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Abstract 
The identification and discovery of phenotypes from high content screening (HCS) 
images is a challenging task. Earlier works use image analysis pipelines to extract 
biological features, supervised training methods or generate features with neural 
networks pretrained on non-cellular images. We introduce a novel fully unsupervised 
deep learning algorithm to cluster cellular images with similar Mode-of-Action together 
using only the images’ pixel intensity values as input. The method outperforms existing 
approaches on the labelled subset of the BBBC021 dataset and achieves an accuracy 
of 97.09% for correctly classifying the Mode-of-Action (MOA) by nearest neighbors 
matching. One unique aspect of the approach is that it is able to perform training on 
the entire unannotated dataset, to correctly cluster similar treatments beyond the 
annotated subset of the dataset and can be used for novel MOA discovery.  

 Introduction  
High Content Screening (HCS) (Götte et al., 2010; Caicedo et al., 2017; Buchser et 
al., 2004) is a phenotypic screening method leveraging high-throughput microscopy 
imaging to explore and identify perturbations, here low molecular weight compounds, 
with phenotype altering effects on cells. Experiments are performed on plates with 
multiple cell-containing wells. The cells are stained with different fluorescent probes 
highlighting distinct cellular components. Each well is treated with compounds at 
various concentrations. The goal is to perform quantitative analysis of the resulting 
images to uncover what happens in the cells upon treatment. In particular this can 
yield a better understanding of the mechanism by which cells are affected by various 
treatments. This is called the Mode-of-Action or sometimes the Mechanism-of-Action 
(MOA). HCS is a high-throughput method that can generate up to millions of images 
per experiment, therefore requiring extensive computational analysis.  

Several methods have been developed to tackle this problem. For example, Ljosa 
et al., (2013) extract cell embeddings with the Cellprofiler software (Carpenter et al., 
2006) to predict the MOA based on nearest neighbors’ annotation and Kraus et al., 
(2016) uses a supervised convolutional multiple instance learning for microscopy 
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image classification and segmentation. Ando et al., (2017) follow a similar idea but use 
a pretrained deep metric network to extract features from individual cells segmented 
from larger images. The work of Godinez et al., (2017)contains a multi-scale neural 
network that makes the extraction of cell regions redundant as the neural network 
picks up local cell features as well as global structures, such as cell density, from the 
full image. The neural network is trained in a supervised setup on an annotated subset 
by using known MOAs as labels and applied on the full dataset. In a real-world 
scenario, we often do not know the MOA, or only have partial understanding of the 
MOA of treatments, thus limiting the application of the method to well annotated 
datasets only. This common lack of MoA annotation is another strong limitation of 
approaches based on a priori knowledge and annotation. In more recent papers, 
image metadata are used as pseudo-label to train the model in a self-supervised 
manner (Godinez et al., 2018; Spiegel et al., 2019), with promising results. Such 
metadata typically comprise compound identifier, dose and treatment duration. One 
concern is that the method considers similar treatments (e.g. small dose variation of 
the same compound) the same as completely different ones (e.g. different MOA). In 
addition, batch effects could cause images with identical metadata to look different. 
All the methods above, besides Ljosa et al., (2013), use deep neural networks trained 
either in a supervised (Kraus et al., 2016; Godinez et al., 2017), self-supervised setup 
(Godinez et al., 2018; Spiegel et al., 2019) on an annotated subset of the data or make 
use of a neural network pre-trained on non-cellular images (Ando et al., 2017; Tabak 
et al., 2019). Using a neural network trained on non-cellular images yields the risk of 
domain-specific features being lost in the process of capturing features on data not 
related to HCS. In parallel, Caron et al., (2019) developed an unsupervised method, 
applied to non-HCS data, achieving results close to supervised ones by using a 
standard clustering algorithm to create pseudo-labels during training.  

Inspired by Caron et al., (2019), Ando et al., (2017) and Godinez et al., (2018), we 
developed a fully unsupervised neural network for clustering similar phenotypes 
together, solely based on the intensity values of the cellular images. Based on the 
findings of Godinez et al., (2017), we make the extraction of cellular candidates 
redundant by using an updated multi-scale neural network. The backend is built on 
top of the deep clustering framework from Caron et al., (2019). Additionally, we show 
that combining two batch correction methods, Typical Variation Normalization (TVN) 
(Ando et al., 2017) and Combat (Johnson et al., 2007), during training, significantly 
improves the results and creates more representative embeddings. We call our 
method UMM Discovery (Unsupervised Multi-scale Mode-of-action Discovery) and 
show that we obtain state-of-the-art accuracy in BBBC021. To evaluate the proposed 
method on a real-world scenario, we trained it, unlike other methods, on the entire 
dataset (without MOA labels) and show that it can be used for novel MOA discovery. 
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 Methods 

 Our Approach: Unsupervised Multi-Scale Mode-of-Action 
Discovery (UMM Discovery) 

We developed a fully unsupervised deep learning method to cluster cellular images 
with similar MOA together. We did so by applying a deep clustering framework 
developed by Caron et al., (2019), called DeepCluster, on cellular imaging. Following 
Godinez et al., (2018) findings, we decided to use an updated version of the Deep 
Neural Network (DNN) architecture, called Multi-Scale-Net. Together, these two 
methods create a fully unsupervised algorithm, which we call UMM Discovery, that 
allows us to cluster similar images together. Fig. 1 shows an illustration of our 
combined approach. The algorithm uses no prior knowledge of treatment, beyond their 
respective identifier and relative concentration. The DNN input consists solely of 
unannotated images and it outputs one 64-feature vector per image. 

