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 21 

Abstract 22 

Many recent studies found signatures of motor learning in neural Beta oscillations (13–23 

30Hz), and specifically in the post-movement Beta rebound (PMBR). All these studies were in 24 

controlled laboratory-tasks in which the task designed to induce the studied learning mechanism. 25 

Interestingly, these studies reported opposing dynamics of the PMBR magnitude over learning for 26 

the error-based and reward-based tasks (increase versus decrease, respectively). Here we explored 27 

the PMBR dynamics during real-world motor-skill-learning in a billiards task using mobile-brain-28 

imaging. Our EEG recordings highlight the opposing dynamics of PMBR magnitudes (increase 29 

versus decrease) between different subjects performing the same task. The groups of subjects, 30 

defined by their neural dynamics, also showed behavioural differences expected for different 31 

learning mechanisms. Our results suggest that when faced with the complexity of the real-world 32 

different subjects might use different learning mechanisms for the same complex task. We speculate 33 

that all subjects combine multi-modal mechanisms of learning, but different subjects have different 34 

predominant learning mechanisms.   35 
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Introduction 36 

Many different forms of motor learning were described and studied using various 37 

laboratory-tasks over the past decades (for review see Krakauer et al., 2019). Two main learning 38 

mechanisms are considered to account for most of our motor learning capabilities: error-based 39 

adaptation and reward-based reinforcement learning. Error-based adaptation is driven by sensory-40 

prediction errors, while reward-based learning is driven by reinforcement of successful actions 41 

(Krakauer and Mazzoni, 2011). While both mechanisms can contribute to learning in any given 42 

task, the constraints of the highly controlled laboratory-tasks common in the field induce the 43 

predominance of one mechanism over the other (Haith and Krakauer, 2013), and show different 44 

neural dynamics associated with the different learning mechanisms (e.g. Uehara et al., 2018; Palidis 45 

et al., 2019).  46 

The main neural signatures of voluntary movement and motor learning found in 47 

constrained laboratory tasks are the Beta oscillations (13–30 Hz), which are related to GABAergic 48 

neural activity (Roopun et al., 2006; Yamawaki et al., 2008; Hall et al., 2010, 2011). More 49 

specifically, there is a transient and prominent increase in Beta oscillations magnitude across the 50 

sensorimotor network after cessation of voluntary movement known as post-movement Beta 51 

rebound (PMBR) or post-movement Beta synchronization (Pfurtscheller et al., 1996). In motor 52 

adaptation studies, PMBR over the motor cortex contralateral to the moving hand was reported to 53 

negatively correlate with movement errors, lower errors induced higher PMBR (e.g. Tan et al., 54 

2014a, 2016; Torrecillos et al., 2015) and therefore PMBR increases over learning. In reward-based 55 

tasks the PMBR shows the opposite trend; e.g., in a force tracking task PMBR decreased with 56 

learning (Kranczioch et al., 2008). Additionally, PMBR is positively correlated with GABA 57 

concentration as measured by magnetic resonance spectroscopy (Gaetz et al., 2011; Cheng et al., 58 

2017) which also decreases over reward-based learning tasks such as sequence learning in force 59 

tracking (Floyer-Lea et al., 2006) and serial reaction time (Kolasinski et al., 2019).  60 

We are now seeking to understand to what extent previous findings in artificial laboratory-61 

tasks can be validated in a complex, fully-body task people choose to experience in daily life. Here, 62 

we set to study the human brain activity during motor learning in a real-world task using mobile 63 

EEG, We recently introduced a real-world motor-skill learning paradigm in pool table billiards 64 

(Haar et al., 2019). Here, we set to study the human brain activity during motor learning in a real-65 

world task using mobile EEG. Subjects had to do a pool shot to put the ball in the pocket using full-66 

body, self-paced movement, with as many preparatory movements as the subject needs for each 67 

shot. We implemented this as a real-world task because we are basically only adding sensors to a 68 

pool table setting. Subjects use the natural tools and setups they normally would, carry out the 69 

natural motor commands, receive the natural somatosensory feedback and experience the same 70 

satisfaction rewards when they put the ball in the pocket. In our pool playing paradigm, as in most 71 
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everyday motor learning experiences, performance errors were not driven by artificial perturbations 72 

but by the complexity of learning the task (which takes competitive pool players years to master) 73 

and noise in the nervous system (Faisal et al., 2008). We test here the hypothesis whether neural 74 

correlates of motor learning in real-world tasks show features consistent with those in artificial 75 

laboratory tasks. Specifically, we hypothesize that PMBR responses may look different in real-76 

world tasks, because learning in a real-world paradigm may not be predominantly mediated by a 77 

single specific learning mechanism, such as motor adaptation and its increasing PMBR response 78 

over trials. Moreover, we hypothesise that a far less constrained real-world task, may give human 79 

subjects the freedom to learn in their personally most conducive way, instead of being forced by an 80 

artificial paradigm to explore a single route of leaning: thus we want to test the hypothesis if 81 

different subjects may employ different learning strategies and consequently exhibit different 82 

neural signatures of learning or if all learn the same way. 83 

Methods 84 

Experimental Setup and Design. 30 right-handed healthy human volunteers (12 women and 85 

18 men, aged 24±3) with normal or corrected-to-normal visual acuity participated in the study. The 86 

recruitment criteria were that they played pool/billiards/snooker for leisure fewer than 5 times in 87 

their life, never in the recent 6 months, and had never received any pool game instructions. All 88 

volunteers gave informed consent before participating in the study, and all experimental procedures 89 

were approved by the Imperial College Research Ethics Committee and performed in accordance 90 

with the declaration of Helsinki. The volunteers stood in front of a 5ft pool table (Riley Leisure, 91 

