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Abstract 

The exhaustive exploration of human cell heterogeneity requires the unbiased identification of molecular 

signatures that can serve as unique cell identity cards for every cell in the body. However, the stochasticity 

associated with high-throughput single-cell RNA sequencing has made it necessary to use clustering-based 

computational approaches in which the transcriptional characterization of cell-type heterogeneity is performed 

at cell-subpopulation level rather than at full single-cell resolution. We present here Cell-ID, a clustering-free 

multivariate statistical method for the robust extraction of per-cell gene signatures from single-cell RNA-seq. 

Cell-ID allows unbiased cell identity recognition across different donors, tissues-of-origin, model organisms and 

single-cell omics protocols. Cell-ID is distributed as an open-source R software package: 

https://github.com/RausellLab/CelliD. 
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\body 

High-throughput single-cell technologies, such as single-cell RNA-seq, are currently being used for the complete 

cellular characterization of human tissues and cell types. The Human Cell Atlas project1, the NIH Human 

BioMolecular Atlas Program (HuBMAP)2 and the LifeTime3 initiative are remarkable examples of current scientific 

ambitions in this direction. One of the major goals of these studies is the identification of previously unknown 

cell types or cell states with potential physiological roles in health and disease. However, the computational 

characterization of cell heterogeneity is rendered more complex by the high dimensionality and high levels of 

technical and biological noise associated with single-cell measurements4. One common strategy for enhancing 

the signal-to-noise ratio involves the use of a low-dimensional representation of cells from which the most salient 

relative differences may emerge5. The techniques most widely used for this purpose include principal component 

analysis (PCA), independent component analysis (ICA), t-stochastic nuclear embedding (t-SNE) and uniform 

manifold approximation and projection (UMAP)6. Molecular characterization of the observed cell heterogeneity 

is then typically performed by analysing differential gene expression between the groups of cells resulting from 

clustering in low-dimensional space. However, this reliance on cell clusters results in gene signatures being 

assigned at cell subpopulation level rather than at full single-cell resolution. One of the major limitations of 

cluster-based approaches is that the gene signature analysis is bound to a certain level of resolution, at which 

the cell heterogeneity is partitioned into non-overlapping classes7. An exhaustive exploration of transcriptional 

heterogeneity requires a statistically robust per-cell gene signature assessment for each cell in a data set. No 

such approach has been described to date. 

We present here Cell-ID, a multivariate approach to extracting a gene signature for each individual cell in a study 

(Fig. 1 and Online Methods). Cell-ID is based on multiple correspondence analysis (MCA), a statistical technique 

based on singular-value decomposition (SVD) that can provide simultaneous projections of individuals (e.g. cells) 

and variables (e.g. genes) in the same low-dimensional space8–10. This represents a major advantage over 

alternative low-dimensional transformations providing only cell projections. Originally MCA applies to binary and 

fuzzy-coded data, and this has been so far an obstacle for its use on omics data. We describe here a linear scaling 

of gene expression values unlocking the use of this technique for quantitative single-cell data analysis, while 

keeping the MCA mathematical properties. By representing cells and genes on the same principal axes, analytical 

distances can be calculated not only between cells and between genes, but also between each cell and each gene 
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(Fig. 1A). In such a space, the closer a gene g is to a cell c, the more specific to such a cell it can be considered. 

Gene-to-cell distances can then be ranked for each individual cell, and the top-ranked genes may be regarded as 

a unique gene signature representing the identity card of the cell (Fig. 1A). We show here that the unbiased per-

cell gene signatures extracted by Cell-ID reproduce the gene signatures previously established for well-known 

cell types. Cell-ID signatures are, in turn, reproducible across independent datasets, despite strong batch effects, 

and can be used for cell identity tracing across different donors, model organisms, tissues-of-origin and single-

cell omics protocols.  

We first evaluated the consistency of MCA-based low-dimensional representations of cells and genes on 100 

simulated single-cell RNA-seq datasets (Supplementary Note 1). Consistency was demonstrated at three levels. 

The cell representation achieved by MCA dimensionality reduction was largely equivalent to that achieved by 

principal component analysis (PCA) on the same dataset: Spearman’s correlation coefficients, for the correlation 

between MCA and PCA coordinates, with median and standard deviation values across data sets of 1.00±0.02, 

1.00±0.02, 0.99±0.02, 0.99±0.02, and 0.99±0.02 for their first five principal axes, respectively (Supplementary 

Fig.1 and Supplementary Note 1). Second, the per-cell gene rankings provided by MCA are consistent with the 

expression values for the 50 neighbouring cells in MCA space, as reflected by their log-fold change in expression 

relative to the other cells (Supplementary Fig. 2A and 2B). Third, MCA-based per-cell gene rankings are robust 

to high levels of dropout events. Thus, genes with no expression detected in a cell may nevertheless rank highly 

for the cell concerned if more strongly expressed in the surrounding cells than in more distant cells 

(Supplementary Fig. 2A and 2B; Supplementary Note 1). Our results highlight the advantages of a multivariate 

approach in which per-cell gene assessments are implicitly weighted by their cell neighbourhood in low-

dimensional space. Such patterns would be missed if per-cell gene rankings were naively obtained either (i) from 

the log-fold changes in expression in the target cell relative to background cells (Supplementary Fig. 2C-D) or (ii) 

from highest-to-lowest expression values within a cell, with random ranks for ties, as in another published 

approach (AUCell11, SCINA12) (Supplementary Fig. 2E-F).  

We also showed that Cell-ID could extract per-cell gene signatures, recovering characteristic marker lists 

associated with well-known cell types13 (Supplementary Note 2). To this end, we used two independent sets of 

human blood mononuclear cells for which individual cells were confidently annotated with an actual cell type 

through concomitant measurements of single-cell protein marker levels: (i) cord blood mononuclear cells 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 23, 2020. ; https://doi.org/10.1101/2020.07.23.215525doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.23.215525


(CBMCs) profiled with a CITE-seq protocol14; and (ii) peripheral blood mononuclear cells (PBMCs) profiled with a 

REAP-seq protocol15. Cell-ID per-cell gene signatures were significantly enriched in the lists of markers associated 

with the corresponding cell type (Figure 2). This enrichment made it possible to recognize cell types with  high 

rates of precision (87% and 90%) and recall (84% and 73%) for both datasets (multinomial p-value < 10-16 for all 

figures), outperforming reference methods for cell-type classification on the basis of marker lists (AUCELL11 and 

SCINA12 ; Fig. 2B, Supplementary Fig. 3-4). In more challenging scenarios, Cell-ID was capable of non-disjoint 

multi-class cell-type assignments capturing smooth transitions between hematopoietic differentiation states 

from the most immature hematopoietic stem cell (HSC) to downstream myeloid  (CMP/GMP) and erythroid 

progenitors (MEP) (Fig. 2, C-D). It was consistently able to identify singleton cells, i.e. rare cell types represented 

by only one cell within a dataset (Supplementary Note 2). The capacity of Cell-ID to recover well-established cell 

types at single-cell resolution supports its use for automated cell-type annotation, even for extremely rare cells, 

without the need for clustering. 

We benchmarked the capacity of Cell-ID to match cells of analogous cell types across independent single-cell 

RNA-seq datasets from the same tissue-of-origin, within and across species (Supplementary Note 3). Cell-ID 

matching across datasets is performed by a per-cell assessment in the query dataset evaluating the replication 

of gene signatures extracted from the reference dataset. Gene signatures from the reference dataset can be 

automatically derived either from individual cells (Cell-ID(c)), or from previously-established groups of cells (Cell-

ID(g); Methods). We thus analysed independent human pancreatic islets16–18 and human and mouse airway 

epithelium datasets19,20 corresponding to multiple donors and diverse sequencing technologies (Fig. 3 and 

Supplementary Note 3). Cell-ID(c) and Cell-ID(g) consistently yielded high precision (>94% and >92%), recall ( 

>77% and >75%)  and F1 values (>88% and >87%, respectively) across all evaluated reference-to-query cell-type 

assignments (multinomial p-value < 2.2e-16; Fig. 3A and Supplementary Fig. 5). The overall performance of Cell-

ID was at least as good as that of reference methods for cell matching and label transfer21–29 (Fig. 3A, 

Supplementary Fig. 6, A-B), and salient scores were obtained for cell types observed at low frequencies (<2%): 

epsilon cells, tissue-resident macrophages, mast cells and endothelial cells from pancreatic islet samples17,18, and 

PNEC, brush cells and ionocytes in mouse and human airway epithelium datasets19,20 (Fig. 3B, Supplementary 

Fig. 6, C-D). We further probed the capacity of this tool at individual cell resolution, by extracting Cell-ID 

signatures from 13 Schwann cells described in a dataset of 8,629 human pancreatic cells16. With these signatures, 
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we were able to recognize four and two prototypic Schwann cells that had previously gone unnoticed within two 

independent sets of 2126 and 2261 human pancreatic cells, respectively, obtained from different donors and 

with different sequencing protocols17,18 (Supplementary Figure 7). 

We then assessed the ability of Cell-ID to recognize rare cells from the same cell type across different tissues, 

and, thus, within diverse cell composition contexts (Supplementary Note 4). Thus, based on the unbiased gene 

signatures obtained from airway epithelium cells19, Cell-ID was able to identify brush/tuft cells, endocrine cells 

and goblet cells in the intestinal epithelium30 with high precision (92%), recall (73%) and F1 scores (81%), 

outperforming reference methods for cell matching (multinomial p-value < 2.2e-16 for all figures; Fig. 3 C-D, 

Supplementary Fig. 8). From a discovery perspective, we used Cell-ID to perform cell-type scanning of two 

independent olfactory epithelium datasets 31 32 against brush/tuft signatures from the airway and the intestinal 

epithelium, which enabled us to identify putative rare solitary chemosensory cells (SCCs), a type of chemosensory 

cells closely related to brush/tuft cells, that had remained unclassified in the original publications. (Fig. 3 E-F, 

Supplementary Fig. 9). Thus, a total of 37 (<0.5%) and 5 (<0.6%) olfactory epithelium cells were found to display 

significant enrichment in airway and intestinal brush/tuft signatures (BH corrected p value< 10e-20), with a 

median of 29%±0.5 and 23%±0.4 of genes, respectively, in common. These cells displayed high levels of 

expression for the characteristic SCC marker genes Il25 and Gnat3, and their Cell-ID gene signatures were 

significantly enriched in cysteinyl leukotriene biosynthesis genes, as reported by Ualiyeva et al33 for SCCs 

(Supplementary Table 1). Our findings confirm, at single-cell resolution, the recently reported transcriptional 

and functional similarity between rare olfactory SCCs and brush/tuft cells from the airways and intestinal 

epithelia33,34 (Supplementary Note 4). 

Finally, we assessed the reproducibility of Cell-ID gene signatures across datasets profiled with different single-

cell omics technologies: single-cell RNA-seq from the Tabula Muris mouse cell atlas35 and single-cell ATAC-seq 

from the Mouse ATAC Atlas36 (Supplementary Note 5).  We benchmarked large-scale cell-type label transfer 

between the two expert-annotated atlases, collectively including 50 cell types from the eight tissues common to 

both: heart, kidney, liver, lung, bone marrow, spleen, thymus and large intestine (Fig4. A-B, Supplementary Fig. 