2.1.1 Deep Clustering 

We built upon the deep clustering framework developed by Caron et al. (2019). The 
deep clustering framework consists of (i) a neural network for feature extraction, 
defined as 𝑓!	: 𝑋	 → ℝ#, which takes as input a cellular image 𝑥 ∈ 𝑋 and maps it to a 
feature embedding 𝑧 of dimension 𝐷 and (ii) a standard clustering algorithm for 
generating a pseudo-label 𝑦 for each 𝑥.	The training of the parameters 𝜃 can be 
summarized as follows. All images 𝑥 ∈ 𝑋 are fed through the neural network to create 

Fig. 1: Overview of the UMM Discovery architecture, combining an adjusted Multi-Scale NN and the DeepCluster backend. 
Training of the NN is done in two steps. Step 1) Green arrows: Images are fed through the NN where features are extracted 
from different scales to create one representing embedding for each image. The images are batch corrected with Combat and 
TVN and preprocessed by TSNE and L2 normalization. The normalized embeddings are clustered with k-means. The cluster 
assignments from k-means are the new pseudo-labels and the number of clusters will become the size of the classification layer. 
Step 2) Blue arrows: After creation of the pseudo-labels, the training process of the Multi-Scale network starts, where images 
are forwarded through the NN and the last classification layer to get a prediction for each image. The weights of the Multi-Scale 
NN are optimized by taking the cross-entropy loss function between the prediction and the pseudo-label and backpropagating 
the loss through the NN. 
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representative embeddings 𝑧 = 𝑓!(𝑥) ∈ ℝ#. A dimensionality reduction algorithm is 
applied to remove dimensions with low variance. Next, a clustering on the embeddings 
𝑍 is performed with a standard clustering algorithm such as k-means to assign each 
embedding z to one of 𝐾 clusters. The resulting cluster assignment is used as pseudo-
label 𝑦 and a classification layer 𝑔$ with parameters 𝑤	is added to the end of the neural 
network, with 𝐾 units representing the 𝐾 clusters, to predict the labels 𝑦 from the 
feature embeddings 𝑧. We now have a supervised learning algorithm and can train the 
neural network with the cluster assignments as pseudo-labels by optimizing: 

min
!,$

1
𝑁: 𝑙(𝑔$<𝑓!(𝑥&)=, 𝑦&)

'

&()

, 

where 𝑙 is the multinomial logistic loss. This process is repeated for each epoch. 

2.1.2 Multi-Scale Network 

Next, we implemented the multi-scale neural network architecture from Godinez et al., 
(2017) and modified it by adding residual layers, dilation and a collapse layer. The 
updated version of the Multi-scale network is shown in Supplementary Figure 1. The 
method takes preprocessed images as input and performs a parallel multi-scale 
analysis over a large number of scales, allowing it to detect local features as well as 
population changes. This makes it possible to capture the phenotype over a large 
spatial region. Therefore, no extraction of cellular candidates is necessary.  

Given a preprocessed image with spatial dimensions 𝑤 × ℎ, the neural network 
considers downscaled images with dimensions (𝑤/𝑠 × ℎ/𝑠). The neural network 
contains five multi-scale blocks which reduce the spatial dimension by 𝑠 = 	1,2,4,8,16. 
The multi-scale block consists of three convolutional layers, the first one with a kernel 
size of 3 and a dilation size of 1, the second one with a kernel size of 3 and a dilation 
size of 2 and the last one with a kernel size 1. This 1x1 convolutional layer can be 
seen as a fully connected layer between the feature maps. It is followed by a max 
pooling operation. Unlike the original multi-scale network from Godinez et al. (2017), 
the network consists of residual layers. Instead of only considering a downscaled 
version of the original image, the downscaled image is concatenated with the pooled 
kernel maps of the last convolution layer and go through an additional 1x1 
convolutional layer. After the last multi-scale block, the spatial size is 16x20 pixel with 
128 feature maps. A collapse layer is applied, where parallel adaptive average pooling 
and maximum pooling with the kernel size of the input spatial dimensions. These two 
layers are afterwards factorized by the trained weight factor 𝑤* and summed together 
as follows: 

(𝑝+,- ×	𝑤*) + I𝑝.+/ 	× 	 <1 − 𝑤*=K ,	with	𝑤* ∈ 	 [0, 1] 
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Next, another 1x1 convolutional layer, as well as a fully connected layer with 64 units, 
are applied. The fully connected layer is followed by a ReLU operation during training. 
During the embedding generation phase, this ReLU is removed. Batch normalization 
followed by a ReLU layer is applied after each convolutional layer throughout the 
whole neural network. With this setup, the neural network takes the images as input 
and outputs embeddings. The neural network consists of 106’961 trainable 
parameters, which is low in comparison to other state-of-the-art neural network 
architectures, for example ResNet-50 with over 25M parameters. 

2.1.3 Clustering Algorithms 

To generate pseudo-labels, we tested four different clustering algorithms on the 
embeddings. The first one is the standard clustering framework k-means. The most 
important parameter for this clustering algorithm is the number of clusters also 
sometimes called seeds. In the baseline setup the number of clusters is set a priori. 
However, in most real-world scenarios, we do not know the exact number of clusters, 
therefore we set this parameter to the number of treatments since identical treatments 
should in theory cluster together. 