Bristol, UK) with 1 7/8" (48mm diameter) pool balls. Volunteers performed 300 repeated trials 92 

where the cue ball (white) and the target ball (red) were placed in the same locations. We asked 93 

volunteers to shoot the target ball towards the pocket of the far-left corner (Figure 1A). Trials were 94 

split into 6 sets of 50 trials with a short break in-between to allow the subjects to rest a bit and 95 

reduce potential fatigue. Each experimental set (of 50 trials) took 8 to 12 minutes. For the data 96 

analysis, we further split each set into two blocks of 25 trials each, resulting in 12 blocks. During 97 

the entire learning process, we recorded the subjects' brain activity with a wireless EEG headset 98 

(Figure 1B). The balls on the pool table were tracked with a high-speed camera to assess the 99 

subjects’ success in the game and to analyse the changes throughout learning, not only in the body 100 

movement and brain activity but also in its outcome – the ball movement (Figure 1C). EEG and 101 

ball motion tracking camera were recorded on the same machine. All signals were time-stamped 102 

by accessing the high precision event timer of the computer and synchronised accordingly. 103 

Balls tracking. The balls movement on the pool table were tracked with a computer vision 104 

system mounted from the ceiling. The computer vision camera was a Genie Nano C1280 Color 105 

Camera (Teledyne Dalsa, Waterloo, Canada), colour images were recorded with a resolution of 106 
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752x444 pixels and a frequency of 200Hz. This Ethernet-based camera was controlled via the 107 

Common Vision Blox Management Console (Stemmer Imaging, Puchheim, Germany) and image 108 

videos recorded with our custom software written in C++ based on a template provided by Stemmer 109 

Imaging. Our software captured the high-performance event timer, the camera frames and 110 

converted the images from the camera’s proprietary CVB format to the open-source OpenCV 111 

(https://opencv.org/) image format for further processing in OpenCV. The video frames were 112 

stored as an uncompressed AVI file to preserve the mapping between pixel changes and timings 113 

and the computer’s real-time clock time-stamps were recorded to a text file. Each trial was subject-114 

paced, so the experimenter observed the subject and hit the spacebar key as an additional trigger 115 

event to the time-stamps text file. This timing data was later used to assist segmentation of the 116 

continuous data stream into trials. The positions of the two pool balls (white cue ball and red target 117 

ball) were calculated from the video recordings offline using custom software written in C++ using 118 

OpenCV. Then, with custom software written in MATLAB (R2017a, The MathWorks, Inc., MA, 119 

USA), we segmented the ball tracking data and extracted the trajectory of the balls in each trial. 120 

For each trial, a 20 x 20 pixels (approx 40 x 40 mm) bounding box was set around the centre of the 121 

48 mm diameter cue ball. The time the centre of the ball left the bounding box was recorded as the 122 

beginning of the cue ball movement. The pixel resolution and frame rate were thus sufficient to 123 

detect movement onset, acceleration and deceleration of the pool balls. The target (red) ball initial 124 

position and its position in the point of its peak velocity were used to calculate the ball movement 125 

angle (relative to a perfectly straight line between the white cue ball and the red target ball). We 126 

subtracted this angle from the centre of the pocket angle (the angle the target ball initial position 127 

and the centre of the pocket relative to the same straight line between the balls) to calculate the 128 

directional error for each shot. 129 

EEG acquisition and preprocessing. For the first group of 20 subjects, EEG was recorded 130 

at 256Hz using a wireless 14 channel EEG system (Emotiv EPOC+, Emotiv Inc., CA, USA) as we 131 

wanted to demonstrate the feasibility of using a consumer-grade system for free behaviour research. 132 

In order to then validate our results with a research-grade EEG system, we ran another group of 10 133 

subjects the DSI-24 (Wearable Sensing Inc., CA, USA). With this wireless 21 channel EEG system, 134 

EEG was recorded at 300Hz and downsampled to 256Hz to be analysed with the same pipeline as 135 

the first group. Since there was no difference in the outcomes between the different systems (see 136 

results), we analysed them as a single group, except the system comparison analysis.  EEG signals 137 

were preprocessed in EEGLAB (https://sccn.ucsd.edu/eeglab; Delorme and Makeig, 2004). EEG 138 

signals were first band-pass filtered at 5-35 Hz using a basic FIR filter, and then decomposed into 139 

independent component (IC) and artefact ICs were removed with ADJUST, an EEGLAB plug-in 140 

for automatic artefact detection (Mognon et al., 2011). Following previous PMBR studies in motor 141 

learning (Tan et al., 2014a, 2016; Torrecillos et al., 2015; Alayrangues et al., 2019), all further 142 

analysis was performed on the EEG activity over the motor cortex contralateral to the moving arm. 143 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 23, 2020. ; https://doi.org/10.1101/2020.03.04.976951doi: bioRxiv preprint 

https://opencv.org/
https://doi.org/10.1101/2020.03.04.976951


5 
 

As all subjects were right-handed and the movement during the trial was done almost exclusively 144 

by the right arm (Haar et al., 2019), we focused on the left motor cortex. Following (Alayrangues 145 

et al., 2019) we manually selected for each subject an IC based on its topographies. In order to 146 

validate it with a less subjective approach, we repeated the analysis using a single channel, C3 147 

according to the international 10–20 EEG system, which sits over the left motor cortex. For the 148 

subjects recorded with the Emotiv system C3 channel was interpolated from the recorded channels 149 

with spherical splines using EEGLAB 'eeg_interp' function. The two approaches yield the same 150 

results, thus, the data reported here is that of the latter. We repeated the analysis over the right 151 

motor cortex (ipsilateral to the moving arm contralateral to the stabilizing arm) using C4 according 152 

to the international 10–20 EEG system. This analysis yields similar results and is reported in the 153 

