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Figure S1. Visualizing recruitment of LysM+ myeloid cells to the MS 
(A-E) Immunofluorescence staining of omentum MS from lyz2Ai6 mice. (A and B) 3D rendering of MS showing enrichment 
of ER-TR7+ reticular cells and reticular fibers in the MS in PBS treated and CPS-immunized (105 parasites) mice at 2 dpi. 
Immunization results in increased recruitment of ZsGreen+ myeloid cells. ER-TR7 (gray), ZsGreen (green). 
(C) Z-slice of MS showing recruitment of CD11b+ZsGreen+ myeloid cells to the MS and forming a mantle around the 
lymphocyte-rich MS after CPS immunization (2 dpi). ZsGreen (green), CD11b (red), B220 (blue). 
(D and E) 3D renderings of MS on XZ plane showing ZsGreen+ myeloid cells remain on the surface of the omentum after 
PBS treatment while infiltrating into the MS after CPS immunization (2 dpi). ER-TR7 (gray), ZsGreen (green). 
(F) Donut charts represent the ZsGreen+ cellular distribution from PBS treated and CPS-immunized (105 parasites, 2 dpi) 
lyz2Ai6 mice. cDC1 (Lin-CD64-CD11c+MHCII+XCR1+CD172a-), cDC2 (Lin-CD64-CD11c+MHCII+XCR1-CD172a+), 
LPM (Lin-CD64+CD11b+CD102+), Mf (Lin-CD64+CD11b+CD102-Ly6G-Ly6C-), Mo (Lin-CD64+CD11b+CD102-Ly6G-

Ly6C+), Neut (Lin-CD64-CD11c-CD11b+Ly6G+Ly6Cint). Lin (CD3, CD19, B220, NK1.1). 
Scale bars in all images are 100 µm. 
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Figure S2.  Immunization-induced recruitment of monocytes to the peritoneum requires cDC1 and IL-12p40 

(A-B) Quantification of cDC1 fraction and numbers in the omentum of WT and Batf3-/- mice immunized with 105 CPS 
parasites at 2 dpi. (A) Flow cytometric analysis of cDC1 in the omentum (Lin-CD64-CD11c+MHCII+XCR1+CD172a-). Lin 
(CD3, CD19, B220, NK1.1) 
(B) Quantification of the number of cDC1 in the peritoneum and omentum. Data (n = 4-5) represent 1 out of 5 independent 
experiments. 
(C) Immunofluorescence images of omenta from WT, Batf3-/-, and Il12b-/- mice showing recruitment of Ly6C+ cells to the 
omentum after CPS immunization (2 dpi) is dependent upon cDC1 and IL-12p40. ER-TR7 (gray), Ly6C (yellow). Scale 
bars are all 1 mm. 
(D-F) Quantification of recruitment of monocytes to the peritoneum of WT, Batf3-/-, and Il12b-/- mice after immunization 
with 105 CPS parasites (2 dpi). (D) Flow cytometry analysis of monocytes (CD64+CD11b+CD102-Ly6CHI) in the 
peritoneum. 
(E and F) Quantification of monocytes as a fraction of live cells in the peritoneum and the total number of monocytes in 
the peritoneum. Data (n = 4-5) represent 1 experiment out of 2-3 independent experiments.  
(G-I) Quantification of IFN-g production by Type I ILCs in the peritoneum of WT, Batf3-/-, and Il12b-/- mice after 
immunization with 105 CPS parasites (1 dpi). (G) Flow cytometry analysis of NK cells (Lin-
NK1.1+NKp46+EOMES+CD200R-) and ILC1s (Lin-NK1.1+NKp46+EOMES-CD200R+) producing IFN- g.  
(H and I) Quantification comparing the fraction and total number of (H) NK cells and (I) ILC1s producing IFN-g between 
naive and CPS immunized mice at 1 dpi. Lin (CD3, CD5, CD19, B220, F4/80). Data (n = 4-5) represent 1 experiment out 
of 2-3 independent experiments.  
(J and K) Quantification of monocyte recruitment to the peritoneum of WT, Rag2-/-, and Rag2-/-gc-/- mice after PBS 
treatment or immunization with 105 CPS parasites (2 dpi). (J) Flow cytometric analysis of monocytes (Lin-CD11b+Ly6G-

CD90.2-Ly6CHI) in the peritoneum. Lin (CD3, CD5, B220, CD19). 
(K) Quantification of total number monocytes in the peritoneum. Data (n = 3-5) represent 1 experiment. 
(L and M) Quantification of the loss of LPM from the peritoneum induced by immunization with 105 CPS parasites (2 dpi) 
in WT, Batf3-/-, and Il12b-/- mice. (L) Flow cytometric analysis of LPM (CD64+CD11b+CD102+) in the peritoneum. 
(M) Quantification of the LPM in the peritoneum as a fraction of total live cells and total number of LPM in naïve and 
CPS-immunized mice. Data (n = 3-5) represent 1 experiment out of 2-3 independent experiments. 
All representative plots indicate mean ± SD. All statistical comparisons were unpaired Student’s t test. ns, not significant; 
*p < 0.05; **p < 0.01; ***p < 0.001; *****p < 0.00001. 
  