The true number of clusters, in this case, the number of MOA is unknown. Therefore, 
two more dynamic clustering algorithms were tested as well. Namely, the Power 
Iteration Clustering (PIC), an updated version of spectral clustering, and the density-
based method HDBScan (McInnes et al., 2017), were tested as clustering algorithms. 
As noted, the benefit of these two clustering algorithms is that they do not require the 
number of clusters to be specified. PIC is very fast on large datasets and can provide 
similar results as spectral clustering. For PIC and HDBScan, we performed 
hyperparameter optimization to find their best parameters. We also implemented an 
adaptive version of K-means that reduces the number of clusters linearly during 
training, starting from double the number of treatments and reducing it to the number 
of compounds.  

2.1.4 Batch Correction 

Batch effects arise from uncontrollable variations in biological experiments due to 
different factors such as slightly different concentrations for same treatments, location 
of a certain well on the plate, order of the plate within a batch which could result in 
different rate of evaporation (Tabak et al., 2019). To correct for this nuisance variation, 
we tested two batch correction methods, typical variation normalization (TVN) (Ando 
et al., 2017) and Combat (Johnson et al., 2007). Both methods require additional input 
information. The TVN method needs the embeddings corresponding to the control 
wells (untreated cells) to bring them together. Combat requires more prior knowledge 
as it uses the treatment information (e.g. compound identifier, dose, …) as covariates. 
Treatment information are available in a real-world scenario at the well level, including 
which wells are used as controls. We apply TVN on the embeddings (Ando et al., 
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2017) as follows. All embeddings of the untreated cells are whitened by computing the 
PCA basis so that these embeddings have zero mean and unit variance. The same 
affine transformation is then applied to all embeddings. Like in Tabak et al., (2019) but 

unlike Ando et al., (2017), we do not use CORAL (Sun et al., 2016) as we do not have 
enough embeddings per plate to compute a positive-semidefinite covariance metrics. 
Instead, for further correcting the batch effect, we are using Combat (Johnson et al., 
2007). Combat adjusts the batch effect by using empirical Bayes methods. As 
covariates, we used treatment metadata (e.g. compound and concentration). Unlike 
other methods, we applied batch correction during training at each epoch before 
dimensionality reduction. The effect of the batch correction can be seen in 
Supplementary Figure 4. 

2.1.5 Dimensionality reduction of the embedding 

To further improve clustering performance, we tested two dimensionality reduction 
methods, PCA, and t-SNE (Maaten and Hinton, 2008). We implemented an adaptive 
t-SNE that takes only the number of components that contain at least 95% of the 
variants and outputs three components. 

 Image data and preprocessing 

2.2.1 BBBC021 Image Dataset 

We evaluated UMM Discovery on the BBBC021 (Caie et al., 2010) cellular dataset 
available from the Broad Bioimage Benchmark Collection presented in (Ljosa et al., 
2013). The dataset consists of high content images from MCF-7 breast cancer cells 
exposed for 24h to a variety of chemical compounds (drugs). The cells are treated on 
55 96-well plates across 10 batches. Three single-channel images are available 
representing fluorescence bound DNA, Tubulin and Actin. The total dataset contains 
113 small molecules at eight concentrations resulting in 901 treatments representing 
13200 field of view imaged over three channels. A subset of treatments in BBBC201 
are annotated with their MOA. This subset contains 38 compounds dosed at various 
concentrations resulting in 103 treatments (3848 field of view), representing 12 known 
molecular MOA. For half of those, the MOA annotation was performed by visual 
inspection. The annotation of the other half was captured from literature. Ljosa et al., 
(2013), Ando et al., (2017), Godinez et al., (2017), and Tabak et al., (2019) also 
evaluated their methods on this gold standard subset. 
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2.2.2 Preprocessing 

We followed the approach undertaken by Ando et al., (2017) for preprocessing 
images. For each plate and each channel, a flatfield image is computed by taking the 
10th percentile of all the intensity values and applying a Gaussian filter with sigma of 
50. Each image is then divided by its respective flatfield image. Pixel intensity values 
lower than 1 are set to 1 before doing a log transformation in order to increase the 
dynamic range. To remove outliers’ values, any resulting values larger than 5 are 
clipped to 5. In addition to the preprocessing performed in Ando et al., (2017), the pixel 
intensities are image-wise and channel-wise normalized by z-score. Unlike Ando et 
al., (2017) and Tabak et al., (2019), no cell candidates were generated, which 
eliminates the time-consuming steps to locate and crop cells in the images. To reduce 
input size, images are tiled into 4 pieces. The advantage of tiling is that we can feed 
images with the highest resolution in the neural network without down-sampling them 
and no cell candidates have to be computed. The downside of tiling is that some tiles 
can hold almost no information. Aggregating embeddings for clustering analysis 
alleviate this problem. 

 Embedding Generation 
After training the multi-scale net, all tiles are fed through the trained neural network to 
generate one representing embedding of size 64 for each tile. In case of the BBBC021, 
there are 4 tiles for each field-of-views and 4 field-of-view per well, resulting in 16 tile 
embeddings per well. As treatments are applied at a well level, we are mostly 
interested in well-level embeddings, and therefore we aggregated tile-level 
embeddings by computing their element-wise median, thus obtaining one embedding 
of size 64 for each well (Fig. 2). These well embeddings are used for clustering 
analysis to evaluate the performance of the clustering and to visually discover novel 
clusters. In this paper, we show that feature vectors can be used to identify MOAs of 
corresponding treatments. 