Supplementary Materials. 154 

EEG time-frequency analysis. Each block was transformed in the time-frequency domain 155 

by convolution with the complex Morlet wavelets in 1 Hz steps. Event-related EEG power change 156 

was subsequently calculated as the percentage change by log-transforming the raw power data and 157 

then normalizing relative to the average power calculated over the block, as no clear baseline could 158 

be defined during the task (Tan et al., 2014a, 2016; Torrecillos et al., 2015; Alayrangues et al., 159 

2019), and then subtracting one from the normalized value and multiplying by 100. While this 160 

normalization procedure might be less common than one based on motion-free pre-movement 161 

baseline period, it was used by most of the PMBR motor learning studies mentioned above and 162 

enabled the natural free-behaviour aspect of the task of self-paced movement, with as many 163 

preparatory movements as the subject needs for each shoot, and no go-cues or hold-cues. Event-164 

related power changes in the Beta band (13–30 Hz) were investigated. Since there was no go cue 165 

and the subject shot when they wanted, the best-defined time point during a trial was the beginning 166 

of the cue ball movement, defined by exiting its bounding box (see Balls tracking above). Thus, we 167 

used the ball movement onset to estimate movement offset (which could last few hundred 168 

milliseconds more due to follow through movement) and looked in the following 2 seconds window 169 

for the peak Beta power which should follow the movement termination. The post-movement Beta 170 

rebound (PMBR) was defined as the average normalized power over a 200ms window centred on 171 

the peak of the power after movement termination (Tan et al., 2016). The PMBR was calculated 172 

for each trial before averaging over blocks for further analysis. The time-frequency analysis was 173 

performed with custom software written in MATLAB (R2017a, The MathWorks, Inc., MA, USA). 174 

Multiple groups analysis. To assessed if there may be multiple groups of subjects with 175 

different PMBR trends we used generative Bayesian modelling to determine in a data-driven way 176 

the structure of the data. We fitted the data with a Gaussian mixture models of one to five 177 

components, allowing us to understand if 1,2,3,4 or 5 distinct groups appeared in the distribution 178 

or not. To select between these 5 models of different complexity we used two information criteria, 179 

the Akaike information criterion (AIC) and its corrected version for small sample size (AICc). AIC 180 
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estimates the amount of information that is lost while fitting a model and thus can measure the 181 

quality of different models relative to each other. In addition to the Bayesian framework, we 182 

validate this grouping with unsupervised fuzzy c-means (FCM) clustering, tested for two to ten 183 

clusters. FCM assigns a friendship to each data point in each cluster according to its distance from 184 

the cluster’s centre, and on iterative process recalculate the clusters’ centres and the friendship until 185 

it converges. After convergence, each point is classified into the cluster with which it had the 186 

highest friendship. Following Haar et al. (2015), we used the cluster validity index proposed by 187 

Zhang et al. (2008). This index uses a ratio between a variation within each cluster and a separation 188 

between the fuzzy clusters. The smaller the ratio, the better the clustering. 189 

Behavioural measures of Motor Skill Learning. We calculated and analysed three know 190 

matrices for motor skill learning: movement complexity, lag-1 autocorrelation, and intertrial 191 

variability. Movement complexity was defined as the number of degrees of freedom used by the 192 

subject as their body move while making the pool shot. For that, we used the manipulative 193 

complexity (Belić and Faisal, 2015) over the full-body kinematics. For the analysis of full-body 194 

kinematics and its complexity measurements during this task see Haar et al. (2019). Briefly, we 195 

applied Principal component analysis (PCA) over the velocity profiles of all body joints and asked 196 

how many PCs are needed to explain the variance. The manipulative complexity quantify 197 

complexity for a given number of PCs on a fixed scale (C = 1 implies that all PCs contribute equally, 198 

and C = 0 if one PC explains all data variability). Lag-1 autocorrelation (ACF(1)) is a lagged 199 

Pearson correlation between a signal to itself. In our case, the signal is the directional error of the 200 

target-ball relative to the pocket in each trial. Since the estimation of autocorrelations from short 201 

time series is fundamentally biased (Kendall, 1954; Marriott and Pope, 1954; van Beers, 2009), we 202 

calculated the ACF(1) over the first and the second halves of the learning session (sets of 150 trials, 203 

blocks 1-6 and 7-12, respectively) and not in each block of 25 trials. Intertrial variability was 204 

defined for each block by the standard deviation over the directional error of the target-ball in all 205 

block’s trials. The decay in the intertrial variability was measured from the first block (trials 1-25) 206 

to the learning plateau (trials 201-300). 207 

Results 208 

30 right-handed volunteers, with little to no previous experience playing billiards, 209 

performed 300 repeated trials (6 sets of 50 trials each with short breaks in-between) where the cue 210 

ball and target ball were placed in the same locations, and subjects were asked to shoot the target 211 

ball towards the far-left corner pocket (Figure 1A). During the entire learning process, we recorded 212 

the subjects' brain activity with wireless EEG (Figure 1B), and the balls on the pool table were 213 

tracked with a high-speed camera to assess the outcome of each trial (Figure 1C). We divided the 214 

trials into blocks of 25 trials (each experimental set of 50 trials was divided into two blocks to 215 
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increase the resolution in time). The learning curve showed decay in the directional error of the 216 

target ball (relative to the direction from its origin to the centre of the target pocket) over trials 217 