 

 
 
Figure S3.  Mitochrondrial mass and glycolytic uptake measurements of OT-I T cells in WT and Batf3-/- mice 
(A-C) Intraperitoneal transfer of 5 x 105 CTV-labeled OT-I/Nur77GFP T cells into WT and Batf3-/- mice immunized with 2 
x 105 CPS-OVA parasites 2 hr later. OT-I T cells in the omentum at 3 dpi were evaluated by flow cytometry. (A) 
Representative plot of the intensity of MitoTracker Green, and quantification of the MFI of MitoTracker Green in OT-I T 
cells that had undergone one or more divisions. Data (n = 4-5) represent 1 experiment out of 2 independent experiments. 
(B) Representative plot of the expression of Glut1, and quantification of the MFI of Glut1 on OT-I T cells. Data (n = 3-5) 
represent 1 experiment out of 2 independent experiments. 
(C) Representative plot of the uptake of 2-NBDG, and quantification of the MFI of 2-NBDG in OT-I T cells. Data (n = 3) 
represent 1 experiment out of 2 independent experiments. 
All representative plots indicate mean ± SD. All statistical comparisons were unpaired Student’s t test. *p < 0.05. 

 

Statistical Test of Clustering 

Tests using K-functions 

The following test procedure is best illustrated by an example from the text. The results in Figure 3G of 
the text summarize clustering tests for activated cells, Nur77GFP+, relative to non-activated cells, 
Nur77GFP-, for nine different milky spots in the omentum of two mice. One of these test cases is illustrated 
in Figure S4A. 
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Figure S4.  K-function statistical analysis of T cell clustering. 
(A-B) Intraperitoneal transfer of 5 x 105 CTV-labeled OT-I/Nur77GFP T cells into WT mice immunized with 2 x 105 
CPS-OVA parasites 2 hr later. Immunofluorescent images were analyzed to determine the coordinates of OT-I T 
cells. (A) 2-dimensional (2D) model representation of coordinates of Nur77GFP+ (yellow) and Nur77GFP- (red) OT-I T 
cells in a MS. 
(B) Representative randomized distribution of Nur77GFP+ and Nur77GFP- OT-I T cells from (A). 
 
This figure shows the observed pattern of  Nur77GFP+ cells (yellow) together with   
Nur77GFP+ cells (red) in the same milky spot. This Matlab coordinate plot is a 2D projection of a 3D sample. 
Because this sample slice has a thickness of only 50 (relative to the box width of 630 in Figure S4A) 
such 2D projections convey almost all relevant spatial information. The question of interest is whether the 
subpopulation of yellow (activated) cells is significantly more clustered that a typical random subpopulation 
of   cells within the total population of  cells. One such random subpopulation of  
yellow cells is shown in Figure S4B. A visual comparison of the two suggests that the observed 
subpopulation on the left is indeed more clustered, and in particular contains almost no cells in the lower 
right corner, unlike the random subpopulation.  
 
To test this more formally, we start by letting  denote the set of observed  points (with 
3D coordinate locations) in Figure S4A, where the first  points are taken to represent the target subset of 

“activated” points, , in , and where  denotes the remaining subset of 

 “nonactivated” points in . We can then extend the random pattern in Figure S4B to a statistical 

population of say N = 999 random patterns, , where each is created by randomly relabeling 
(permuting) the indices  as , with the initial subset, , of  points 

taken to be the permuted version of  in , and with  denoting the permuted version of 
.  For consistency, all random-permutation tests used here are based on statistical populations of N = 999 
randomly relabeled patterns. While this sample size may of course be increased, experimentation shows 
that such increased yield no substantial changes to the results. In these terms, if the observed subpopulation, 

, were to exhibit no clustering in , the one might expect it to resemble a typical member of to the 
“null population” of permuted versions, . 
 
