performance level of KNN 
imputation. Three leading algorithms with better performance than KNN 
imputation have their names labeled. (c) Performance rank of all algorithms 
summarized for each strategy category (*algorithms using multiple strategies 
were listed multiple times in all relevant categories). 

Figure 3. DreamAI algorithm and its performance. (a) Bagging procedure in 
DreamAI. Firstly, different set of pseudo missing are introduced to original 
observed data to generate a collection of bagging data sets. Then imputation is 
performed for each bagging set using the consensus imputation method. The 
final imputed matrix is the average of all bagging sets at the missing spots of the 
original data. (b) Consensus imputation method in DreamAI: average of 6 
algorithms including 3 baseline methods and 3 winning algorithms from the 
Challenge. (c) Imputation performance (correlation) of all individual imputation 
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method with and without bagging strategy. Average correlations are reported for 
different protein strata based on different protein closeness, average 
abundance, or pseudo missing performance evaluations. (d) Performance 
comparison between DreamAI and all individual methods. Scaled correlation 
was computed by dividing the performance correlation (imputed values v.s. 
“ground truth” values) by the correlation between the observed data points of 
this feature from PNNL- and JHU-data (please see the text). The dashed line in 
the NRMSD panel represents the background NRMSD between PNNL- and 
JHU-data based on data points observed in both data sets (please see Online 
Method). The numbers on the bars represent the ranks of the performance.  

 

Figure 4. Performance of DreamAI and KNN across different protein strata: 
(a) protein closeness in observed data; (b) NRMSD performance of pseudo 
missing data of all bagging sets; and (c) average protein abundances based on 
observed data. Scaled correlation was computed by dividing the performance 
correlation (imputed values v.s. “ground truth” values) by the correlation 
between the observed data points of this feature from PNNL- and JHU-data 
(please see the text). NRMSD-δ was the difference of performance NRMSD and 
background NRMSD (based on data points observed in both data sets).  

 

Figure 5. For a set of CCRCC tumors, proteomic data with DreamAI 
imputation shows improved concordance with their corresponding 
transcriptome data. (a) Scatter plot of protein-level missing rates vs. mean 
protein abundances based on observed values in the global proteomics data of 
103 CCRCC tumor samples [32]. (b) Scatter plot of protein-RNA correlation 
based on the proteomics data with DreamAI imputation (y-axis) vs. that without 
imputation (x-axis). (c) Scatter plot of significance levels (- log 10 p-value) for 
testing protein-RNA association based on proteomics data with DreamAI 
imputation (y-axis) vs. that without imputation (x-axis). (d) Number of genes 
showing significant protein-RNA correlation based on proteomics data with 
DreamAI imputation (pink) or without imputation (blue) at different p-value 
cutoffs.  
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Supplementary Figure Captions 

Supplementary Figure 1. Missing rates and Missing patterns of ovarian 
cancer global- and phospho-proteomics data [2,7]. (a) Proportion of proteins 
with different level of missing multiplexes in global- and phospho-proteomics 
iTRAQ data. (b) Proportion of proteins with different level of missing Multiplexes 
in global- and phospho-proteomics TMT data. (c) Scatter plot of protein-level 
missing rates v.s. mean protein abundances based on observed data in the 
TMT global-proteomics data set. (d) Scatter plot of phosphor-site level missing 
rates v.s. mean phosphosite abundances based on observed data in the TMT 
phospho-proteomics data set. 

 

Supplementary Figure 2. Imputation performance of DreamAI with absence 
of one or all baseline methods on CPTAC2 ovarian cancer data set.  (a) 
Average imputation performance (scaled correlation and NRMSD) of all 
proteins. (b) and (c) Average imputation performance of  different protein 
groups stratified by protein closeness and abundance.  

 

Supplementary Figure 3. Comparing imputation performance (scaled 
correlation and NRMSD) of baseline methods on CPTAC2 ovarian cancer 
data set. Scaled correlation was computed by dividing the performance 
correlation (imputed values v.s. “ground truth” values) by the correlation 
between the observed data points of this feature from PNNL- and JHU-data 
(please see the text). The dashed line in the bottom panel represents the 
background level of NRMSD between PNNL- and JHU-data based on data 
points observed in both data sets. 