(Figure 1D).  218 

 219 

The PMBR, a transient increase in Beta oscillations over the motor cortex after the end of 220 

the movement, was evident in the data (Figure 2A). On average across subjects, there was no clear 221 

trend of PMBR (increase or decrease) over learning (Figure 2B). With a data-driven approach, we 222 

assessed if there may be multiple groups with different PMBR trends that averaging blends away. 223 

We used generative Bayesian modelling to determine in a data-driven way the structure of the data. 224 

We fitted to the PMBR data (a 12-dimensional matrix, one data point per run for each subject) a 225 

Gaussian mixture models of one to five components and used AIC and AICc to select between 226 

these 5 models (see methods). Both information criteria showed that the data followed a bimodal 227 

distribution (Figure 2C). 228 

The most meaningful measure for learning is the PMBR correlation with the performance 229 

error, as it accounts for the dependency between this brain signal and the behaviour, and it was 230 

reported to show negative correlations in classic adaptation task consistently across individuals 231 

(e.g. Tan et al., 2016). The subject-by-subject correlation over blocks between the PMBR and the 232 

directional error showed a clear bimodal grouping. While 16 of the 30 subjects showed negative 233 

PMBR-Error correlations (as reported in adaptation studies), the other 14 subjects showed positive 234 

correlations. Again, we used generative Bayesian modelling to determine the structure of the data.  235 

We fitted to the distribution of the PMBR-Error correlations a Gaussian mixture models of one to 236 

Figure 1. Experimental setup and task performance. (A) 30 right-

handed healthy subjects performed 300 repeated trials of 

billiards shoots of the target (red) ball towards the far-left 

corner. (B) Brain activity was recorded with wireless EEG 

systems: 20 subjects with eMotiv EPOC+ (left) and 10 subjects 

with Wearable Sensing DSI-24 (right). (C) The pool balls were 

tracked with a high-speed camera. Dashed lines show the 

trajectories of the cue (white) and target (red) balls over 50 trials 

of an example subject. (D) The mean absolute directional error 

of the target-ball (relative to the direction from its origin to the 

centre of the target pocket) over blocks of 25 trials, averaged 

across all subjects, error bars represent SEM across subjects. 

A 

B C 

D 
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five components, the information criteria (AIC & AICc) showed that the data followed a clear 237 

bimodal distribution (Figure 2D). Each mode corresponded to a grouping of subjects with either all 238 

positive and all negative correlation coefficients (Figure 2E). We note that the opposite signs of the 239 

correlations reflect opposite dynamics, further justifying a grouping into two distinct groups. This 240 

validated our findings with the purely data-driven approach on the multidimensional PMBR data. 241 

Since errors decay over learning, the PMBR-Error correlation was negatively correlated with the 242 

PMBR dynamic (increase/decrease). Thus, the first group showed a clear trend of PMBR increase 243 

over learning (linear model fit: F-statistic vs. constant model = 24 p=0.0006), while the second 244 

group showed a clear trend of PMBR decrease over learning (F vs. constant model = 45.1 245 

p=0.00005) (Figure 2F). This was validated with a mixed-design ANOVA model with a between-246 

subjects factor of the group effect, a within-subjects repeated measures factor of the change over 247 

blocks, and their interaction. The model yielded a significant interaction (F(11)=6.746 p= 3e-10), 248 

but no significance for the between- and within-subjects factors (F(1)=0.27 p=0.61 and F(11)=  249 

1.767 p=0.06, respectively). Thus, for simplicity, we named the groups PMBR Increasers and 250 

PMBR Decreasers. 251 

  252 

A B 

F G 

C D E 

min 

min 

Figure 2. Post-movement beta 

rebound. (A) Time-frequency map of a 

typical subject aligned to movement 

offset (ball movement onset), obtained 

by averaging the normalized power 

over electrode C3. (B) PMBR over 

blocks (of 25 trials), averaged across all 

subjects, error bars represent SEM. (C) 

The information criterions (AIC & AICc) 

of Gaussian mixture model (GMM) fits 

with 1 to 5 components to the PMBR 

data. (D) The information criterions of 

GMM fits to the PMBR-Error 

correlations (E) The distribution of 

subject-by-subject PMBR-Error 

correlations fitted with two-

component GMM (pdf: probability 

density function). Subjects are color 

coded based on the two-component 

model: subjects with negative 

correlations are in blue (PMBR 

Increasers) and subjects with positive 

correlations are in red (PMBR 

Decreasers). The grouping was also 

validated by unsupervised clustering 

(see main text). (F,G) PMBR (F) and 

Baseline beta power (G) of the PMBR 

Increasers (blue) and PMBR Decreasers 

(red) over blocks, averaged across all 

subjects in each groups, error bars 

represent SEM.  
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While we pursued a probabilistic analysis Bayesian framework of data science, to further 253 

validate this grouping we also tried a completely different method. We used unsupervised fuzzy c-254 

means (FCM) clustering, tested for two to ten clusters using a cluster validity index based on the 255 

ratio between-within cluster variation and between clusters separation (Zhang et al., 2008). The 256 

validity index strictly suggested two clusters in the data, which were the same groups found by the 257 