10). Both Cell-ID(c) and Cell-ID(g) matched cell types across scRNA-seq and sciATAC-seq datasets with high F1 

scores and, together with SingleR28, outperformed all the other reference methods evaluated (Fig4. C-D, 

Supplementary Fig 11, Supplementary Figure 12). The capacity of Cell-ID to extract gene signatures that are 
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robustly replicated across different single-cell omics technologies, in an automated manner, and its 

computational scalability (Supplementary Note 6) pave the way for the systematic multi-omics scanning of rare 

cell types across tissues and whole organisms.  

Throughout this study, we found that Cell-ID was able to extract unbiased per-cell gene signatures from single-

cell RNA-seq experiments that could then be used as unique cell identity cards without the need for prior 

knowledge. Cell-ID signatures were consistently reproducible, across diverse benchmarks collectively involving 

14 independent single-cell datasets, 13 organs / tissues, more than 50 cell types, more than 200000 cells, 2 model 

organisms, 6 sequencing protocols and 2 single-cell -omics technologies. Such signatures made it possible to 

recognize cell identities across datasets from the same or different tissues of origin and model organisms, while 

overcoming batch effects arising from the use of different donors and sequencing technologies. In particular, the 

automatic cell-type annotations and matching across sets provided by Cell-ID were fully transparent with respect 

to the genes driving the hits. Such transparency improves biological interpretation at the individual cell level 

(Supplementary Note 7), making it possible to discover bona fide rare cells, as illustrated by the identification of 

Schwann cells and solitary chemosensory cells previously overlooked in published datasets (Supplementary Note 

3 and 4). This contrasts strongly with the capabilities of the other methods currently available, which are based 

on assessments of similarity over the entire transcriptome21, cell embedding22,29, or machine-learning 

approach23,24,26,27, in which the contributions of individual genes are difficult to interpret. 

Cell-ID is computationally efficient, can be scaled up for use with large datasets and allows many-to-many dataset 

comparisons without the need for data integration steps (Supplementary Note 6). It can, thus, be used for the 

systematic screening of each individual cell in newly sequenced datasets against (a) reference databases of 

marker lists associated with well-established cell types (e.g. PanglaoDB37, CellMarkers38), (b) reference single-cell 

atlas databases with manually curated cell-type annotations (Tabula Muris35, mouse ATAC atlas36, human cell 

atlas1), and (c) molecular signature collections, functional ontologies and pathway databases (e.g. MSigDB39, 

GO40, Reactome41, KEGG42, Wikipathways43). The automatic single-cell annotations provided by Cell-ID will 

alleviate the need for the often-tedious visual inspection of prototypic marker levels based on expert knowledge. 

From a discovery perspective, the identification of individual cells presenting distinctive and reproducible gene 

signatures consistent with the phenotypes studied would constitute a first step towards the in-depth 

experimental characterization of putative novel human cell types or cell states in health and disease. Cell-ID is 
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implemented as an open-source R software package including detailed tutorials and scripts to reproduce all the 

analyses and figures presented in this manuscript (Supplementary Software and 

https://github.com/RausellLab/CelliD).  
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Figures 
 

 
 
 
Figure 1. Overview of the Cell-ID approach. (A) Cell-ID performs a dimensionality reduction of the 
gene expression matrix through multiple correspondence analysis (MCA), where both cells and genes 
are projected in a common orthogonal space. In such space, the closer a gene is to a cell the more 
specific it is to it. Thus, a gene ranking is obtained for each cell in a dataset based on their distance in 
the MCA space. The top-ranked genes for a given cell define its gene signature, which can be regarded 
as a unique cell identity card. Per-cell gene signatures can be independently extracted for a collection 
of single-cell datasets for downstream analyses. (B) Per-cell gene signatures from a dataset can be 
evaluated for their enrichment against (i) collections of pre-established cell type markers, in order to 
perform automatic cell type annotation, (ii) per-cell gene signatures from independent single-cell 
datasets, allowing cell matching and label transferring, and (iii) gene sets representing biological 
functions or molecular pathways, allowing functional annotation and interpretation of cell states.  
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Figure 2. Cell-ID cell type prediction of human cord blood mononuclear cells using pre-established marker lists. 
(A) UMAP representation of 8005 cord blood mononuclear cells profiled by CITE-seq3. Dots representing cells are 
colored according to Cell-ID cell type predictions using pre-established immune cell signatures, as indicated by 
the labels in the figure. (B) Performance measured through the F1 score achieved by Cell-ID, AUCell and SCINA 
cell type predictions for each of the blood cell types reported in the original publication3. Boxplots summarize 
the F1 scores for each method. The numbers above boxplots denote the global performance (macro F1 score, 
upper digits) and its standard deviation (lower digits), where the maximum and minimum values across methods 
are colored in black and grey, respectively. (C) Zoomed UMAP representation on Erythrocytes and CD34+ cells 
showing that the Cell-ID multi-class cell assignments capture transient cell states consistent with the cell-type 
hierarchy associated with immature hematopoietic stem cell differentiation. Cells are color-coded according to 
the -log10 enrichment p-value obtained by Cell-ID in tests of the association of their gene signature with the cell-
type signatures associated to their pre-cursor cell types: HSC, MPP, CMP, GMP, MEP and erythrocytes . The color 
scale for cells extends from white (p value=1) to dark red (p value = 1e-10), with p-values<1e-10 fixed at this 
value). D) Heatmap representing, for each individual cell (displayed in columns), the -log10 transformed p-value 
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obtained by Cell-ID in tests of the association of the gene signature with each of the evaluated pre-established 
marker lists, representing a total of 21 blood cell types (displayed in rows). The color code of the heatmap extends 
from dark blue (p value=1) to yellow (p value = 10-2) to dark red (p value = 10-10), with p values<10-10 fixed at this 
value). Non-significant associations (p value>10-2 after Benjamini Hochberg correction for the number of gene 
signatures tested) are shown in blue. The columns in the heatmaps were grouped by the reference cell-type 
label, as indicated by the colored bands at the top and in the associated legend. CD34: CD34+ hematopoietic 
stem cells; Eryth: Erythrocytes; Mk: Megakaryocytes, B: B cells, CD4 T: CD4+ T cells, CD8: CD8+ T cells, CD14: 
CD14+ monocytes, CD16 Mono: CD16+ monocytes, NK: natural killer cells, DC: denderitic cells, pDC: plasmacytoid 
dendritic cell, HSC: hematopoietic stem cells, MPP: muti-potent-progenitor, CMP: common-myeloid- 
progenitors, GMP: granulocyte-monocyte-progenitor, MEP: megakryocyte-erythrocyte-progenitor. 
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Figure 3. Performance of Cell-ID cell-to-cell matching across independent scRNA-seq datasets from the same 
or different tissue of origin, within and across species. (A and B) Performance measured through the F1 score 
(y-axis) achieved by Cell-ID(g), Cell-ID(c) and 10 alternative state-of-the-art methods (x-axis), covering the major 
approaches for cell-matching or label transfer across scRNA-seq datasets (Supplementary Table 9). (A) The 
performance for each method is represented for each of the label transferring evaluated (as schematically 
represented in the top left panels), corresponding to cell-to-cell matching across datasets from pancreatic islets 
cells (red squares and red diamonds), and across datasets from airway epithelium (blue triangles). Boxplots 
summarize the global performance (macro F1 scores) for each method. (B) The performance for each method is 
represented for each of the rare cell types reported in the original publications associated to the pancreatic islets 
cells (squares and diamonds) and airway epithelium datasets (blue triangles) evaluated in (A). Rare cell types are 
represented following the color palette indicated in the legend and representing epsilon, macrophages, mast, 
and endothelial cells (pancreatic cells), and ionocytes, brush/tuft, and PNEC (airway epithelium. A cell type label 
gathering together brush and PNEC cells was used for consistency with the labelling provided in the human 
sample from Plasschaert et. al. (C) t-SNE representation of 7216 cells from mouse small intestinal epithelium 29. 
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Dots representing cells are colored according to Cell-ID(g) cell type predictions, using as a reference the mouse 
airway epithelial gene signatures extracted from Plasschaert et al, as schematically represented in the panels 
above. Intestinal epithelium cell types with significant enrichment p-values are colored in green (goblet), 
brush/tuft (light blue) and dark blue (endocrine). Cells with significant enrichments in airway epithelial signatures 
without an analogous cell type in intestinal epithelium are represented in black. Intestinal epithelium cells with 
no significant enrichments were left unassigned and are displayed in grey. For comparison, the associated manual 
cell type annotations provided in 29 are represented in Supplementary Figure 10 A. (D) F1 score (y-axis) achieved 
by Cell-ID(g), Cell-ID(c) and 10 alternative state-of-the-art methods (x-axis), for the label transferring depicted in 
h. (E) UMAP representation of 9126 mouse olfactory epithelium cells from 30. Dots representing cells are colored 
according to Cell-ID(g) cell type predictions using as a reference the mouse brush/tuft gene signatures extracted 
from (i) mouse airway epithelium, and (ii) mouse small intestinal epithelium, as schematically represented in the 
panels above. The 37 cells significantly enriched with airway Brush/Tuft gene signatures are highlighted in blue 
and were interpreted as putative SCCs. Identical results were obtained when using intestinal Brush/Tuft gene 
signatures. (F) Violin plots corresponding to the distribution of -log10 enrichment p-values (y-axis) across the 37 
cells identified in (E) (black dots) are represented for 5 significant functional terms (x-axis). GO-0019370: Gene 
Ontology term “leukotriene biosynthetic process”; GO-0097400: Gene Ontology term “interleukin-17-mediated 
signalling pathway”; WP318: WikiPathways term “Eicosanoid Synthesis”; KEGG-hsa04725: KEGG term 
“Cholinergic synapse”; R-HSA-112315: Reactome term “Transmission across Chemical Synapses”. 
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Figure 4. Performance of Cell-ID cell-to-cell matching across independent datasets from different single-cell 
omics technologies: scRNAseq and scATACseq 
(A) t-SNE representation of 25332 cells from 7 organs profiled with scRNAseq 10X genomics from the Tabula 
Muris mouse cell atlas. Cells are colored according to the manually annotated cell types provided by the atlas, 
regrouped by the categories represented in the legend in (B) and described in Supplementary Table 10. (B) t-
SNE representation of 50284 cells from 7 organs profiled with scATAC-seq from the Mouse ATAC atlas. Cells are 
colored according to the Cell-ID(g) predictions using the group gene signatures extracted from (A), as 
represented in the legend. (C) Heatmap representing the confusion matrix between the manually curated cell 
type annotations from the Mouse ATAC atlas (displayed per rows) and the Cell-ID(g) cell type predictions 
(displayed per columns) using the gene-signatures extracted from the manually annotated cell types provided by 
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the Tabula Muris mouse cell atlas. The color code in the heatmap represents the ratio r of the cell types displayed 
per rows that are allocated in the cell types represented per columns, ranging from white (r = 0) to red (r =1). (D) 
Global performance measured through the macro F1 score (y-axis) achieved by Cell-ID(g), Cell-ID(c) and 10 
alternative state-of-the-art methods (x-axis) on the label transferring from the scRNA-seq to the scATAC-seq 
mouse cell atlas. DCT/CD: Distal convoluted tubule/ collecting duct, endo: endothelial, mono: monocytes.  
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Online methods 
Data availability 

All single-cell data sets used in this paper are publicly available (Supplementary Table 2). scRNA-seq datasets for 

human blood cells profiled by Cite Seq1 and Reap Seq2 were downloaded from the gene expression omnibus 

(GEO; accession numbers GSE100866 and GSE100501, respectively). Cell-type labels for these two datasets were 

obtained following the Multimodal Analysis vignette of the Seurat3 R package 

(https://satijalab.org/seurat/multimodal_vignette.html). Pancreas scRNA-seq datasets from Baron4, Muraro5, 

and Segerstolpe6, as well as their associated cell-type annotations were downloaded via the scRNAseq7 R package 

as a SingleCellExperiment format R object. Plasschaert8 mouse and human and Montoro9 mouse airway 

epithelium scRNA-seq datasets, and their annotations were downloaded from GEO (GSE102580, GSE103354). 