Fig. 2. Embedding generation. Multiple fields-view are taken per well. These field-of-views are split into four tiles during 
preprocessing. All tiles of a well are forwarded through the neural network to create corresponding embeddings then aggregated 
to obtain one embedding per well. This well embedding is used for further analysis. 
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 Evaluation Strategy 
To evaluate the clustering quality, we made the assumption that images 
corresponding to the same MOA should cluster together, while images from different 
MOA should belong to different clusters. Suitable validation metrics take cohesion 
(intra-cluster) and separation (inter-cluster) into account (Palacio-Niño and Berzal, 
2019). As each MOA represents one cluster, it is important to evaluate how close the 
embeddings of the treatments with the same MOA cluster together and separate from 
clusters with different MOA.  

Another evaluation approach relies on using image metadata, by assuming that 
examples assigned to the same cluster have similar metadata (Palacio-Niño and 
Berzal, 2019). Because wells with the same treatment should cluster together, we 
computed the correlation between cluster assignment, MOA ground truth labels and 
treatment information (e.g. compound and dose). 

2.4.1 1-Nearest Neighbor Mode-of-Action Assignment 

As in Tabak et al., (2019), Ando et al., (2017) and Ljosa et al., (2013), we used nearest 
neighbor classification to evaluate our method. Embeddings are first averaged at the 
plate level and then further aggregated by taking the median to obtain one embedding 
per treatment. We used the cosine distance to compute nearest neighbors. Then, to 
measure accuracy of MOA classification, we compared each example to its nearest 
neighbor, excluding examples treated with the same compound (NSC, Not-Same-
Compound) or examples either treated with the same compound or the same batch 
(NSCB, Not-Same-Compound or Batch). MOA that are only present in one batch were 
excluded in the latter. 

2.4.2 Silhouette Score on Mode-of-Action 

The silhouette score (Rousseeuw, 1987) evaluates how well the clusters are defined 
by using the mean intra-cluster distance 𝑎(𝑖) and the mean nearest-cluster distance 
𝑏(𝑖) for sample 𝑖 and is defined as:  

𝑆𝐼𝐿(𝑖) = 	
𝑏(𝑖) − 𝑎(𝑖)

max(𝑎(𝑖), 𝑏(𝑖))	 

The range of the silhouette score is between -1 and 1. Negative values indicate that 
samples have been assigned to the wrong cluster. Positive values indicate that 
samples with the same assignment are clustering together and are well separated to 
samples with different assignments. As stated in Tabak et al., (2019), the silhouette 
score is more global than NSC/NSCB, as it takes global clustering into account instead 
of just the nearest neighbor of a sample. We used the silhouette score to evaluate the 
clustering at the well level. The well embeddings with the same MOA should cluster 
together and separate well from embeddings with different assignment. 
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2.4.3 Completeness score on treatment metadata 

The completeness score (Rosenberg and Hirschberg, 2007) is defined as 

COMP = 1 −	
𝐻(𝐶|𝐾)
𝐻(𝐶) , 

where 𝐻(𝐶|𝐾) is the conditional entropy of class 𝐶 given cluster assignment 𝐾 and 
𝐻(𝐶) is the entropy of class 𝐶. The completeness score on treatment metadata ranges 
from 0 to 1, where 1 indicates that all well embeddings with the same treatment are 
assigned to the same cluster. This score helps to evaluate if all embeddings with the 
treatment are clustering together independently of their batches.  

2.4.4 Adjusted Mutual information on compound metadata 

The Adjusted Mutual Information (AMI) (Vinh et al., 2010) is based on information 
theory concepts and includes basic measures such as the entropy, the measure for 
disorder and the mutual information, and the measure of reduction in uncertainty. AMI 
is a modification of the mutual information as it ignores permutations and it is 
normalized against chance. It is defined as  

AMI =	
MI(𝑈, 𝑉) − 𝐸[MI(𝑈, 𝑉)]

mean<𝐻(𝑈), 𝐻(𝑉)= − 𝐸[MI(𝑈, 𝑉)]
, 

where U and V are the different cluster assignments, MI is the mutual information and 
E is the expected mutual information (Vinh et al., 2009). AMI allows us to measure the 
reduction in uncertainty about clustering assignments given the compound information 
from the metadata. The AMI score of a random assignment of clusters is close to zero, 
whereas similar clustering has a positive score and an exact match of cluster 
assignment and ground truth labels is 1. Therefore, the closer the AMI score is to 1, 
the better the pairwise correlation between clustering assignment and compound 
information is. In this case, one other beneficial characteristic of the AMI is that it 
penalizes over- and under-clustering. We used the AMI on the well embeddings and 
made the assumption that well embeddings of the same compound should cluster 
together or cluster close to DMSO when the treatment is not potent enough to have a 
visual effect of the MOA.  