Gaussian mixture model: the subjects with the positive and the negative PMBR-Error correlation 258 

coefficients. Additionally, since we calculated Beta-power changes as per cent signal change 259 

relative to the average power over the block (see methods), the observed group differences might 260 

be driven by differences in their baselines. However, we found that this was not the case: there was 261 

no real difference in the Beta-power baseline between the groups, in terms of their values and trend 262 

over learning (Figure 2G). There was no significant difference between the groups’ Beta-power 263 

baseline in any of the blocks (t-test p>0.076) and not in the change of the Beta-power baseline 264 

between blocks (t-test p>0.58). This was also validated with a mixed-design ANOVA model which 265 

yielded no significant group effect (F(1)=1.286 p=0.27), change over blocks effect (F(11)=0.685 266 

p=0.75) or interaction (F(11)= 1.169 p=0.31). Lastly, we ensured that these groupings were evident 267 

with both EEG systems used in the study. The brain activity of 20 subjects was recorded with 268 

EPOC+ while the other 10 were recorded with DSI-24 (see methods). From the subjects recorded 269 

with the EPOC+ system, 10 subjects were PMBR Increasers and the other 10 were PMBR 270 

Decreasers. From the subjects recorded with the DSI-24 there were 6 PMBR Increasers and 4 271 

PMBR Decreasers. Correspondingly, there was no correlation between the system and the PMBR-272 

Error correlation (Spearman rank correlation r=0.01 p=0.97). 273 

Based on the EEG data, which suggests two groups of subjects with different PMBR 274 

dynamics, we looked for behavioural signatures in the task performance of different learning 275 

between these groups. In the task performance metric – the target ball directional error – we found 276 

no significant difference between the groups. After learning plateaus, the PMBR Decreasers seems 277 

slightly more accurate (Figure 3A) and less variable (Figure 3B), though not significantly. Mixed-278 

design ANOVA model yielded no significant group effect (F(1)=0.001 p=0.97) or interaction 279 

(F(11)= 0.75 p=0.69)  for the absolute directional error. PMBR Decreasers seemed to modify their 280 

variability (actively control of the exploration-exploitation trade-off, explicitly or implicitly) to 281 

improve learning, as evidenced by their high variability in the first block and the very steep decrease 282 

towards the second (Figure 3B). Yet, the Mixed-design ANOVA model of the directional 283 

variability yielded no significant group effect (F(1)=0.25 p=0.62) or interaction (F(11)= 1.57 284 

p=0.11). The dynamical control of the variability also evident in the trial-to-trial directional 285 

changes, where the PMBR Decreasers showed much bigger changes over the first 4 blocks (100 286 

trials), therefore using more exploration than the PMBR Increasers who made smaller changes from 287 

one trial to the next (Figure 3C). Here the Mixed-design ANOVA model yielded close to 288 
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significance interaction (F(11)= 1.76 p=0.06), and a t-test over the trial-to-trial directional changes 289 

in the initial 4 block showed significant group effect (p=0.04).  290 

 291 

Learning in the task was defined as the difference between the initial error (over the first 292 

block: trials 1-25) and the final error (over the learning plateau: trials 201-300) normalised by the 293 

initial error. PMBR Decreasers were on average better learners (mean learning rates were 0.48 and 294 

0.6 for the PMBR Increasers and PMBR Decreasers respectively) though the group difference was 295 

not significant (t-test p=0.17). We explored the correlation between learning and the PMBR change 296 

over blocks (the difference between the final PMBR over the learning plateau: trials 201-300, and 297 

the initial PMBR over the first block: trials 1-25). Across all subjects, we found no correlation 298 

between the learning rate and the PMBR change (r=-0.11 p=0.55). When considering each group 299 

separately, for the PMBR Decreasers there was no clear trend (r=0.16 p=0.58), but the PMBR 300 

Increasers showed a clear trend (though non-significant) of positive correlation of the PMBR 301 

change with learning (r=0.42 p=0.1, Figure 3E). This means that within the PMBR Increasers group 302 

subjects who had a higher PMBR increase also showed more learning. 303 

Next, we set to study metrics of skill-learning which might suggest differences in the 304 

learning mechanism between the groups. First, we tested the complexity of the movement – i.e. the 305 

number of degrees of freedom used by the subject – since the use of multiple degrees of freedom 306 

in the movement is a hallmark of skill learning (Bernstein, 1967). For that we used the manipulative 307 

complexity (Belić and Faisal, 2015) over the full-body kinematics (see Haar et al. (2019) for the 308 

analysis of full-body kinematics and its complexity measurements during this task). While the 309 

manipulative complexity is increasing with learning for all subjects, PMBR Increasers tended to 310 

Figure 3. Behavioural differences between the groups. (A-D) 

Directional absolute error (A), directional variability (B), trial-

to-trial directional change (C), and manipulative complexity 

(D) of the PMBR Increasers (blue) and PMBR Decreasers (red) 

over blocks of 25 trials, averaged across all subjects in each 

group, error bars represent SEM. (E) Correlations between the 

PMBR change (from the first block (trials 1-25) to the learning 

plateau (trials 201-300)) and the learning, across all subjects 

(black line) and within each group. 