Haber10 intestinal epithelium scRNA-seq dataset was downloaded from GEO accession code GSE92332. Olfactory 

epithelium scRNA-seq datasets from  Fletcher11 and Wu12were downloaded from GEO (GSE95601, GSE120199), 

and their cell type annotations were obtained from the associated Github repositories: 

https://github.com/rufletch/p63-HBC-diff and https://www.stowers.org/research/publications/odr for 

Fletcher11 and Wu12, respectively. Tabula Muris13 10X and Smart-seq mouse scRNAseq datasets were 

downloaded from https://tabula-muris.ds.czbiohub.org/.  Gene activity score matrices from the Mouse sci-ATAC-

seq atlas datasets from Cusanovich14 were obtained from http://atlas.gs.washington.edu/mouse-atac/data/, as 

provided by the authors and resulting from the aggregation of information across all differentially accessible 

chromatin sites linked to a target gene. 

Preprocessing and normalization of single-cell datasets 

All single-cell RNA-seq datasets analyzed in the study took as input the raw count gene expression matrices 

provided by the original sources. Library size normalization was carried out by rescaling counts to a common 

library size of 10000. Log transformation was performed after adding a pseudo-count of 1. All analyses 

throughout the manuscript were restricted to a background set of 19308 and 21914 protein-coding genes from 

human and mouse, respectively, obtained from BioMart Ensembl release 100, version April 2020 (GrCH38.p13 

for human, and GRCm38.p6 for mouse15,16). Genes expressing at least one count in less than 5 cells were 

removed. No filtering of cells was done unless the original sources provided “doublet” or contamination 
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annotations, which were in such cased filtered out. In the case of sci-ATAC gene activity score matrices, the same 

preprocessing as for scRNA-seq data was applied. 

Overview of the Cell-ID approach.  

The main steps of the Cell-ID workflow are schematized in Figure 1. First, the library size normalized and log-

transformed count matrix is transformed into a fuzzy coded indicator matrix where expression values are 

represented in a continuous scale between 0 and 1. Second, Cell-ID performs a dimensionality reduction of the 

indicator matrix using Multiple Correspondence Analysis where both cells and genes are represented into the 

same vector space17. Third, per-cell gene rankings are calculated from the gene-to-cell distances in MCA space, 

where the top closest genes to a cell will define its gene signature. If a grouping of cells is provided, per-group 

gene rankings may be obtained in an analogous way by using the geometric centroid in MCA space of the cells 

belonging to a given group. The enrichment of per-cell and/or per-group gene signatures is then evaluated 

through hypergeometric tests against (i) reference marker gene lists, and/or (ii) per-cell and/or per-group gene 

signatures extracted through Cell-ID from reference single-cell datasets. Per-cell and per-group gene signatures 

represent thus identity cards allowing automatic cell type and functional annotation, as well as cell matching 

across datasets. Each of these steps is described in detail in the following sections: 

Multiple Correspondence Analysis of the gene expression matrix 

Multiple Correspondence Analysis (MCA) is a multivariate descriptive statistical technique conceptually 

equivalent to Principal Component Analysis for qualitative/binary data18,19. MCA can be applied to quantitative 

data through an intermediate step of a so-called fuzzy coding, Here, each continuous variable p is coded through 

user-defined functions into a number of disjoint categories Qp where membership x to each category q is 

represented in a continuous scale between 0 and 1, and ∑ 𝑥𝑥𝑗𝑗 = 1𝑄𝑄𝑝𝑝
𝑗𝑗=1 . Following (Aşan and Greenacre, 2011), 

fuzzy-coding of a cases-by-variables matrix of continuous data can be performed in its simplest form by doubling 

each variable into Qp = 2 categories as follows: Let MN,P be the gene expression matrix of N cells (i.e. cases) and 

P genes (i.e. variables), with general term mnp gathering the expression level of gene p in cell n. For each column 

vector Mp in M, two membership functions 𝑥𝑥+ = 𝑓𝑓+(𝑚𝑚):ℜ → ℜ: [0,1] and 𝑥𝑥− = 𝑓𝑓−(𝑚𝑚):ℜ → ℜ: [0,1], where 

𝑓𝑓−(𝑚𝑚) = 1 − 𝑓𝑓+(𝑚𝑚), can be defined by linearly scaling between 0 and 1 the expression values for each gene 

across all cells as follows:  
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𝑥𝑥+𝑛𝑛𝑛𝑛 = 𝑚𝑚𝑛𝑛𝑝𝑝−min�𝑀𝑀𝑝𝑝�
max�𝑀𝑀𝑝𝑝�−min�𝑀𝑀𝑝𝑝�

   ;    𝑥𝑥−𝑛𝑛𝑛𝑛 = 1 − 𝑥𝑥+𝑛𝑛𝑛𝑛 ; 

 

From such functions, a fuzzy-coded indicator matrix XN,K can be built, representing a total of K=2P categories : 

𝑋𝑋𝑁𝑁,𝐾𝐾 = �

𝑥𝑥11+ 𝑥𝑥11− … 𝑥𝑥1𝑃𝑃+ 𝑥𝑥1𝑃𝑃−

𝑥𝑥21+ 𝑥𝑥21− … 𝑥𝑥2𝑃𝑃+ 𝑥𝑥2𝑃𝑃−
⋮ ⋮ ⋱ ⋮ ⋮
𝑥𝑥𝑁𝑁1+ 𝑥𝑥𝑁𝑁1− … 𝑥𝑥𝑁𝑁𝑃𝑃+ 𝑥𝑥𝑁𝑁𝑃𝑃−

 � 

The grand total of XN,K is thus N*P, since each of the N cells has P sets of fuzzy coded-values, each adding up to 

1. The Multiple Correspondence Analysis (MCA) of a fuzzy-coded indicator matrix follows that of a regular MCA20. 

From the matrix XN,K, a matrix of relative frequencies FN,K is defined as : 

𝐹𝐹𝑁𝑁,𝐾𝐾 =  
1
𝑁𝑁𝑁𝑁

𝑋𝑋 

From the row sums and column sums of F, two diagonal matrices Dr and Dc are build, respectively, with general 

terms  

𝑑𝑑𝑟𝑟𝑛𝑛,𝑛𝑛 =  ∑ 𝑓𝑓𝑛𝑛𝑛𝑛𝐾𝐾
𝑛𝑛=1    ;  𝑑𝑑𝑐𝑐𝑘𝑘,𝑘𝑘 =  ∑ 𝑓𝑓𝑛𝑛𝑛𝑛𝑁𝑁

𝑛𝑛=1 . 

Let SNK be the matrix of standardized relative frequencies resulting from  

𝑆𝑆 =  𝐷𝐷𝑟𝑟
−1/2 𝐹𝐹 𝐷𝐷𝑐𝑐

−1/2 

The singular-value decomposition (SVD) of the matrix SNK leads to  

𝑆𝑆 =  𝑈𝑈 𝐷𝐷𝛼𝛼𝑉𝑉𝑇𝑇 

Where U and V contain by columns the singular vectors of norm 1 (UTU=1 ; VTV=1), and 𝐷𝐷𝛼𝛼 is a diagnonal matrix 

of singular values ∝𝑖𝑖, which are positive and displayed in descending order: ∝1 ≥  ∝2 ≥  … > 0. Alternatively, U 

and V can be obtained as the matrices displaying by columns the eigen vectors of norm 1 of the product SST and 

STS, respectively, with eigen values 𝜆𝜆𝑖𝑖, where 𝛼𝛼𝑖𝑖 = 𝜆𝜆𝑖𝑖
1/2 . Thus, 

𝑆𝑆𝑆𝑆𝑇𝑇𝑈𝑈 =  𝑈𝑈 𝐷𝐷𝜆𝜆  ;  𝑆𝑆𝑇𝑇𝑆𝑆 𝑉𝑉 =  𝑉𝑉 𝐷𝐷𝜆𝜆  ;  𝑈𝑈𝑇𝑇𝑈𝑈 = 1  ;  𝑉𝑉𝑇𝑇𝑉𝑉 = 1 

Alternatively, V can be calculated from U with the transition formula: 

𝑉𝑉 =  𝑆𝑆𝑇𝑇𝑈𝑈 𝐷𝐷𝛼𝛼−1 = 𝑆𝑆𝑇𝑇𝑈𝑈 𝐷𝐷𝜆𝜆
−1/2 
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In the previous expressions, the first vectors 𝑢𝑢�⃗ 1 and �⃗�𝑣1 are associated with the trivial solution 𝛼𝛼1 = 𝜆𝜆1 = 1; and 

are thus removed from the analysis at this stage. After eliminating the trivial solution, the sum of all the 

eigenvalues 𝜆𝜆𝑖𝑖  from SS’ (so-called total Inertia in MCA terminology) equals the Chi-squared statistic 𝜒𝜒2of the 

indicator matrix XN,K divided by N. Thus, the orthogonal vectoral space generated by the eigenvectors of SS’ can 

be viewed as a decomposition of the Chi-squared statistic 𝜒𝜒2in its independent sources of variation, each 

accounting for a fraction given by 𝜆𝜆𝑖𝑖 ∑ 𝜆𝜆𝑖𝑖𝐼𝐼
𝑖𝑖=1⁄ . At this stage, further dimensionality reduction can be performed 

by retaining the first 𝐽𝐽 eigen vectors as the most informative components, while disregarding the rest of 

dimensions from downstream analysis. Here we established 𝐽𝐽 = 50 as the default parameter throughout all the 

analyses performed. 