To test this hypothesis, one must construct an appropriate test statistic for measuring the degree of clustering 
in each pattern. The most popular measure of clustering is the standard nearest-neighbor statistic, which in 
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the present context computes the average distance from each activated cell in a given pattern to its nearest-
neighbor activated cell in that pattern. If this average nearest-neighbor distance is smaller for activated cells 
in the observed pattern, , than for say 95% of the random patterns, , then this may be said to provide 
statistically significant evidence of clustering among activated cells in .  
 
However, our investigations show that this standard nearest-neighbor procedure exhibits some serious 
shortcomings in the present application. In essence, this procedure tends to be too “myopic” in the sense 
that only closeness of nearest neighbors is considered. The present example in Figure S4A provides a good 
illustration of this shortcoming. For even though there is evident clustering of these activated cells, the 
standard nearest-neighbor test above shows that there is no significant nearest-neighbor clustering of these 
cells, and in fact that the average nearest-neighbor distance in pattern, , is actually larger than 73% of 
the N = 999 random patterns generated. While the exact reasons for this are not fully known at present, one 
can speculate that activated cells exhibit local behavior (possibly local movement patterns) that tend to repel 
nearby cells. In any case, as we shall see below, the clustering behavior of these cells is only evident at 
slightly larger scales. 
 
What is needed to quantify these scale effects is a test statistic that can actually measure clustering effects 
at different scales. This is the fundamental property exhibited by K-function statistics, which we now 
develop. In particular, if for any distance value k, one counts the number of activated cells within  of 
any given activated cell, then the average of these counts is designated as the K-function statistic at scale k. 
Intuitively, if the average count of activated cells within  of each other is larger than would be 
expected for typical random permutations of cell locations in pattern, , then this suggests some degree 
of clustering among such cells at scale k.   
 
To formalize K-functions themselves, we start with a given pattern, , and for each target cell, 

, let the number of other target cells,  within distance k of  be denoted by,  
 
(1)  
 
In terms of these counts, the K-function statistic,  , for pattern, , at scale k is then given by the 
average value, 
 
(2)   

The standard K-function statistic typically involves a normalization by the spatial density of points in the 
region of interest, but in the present setting of permutation tests such density considerations play no 
substantive role. 

While this K-function is in principle defined for all distances, , one typically identifies a reasonable range 
of distance (or scale) values for testing purposes. In the present case, we have chosen the  values, 

. In these terms, the testing procedure for clustering of activated cells at each scale, , 
can be summarized as follows: 
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 (i)  Given observed pattern, , with target subset, , generate N = 999 
random permutations, , of  and form the randomly-permuted patterns, 

 with corresponding target subsets, . 
 
(ii)  For each scale, , use expression (2) to compute the observed test statistic, , together with 

corresponding statistics, , for each simulated pattern, . The appropriate null hypothesis, 
, to be tested at scale, , is then that the observed value, , is drawn from the same statistical 

population as the set of simulated values, .  
 
(iii) If we now denote the number of simulated values, , at least as large as the observed value, 
, by , then the ratio 
 

(3)    

 
denotes the probability of drawing a value as large as from this statistical population of  random 
samples (where “1” corresponds to the observed value treated as an additional random sample).  In these 
terms,  constitutes the p-value for a one-sided test of hypothesis, . If this p-value is sufficiently 
small, say , then one may infer significant clustering of the target population, , at scale k. 
Conversely if this p-value is sufficiently large, say , the one may infer significant dispersion of 
the target population, , at scale k.  
 
The results of these tests for each  are plotted in Figure S5 for the observed pattern, , in Figure 
S4A. Here it can be seen that there is very significant clustering of activated cells beyond 3 . Note also 
that the number of activated pairs in  separated by no more than 1  is only about the median value 
for randomly permuted patterns. This reflects the observation above that average nearest-neighbor distances 
among activated cells in are actually larger than for most randomly permuted patterns. Thus, the significant 
clustering among such cells at all scales beyond 3  would be completely missed by tests based on nearest 
neighbors. 
 

 

 

 

 

 

 

 
Figure S5. K-function statistical analysis of clustering. Clustering of Nur77GFP+ OT-I T cells compared to 
Nur77GFP- OT-I T cells showing significant clustering at a radius (k) of 3 µm. 
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Tests using Cross K-Functions  
 
Our second procedure is again best illustrated by a concrete example. Figure 3K in the text focuses on the 
spatial relations between uninfected cDC1 cells and activated Nur77GFP+cells during early T cell priming 
events, and displays test results for six milky spots in the omenta of two snx22GFP/+mice. Figure S6A shows 
the observed cell pattern for one of these milky spots, containing  Nur77GFP+cells (yellow) and 

 cDC1 cells (green). Of specific interest is whether the green cDC1 cells tend to cluster around 
the yellow Nur77GFP+ cells more than would be expected in random arrangements of these cells. One such 
random arrangement is shown in Figure S6B, and suggests that there is indeed some degree of clustering.  
Notice for example that in the sparser left half of each figure the random arrangement on the right contains 
many more yellow cells with no green cells close by.   
 