A 
C B 

D 

E 
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have higher complexity in their movement, i.e. use more DoF, throughout the training session (t-311 

test p<0.05, Figure 3D). 312 

Second, we explored the lag-1 autocorrelation (ACF(1)) of the performance measure (in 313 

our case, the directional error of the target-ball relative to the pocket) which was suggested as an 314 

index of skill, where close to zero values corresponds to high skill (van Beers et al., 2013). The 315 

logic behind this measure is that as skill evolve subjects are less susceptive to noise from the 316 

previous movement. We calculated the ACF(1) over the first and the second halves of the learning 317 

session (sets of 150 trials, blocks 1-6 and 7-12, respectively). The ACF(1) values of both groups 318 

were significantly greater than zero during both halves of the session (t-test p<0.01), as expected 319 

for naïve participants (Figure 4A). The initial ACF(1) values of the PMBR Decreasers were higher 320 

than those of the PMBR Increasers, though not significantly (t-test p=0.06). But, the decay in the 321 

ACF(1) from the first half of the training session to the second was significantly higher for the 322 

PMBR Decreasers (t-test p<0.01, Figure 4B). This was also validated with a mixed-design ANOVA 323 

model which yielded no significant overall group effect (F(1)=0.119 p=0.73), but a significant 324 

change over the two halves (F(1)=7.79 p=0.009) and a significant interaction (F(1)= 8.393 325 

p=0.007). 326 

  327 

A third behavioural measure which can differentiate between learning mechanisms is the 328 

decay in the intertrial variability over learning, which is a known feature of skill learning (Deutsch 329 

and Newell, 2004; Müller and Sternad, 2004; Cohen and Sternad, 2009; Guo and Raymond, 2010; 330 

Shmuelof et al., 2012; Huber et al., 2016; Sternad, 2018; Krakauer et al., 2019). The decay in the 331 

intertrial variability (measured from the first block (trials 1-25) to the learning plateau (trials 201-332 

300)) was also significantly larger in the PMBR Decreasers (t-test p<0.05, Figure 4C). We further 333 

A C B D 

Figure 4. Behavioural differences between the groups. (A) Lag-1 autocorrelation of the target ball direction over the first and the 

second half of the training session (blue: PMBR Increasers; red: PMBR Decreasers). (B) Decay of the lag-1 autocorrelation from the 

first to the second half of the training session. (C) Directional variability decay from the first block (trials 1-25) to the learning plateau 

(trials 201-300). (D) Correlation coefficients over blocks for all individual subjects between the PMBR and the directional variability 

(left), trial-to-trial directional change (middle), and head movements (right). Grey asterisk indicates group correlations significantly 

different than zero. Black asterisk indicates significant difference in the correlation coefficients between the groups.  
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tested the link between the intertrial variability structure and the reported grouping by correlating 334 

the block-by-block directional variability and PMBR values within subjects. The PMBR Increasers 335 

showed negative correlations over blocks between the PMBR and the directional variability, while 336 

the PMBR Decreasers showed positive correlations, leading to a very significant difference 337 

between the groups (t-test p<0.0001, Figure 4D left). The same trend was evident for the trial-to-338 

trial directional changes (t-test p<0.0001, Figure 4D middle). We also used the same correlation 339 

approach to control for head movements contamination of the PMBR dynamics. We looked for 340 

correlation over blocks between the PMBR and the peak head acceleration during the same time 341 

interval. Here we found no significant correlations for either of the groups (Figure 4D right), and 342 

most importantly, no difference between the groups (t-test p=0.99). 343 

Discussion 344 

In this paper, we detected brain activity signatures for motor learning in the complex real-345 

world task of playing pool billiards. Our results produce new insights into motor learning by 346 

revealing two types of motor learners with different EEG dynamics in their PMBR over learning: 347 

PMBR Increasers and PMBR Decreasers. These groups were defined by their PMBR dynamic, and 348 

the grouping was validated over the correlation between the dynamics of their PMBR and their 349 

performance errors. While the groups showed no difference in the overall task performance – as 350 

measured by the directional errors of the ball – there were clear task-level differences between the 351 

groups in measures of skill learning which suggest differences in the underlying learning 352 

mechanisms.  353 

The two known main mechanisms that drive motor learning – error-based learning and 354 

reward-based reinforcement learning – are engaging different neural processes (Doyon et al., 2003; 355 

e.g. Doyon and Benali, 2005; Uehara et al., 2018). While both mechanisms can contribute to 356 

learning in any given task, controlled laboratory-tasks are usually designed to induce the 357 

predominance of one mechanism over the other. In motor adaptation tasks the dominant mechanism 358 

is error-based learning, guided by an internal forward model which is updated based on sensory-359 

prediction errors; while in tasks often addressed as skill-learning (such as sequence-learning, curve-360 

tracking, and force-tracking) the dominant mechanism is reward-based learning where the 361 

controller learns form reinforcement of successful actions (Krakauer and Mazzoni, 2011; Haith and 362 

Krakauer, 2013). PMBR was reported to increase over learning in adaptation error-based learning 363 

tasks (e.g. Tan et al., 2014a, 2016; Torrecillos et al., 2015), showing negative correlations with the 364 

decreasing errors. On the other hand, in skill-learning tasks it was reported to decrease (itself or its 365 

magnetic resonance spectroscopy correlate) over the learning (e.g. Floyer-Lea et al., 2006; 366 

Kranczioch et al., 2008; Kolasinski et al., 2019). PMBR is positively correlated with magnetic 367 

resonance spectroscopy-measured GABA concentration (Gaetz et al., 2011; Cheng et al., 2017).  368 
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This may be due to the general correlation of Beta activity with GABAergic activity (Roopun et 369 

al., 2006; Yamawaki et al., 2008; Hall et al., 2010, 2011). We raise the possibility of a more nuanced 370 

link of GABA to motor learning: namely that the two diverging PMBR dynamics (increase vs. 371 

decrease) reflect that GABA activity is a distinguishing feature of different motor learning 372 

mechanisms. These may be reflections of GABAergic projections from different subcortical 373 

regions, cerebellum for error-based adaptation and basal ganglia for reward-based reinforcement 374 

learning (Doyon et al., 2003; Doyon and Benali, 2005).  375 

Here, we found PMBR dynamic differences between groups of subjects performing the 376 

same task and explored it as a potential signature of motor learning mechanisms. In the data 377 

recorded during real-world motor learning in the current study, we found two groups of subjects: 378 