The orthogonal dimensions given by the eigenvectors U and V allow to simultaneous represent both rows (i.e. 

cells) and columns (i.e. gene categories) in S into the same orthogonal vectoral space, where coordinates are 

obtained as follows21:  

Row coordinates: Φ =  𝐷𝐷𝑟𝑟
−1/2 𝑈𝑈 =  𝐷𝐷𝑟𝑟

−1/2 𝑆𝑆 𝑉𝑉𝐷𝐷𝛼𝛼−1 

Column coordinates: G =  𝐷𝐷𝑐𝑐
−1/2𝑆𝑆𝑇𝑇  𝑈𝑈 =  𝐷𝐷𝑐𝑐

−1/2𝑉𝑉 𝐷𝐷𝛼𝛼 

 

The previous expressions correspond to so-called standard and principal coordinates for rows and columns, 

respectively, in MCA terminology21. The simultaneous representation of cells and genes into the same vector 

space is a main advantage of MCA as compared to alternative dimensionality reduction techniques such as PCA, 

where only cells are projected.  

 

Gene-to-cell distances in MCA space and per-cell and per-group gene signature extraction 

In the vectoral space provided by MCA, a barycentric relationship is fulfilled between the rows and the column 

coordinates: the general term 𝑔𝑔𝑛𝑛𝑗𝑗  of G representing the coordinate of a column k in the dimension represented 

by the eigenvector 𝑢𝑢�⃗ 𝑗𝑗 of U, corresponds to the weighted average (centroid) of the N row coordinates 𝜙𝜙𝑛𝑛𝑗𝑗 from 

Φ, where weights are given by 𝑥𝑥𝑛𝑛𝑛𝑛 ∑ 𝑥𝑥𝑛𝑛𝑛𝑛𝑁𝑁
𝑛𝑛=1⁄  , i.e. the frequency conditioned by columns of the corresponding 

values in the fuzzy indicator matrix 𝑋𝑋𝑁𝑁,𝐾𝐾: 
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𝑔𝑔𝑛𝑛𝑗𝑗 =
1

∑ 𝑥𝑥𝑛𝑛𝑛𝑛𝑁𝑁
𝑛𝑛=1

�𝑥𝑥𝑛𝑛𝑛𝑛 ∗ 𝜙𝜙𝑛𝑛𝑗𝑗

𝑁𝑁

𝑛𝑛=1

 

Thus, in MCA space the closer a column (i.e. gene category) is to a row (i.e. gene), the more specific it is to it. In 

addition, each set of Qp = 2 categories for each gene p is centered at the origin: i.e. �⃗�𝑔𝑛𝑛+ + �⃗�𝑔𝑛𝑛− = 0�⃗ . At this stage, 

only gene category coordinates �⃗�𝑔𝑛𝑛+ , conveying presence of gene expression relative to the maximum per gene, 

are retained for downstream analysis. From the previous expressions, the Euclidean distances 𝑑𝑑𝑛𝑛𝑛𝑛(𝜙𝜙�⃗ 𝑛𝑛, �⃗�𝑔𝑛𝑛+) can 

be computed for each cell n and each gene p in the dataset. The genes 𝑔𝑔𝑛𝑛 constituting the signature Γ𝑛𝑛 associated 

to a cell n are obtained from its top 𝛾𝛾 closest genes in MCA space: 

Γ𝑛𝑛 = �𝑔𝑔𝑛𝑛 | ∀𝑝𝑝: rank
𝑛𝑛
�𝑑𝑑𝑛𝑛𝑛𝑛(𝜙𝜙�⃗ 𝑛𝑛, �⃗�𝑔𝑛𝑛+� ≤ 𝛾𝛾)� 

 

A default value of 𝛾𝛾 = 200 was established throughout this work and ties resolved with random ranks. More 

generally, the genes 𝑔𝑔𝑛𝑛 constituting the signature ΓΘ associated to a group of cells Θ can be obtained from the 

Euclidean distances 𝑑𝑑𝑛𝑛(𝜙𝜙�⃗ 𝜃𝜃, �⃗�𝑔𝑛𝑛+) between each gene p and the group centroid 𝜙𝜙�⃗ 𝜃𝜃, obtained from the geometric 

center of the 𝜙𝜙�⃗ 𝑛𝑛 vectors associated to the cells 𝑛𝑛 ∈ Θ.  

ΓΘ = �𝑔𝑔𝑛𝑛 | ∀𝑝𝑝: rank
𝑛𝑛
�𝑑𝑑𝑛𝑛𝑛𝑛(𝜙𝜙�⃗ 𝜃𝜃, �⃗�𝑔𝑛𝑛+� ≤ 𝛾𝛾)� 

We note however that Cell-ID does not perform or relies in any clustering step whatsoever. Notwithstanding, 

cell grouping information may optionally be used here as input, as provided by a external reference source (e.g. 

database or publication).  

Per-cell gene signature enrichment analyses against reference gene sets 

The gene signatures Γ𝑛𝑛 extracted for each cell n in a dataset can be assessed through their enrichment against 

reference gene set (e.g. a marker gene list) associated to well characterized cell types and/or functional terms. 

Cell-ID evaluates such enrichment through a hypergeometric test as follows: Let 𝑁𝑁 be the set of genes retained 

in the gene expression matrix MN,P previously defined, after the initial steps of cell and gene filtering described 

above. Let 𝑊𝑊 be the set of genes within a reference gene set which are contained on P (𝑊𝑊 ⊂ 𝑁𝑁). Let w be the 

number of genes overlapping between the signature Γ𝑛𝑛 of size 𝛾𝛾 and the gene set W:  
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w = |Γ𝑛𝑛 ∩𝑊𝑊| 

The observed overlap w can be modelled as a random variable X distributed hypergeometrically, with probability 

mass function given by: 

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝒏𝒏 𝑾𝑾 (𝑿𝑿 = w)  =
�𝑾𝑾𝒘𝒘� �

𝑷𝑷−𝑾𝑾
𝜸𝜸−𝒘𝒘�

�𝑷𝑷𝜸𝜸�
 

Only reference gene sets of size 𝑊𝑊 ≥ 10 were considered throughout this work. When the gene signature Γ𝑛𝑛 of 

a cell n in a dataset D is evaluated against a collection of reference gene sets 𝑊𝑊1,𝑊𝑊2, …𝑊𝑊Ω, (e.g. a repository of 

cell-type marker lists or a pathway database), the above hypergeometric test p-values are corrected by multiple 

testing for the number of gene sets Ω evaluated. Thus, a cell n is considered as enriched in those gene sets for 

which the hypergeometric test p-value is <1e-02, after Benjamini Hochberg multiple22 correction. In addition, 

when a disjointed classification is required, a cell n may be assigned to the gene set 𝑊𝑊ω with the lowest significant 

corrected p-value. On the contrary, if no significant hits are found, a cell n will remain unassigned.  

Per-cell gene signature enrichment analyses against per-cell and per-group gene-signatures extracted from 

reference single-cell datasets. 

The gene signatures Γ𝑛𝑛 extracted for each cell n in a dataset D can be assessed through their enrichment against 

the gene signatures Γ′𝑛𝑛 extracted for each cell n’ in a reference dataset D’, an approached called here Cell-ID(c). 

Analogous to the previous section, Cell-ID(c) evaluates such enrichment through a hypergeometric test as 

follows: Let 𝑁𝑁 be the set of genes retained in the gene expression matrix MN,P associated to dataset D as 

previously defined. Let Γ′𝑛𝑛′|𝑃𝑃  be the set of genes of size W’ within a per-cell gene signature Γ′𝑛𝑛 extracted for a 

cell n’ in the dataset D’, which are contained on P, i.e.: Γ′𝑛𝑛′|𝑃𝑃 = Γ′𝑛𝑛′ ∩ 𝑁𝑁 .  

Let w be the number of genes overlapping between the signature Γ𝑛𝑛 of size 𝛾𝛾 and the gene set P:  

w' = |Γ𝑛𝑛 ∩ Γ′𝑛𝑛′|𝑃𝑃| 

The observed overlap w’ between two per-cell gene signatures can be modelled as a random variable X 

distributed hypergeometrically, with probability mass function given by: 

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝒏𝒏 𝒏𝒏′ (𝑿𝑿 = 𝑤𝑤′)  =
�𝑾𝑾′
𝒘𝒘′� �

𝑷𝑷−𝑾𝑾′
𝜸𝜸−𝒘𝒘′�

�𝑷𝑷𝜸𝜸�
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 23, 2020. ; https://doi.org/10.1101/2020.07.23.215525doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.23.215525


For each cell n in a dataset D, the above hypergeometric test p-values are corrected by multiple testing for the 

number of cells N’ in the reference dataset D’ against which it is evaluated. Thus, a cell n in D is considered as 

enriched in those signatures n’ in D for which the hypergeometric test p-value is <1e-02, after Benjamini 

Hochberg correction on the number n’ of tested gene signatures. In addition, when a disjointed classification is 

required, a cell n may be assigned to the cell n’ in D’ with the lowest significant corrected p-value. Best hits can 

be used for cell-to-cell matching and label transferring across datasets. On the contrary, if no significant hits are 

found, a cell n will remain unassigned. 

Alternatively, if a grouping Θ1′ ,Θ2′ , …Θ𝜃𝜃′    of the N’ cells in D’ is provided, the gene signatures Γ𝑛𝑛 for each cell n in 

a dataset D can be assessed through their enrichment against the corresponding per-group gene signatures  

ΓΘ1
′ ,ΓΘ2

′ , … ΓΘ𝜃𝜃
′  extracted from D’ as described above. We call this approach Cell-ID(g). Here, a cell n in D is 

considered as enriched in those cell groups Θ𝜗𝜗′  from D’ for which the hypergeometric test p-value is <1e-02, after 

Benjamini Hochberg correction for the number of groups evaluated. In addition, when a disjointed classification 

is required, a cell n may be assigned to the group Θ𝜗𝜗′  in D’ with the lowest significant corrected p-value. Best hits 

can be used for cell-to-group matching and group-based label transferring across datasets. On the contrary, if no 

significant hits are found, a cell n will remain unassigned. Cell-ID(g) can handle both disjoint and non-disjoint cell 

groupings (i.e. overlapping groups), as well as complete or non-complete groupings (i.e. when not all cells in D’ 

have been assigned to a group). 