2.4.5 Total clustering score 

To identify how well the method performs with unlabeled data, we developed a new 
metric that we call total clustering score (TCS). The TCS consists of the adjusted 
mutual information, the silhouette score and the completeness and is defined as 

TCS = 𝛼	COMP	 + 	𝛽	AMI	 + 	𝛾 SIL, 
𝛼	 + 𝛽	 + 	𝛾	 = 	1. 
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 Best epoch determination 
To avoid overfitting, we implemented a best epoch criterion. For the labeled dataset, 
the best epoch is selected by calculating the NSC for each epoch and taking the epoch 
with the highest score. For the unlabeled dataset this strategy cannot be applied. In 
this case, the TCS is used as best epoch criterion. 

 Results 
First, we established a baseline model, which combines a multi-scale CNN (Godinez 
et al., 2017) with a K-means deep clustering backend (Caron et al., 2019) and applied 
it on the annotated subset of the publicly available cellular dataset BBBC021 (Caie et 
al., 2010). To evaluate the annotated clustering results, we used the NSC and SIL 
scores. After tuning the number of components for PCA and the number of seeds for 
K-means on the baseline model (Supplementary Figure 2), we evaluated the 
influence of different clustering algorithms (Supplementary Table 2).  

Then, we incorporated batch effect removal. To asses that there is a batch effect 
and that it can be reduced with the combination of Combat and TVN, we performed a 
one-way ANOVA on the PCA components of the untreated well embeddings before 
and after batch correction with the previous mentioned methods. The Supplementary 
Table 1 lists the F-value and the p-value of the analysis for the eight PCA components. 
All p-values before batch correction are significant (p<0.05), and therefore, we 
conclude that there are significant differences among batches. This is consistent with 
results from Ando et al., (2017) and Tabak et al., (2019). After batch correction, the F-
values are considerably lower and the p-values (p>0.05) are not significant as we fail 
to reject the null hypothesis and conclude that after batch correction the untreated well 
embeddings have equal variances. In the Supplementary Figure 3 can be seen that 
TVN and Combat decreases the batch effect. Supplementary Table 3 shows the 
clustering results for TVN, Combat, and their combination (TVN followed by Combat 
and Combat followed by TVN). Every batch correction method significantly improves 
both NSC and SIL. Combat followed by TVN achieved the best results overall. 
Furthermore, we found that performing dimension reduction of the embeddings 
improved clustering performances (Supplementary Table 4). 

In following section, we first show the results of the optimized UMM Discovery on 
the BBBC021 annotated subset, compare our method with other approaches and 
present how our method can be applied to unlabeled datasets for MOA discovery, 
where we applied it to the entire BBBC021 dataset. 

 BBBC021 annotated subset 
We first evaluated UMM Discovery on the MOA annotated subset of the BBBC021 
(Caie et al., 2010) image dataset. The best performances were achieved with using 
K-means for the clustering algorithm, adaptive t-SNE for dimensionality reduction and 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 23, 2020. ; https://doi.org/10.1101/2020.07.22.215459doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.22.215459
http://creativecommons.org/licenses/by/4.0/


combining TVN and Combat for batch correction. In agreement with previous results 
(Caron et al., 2019), we found that allowing for a large number of seeds in K-means is 
necessary to achieve the best NSC. In our case, we set the number of seeds to the 
number of treatments. We achieved a NSC score of 97.09% and a silhouette score of 
0.518 which indicates a close clustering of the same MOA and a clear separation 
between the clusters with different MOA. The COMP score was 0.936 and showed 
that well embeddings from the same treatments have the same cluster assignment. 
Fig. 3 shows the NSC confusion matrix of this setup. UMM discovery was able to 
classify 100 of the 103 treatments’ MOA correctly to the right MOA. The t-SNE 
visualization of the well embeddings (Fig. 4) provides a visual confirmation of the 
clustering quality. The well embeddings of the same MOA are nicely clustering 
together and are clearly separated from the well embeddings of other MOAs.  

3.1.1 Comparison with supervised training 

We compared our method with a supervised training algorithm, where we trained the 
same adjusted Multi-Scale neural network with ground truth labels, once with the MOA 
as in Godinez et al., (2017), and once with the treatment metadata (compound + 
concentration) as in Godinez et al., (2018). After supervised training, we removed the 
last classification layer and created embeddings from all the tiles. Additionally, we 
used the same batch correction as in UMM discovery during training. Table 1 
recapitulates the performances of these approaches. UMM discovery is achieving 
results very close to supervised training on the MOA labels and outperforms the 
supervised approach with treatment labels. 
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Table 1: Comparing our work with supervised approach trained on the annotated 
BBBC021 subset with once the MOA as labels and once the treatment information as 
labels 

Methods NSC SIL COMP AMI 
UMM Discovery (this work) 97.09 0.518 0.936 0.789 

Multi-Scale with MOA 99.03 0.445 0.714 0.670 
Multi-Scale with MOA and 

Combat + TVN 98.05 0.669 0.914 0.794 

Multi-Scale with treatment 61.17 0.144 0.591 0.546 
Multi-Scale with treatment and 

Combat + TVN 76.70 0.454 0.896 0.665 

3.1.2 Comparison with other methods 

We compared UMM Discovery with other state-of-the-art methods on the annotated 
subset of BBBC201. Table 2 shows that UMM Discovery achieves the best 
performances in this comparison. One important distinction with other methods is that 
UMM Discovery is trained from scratch in a fully unsupervised manner. Ando et al., 
(2017) and Pawlowski et al., (2016) are using neural networks pretrained on other data 
to create their embeddings. The results show that our method performs very well on 
the small annotated subset of the BBBC021 dataset. However, the real benefit of an 
unsupervised approach is obtained when applying it to unlabeled datasets. Next, we 
evaluate UMM Discovery on the full BBBC201 dataset. 