PMBR Increasers and PMBR Decreasers. The PMBR Increasers had low initial PMBR amplitudes 379 

and showed an increase over learning negatively correlated with the decreasing directional errors 380 

(r=-0.40±0.26). Following previous PMBR literature reported above, we presumed that these 381 

subjects used error-based adaptation as their dominant learning mechanism. The PMBR Decreasers 382 

had higher initial PMBR amplitudes and showed a decrease over learning positively correlated with 383 

the decreasing directional errors (r=0.47±0.17). Again, following previous PMBR literature, we 384 

presume that these subjects used reward-based learning as their dominant learning mechanism. As 385 

this mapping is highly speculative, we further explored the performance of the different groups in 386 

the task, looking for signatures of differences in the learning mechanisms in use. While the main 387 

text results are based on the PMBR over the left motor cortex (contralateral to the moving arm), we 388 

repeated the analysis over the right motor cortex (ipsilateral to the moving arm contralateral to the 389 

stabilizing arm). In line with previous literature showing similar PMBR trends between the two 390 

hemispheres (e.g., Jurkiewicz et al., 2006; Gaetz et al., 2010), the results over the right motor cortex 391 

(reported in the Supplementary Materials) replicated those of the left motor cortex, straightening 392 

the robustness of the different PMBR trends.   393 

While there were no significant differences between the groups in their initial errors or 394 

their total learning, there was a clear group difference in the learning process. These behavioural 395 

differences can support the notion of differences in the predominant learning mechanism. First, we 396 

looked for group differences in the number of degrees of freedom of the body movement used while 397 

making the pool shot. Since the pioneering work of Nikolai Bernstein, who found that professional 398 

blacksmiths use high variability in their joint angles across repetitive trials to achieve low 399 

variability in their hammer trajectory endpoint, it is known that as skill evolves one learns to use 400 

more degrees of freedom in the movement (Bernstein, 1967). Using the full-body kinematics in this 401 

task from our previous study (Haar et al., 2019), we found that while over learning both groups 402 

learned to use more degrees of freedom in their movement, throughout the learning session there 403 

was a clear group difference where the PMBR Increasers used more degrees of freedom in their 404 

movement (Figure 3D). 405 
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We used the lag-1 autocorrelation (ACF(1)) as a second biomarker for the difference in the 406 

learning prosses between the groups. ACF(1) was suggested as an index of skill learning, measuring 407 

the optimality of trial-by-trial motor planning (van Beers et al., 2013). ACF(1) of zero indicates 408 

optimal performance. What ACF(1) measures is the correlation between the errors in consecutive 409 

trials, and thus could be a good metric to dissociate between error-based adaptation (where we 410 

gradually decrease the error from one trial to the next) to reinforcement learning (where an error 411 

should lead to exploration). As expected for naïve participants, the ACF(1) values of both groups 412 

during both halves of the session were significantly greater than zero (Figure 4A).  More 413 

importantly, while the PMBR Increasers showed no significant difference in the ACF(1) between 414 

the two halves of the session, the PMBR Decreasers showed a significant decay (Figure 4B). This 415 

decays difference is a behavioural indication for learning mechanism differences between the 416 

groups.  417 

Third, the intertrial variability patterns were in line with the suggestion of different learning 418 

mechanisms. A decay in the intertrial variability a known feature of skill learning (Deutsch and 419 

Newell, 2004; Müller and Sternad, 2004; Cohen and Sternad, 2009; Guo and Raymond, 2010; 420 

Shmuelof et al., 2012; Huber et al., 2016; Sternad, 2018; Krakauer et al., 2019), but not of 421 

adaptation. Here, the PMBR Decreasers (presumably reward-based learners) showed more decay 422 

in their intertrial variability over learning (Figure 3B & Figure 4C). Additionally, the trial-to-trial 423 

directional changes over the first 4 blocks (100 trials) were much higher for the PMBR Decreasers 424 

than the PMBR Increasers group, suggesting that the first group used more exploration while the 425 

second made smaller changes from trial-to-trial (Figure 4C). This latter behaviour would be 426 

expected when learning predominantly by error-based adaptation. 427 

Laboratory-tasks are usually designed to look or characterise a specific learning 428 

mechanism (which is being studied) for all subjects, using different types of feedback and 429 

perturbation manipulations (Huang et al., 2011; e.g. Galea et al., 2015; Kim et al., 2019). In 430 

contrast, the way we started to study real-world motor learning here, which mechanisms are used 431 

and to what extent is unknown a priori. However, we know that they probably involve multiple 432 

high- and low-level learning mechanisms (Krakauer and Mazzoni, 2011; Haith and Krakauer, 433 

2013), where different subjects might emphasize one learning modality over the other.  434 

In our pool playing paradigm, subjects could have performed error-based adaptation as 435 

they learned from the directional error of the target ball in each trial, but they also could have 436 

performed reward-based learning as they learned a novel control policy to use the cue and their 437 

body joints while making a shot by reinforcement of successful actions. In the following, we will 438 

discuss how we could map the distinct groups of learners we discovered in our real-world task into 439 

the above learning frameworks (error-based and reward-based). We speculate that the group that 440 

showed the neural patterns which were previously reported in error-based motor adaptation (PMBR 441 
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increase, (Tan et al., 2014a, 2016)) and behavioural patterns of error-based adaptation (e.g. no 442 

decay in AFC, small decay in intertrial-variability, low trial-to-trial change) – probably used more 443 

error-based adaptation to adapt an existing motor control policy. At the same time, the group that 444 

showed neural patterns which were previously reported in reward-based motor skill learning 445 