Simulated datasets 

Simulated scRNA-seq datasets were obtained with the Splatter23 Bioconductor package (version 1.4.1; 

https://bioconductor.org/packages/release/bioc/html/splatter.html). For the generation of structured datasets, 

each simulation was set to originate from five underlying subpopulations with relative sizes of 30%, 25%, 20%, 

15% and 10% cells, respectively. No clustering or cluster labels were used in any way for the purpose of the 

analysis. Splatter’s logistic function, modeling the probability of a gene having zero counts, was defined by a 

midpoint parameter x0 = 3 counts, to obtain a simulated dataset with about 60% ~ 70% of the count matrix 

content equal to zero after default normalization and filtering, a dropout rate consistent with those observed on 

other datasets used in this manuscript. Default values were used for all the other parameters. Centered and 

scaled principal component analysis (PCA) was performed with the base R prcomp function.  
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Comparative benchmark of approaches performing marker-based cell type annotation  

In the comparative benchmark assessing the method’s capacity to classify cells using pre-established gene 

signatures, two alternative semi-supervised classifiers were used: SCINA24 and AUCell25 (Supplementary Table 

3). Cell-ID predictions were based on a reference collection of blood cell markers from the XCell repository 26 

(Supplementary Table 4). Only cell types of the hematopoietic lineage supported by more than three bulk 

RNAseq samples in XCell were considered: hematopoietic stem cells (HSC), multipotent progenitors (MPP), B 

cells, CD4+ T cells, CD8+ T cells, natural killer (NK) cells, plasmacytoid dendritic cells (pDC), common myeloid 

progenitors (CMP), granulocyte myeloid progenitors (GMP), megakaryocyte and erythrocyte progenitors (MEP), 

erythrocytes, megakaryocytes, platelets, basophils, eosinophils, neutrophils, CD14+ monocytes, CD16+ 

monocytes, macrophages, dendritic c(DC), conventional dendritic cells (cDC). For each cell type, the marker list 

used included genes replicated in at least 20% of the reported sources. Raw count matrices were used as input 

for AUCell and log-transformed normalized matrices were used for SCINA, following their associated vignettes. 

SCINA was run with default parameters except for i) the maximum number of iterations and the convergence 

rate, which were increased to 20 and 0.999 respectively to ensure a stable results, and ii) the rejection parameter, 

which was set to true to enable cells to be labelled as unassigned when there is a low confidence on the cell type 

prediction. For AUCell, the gene set with the highest AUC score was used to classify cells unless the maximum 

AUC score was <0.1, what left a cell as ‘unassigned’.  

Comparative benchmark of approaches performing cell-type label-transferring across datasets 

In addition to Cell-ID, we evaluated 10 alternative approaches for cell-type label-transferring across scRNA-seq 

(Supplementary Table 3). All methods were run using default parameters unless otherwise stated. When default 

settings were not explicitly defined, setting used in the associated vignettes were followed. Methods used as 

input either the raw or the normalized count data (after gene filtering as described above), following each 

method’s documentation. For those methods that stipulate it, gene expression matrices were further restricted 

to genes in common between the reference and the query datasets. In the case of MNN27, we transferred labels 

from the reference to the query datasets between closest mutual nearest neighbor cells, and cells were left 

unassigned when no mutual nearest neighbor cells were found. We modified the default parameter of k nearest 

neighbor of MNN to k = 50 as the default k = 20 failed to find mutual nearest neighbor matches for a large fraction 

of cells, which negatively affected the benchmark metrics evaluated. Furthermore, for the selection of 
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hypervariable genes in MNN, we used the default Seurat function for highly variable gene detection (2000 genes), 

and we took the intersection between the reference and the query highly variable genes to perform the query 

and reference dataset integration following the package’s vignette. In the case of SCN28, all cells that were 

classified as rand were considered as unassigned, as well as all cells classified as “nodes” in CHETAH29. For Seurat 

cells were labelled as unassigned when the projection score was below 0.5. 

Classification performance assessment 

Cell annotation performance was assessed through 3 complementary metrics i.e.: precision, recall and F1 score, 

which is the harmonic mean between the precision and recall. Each metric was first calculated for each cell type 

in the query dataset. Second, each metric (i.e. recall, precision and F1 score) was calculated for the global set as 

the arithmetic mean of the corresponding metric across the evaluated cell types. In such a way, an overweighed 

contribution of largely populated cell types is avoided, allowing thus a larger contribution of more rare cell types 

to the metrics evaluated. Mapping across datasets of cell type nomenclature was performed through manual 

curation and is reported in Supplementary Table 5. For label-transferring performance assessment, cells left 

unassigned in a query dataset were considered as a false assignment when their actual cell type was indeed 

represented in the reference dataset, or considered as a true assignment otherwise. Therefore, for intestinal 

dataset label transferring, any cell types apart from endocrine, brush/tuft and goblet were considered as negative 

cell type since there are not present in the reference dataset and hence should be labeled unassigned. Thus, 

unassigned cells were considered as true positive if labelled against negative cells and the negative cells were 

evaluated in the calculation of performance metrics in the same manner as the three other cell types present in 

the reference and was considered also in the global performance metrics. For interspecies label-transferring 

across human and mouse datasets, the initial raw matrix of the query dataset was restricted to genes with one-

to-one orthologs. Ortholog relations were obtained from BioMart (release 100, version April 2020, GrCH38.p13 

for human, and GRCm38.p6 for mouse15,16) using gene symbols. 

Functional Enrichment 

Functional enrichment analyses were performed using 6 sources of functional annotations: Reactome30, KEGG31, 

WikiPathways32, GO biological process33, GO molecular function and GO cellular component, collectively 

gathering a total of 8709 terms. Gene sets associated to functional pathways and ontology terms were obtained 

as provided in enrichr34 website http://amp.pharm.mssm.edu/Enrichr/#stats. (Supplementary Table 6) 
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Visualization 

UMAP35 or tSNE36 representations were alternatively used for visualization purposes throughout the manuscript. 

However, no biological conclusions whatsoever were drawn from visual inspection of such representations. 

UMAP and tSNE representations were obtained with Seurat default parameters following this vignette 

(https://satijalab.org/seurat/v3.1/pbmc3k_tutorial.html). 

Computational resources 

All analyses presented in the manuscript were run in a workstation with 64-GB RAM memory and a AMD Ryzen 

2700X processor with 8 3.6-GHz physical cores, with the exception of the scalability benchmark presented in 

Supplementary Note 6 where an Intel Xeon Gold 6140 with 36 2.3 GHz cores processor and 640Gb of RAM was 

used. 

Code availability 

Cell-ID is implemented as an R package and is available on GitHub (https://github.com/RausellLab/CelliD) under 

the GPL-3 open source license. Complete documentation is provided with step-by-step procedures for MCA 

dimensionality reduction, per-cell gene signature extraction, cell type prediction, label-transferring across 

datasets and functional enrichment analysis. All R scripts and intermediate data representations required to 

reproduce all figures in the manuscript are provided as a supplementary file.  
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Cell-ID: gene signature extraction and cell identity recognition at individual 

cell level 

 

Supplementary Notes 1 - 7 

 

Supplementary Note 1. Consistency of MCA low-dimensional representation of cells and genes. 

The consistency of MCA-based low-dimensional representation of cells and genes was first evaluated with 100 

simulated scRNA-seq datasets, each containing 1000 cells and 5000 genes (Online Methods). We first compared 

the correspondence between MCA and PCA low-dimensional representations of cells by performing Spearman’s 

rank correlation analysis on their principal axes coordinates. MCA and PCA cell representations were largely 

equivalent (Supplementary Fig. 1). We then determined whether the per-cell gene rankings obtained with MCA 

were consistent with the gene expression values for neighboring cells in the MCA space. As expected, genes 

specific to a given cell had higher log-fold changes in expression in the 5% of cells closest to target cell (n = 50) 

than in the other cells (Supplementary Fig. 2A). We then investigated how the ranking of genes with zero-counts 

in a cell related to the specificity of the genes concerned in neighboring cells (Supplementary Fig. 2A). We found 

that genes not detected in a given cell were nevertheless attributed a high ranking in this cell if the surrounding 

cells displayed high levels of expression for these genes (Supplementary Fig. 2A). This is an important result, 

highlighting the capacity of multivariate approaches to consider a gene to be specific to a cell in which it was not 

detected, provided that the gene concerned is specific to very similar cells. The MCA approach is thus robust to 

zero-count values that probably correspond to technical dropouts. These results could be generalized to all 

individual cells in a given dataset: Spearman’s rank correlation coefficient between rank and log-fold change = 

0.72, p-value <10e-16 (Supplementary Fig. 2B). By contrast, the correlation was weaker for per-cell gene rankings 

obtained via a naïve approach based on either (i) the log-fold changes in gene expression observed in one cell 

relative to all other cells (Spearman’s rank correlation coefficient = 0.38, p-value <10e-16, Supplementary Fig. 2, 

C-D) or (ii) highest-to-lowest rankings of expression values within a cell, with random ranks for ties, as previously 

described (AUCell1, Spearman’s rank correlation coefficient = 0.08, p-value = 3.18e-04 , Supplementary Fig. 2, E-

F, respectively).  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 23, 2020. ; https://doi.org/10.1101/2020.07.23.215525doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.23.215525


 

Supplementary Note 2. Capacity of Cell-ID to identify well-established cell types on the basis of reference 

marker lists. 

We evaluated the ability of Cell-ID per-cell gene signatures to reproduce reference marker lists associated with 

well-established cell types. We searched for scRNA-seq datasets in which concomitant measurements of single-

cell protein marker levels had been performed. Protein marker levels provide additional evidence for cell-type 

annotations. Cell-type labels in such settings can be taken as a gold standard reference for this study, thereby 

avoiding the potential circularity associated with the use of transcription-based annotations. Two independent 

scRNA-seq datasets for human blood cells profiled by CITE-seq2 and REAP-seq3 protocols met this criterion 

(Online Methods). The Cite-Seq dataset contained data for a total of 8005 human cord blood cells whereas the 

REAP-seq dataset contained data for 7488 PBMCs. Cell-ID predictions were based on a reference collection of 

blood cell markers from the XCell4 repository (Supplementary Table 4, Online Methods).  

The gene signature of each cell, extracted from the CITE-seq and REAP-seq datasets, was first evaluated with 

Cell-ID against each of the 21 marker lists associated with previously described cell types (Figure 2 and 

Supplementary Figure 3, Supplementary Table 4; Online Methods). Each cell was assigned to the cell type for 

which it displayed the strongest enrichment (Online Methods). We assessed the accuracy of Cell-ID by calculating 

its precision (positive predictive value), recall (true positive rate), and overall agreement (F1) with the previously 

assigned reference cell-type labels. In both datasets, per-cell gene signatures displayed significant enrichment in 

the marker genes for at least one reference cell type in 83% and 73% of cells for CITE-seq and REAP-seq datasets, 

respectively. The best match to the gene signature was used for automatic cell-type prediction with high 

precision (0.87 and 0.9), recall (0.84 and 0.73), and F1 (0.83 and 0.78) values (multinomial p-value < 10-16 for all 

figures; Figure 2, Supplementary Figure 4 and Supplementary Table 7). Cell-ID outperformed reference methods 

for cell-type classification based on pre-established signatures, such as SCINA5 and AUCell1, for most of the cell 

types considered, achieving remarkably high levels of precision. CellAssign6 could not be used due to execution 

errors of the original software, which we attribute to the length of the signatures used here, ranging from 13 to 

174 genes in total, which is much longer than the gene sets of 2 to 20 genes generally used by CellAssign. Overall 

performance was better for the CITE-seq dataset than for the REAP-seq dataset, for all methods evaluated, due 
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to a significant difference in the median number of genes detected per cell between the two datasets (2346 and 

1260, respectively, two-sided Wilcoxon test p value < 10-16).  