 
Table 2: Comparison the results of UMM Discovery with other methods on the 
annotated subset of BBBC201. 

Citation Method NSC NSCB 
UMM Discovery (this work) Multi-scale Network with Deep 

Clustering 97% 85% 

Ando et al. 2017 Pretrained Deep Metric 96% 95% 

Ljosa et al. 2013 Cell features from an image 
analysis pipeline 94% 77% 

Pawlowski et al. 2016 Pretrained Neural Network 91% N/A 

 Unsupervised evaluation of the entire BBBC021 dataset 
To evaluate whether UMM Discovery performed well on unlabeled datasets, we 
trained it on the entire BBBC021 dataset. As ground truth MOA labels are only 
available for a small subset of the images, we evaluated the clustering performance 
of our method using the available metadata (i.e. treatment metadata). We used the 
TCS to select the best epoch to avoid overfitting. The method achieved a silhouette 
score of 0.412, an AMI of 0.672 and a completeness score of 0.94. The high 
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completeness score indicates that almost all embeddings with the same treatment are 
assigned to the same cluster.  

We visualized the clustering of the well embeddings with t-SNE (Fig. 5) and could 
identify i) clusters that contained several well embeddings with known MOA, ii) outlier 
well embeddings with unexpected clustering behavior based on MOA annotation iii) 
as well as completely unannotated clusters (novel clusters). These novel clusters 
could represent new MOAs that are absent from the annotated subset. We focused in 
this evaluation on seven different handpicked groups of well embeddings, denoted 
with boxes in Fig. 5. The compounds and their concentrations within each box are 
listed in Table 3 where we highlighted the concentrations that belong to the MOA 
annotations of the BBBC021 subset. Supplementary Table 5 contains the compound 
target from DrugBank (Wishart et al., 2018). 

3.2.1 MOA assignment of novel compounds  

First, we tested if UMM Discovery is able to cluster unannotated compounds together 
with annotated compounds. Box (a) contains well embeddings that belong to three 
annotated compounds, namely “camptothecin”, “mitoxantrone” and “floxuridine”. The 
MOA label of all three annotated compounds is DNA replication. In addition to the 
annotated well embeddings, there are well embeddings of the same compound but 
with missing MOA annotation. The method was able to cluster the same compound 
with different concentrations that appear as same MOA together. It is worth noting that 
the batch correction is performed at the treatment level and therefore did not contribute 
to the co-clustering of these compounds. In the same cluster we can find well 
embeddings with unknown MOA, i.e., “bleomycin” and “cathepsin inhibitor”. If we look 
up the target of the unknown compound “bleomycin” in DrugBank, we find that it is 
“DNA ligase 1 inhibitor” and therefore fits perfectly in this cluster.  

Fig. 5: TSNE visualizations of the well embeddings of the entire BBBC021. Each dot corresponds to a well and is colored with 
the MOA labels of the BBBC021 subset. Grey dots correspond to the wells without MOA annotations. Left: The boxes indicate 
seven interesting clusters that we analyze in more detail. The compounds and their concentrations within each box are listed in 
Table 3.  Right: Within the TSNE plot, a proliferation and a MOA effect can be discovered by tracking two compounds from the 
same batch that both induce fast cell death at high concentration. The arrows indicate the concentration path and the boxes show 
an example cellular image of the marked well embeddings for the corresponding compound and concentration. 
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The second box (b) holds several well embeddings of the “DNA damage” 
compounds: “cisplatin”, “chlorambucil”, “etoposide” and “mitomycin_c”. Also, this box 
contains several unannotated concentrations from these compounds that our 
approach clusters nicely together. As unannotated compound, we found 5-flourouracil 
which has according to DrugBank the target “Thymidylate synthase”. This leads to 
DNA incorporation and destabilization and could reasonably be expected to induce 
the same phenotype as the other co-clustered compounds. 

 Furthermore, the unannotated compounds “trichostatin”, “colchicine”, 
“taurocholate” and “podophyllotoxin” are clustering together in box (c) with the known 
Microtubule destabilizer “vincristine”, “nocadazole” and “demecolcine”. The 
compounds “colchicine” and “podophyllotoxin” are both “Tubulin beta chain – 
inhibitors”, according to Drugbank (Wishart et al., 2018), which matches the assigned 
cluster. The full dataset contains 8 concentrations, 0.001-3mM, of the compound 
“colchicine”, where the concentration 0.03mM is annotated in the subset as 
Microtubule destabilizer. These annotated concentrations cluster close to the 
untreated wells. The clustering of the compound “colchicine” with a concentration of 
3.0mM with other microtubule destabilizers and the deficiency of the annotated 
concentration 0.03mM in that cluster confirms the findings of Godinez et al., (2018). 
These three examples showcase that UMM Discovery is able to cluster unannotated 
compounds with annotated compounds, thus enabling potential MOA assignment. 