(PMBR decrease, (Kranczioch et al., 2008)) and behavioural patterns of motor skill learning tasks 446 

(e.g. decay in AFC, decay in intertrial-variability, high trial-to-trial change) – probably used more 447 

reinforcement reward of successful actions for learning a new control policy. 448 

We recently showed in a machine learning study how simultaneous reinforcement learning 449 

and error-based learning can efficiently be used to learn to control multi-joint muscle activities to 450 

learn to control an arm (Abramova et al., 2012, 2019). That work suggested when adaptation should 451 

occur: if a “similar enough” controller to achieve the task is already present (e.g. from other motor 452 

learning experiences) the existing controller is adapted then learning should have an error 453 

correction signature. In contrast, the absence of a suitable controller for the task either spawned the 454 

generation of a new controller or switching between multiple somewhat suitable controllers. We 455 

may see similar effects at work in this present human study for the two groups of learners. Thus, 456 

our real-world task merit further investigation not only in terms of the neuroscience of learning, but 457 

also in light of robot and machine learning algorithms that could explain the combination of these 458 

learning paradigms or even an entirely new process. 459 

Recent studies suggest that event-related desynchronizations and synchronizations, such as 460 

PMBR, are driven by Beta bursts (Little et al., 2019; Seedat et al., 2020; Wessel, 2020) which carry 461 

more information than the trial-averaged band oscillation. At the same time, a recent study 462 

suggested spatial differences between Beta oscillations that reflect implicit and explicit learning 463 

(Jahani et al., 2020). These recent developments highlight the potential for capturing neural 464 

signatures of learning in EEG Beta. To further validate the current findings, future studies will need 465 

to compare the PMBR dynamics during learning of the same paradigm with different dominant 466 

mechanism, forced by experimental trickery (i.e. using feedback manipulations and constraints) in 467 

laboratory-tasks or real-world task in a virtual reality environment, where feedback manipulations 468 

can be applied (Haar et al., 2020). 469 

The transition from a highly controlled lab-based task to a more ecological free-behaviour 470 

task introduces many challenges which led to a few limitations in the design. First, event-related 471 

EEG power changes are ideally normalized relative to a motion-free pre-movement baseline period. 472 

Since we were trying to keep the task as ecologically valid as possible, we choose not to force on 473 

the subjects a period of quiescence before each shot. Instead, we normalized relative to the average 474 

power. This follows a common normalization protocol in studies of PMBR during motor learning 475 

in lab-based tasks (Tan et al., 2014a, 2016; Torrecillos et al., 2015; Alayrangues et al., 2019). Since 476 

the same normalization was applied to all blocks of all subjects, we believe that the normalization 477 
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protocol could not have affected the within-subject PMBR trends in a way that would change the 478 

results. Second, movement has termination is also not perfectly defined, as subjects could follow 479 

through, or not. To address it, we used the ball-movement onset to define the movement offset and 480 

defined the PMBR based on the peak of the power in the following two seconds. Thus, even if the 481 

follow-through lasted a few hundred milliseconds, the PMBR was well within the window. 482 

Finally, the results of the current study are correlational and cannot, by design, establish a 483 

causal role of PMBR in motor learning or motor learning causing PMBR. We propose, however, 484 

that going forward that brain stimulation at the Beta band can be used to manipulate the PMBR in 485 

order to infer causality (Pogosyan et al., 2009; Tan et al., 2014b; Herrmann et al., 2016). Similarly, 486 

differential studies with patient groups with evidence of an impaired Beta activity, such as 487 

Parkinson (Heinrichs-Graham et al., 2014), stroke (Rossiter et al., 2014), Autism Spectrum 488 

Disorder (Gaetz et al., 2020), or Schizophrenia (Robson et al., 2016), can also provide evidence for 489 

evaluating causality. We believe that our natural task approach here will be facilitating working 490 

with such patients’ groups instead of using the artificially construed tasks of clinical settings. 491 

Conclusions 492 

In this mobile brain activity study in a pool playing task, we demonstrate the feasibility and 493 

importance of studying human neuroscience in-the-wild, and specifically in naturalistic real-world 494 

motor learning. We highlight that real-world motor learning involves different neural dynamics for 495 

different subjects, which were previously associated with different learning mechanisms in 496 

different tasks. Presumably, the individual subject’s proportion of applying the two learning 497 

mechanisms could be revealed by the overall trend of the PMBR over learning. It suggests that real-498 

world motor learning involves multi-modal learning mechanisms which subjects combine in new 499 

ways when faced with the complexity of learning in the real-world, and different subjects 500 

emphasize one mechanism over the other.  501 
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Supplementary Material 659 

 660 

Right Motor Cortex Post-movement beta rebound. (A) Time-frequency map of a typical subject 661 
aligned to movement offset (ball movement onset), obtained by averaging the normalized power 662 
over electrode C4. (B) PMBR over blocks (of 25 trials), averaged across all subjects, error bars 663 
represent SEM. (C,D) PMBR (C) and Baseline beta power (D) of the PMBR Increasers (blue) and 664 
PMBR Decreasers (red) over blocks, averaged across all subjects in each groups, error bars 665 
represent SEM. 666 
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