In addition to identifying the best match between gene lists, Cell-ID was able to identify cells displaying significant 

enrichment in the genes of more than one of the pre-established cell-type marker lists. This contrasts with 

clustering-based approaches, which partition cells into disjointed groups. This situation is illustrated by the CITE-

seq CBMC dataset, for which Cell-ID identified fine-grained transitions within the Hematopoietic Stem and 

Progenitor cells subset (CD34+) according to the hematopoietic hierarchy (Figure 2C). No immature CD34+ cells 

in the REAP-seq dataset were reported in the original publication 3. The gradient of Cell-ID enrichment scores 

was consistent with the Hematopoietic Stem Cells (HSC) lineage differentiation process. Thus, Cell-ID multi-class 

scores reflect smooth transitions at individual cell level from the most immature HSC to multipotent progenitors 

(MPP), branching between myeloid (CMP/GMP) and erythroid (MEP) progenitors, which ultimately differentiate 

into erythrocytes. Such fine-grained transitions would have been missed by both clustering-based approaches 

and alternative methods. Thus, SCINA and AUCELL provided a coarse-grained classification between HSCs and 

erythrocytes, with no assignment to intermediate states between these two classes. 

We then analyzed more challenging scenarios based on real datasets in which we evaluated the capacity of Cell-

ID to identify the only cell of a given rare cell type (n=1). We focused on cell types observed at low frequencies 

(<2%) in the previous CBMC dataset: plasmacytoid dendritic cells (pDC, 0.6%, n=49), erythrocytes (1.3%, n=105) 

and hematopoietic stem and progenitor cells (HSPC, CD34+ subset, 1.8%, n=134) from the CITE-Seq dataset. For 

each of these rare cell types containing a given number n of cells, we generated n corresponding datasets, each 

retaining only one cell at a time, while the rest of the subpopulations remained unchanged. Using the pre-

established immune cells marker lists, as described above, Cell-ID identified the singleton cell with a high mean 

recall (92%, 94%, and 86%), but modest precision (32%, 8% and 76%) due to the experimental design with very 

high number of negatives compared to positive (1 positive and 999 negatives), which results in mid-range F1 

score (48%, 0.15%, 0.81%) (Supplementary Table 8). Singleton cells pose a problem in clustering-based 

approaches, in which they are often merged with larger sub-populations or treated as outliers and are thus 

filtered out of downstream analyses. Conversely, alternative reference methods able to work at individual cell 

level without a clustering step, such as SCINA5 and AUCell1, could not be applied in this setting either, because 

they are not suitable for independent evaluations one cell type at a time. 
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Supplementary Note 3. Capacity of Cell-ID to match cells of analogous cell types across independent scRNA-

seq datasets from the same tissue of origin, within and across species. 

Cell-ID provides two options for cell type matching across datasets: (i) Cell-ID(c), in which individual cells in a 

query dataset are matched to transcriptionally analogous cells in a reference dataset; and (ii) Cell-ID(g), in which 

individual cells in a query dataset are matched to cell group labels previously established in a reference dataset 

through clustering and/or expert annotation. Thus Cell-ID(c) provides cell-to-cell matching, whereas Cell-ID(g) 

performs group-to-cell matching from reference-to-query datasets. It should be noted, however, that Cell-ID(g) 

performs no clustering whatsoever, as the cell groups in the reference dataset are provided as an input by the 

reference source. For the evaluation of Cell-ID(c) and Cell-ID(g), we searched for tissues profiled in several 

independent scRNA-seq datasets and meeting the following three conditions: (i) cell type labels curated through 

expert annotation in the original publications, (ii) containing at least one rare cell type (cell types accounting for 

less than 2% of the cells in a sample), and (iii) different sequencing protocols and/or different model organisms 

(i.e. humans and mice) used. Two tissues meeting these requirements were identified (Figure 3):  

(A) Pancreatic islets: we considered three scRNA-seq datasets for pancreatic cells from human donors: (i) 8659 

cells from four deceased donors healthy at the time of death profiled with the inDrop protocol (Baron et al.7), (ii) 

2126 cells from four deceased organ donors sequenced with CEL-seq2 (Muraro et al.8) and (iii) 2168 cells from 

six healthy donors and four donors with type-2 diabetes sequenced with Smart-seq2 (Segerstolpe et al.9). The 

Baron dataset reported the greatest diversity of cell types and was, thus, chosen as the reference for this analysis. 

The cell types identified in Baron’s human dataset included two exocrine cell types (acinar and duct cells), five 

endocrine cell types (alpha, beta, delta, gamma and epsilon cells), three immune cell types (tissue-resident 

macrophages, mast cells, cytotoxic T cells), pancreatic stellate cells, endothelial cells and Schwann cells of neural 

crest origin. All of these cell types, with the exception of Schwann cells and cytotoxic T cells were reported by 

Muraro et al. and Segerstolpe et al. 

(B) Airway epithelium: three independent airway epithelial cell datasets from mice and human donors were 

obtained, including (i) 7662 tracheal epithelial cells from four mice profiled with 10X Genomics technology 

(Plasschaert et al10); (ii) 7586 airway tracheal cells from six mice sequenced with inDrop (Montoro et al.11); (iii) 

2970 primary bronchial epithelial cells from three human donors profiled with 10X Genomics technology 
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(Plasschaert et al10) (Online Methods). All three datasets reported the six major airway epithelial cell types, 

including basal, secretory cells (also known as club cells), ciliated cells, rare pulmonary neuroendocrine cells 

(PNEC), brush cells (also known as tuft cells) and ionocytes. Plasschaert’s mouse dataset was used as the 

reference for this study, as it allowed a within-species analysis (mouse-to-mouse) as well as a between-species 

analysis (mouse-to-human) based on datasets originating from the same laboratory. 

Cell-ID gene signatures at either individual cell level or group level were obtained independently for each of the 

datasets described above (Online Methods). Four independent reference-to-query assignments were evaluated: 

Baron’s human pancreatic cells against Muraro’s and against Segerstolpe’s human pancreatic datasets, and 

Plasschaert’s mouse airway epithelial cells against Montoro’s mouse airway epithelial cells and against 

Plasschaert’s human airway epithelial cells. For each of the reference-to-query assessments, both cell-to-cell 

matching, and group-to-cell matching were performed, with Cell-ID(c) and Cell-ID(g), respectively (Methods). 

Thus, each cell in the query dataset was assigned to the cell type from the reference cell or reference group for 

which it presented the lowest significant gene signature enrichment p value (or was left unassigned if no 

significant hits were found; Supplementary Figure 5). Cell-ID cell-to-cell matching and group-to-cell matching 

were thus evaluated by assessing the cell-type agreement between the transferred labels and the original labels 

in the query dataset. Comparative benchmarking was performed against a representative set of alternative state-

of-the-art methods covering major approaches for cell-matching or label transfer across scRNA-seq datasets 

(Supplementary Table 3): (i) integration-based methods for cell-to-cell matching across datasets based on 

reciprocal k-nearest neighbor analysis and projection in a common low-dimensional space (Seurat12, MNN13); (ii) 

transcriptome similarity assessment without an integration step (scmap_cluster and scmap cell14,  scID15 and 

singleR16); and (iii) machine learning-based methods training models through cross-validation in the reference 

dataset followed by prediction in the query dataset (CaSTle17, scPred, SCN18and CHETAH19). 

Both Cell-ID(c) and Cell-ID(g) consistently reached high precision (>82% and >83%), recall ( >82% and >=76%)  and 

F1 values (>74% and >74%, respectively) across all reference-to-query assignments evaluated (multinomial p 

value < 2.2e-16 for all figures; Figure 3A, Supplementary Figure 6 A-B, Supplementary Table 9). Cell-ID 

performance was at least as good as that of all alternative state-of-the-art methods. Notably, Cell-ID obtained 

high performance scores even in for cell-type matching across species, which proved challenging for most of the 

methods evaluated. We assessed the robustness of Cell-ID gene signatures further by focusing on the cell types 
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present at low frequencies (<2%) in the previous query datasets: epsilon cells, tissue-resident macrophages, mast 

cells and endothelial cells from pancreatic islet samples (Muraro et al. and Segerstolpe et al), and PNEC, brush 

cells and ionocytes in the mouse and human airway epithelium datasets (Montoro et al and Plasschaert et al., 

respectively). As expected, reference-to-query assignments for such rare cell types were generally more error-

prone for all the methods evaluated, including Cell-ID (Figure 3B, Supplementary Figure 6 C-D). Nevertheless, 

Cell-ID performed better than the alternative methods, with salient scores for Cell-ID(g) for most of the rare cell 

types evaluated (median F1 values greater than 88%, respectively, with p value<1e-5 for all evaluated rare cell 

populations relative to expectations from a random binomial distribution).   

From a discovery perspective, the datasets used here provided us with an opportunity to evaluate the capacity 

of Cell-ID to detect ultra-rare cell types potentially missed in the original publications. Indeed, Baron et al. 

reported the presence of Schwann cells (n=13; 0.17 %) in pancreatic islet datasets, an ultra-rare cell type of neural 

crest origin. However, Schwann cells were not described in the samples of Muraro et al. and Segerstolpe et al. 

We thus explored possible enrichment in the Cell-ID gene signatures extracted for each of the 13 Schwann cells 

in the Baron et al. dataset for the 2126 and 2168 cells, respectively of the query datasets. Both Cell-ID(c) and 

Cell-ID(g) identified n=4 cells in the Muraro et al. dataset and n=2 cells in the Segerstolpe et al. dataset that had 

been initially labeled as ductal (Muraro et al.8) or unclassified (Segerstolpe et al.9) in the associated publications. 

These cells presented high expression levels of Schwann cell markers (SOX10, S100B, CRYAB, NGFR, CDH19, and 

PMP22) and of markers of response to nerve injury (SOX2, ID4, and FOXD3), as described by Baron et al.7. 

Accordingly, SOX10, S100B, CRYAB, NGFR, CDH19, and PMP22 ranked among the top 100 gene signatures 

associated with the four and two cells annotated as Schwann cells by Cell-ID (Supplementary Figure 7), and these 

six genes were significantly upregulated in these cells relative to the other cells (Wilcoxon test p value < 10-3, in 

both datasets). The identification of putative Schwann cells was replicated by Seurat, MNN, scID, SCN, SingleR 

and scmap cluster, but missed by CaSTLe, scmap cell, scPred and CHETAH, which labeled them as “other” or 

“unassigned”. Moreover, functional enrichment analysis of the gene signatures of each of the four and two 

putative Schwann cells revealed significant enrichment in 62 Gene Ontology (GO) biological processes (median 

p-value across cells <0.01) for the Muraro et al. dataset and 26 GO biological processes for the Segerstolpe et al. 

dataset, with 10 terms common to the two sets (Supplementary Table 1). Nervous system development 

(GO:0007399), including glial cell differentiation (GO:0010001) and axonogenesis (GO:0007409), were among 
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the top 10 terms displaying enrichment in both sets (p-values less than or equal to 2.18e-05 and 2.98e-03, 

respectively), consistent with the neural crest origin of Schwann cells20. The prominent role played by Schwann 

cells in the myelination process 21 was, in turned, reflected in several functional terms and pathways for which 

significant enrichment was detected, including collagen fibril organization (GO:0030199) in the four cells from 

the  Muraro dataset and  myelination (GO:0042552)  and collagen binding (GO:0005518) in the two cells from 

the Segerstolpe dataset. These signals were consistently reproduced with alternative pathway annotation 

sources such as KEGG22, Reactome23  and WikiPathways24 (Supplementary Table 1, Supplementary Table 6). 