3.2.2 Identification of outliers  

The compound “taxol” with the concentration of 0.3mM was used as positive control 
on each batch and has the MOA label Microtubule Stabilizer. Almost all well 
embeddings treated with “taxol” at 0.3mM are clustering together (big cluster colored 
in blue in Fig. 5). Box (d) indicates a sub cluster also containing well embeddings of 
the positive control. We compared the cellular images of this sub cluster with other 
cellular images of the positive control and discovered that they look very different (see 
Supplementary Figure 5a). Another outlier of the positive control is marked with box 
(e). The cellular images of this box are all blurrier (out of focus) in comparison with 
other cellular images of the positive control (see Supplementary Figure 5b). This 
result underscores the ability of the UMM Discovery to identify outliers. 

3.2.3 Discovery of a novel Mode-of-Action 

Lastly, we evaluated the ability of UMM Discovery to identify novel phenotypes. Box 
(f) contains only the compound “vinblastine” at various concentration and one well 
embedding of the positive control (taxol at 0.3 mM) which is an outlier (see 
Supplementary Figure 5c). “vinblastine” is a breast cancer treatment that according 
to DrugBank (Wishart et al., 2018) inhibits the mitosis at the metaphase by binding the 
microtubular proteins of the mitotic spindle, which leads to crystallization of the 
microtubule and mitotic arrest. Supplementary Figure 6 compares the cellular 
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images of “vinblastine” with cellular images of the compound “vincristine” which is in a 
nearby clusters (see box c) and is annotated as Microtubule Destabilizer. The 
compounds “vinblastine” and “vincristine” have nearly identical molecular structure but 
shows a slightly different phenotype. This difference in phenotype is explained by the 
difference in drug affinities of these two compounds in DrugBank, whereby 
“vinblastine” was found to have a significant higher anti-tubulin activity than 
“vincristine” (Simmingsköld et al., 1981; Lobert et al., 1996). 

 
Table 3: The compounds and the concentrations of the boxes in Fig. 5. The 
highlighted concentrations indicate well embeddings with annotated MOA ground truth 
from the BBBC021 subset. The colors of the highlighting are matching with the colors 
of the MOA in Fig. 5. 

 Compound Concentration in µM 
a) camptothecin 0.003, 0.01, 0.03  
 mitoxantrone 0.003, 0.01, 0.03, 0.1, 0.3 
 floxuridine 0.03, 0.1, 0.3, 1.0, 3.0, 10.0, 30.0, 100.0 
 bleomycin 0.15, 1.5, 5.0, 15.0, 50.0,  
 cathepsin inhibitor 10.0 
b) 5-flourouracil 3.0, 10.0 
 chlorambucil 0.01, 1.0, 3.0, 10.0 
 cisplatin 0.03, 0.1, 0.3, 1.0, 3.0, 10.0 
 etoposide 0.3, 1.0, 3.0, 10.0 
 mitomycin_C 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0 
c) colchicine 3.0 
 demecolcine 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0 
 nocodazole 0.03, 0.1, 0.3, 1.0, 3.0 
 podophyllotoxin 0.01 
 taurocholate 25.0 
 trichostatin 0.03 
 vincristine 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0 
d) taxol 0.3 
e) taxol 0.3 
f) vinblastine 0.003, 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 10.0 
 taxol 0.3 
g) staurosporine 0.03, 0.1, 0.3, 1.0  
 tunicamycin 50.0 
 okadaic acid 0.06, 0.2 
 nystatin 10.0 
 mitoxantrone 10.0 
 mevinolin 50.0 
 filipin 1.0, 3.0, 10.0 

 
The last box (g) is an exceptional case, as it consists of well embeddings from 

compounds in high concentrations. The target description from DrugBank (Wishart et 
al., 2018) for these compounds would not fit them together as same MOA. By looking 
at the images, we discovered that they contain almost no cells, suggesting strong 
toxicity and induced cell death from these compounds. As a result, the cluster appears 
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to capture a strong proliferative effect rather than a MOA specific feature. The 
clustering of the compound “staurosporine” (at 0.1mM and 0.3mM) together with the 
compound “mitoxantrone” (at 10mM) was also detected in the work of Godinez et al., 
(2018). The right illustration of Fig. 5 shows this proliferation effect in more detail. 
Displayed are two compounds, specifically “mitoxantrone” and “mevinolin”, with three 
different concentrations (high, intermediate, low) each. The embeddings of the low 
concentration lie close to each other, whereas the “mitoxantrone” in low concentration 
belongs to the “DNA replication” MOA. If we follow the concentration paths of these 
compounds indicated by the arrows, we find that the intermediate concentration is 
clustering in two different clusters. By looking at the cellular images of these well 
embeddings, we find that the cell density decreases from the low to the intermediate 
concentration and continues to shrink until there are almost no cells left in the high 
concentration cluster. This is the proliferation effect that our approach is able to 
capture thanks to the Multi-Scale Neural Network. Although the well embeddings with 
intermediate concentrations have similar cell density, the images can be clearly 
distinguished visually from each other and suggesting different MOA. The compound 
“mevinolin” at intermediate concentration is annotated as cholesterol lowering. The 
compound “mitoxantrone” at intermediate concentration clusters with the compound 
“camptothecin” at high concentration. This could fit as both of them have the same 
MOA, DNA replication, at lower concentrations (see box a). The results show that 
UMM Discovery is able to identify novel MOA and is able to distinguish between MOA 
effect and proliferation effect. 

 Discussion 
In this work we present an unsupervised approach for the analysis of high-content 
cellular images based on the combination of two state-of-the-art methods, namely a 
Multi-Scale neural network architecture (Godinez et al., 2017) combined with a deep 
clustering framework (Caron et al., 2019). Our approach can accurately and robustly 
differentiate across a diverse set of phenotypes without the use of prior phenotypic 
annotation. 