 

Supplementary Figure 4. For the CCRCC NAT (normal adjacent normal) 
tissue samples, proteomic data with DreamAI imputation shows improved 
concordance with their corresponding transcriptomic data. (a) Scatter plot 
of protein-level missing rates vs. mean protein abundances based on observed 
values in the global proteomics data of 80 CCRCC NAT samples [32]. (b) 
Scatter plot of protein-RNA correlation based on the proteomics data with 
imputation (y-axis) vs. that without imputation (x-axis). (c) Scatter plot of 
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significance levels (- log 10 p-value) for testing protein-RNA association based 
on proteomics data with imputation (y-axis) vs. that without imputation (x-axis). 
(d) Number of genes showing significant protein-RNA correlation based on 
proteomics data with imputation (pink) or without imputation (blue) at different p-
value cutoffs.  

 

Supplementary Figure 5. Improved power to detect proteins associated 
with tumor/normal status or immune subtypes based on the CPTAC-
CCRCC proteomic data with imputation by DreamAI than that by KNN. 
Focusing on 49 proteins with substantially different imputed values by DreamAI 
and KNN (NRMSD>0.5), the violin plots in (a) illustrate the distributions of p-
values from two-sample t-tests searching for differential expressed proteins 
between tumor and NAT samples based on the proteomic data matrix without 
imputation (grey), with imputation by KNN (light blue) and with imputation by 
DreamAI (red) respectively. (b) is the same as (a) except that the p-values were 
from Kruskai-Wallis tests searching for proteins associated with immune 
subtypes. 
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Supplementary Tables 

 

Supplementary Table 1. Comparing results of CI. For each team in the row, 
number of intervals none-overlapped with (and higher than) the reference team 
at each column was showing in the table. Table 1A is showing comparison of 
NRMSD and Table 1B is showing comparision of correlation.  

 

a 

NRMSD Confidence Interval R1 R2 R3 R4 Ref 

Hongyang Li and Yuanfang Guan (R1)  2 2 2 2 

DMIS_PTG(R2) 2  0 0 0 

BruinGo(R3) 2 0  0 0 

Jeremy(R4) 2 0 0  0 

KNN(Ref) 2 0 0 0  

 

b 

Correlation Confidence Interval R1 R2 R3 R4 Ref 

Hongyang Li and Yuanfang Guan (R1)  0 0 0 0 

DMIS_PTG(R2) 4  4 4 4 

BruinGo(R3) 4 0  0 0 

Jeremy(R4) 4 0 4  4 

KNN(Ref) 4 0 0 0  
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Supplementary Table 2 Comparing results of BF. For each team in the row, 
BF against the reference team at each column was showing in the table.Table 
2A is showing comparision of NRMSD and Table 2B is showing comparision of 
correlation  

 

a 

NRMSD BayesFactor R1 R2 R3 R4 Ref 

Hongyang Li and Yuanfang Guan (R1)  1 1 1 1 

DMIS_PTG(R2) 1  Inf Inf Inf 

BruinGo(R3) 1 0  1 1.38 

Jeremy(R4) 1 0 1  1 

KNN(Ref) 1 0 0.72 1  

 

b 

Correlation BayesFactor R1 R2 R3 R4 Ref 

Hongyang Li and Yuanfang Guan (R1)  0 0 0 0 

DMIS_PTG(R2) Inf  Inf Inf Inf 

BruinGo(R3) Inf 0  0 1.04 

Jeremy(R4) Inf 0 Inf  Inf 

KNN(Ref) Inf 0 0.96 0  
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Supplementary Table 3. The NCI-CPTAC Proteogenomics DREAM 
imputation Challenge Participants 

Full Name Affiliation 

Gajendra Pal 
Singh Raghava  

Indraprastha Institute of Information Technology, Delhi, 
INDIA 

Sunil V Kalmady University of Alberta,Edmonton, Alberta, Canada 

Harpreet Kaur CSIR-Institute of Microbial Technology, Chandigarh, INDIA 

Piyush Agrawal CSIR-Institute of Microbial Technology, Chandigarh, INDIA 

Salman Sadullah 
Usmani 

CSIR-Institute of Microbial Technology, Chandigarh, INDIA 

Eunji Heo 
Deargen Inc. & School of Computing, KAIST, Daejeon, 
South Korea.  

Bora Lee Deargen Inc., Daejeon, South Korea 

Yunpeng Liu 
Department of Biology, Massachusetts Institute of 
Technology, Cambridge MA, USA 

Wei Chen,  
Department of Biology, Southern University of Science and 
Technology, Shenzhen, China. 