Overall, these results show that Cell-ID gene signatures are highly reproducible at both the cell and group levels, 

across independent datasets from the same tissue of origin, despite the use of different sequencing protocols, 

donors, and species. This reproducibility was robust even for rare cell types present at extremely low frequencies, 

demonstrating the ability of Cell-ID to extract biologically relevant gene signatures at individual cell resolution. 

In particular, matching across datasets by Cell-ID is fully transparent in terms of the set of genes driving the hits, 

and is therefore fully interpretable in biological terms. This contrasts sharply with the situation for label transfer 

methods based on assessments of similarity over the entire transcriptome (e.g. Seurat, MNN, scmap) or machine-

learning approaches, for which individual gene contributions are difficult to interpret (e.g. scPred, SCN).  

 

Supplementary Note 4. Capacity of Cell-ID to match cell types across independent scRNA-seq datasets from 

different tissues of origin 

In a more challenging scenario, we then evaluated the capacity of Cell-ID to recognize gene signatures of rare 

cells across independent sets from different tissues of origin. We thus searched for rare cell types meeting the 

following conditions: (i) that they were common to at least two different tissues, and (ii) for which single-cell 

RNA-seq datasets were available, in which cell-type labels had been curated by expert annotation in the original 

publications. Chemosensory epithelial cells appeared to be an ideal rare cell type present in various epithelium 

types, presenting all the characteristics for the purpose of the analysis. Recent studies have shown that 

chemosensory epithelial cells, referred to as tuft cells in the intestinal mucosa, and solitary chemosensory cells 

(SCCs) in the nasal respiratory mucosa, belong to the brush/tuft cell family, together with the brush cells in the 

tracheal airway epithelium 25 26. This chemosensory epithelial cell family has common transcriptional programs 

and functions in all three tissues 27. In particular, these cells are the primary source of interleukin-2528, a 
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proinflammatory protein mediating type 2 inflammation induced by diverse pathogens in various mucosal 

tissues. 

We evaluated the capacity of Cell-ID to identify rare cell types across tissues, by focusing on cell matching 

between the mouse tracheal airway epithelium (Plasschaert 10 and Montoro 11 datasets, as described in 

Supplementary Note 3) and the mouse small intestinal epithelium (single-cell dataset from Haber et al29, for 

7216 cells from four mice sequenced with the inDrop protocol). The mouse airway and intestinal epithelia display 

major differences in terms of their cell-type composition. Both Plasschaert et al. and Montoro et al. reported the 

presence of basal, secretory (including goblet in Montoro), ciliated cells, PNEC, ionocytes and brush/tuft cells in 

the airway epithelium (Supplementary Note 3). Haber et al. performed single-cell analyses on the intestinal 

epithelium in which they identified enterocytes (45%), transit-amplifying cells (21%), stem cells (18%), goblet 

cells (7%), Paneth cells (4%) enteroendocrine cells (4%) and brush/tuft cells (2%) (Supplementary Figure 8A). 

Cell-ID(g) and Cell-ID(c) were applied with default parameters (Online Methods) for reference-to-query 

assignments from Plasschaert and Montoro’s mouse airway epithelial cells to Haber’s mouse intestinal epithelial 

cells. Each cell in the mouse intestinal epithelial dataset was assigned to the cell type from the mouse airway 

epithelial for which it presented the lowest significant p value for gene signature enrichment (or was left 

unassigned if no significant hits were found). Both Cell-ID(g) and Cell-ID(c) identified brush/tuft, but also 

endocrine cells and goblet cells in the intestinal epithelium, based on brush/tuft, PNEC and secretory/goblet gene 

signatures, respectively, extracted from the airway epithelium (Figure 3C and Supplementary Figure 8B). Global 

matching accuracy was evaluated by analyzing the concordance of cell-type labeling with the original cell-type 

annotations from the corresponding publications (Supplementary Table 5). Comparative benchmarking was 

performed against a representative set of alternative state-of-the-art methods covering major approaches for 

label transfer or cell-matching across scRNA-seq datasets (Supplementary Table 3), as previously described in 

Supplementary Note 3. Cell-ID(g) yielded high precision, recall and F1 scores, clearly outperforming all the other 

methods evaluated (Figure 3D, Supplementary Figure 8C and Supplementary Table 10). Similar results were 

obtained when the Plasschaert or Montoro mouse airway epithelial cells were used as the reference set. 

Alternative methods, including Cell-ID(c), performed less well, by contrast to the results obtained for label 

transfer between samples from the same tissue of origin (Supplementary Note 3). This lower performance was 

driven by many false positives (i.e. incorrect label transfer from the reference to the query dataset), resulting in 
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low precision and low F1 scores. By contrast, correct label assignment rates remained high for Cell-ID(g), which 

did not assign labels from the reference to the query set in the absence of significant statistical support. The 

higher performance of Cell-ID(g) than of Cell-ID(c) suggests that group-based gene signatures are more robust 

than individual cell-based signatures for cell-type matching across samples from different tissues of origin.  

We then searched for olfactory epithelium single-cell datasets of use for the evaluation of the capacity of Cell-ID 

to identify solitary chemosensory cells (SCCs) by projecting brush/tuft signatures extracted from the airway and 

intestinal epithelia. Two datasets from published works were identified: (i) Wu et al30, in which a total of 9126 

olfactory epithelium cells from mice aged 0, 3, 7 and 21 days were sequenced with the 10X Genomics protocol, 

and (ii) Fletcher et al.31, in which 849 cells from mice aged 21-28 days were sequenced with the Smart-Seq2 

protocol. The mouse olfactory epithelium has a cell-type composition different from those of the airway and 

intestinal epithelia. Both Wu et al and Fletcher et al reported the presence of transitional horizontal basal cells, 

resting horizontal basal cells, microvillous cells, mature sustentacular cells, mature olfactory sensory neurons, 

immediate neuronal precursors, immature sustentacular cells, immature olfactory sensory neurons, globose 

basal cells and unknown/unlabeled cells. However, neither of these studies reported the presence of SCCs among 

the cells sequenced. Nevertheless, these two datasets provided us with an opportunity to illustrate the capacity 

of Cell-ID for exploratory cell-type scanning on single-cell datasets of a query tissue, using gene signatures 

extracted from single-cell datasets for a set of reference tissues. Cell-ID(g) was used to evaluate the presence in 

the olfactory epithelium of cells with the tuft/brush cell gene signatures extracted from the airway and intestinal 

epithelium, as described above. Cell-ID(g) identified a total of 37 cells in the Wu dataset and 5 cells in the Fletcher 

dataset displaying gene signatures with significant enrichment in the genes of the tuft/brush cell signatures 

extracted from the airway epithelium (dataset from Plasschaert et al10). Cell-ID(g) also identified the same 37 

and 5 cells as having signatures significantly enriched in the genes of the tuft/brush cell signatures extracted from 

the intestinal epithelium (dataset from Haber et al). Interestingly, these cells were labeled “unidentified” in the 

original publications 30 31. They displayed higher levels of expression for IL25 and the chemosensory cell marker 

Gnat3 than any of the other cells in the corresponding datasets (two-tailed Wilcoxon test, p <10-16 for both 

datasets), further supporting the classification of these cells as SCCs (Ualiyeva et al. 2020; Figure 3E-F, 

Supplementary Figure 9). Moreover, functional enrichment analysis performed on the gene signatures of each 

of the 37 and 5 putative SCCs identified 20 and 14 Gene Ontology (GO) biological processes (median p value 
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across cells <0.01) displaying significant enrichment in the datasets of Wu and Fletcher, respectively, with nine 

terms common to the two datasets (Supplementary Table 1). Unsaturated fatty acid biosynthetic process 

(GO:0006636), including eicosanoid (GO:0046456) and leukotriene (GO:0019370) biosynthetic processes, were 

among the top five terms displaying the highest level of enrichment in both datasets (5.76E-04 and 1,77E-05, 

respectively), driven by the Alox5, Alox5ap, Ltc4s, Pla2g4a genes in both sets of putative SCCs. This finding is 

consistent with recent studies showing that SCCs are a primary source of cysteinyl leukotriene in the olfactory 

epithelium 25 26), and that these cells have immune effector functions in common with airway brush/tuft cells 

25. These signals were consistently reproduced with alternative pathway annotation sources (KEGG22, Reactome23  

and WikiPathways24; Supplementary Table 1). Taken together, the gene signatures and functional hallmarks 

revealed by Cell-ID(g) confirm, at single-cell transcriptional level, the presence of rare cells in the olfactory 

epithelium similar to the airway and intestinal brush/tuft cells. In accordance with recent findings 25 26, the 37 

cells from Wu et al and the five cells from Fletcher et al described above should, thus, be annotated as SCCs.   

 

Supplementary Note 5. Capacity of Cell-ID to match cell types across independent datasets from different 

single-cell omics technologies: scRNAseq and scATACseq  

We investigated whether the gene signatures extracted with Cell-ID from scRNA-seq datasets were replicated in 

independent single-cell ATAC-seq experiments on the same or different tissues of origin. We made use of two 

recent large-scale single-cell projects annotating cell-type heterogeneity through in-depth expert curation in a 

comprehensive set of organs and tissues for the model organism Mus musculus: the Tabula Muris32 mouse cell 

atlas, based on scRNA-seq, and the Mouse ATAC Atlas33, based on scATAC-seq. The Tabula Muris project profiled 

20 mouse organs and tissues in a total of eight adult mice, with two alternative sequencing technologies: SMART-

Seq2 (53760 cells) and 10X genomics (55656 cells). The Mouse ATAC Atlas reported genome-wide chromatin 

accessibility in ∼100,000 single cells from 17 samples spanning 13 different tissues in 13 adult mice. Only cells 

from the eight organs/tissues common to the Tabula Muris and ATAC Atlas datasets were retained for 

downstream analyses: heart, kidney, liver, lung, bonne marrow, spleen, thymus and large intestine (large 

intestine available only for SmartSeq scRNA-seq and scATACseq). Collectively, the tissues retained contained 50, 

43 and 37 different cell types for the 10X Genomics, SMART-Seq2 and scATAC-seq datasets, respectively. Cell-

type nomenclature equivalences between the Tabula Muris and the ATAC Atlas datasets are presented in 
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Supplementary Table 5. Comparisons were made across datasets based on gene expression matrices (scRNA-

seq) and gene activity scores (scATACseq) (Online Methods).  