Unlike other approaches in the field, we propose a fully unsupervised method which 
starts from random initialization of the networks’ weights and learns to capture and 
distinguish the various drug-induced phenotypes from the intensity values of the 
cellular images alone. Further significant improvements were obtained by introducing 
batch correction methods which utilizes plate and compound annotation to reduce 
inter-plate effects. Yet at no stage is prior knowledge of MOA required or utilized. 

We see two benefits from not using prior MOA annotation. Firstly, including MOA 
annotation in the training procedure runs the risk of reducing the space of discoverable 
MOAs to only those included in the training dataset. Secondly this inclusion is difficultly 
incorporated in a fashion enabling appropriate continuous interpretation of dose 
dependence. Indeed, drug concentration are typically either ignored (leading to MOA 
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based clusters with little or no dose gradient) or treated as individual annotations 
included in the supervised training (leading to discrete dose dependent clusters with 
little overlap between iterative doses). In Fig. 6 a TSNE visualization of the aggregated 
well embeddings of the BBBC021 subset is presented along various training epochs. 
Already in the initial untrained network (Fig. 6a) a clear separation between the 
negative control wells, in white, and some of the Mode-of-Actions, in the different 
colors, can be seen. As the training progresses (Fig. 6a to Fig. 6d), we can appreciate 
a very clear separation of the different mode of actions. 

Next the problem of batch effect was addressed. HCS datasets, like many high 
throughput biological datasets, are typically obtained from experiments with potential 
systematic and distinct noise introduced by technical heterogeneity (different 
experiment times, handlers, reagent lots, etc.). The BBBC021 dataset is no different 
and includes well annotated batches, which can be modeled using the differential 
effect observed across batches for the same treatment. In cases where such 
annotation would be lacking, considering individual plates as distinct batches would 
address the problem similarly. In our work performing such batch correction during 
training improved the results significantly. The batch correction not only increases the 
NSC for all clustering methods but also increases the silhouette score significantly, 
which implies that the overall clustering of the MOA is improved. Although, Combat or 
TVN alone could improve the NSC in all methods, the combination of both had a 
significantly higher silhouette score. Therefore, we continued our experiments with 
Combat plus TVN for batch correction. Additionally, it is important to mention that it is 
impossible to completely remove the batch effect on the dataset BBBC021 due to lack 
of sufficient coverage of identical compounds across batches. The application of a 
different batch correction methods, such as the implementation of the Wasserstein 
distance to correct for batch effect as in Tabak et al., (2019), could further improve the 
results. Regarding the dimensionality reduction, we tested PCA, t-SNE and UMAP, 
with t-SNE performing best. This would indicate the importance of local structure 
conservation rather than global structure to achieve higher performance. The relative 
underperformance of UMAP compared to t-SNE came as a surprise in this context, as 
both methods share some important characteristics, in particular local structure 
conservation. Better results might have been achieved with an exhaustive search of 
the UMAP parameter space. This was however not performed. The final optimized 
method outperformed image analysis pipeline and transfer learned methods as it 
achieves a NSC of 97% on the subset of the BBBC021. This result is very close to 
training in a supervised manner with MOA as ground truth labels. One unique aspect 
of UMM Discovery is the ability to perform training on the full BBBC021. Trained on 
the full dataset, we could show that similar phenotypes are clustering together and 
that our method is not only able to capture the MOA but also the proliferation effect. 
Additionally, we show that it can be used for Assigning MOA to novel unknown 
compound, identifying outliers and the discovery of novel MOA. 
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During the development of our 
method we tried several different 
setups. Yet still the clustering 
algorithms and their parameters, the 
dimensionality reduction methods, the 
batch correction methods and the 
hyperparameters of the neural network 
together represent an immense 
parameter space. We would like to 
mention that we did not conduct an 
exhaustive hyperparameter 
optimization. The hyperparameter that 
were used in scope of this work can be 
found in Supplementary Table 6. 

While our approach shows promising 
results, we recognize that there are 
some limitations. One of the biggest 
limitations is the training time, as for 
each epoch we first have to pass all the 
images through the neural network to create the pseudo-labels by clustering their 
embeddings, to start the training. We trained our methods on the NVIDIA Tesla P100 
with 16GB of memory and the training duration of our method on the annotated subset 
with batch correction and adjusted t-SNE as dimensionality reduction was 
approximately 23 hours. With PCA instead of t-SNE the training took approximately 
18 hours. To address this issue, we are consequently exploring the inclusion of early 
pretrained layers instead of the initial weights. This would ease the evaluation of our 
method on larger datasets such as the BBBC036, consisting of five channels and 1553 
different compounds. We have developed a fully unsupervised deep learning method 
based on two state-of-the-arts methods to cluster cellular image with similar Mode-of-
Action together using only the pixel intensity values for the images. The method 
outperformed other existing methods applied to the same dataset. It achieved an NSC 
of 97.09% on the BBBC021 subset, achieving near supervised-level accuracy. In this 
work, we show that by incorporating metadata information to correct the batch effect 
during training, the overall clustering can be improved significantly. The benefit of the 
method in comparison to supervised methods is that it is not forcing treatments 
together when they look very different, as its clusters images together only by looking 
at their intensity values.  
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