Yue Shan 
Department of Biostatistics, The University of North 
Carolina at Chapel Hill, USA 

Hongtu Zhu 
Department of Biostatistics, the University of Texas MD 
Anderson Cancer Center, USA 

Kaixian Yu 
Department of Biostatistics, the University of Texas MD 
Anderson Cancer Center, USA 

Hongyang Li 
Department of Computational Medicine and Bioinformatics, 
University of Michigan, Ann Arbor, MI, USA 
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Yuanfang Guan 
Department of Computational Medicine and Bioinformatics, 
University of Michigan, Ann Arbor, MI, USA 

Jaewoo Kang 
Department of Computer Science and Engineering & 
Interdisciplinary Graduate Program in Bioinformatics, 
College of Informatics, Korea University 

Daehan Kim 
Department of Computer Science and Engineering, College 
of Informatics, Korea University 

Keonwoo Kim 
Department of Computer Science and Engineering, College 
of Informatics, Korea University 

Minji Jeon 
Department of Computer Science and Engineering, College 
of Informatics, Korea University 

Sunkyu Kim 
Department of Computer Science and Engineering, College 
of Informatics, Korea University 

Yonghwa Choi 
Department of Computer Science and Engineering, College 
of Informatics, Korea University 

Tengfei Li 
Department of Radiology, The University of North Carolina 
at Chapel Hill, USA 

Liuqing Yang 
Department of Statistics and Operations Research, The 
University of North Carolina at Chapel Hill, USA 

Maomao Ding Department of Statistics, Rice University, USA 

Jingyi Jessica Li  
Department of Statistics, University of California, Los 
Angeles, CA, USA 

Kexin Li  
Department of Statistics, University of California, Los 
Angeles, CA, USA 

Xinzhou Ge  
Department of Statistics, University of California, Los 
Angeles, CA, USA 

Huiyuan Chen,   
Electrical Engineering and Computer Science, Case 
Western Reserve University, USA 
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Ke Hu,  
Electrical Engineering and Computer Science, Case 
Western Reserve University, USA 

Kumardeep 
Chaudhary  

Epidemiology Program, University of Hawaii Cancer Center, 
Honolulu, HI, 96813, USA 

Nai-Wen Chang 
Graduate Institute of Biomedical Electronics and 
Bioinformatics, National Taiwan University, Taipei, Taiwan 

Jia Xin Yu,  
Icahn School of Medicine at Mount Sinai, New York, New 
York 

Devishi Kesar  
Indraprastha Institute of Information Technology, Delhi, 
INDIA 

Sherry Bhalla  
Indraprastha Institute of Information Technology, Delhi, 
INDIA 

Mehreen Ali 
Institute for Molecular Medicine Finland, Helsinki Institute of 
Life Science, University of Helsinki, Finland 

Ábel Fóthi 
Institute of Enzymology, Research Centre for Natural 
Sciences, Hungarian Academy of Sciences, Budapest, 
Hungary 

Ching-Tai Chen 
Institute of Information Science, Academia Sinica, Taipei, 
Taiwan 

Ting-Yi Sung  
Institute of Information Science, Academia Sinica, Taipei, 
Taiwan 

Heewon Lee 
Interdisciplinary Graduate Program in Bioinformatics, 
College of Informatics, Korea University 

Hwisang Jeon 
Interdisciplinary Graduate Program in Bioinformatics, 
College of Informatics, Korea University 

Sandeep Kumar 
Dhanda 

La Jolla Institute for Immunology, La Jolla, CA, USA 

Swapnil Mahajan La Jolla Institute for Immunology, La Jolla, CA, USA 
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San-Yuan Wang 
Master Program in Clinical Pharmacogenomics and 
Pharmacoproteomics, College of Pharmacy, Taipei Medical 
University, Taipei, Taiwan 

Shujiro Okuda Niigata University, Niigata, Japan 

Yasuhiro 
Kambara 

Niigata University, Niigata, Japan 

Laura L. Elo  
Turku Bioscience Centre, University of Turku and Åbo 
Akademi University, Turku, Finland 

Mehrad 
Mahmoudian  

Turku Bioscience Centre, University of Turku and Åbo 
Akademi University, Turku, Finland 

Sohrab Saraei   
Turku Bioscience Centre, University of Turku and Åbo 
Akademi University, Turku, Finland 

Tomi Suomi 
Turku Bioscience Centre, University of Turku and Åbo 
Akademi University, Turku, Finland 

Tommi 
Välikangas 

Turku Bioscience Centre, University of Turku and Åbo 
Akademi University, Turku, Finland 

Russell Greiner University of Alberta, Edmonton, Alberta, Canada 

Roberto Vega  University of Alberta,Edmonton, Alberta, Canada 

Jeremy R. 
Jacobsen 

University of Colorado Boulder, Boulder, Colorado, USA 
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