To quantity such associations at different scales, we again adopt a K-function approach. But here we focus 
on “cross” counts between populations. More specifically, for any given separation distance, k, we ask 
whether the average number of green cells within distance k of any yellow cell is larger than would be 
expected for a random arrangement of these cells. If so, then this will be said to provide evidence for 
clustering of green cells around yellow cells at scale k. In the literature, such relations between separate 
populations are often referred to as “attraction-repulsion” relations, to distinguish them from “cluster-
dispersion” relations within a single population. To avoid any causal implications here, we choose to stay 
with the more descriptive “cluster-dispersion” terminology.  
 
 
 
 

 
Figure S6. Cross K-function statistical analysis of T cell clustering.  
(A-B) Intraperitoneal transfer of 5 x 105 CTV-labeled OT-I/Nur77GFP T cells into snx22GFP/+ mice immunized with 2 
x 105 CPS-OVA parasites 2 hr later. Immunofluorescent images were analyzed to determine the coordinates of OT-I 
T cells and cDC1s. (A) 2-dimensional (2D) model representation of coordinates of Nur77GFP+ OT-I T cells (yellow) 
and cDC1s (green) in a MS. 
(B) Representative randomized distribution of Nur77GFP+ OT-I T cells and cDC1s from (A). 
 
This is easily formalized by an appropriate modification of the K-function definitions above. We again start 
with a cell pattern, , consisting of two types of cells: a  “target” subpopulation of type 1 
cells, , and “reference” subpopulation of type 2 cells, 

, where we now let  and  denote typical elements of  and , respectively. In the present example, 
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types 1 and 2 correspond, respectively, to yellow (Nur77GFP+) cells and green (cDC1) cells. More generally, 
if for  each type 1 cell, , we now let the number of type 2 cells,  , located within 
distance k of  be denoted by,  
 
(4)  
 
then the cross K-function statistic,  , for pattern, , at scale k is given by the average of these count 
values, 
 
(5)   
 
We again drop any reference to point densities in defining these cross K-function statistics for purposes of 
random permutation tests. 
 
With these definitions, the testing procedure for identifying clustering of type 2 cells around type 1 cells at 
each scale, , amounts essentially to replacing K-function statistics,  , with cross K-
function statistics, . For completeness, this test is summarized as follows: 
 
(i)  Given observed pattern, , with target subset,  and reference 
subset, , generate N = 999 random permutations, 

, of  and form the randomly-permuted patterns,  with 

corresponding subsets of type 1 cells, , and type 2 cells, .  

(ii)  For each scale, , use expression (5) to compute the observed test statistic, , together with 
corresponding statistics, , for each simulated pattern, . The appropriate null hypothesis, 

, to be tested at scale, , is then that the observed value, , is drawn from the same statistical 
population as the set of simulated values, .  
(iii) If we now denote the number of simulated values, , at least as large as the observed value, 
, by , then [as in (3) above] the ratio, 
 

(6)    

 
now constitutes the p-value for a one-sided test of hypothesis, . If this p-value is sufficiently small, 
say , then one may infer significant clustering of type 2 cells around type 1 cells in pattern  
at scale k. Conversely if  is sufficiently large, say , then one may infer significant 
dispersion of type 2 cells around type 1 cells in pattern  at scale k.  
 
The results of these tests for each  are plotted in Figure S7 below for the observed pattern in Figure 
S6A above. In Figure 3K of the text, this plot corresponds to the unique plot starting at p-value = 0.65. Here 
it can be seen that there is very significant clustering of cDC1 cells around Nur77GFP+cells starting at 4
. Note finally that all test results summarized in Figure 3K indicate similar significant clustering starting at 
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around 5 . However, this degree of significance is seen to be more variable at scales beyond 8 , 
suggesting that clustering behavior between these cell populations may be limited in scale. 
 

 

 

 

 

 

 

 

 

Figure S7. Cross K-function statistical analysis of clustering. Analysis of cDC1 clustering around Nur77GFP+ 
OT-I T cells showing significant clustering at a radius (k) of 4 µm. 
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