Cell-ID(g) and Cell-ID(c) were applied with default parameters (Online Methods) for reference-to-query 

assignments from (i) SMART-Seq2 and (ii) 10X genomics Tabula Muris scRNA-seq data to the Mouse ATAC Atlas. 

Thus, each cell in the Mouse ATAC Atlas was assigned to the cell type from the Tabula Muris scRNA-seq dataset 

for which it presented the lowest significant p-value for gene signature enrichment (or was left unassigned if no 

significant hits were found). We performed this procedure independently for the SMART-Seq2 and 10X genomics 

datasets. Global matching accuracy was evaluated by assessing the concordance of cell-type labeling between 

the manually curated cell type annotations provided by the corresponding databases (Supplementary Table 5). 

Comparative benchmarking was performed against a representative set of alternative state-of-the-art methods, 

as described in Supplementary Note 3 and 4, except for scID15, which could not be included here due to 

computational time limitations (>48 h in our computing infrastructure; Methods). By detecting shared gene 

signatures, both Cell-ID(g) and Cell-ID(c) correctly matched equivalent cell types across scRNA-seq and scATAC-

seq datasets (Figure 4, Supplementary Figure 10-12). Thus, both Cell-ID(g) and Cell-ID(c) maintained a good 

balance between precision and recall rates, resulting in high F1 scores (>0.74 for 10X and >0.6 for SmartSeq2), 

clearly outperforming all other methods evaluated, with the exception of SingleR, which yielded slightly lower 

performances (Supplementary Figure 12, Supplementary Table 11). Overall, these results confirm that Cell-ID 

can extract, in an unbiased manner, gene signatures that are robustly reproduced across diverse single-cell omics 

technologies applied across highly heterogeneous cell types from multiple tissues and organs. 

 

Supplementary Note 6. Computational details, timing and memory consumption 

To evaluate the Cell-ID scalability to massive single-cell RNA-seq dataset analysis, we evaluated its time and 

memory consumption for different input sizes, and benchmarked them against the state-of-the-art methods 

previously considered in our study (Supplementary Notes 3, 4 and 5). To that aim, we performed large-scale cell 

mapping and label transfer tasks between different reference-to-query datasets using single-cell RNA-seq data 

from the Tabula Muris atlas (see Supplementary Note 5). All 20 tissues and organs were considered here. For 

the purpose of the analysis, we first randomly subset an increasing number of cells (200, 500, 1000, 2000, 5000, 

10000, 20000 and 50000 cells) from the 10X and -independently- from the Smart-seq datasets. Sampling of the 
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reference dataset was restricted to the 10 most abundant cell types from 10X. We fixed the dataset to have 10 

different subpopulations since the number subpopulations in the reference dataset impacts significantly 

computation time for some methods such as scID or SingleR. We then evaluated the computation time and the 

total memory allocation of a label transfer task as a function of the number of cells in the query dataset. Thus, 

label transfer from a fixed reference subset of 5000 cells from the SmartSeq dataset was performed against 8 

different query datasets of increasing size, corresponding to the 8 subsets from the 10X Genomics dataset 

previously described (Supplementary Figure 13 A-B). In an analogous manner, we evaluated the computation 

time and the total memory allocation of a label transfer tasks as a function of the number of cells in the reference 

dataset. Here, label transfer from 8 different reference datasets of increasing size (corresponding to the 8 subsets 

from the Smart-seq dataset previously described) against a fixed query subset of 5000 cells from the 10X 

Genomics dataset (Supplementary Figure 15 C-D). Overall, Cell-ID computational time behaved in a comparable 

way to other state-of-the-art methods, yet with slightly higher memory consumption. The previous benchmark 

is based on the cell matching and label transfer between a pair of datasets. In the case of Cell-ID, such process 

involves (i) the MCA low dimensionality reduction and per-cell gene signature extraction for each dataset, and 

(ii) cell-to-cell matching between datasets, based on hypergeometric tests on the pre-extracted per-cell gene 

signatures. From a computational point of view, each of such cell-to-cell evaluations constitutes a fully 

independent job, and thus they can be readily parallelized in a multi-core and multi-node computing cluster. Cell-

ID thus allows the creation of reference libraries of individual cell’s gene signatures from massive collections of 

single-cell RNA-seq datasets, enabling efficient large-scale cell-to-cell matching and label transfer across sets. 

 

Supplementary Note 7. Novel visualization options for enhanced biological interpretation of cell heterogeneity 

Cell-ID provides two novel visualization options for the explorative analysis of single-cell RNA-seq data. First, the 

dimensionality reduction performed through Multiple Correspondence Analysis provides a simultaneous 

representation of cells and genes on the same principal axes. Thus, Cell-ID allows to visualize cells in the MCA 

principal components (analogous to a PCA representation), but also to map key gene markers together with the 

cell representation. In such biplots, multiple gene markers can be displayed at once in a way that, the closer a 

marker is represented to a given cell, the more specific to them it is. This is illustrated for two independent 

datasets corresponding to human pancreatic cells 7 and mouse airway epithelial cells 10, where simultaneous 
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projection of prototypical markers allows to rapidly identify the cell identity of the corresponding regions 

(Supplementary Figure 14 A-D).  

Second, Cell-ID provides functional enrichment analysis of the gene signatures obtained for each cell in a dataset, 

using Gene Ontology terms and pathway annotation databases such KEGG, Reactome and WikiPathways. 

Functional enrichment analysis may help on the functional interpretation of cell heterogeneity and assist on cell 

type identification, as illustrated for Schwann cells (Supplementary Note 3) and Solitary Chemosensory Cells 

(SCCs, Supplementary Note 4) in the exploratory analysis of pancreas and airway epithelium single-cell RNA-seq 

datasets, respectively. Thus, functional enrichments can be visualized in a low-dimensionality representation of 

cells by coloring each cell with an intensity proportional to its -log10 p-value for a query functional term or 

biological pathway (Supplementary Figure 14 E-F). Cell-ID R package provides per-cell functional enrichment 

analysis as a built-in function, which stores the enrichment outputs as additional cell attributes in standard R 

single-cell data structures, such as SingleCellExperiment and Seurat objects. Such seamless integration allows 

other single-cell RNA-seq tools to use enrichment scores in alternative cell visualizations, e.g. UMAP34 or cell 

diffusion maps35. 
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Supplementary Figures 
 

 
 
 
Supplementary Figure 1. Correspondence between PCA and MCA low-dimensional representations of cells. 
Low-dimensional representation of a simulated scRNA-seq dataset on the two first principal axes obtained 
through PCA (A, cell projection) or MCA (B, cell projection, and C, gene projection; Supplementary Note 1). (D) 
Median values of Spearman’s correlation coefficient for the relationship between cell coordinates on the first 10 
principal axes from MCA (x-axis) and the first 10 principal axes from PCA (y-axis) over 100 simulated scRNA-seq 
datasets. Median absolute Spearman’s correlation coefficient values are represented on a color scale ranging 
from 0 (dark blue) to 1 (dark red), and the precise value is indicated inside. 
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Supplementary Figure 2. Consistency of the per-cell gene rankings with the gene expression levels of 
neighboring cells in the MCA space. (A) An individual cell was randomly selected from a dataset randomly 
selected from 100 simulated scRNA-seq sets, each containing 1000 cells and 5000 genes (Supplementary Note 
1). For each gene (grey dot), this figure shows the log-fold change in expression relative to (i) its mean expression 
value in the 5% of cells closest to the target cell (n=50), and (ii) its mean expression value in the rest of the cells 
in the dataset (y-axis). Genes were grouped into 20 bins of equal size (x-axis, on the basis of their ranking relative 
to the target cell on the MCA space (Figure 1). High ranks (on the left side of the x-axis) correspond to small gene-
to-cell distances, indicating that gene expression is highly specific to the target cell, whereas lower ranks (on the 
right) reflect a lack of specificity to the target cell. The gene expression values in the target cell were not 
considered in the assessment of such log-fold changes. For each bin, two boxplots are shown, summarizing (i) 
the distribution of log-fold changes in expression across genes for which the target cell presented a non-zero 
count (red); and (ii) the distribution of log-fold changes in expression across genes for which the target cell 
presented a zero count (blue). (B) Analogous figure to (A), showing the generalization of patterns to all individual 
cells in a randomly selected dataset. Each individual cell was first independently assessed as in (A), and its per-
bin median values were extracted to plot a distribution across cells (boxplots in B). Figures analogous to (A) and 
(B) are shown when the per-cell gene rankings displayed on the x-axis through bins of equal size were obtained 
from (i) a naïve approach based on the log-fold changes in gene expression observed in a cell relative to all the 
other cells in the dataset (C, D) or (ii) from highest-to-lowest expression values within a cell, with random ranks 
for ties, as previously described (AUCell, E, F). 
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Supplementary Figure 3. Automatic Cell-ID cell-type identification of human peripheral blood mononuclear 
cells with pre-established signatures. UMAP representation of 7488 peripheral blood mononuclear cells 
(PBMCs) profiled with a REAP-seq protocol, with color-coding of the cells according to blood cell type 
classification based on (A) single-cell protein marker levels as provided, and (B) Cell-ID predictions based on a 
reference collection of well-established blood cell signatures. (C) Heatmap representing, for each individual cell 
(displayed in columns), the -log10 transformed p value obtained by Cell-ID testing of the association of the gene 
signature with each of the evaluated pre-established signatures (displayed in rows). The heatmap color scale 
extends from dark blue (p value=1) to yellow (p value = 10-2) to dark red (p value = 10-10), with p values<10-10 
fixed at this value). Non-significant associations (p value>10-2 after Benjamini Hochberg correction for the 
number of gene signatures tested) are shown in blue. The columns in the heatmaps were grouped by the 
reference cell-type label, as indicated by the colored bands at the top and in the associated legend.  
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Supplementary Figure 4. Performance measured through Precision, recall, and F1 scores achieved by Cell-ID, 
AUCell and SCINA cell type predictions on (A) CBMCs Cite-Seq data, and (B) PBMCs Reap-Seq data, for each of 
the blood cell types reported in the original publications. Boxplots summarize the corresponding scores for each 
method. The numbers above boxplots denote the global performance (macro F1 score, upper digits) and its 
standard deviation (lower digits), where the maximum and minimum values across methods are colored in black 
and grey, respectively. 
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Supplementary Figure 5. tSNE representation of (A) human pancreatic islet cells from the Muraro (top panels) 
and Segerstolpe (bottom panels) datasets, and (B) airway epithelium cells from the Montoro’s mouse dataset 
(top panels) and Plasschaert’s human dataset (bottom panels). Cells are color-coded according to the cell type 
labels annotated in the original publications (left panels), as well as by the cell type predictions from Cell-ID(g) 
(middle panels), and CellID(c) (right panels). 
  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 23, 2020. ; https://doi.org/10.1101/2020.07.23.215525doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.23.215525


 
 
Supplementary Figure 6. Precision and recall of Cell-ID cell-to-cell matching across independent scRNA-seq 
datasets from the same or different tissue of origin, within and across species. Performance achieved by Cell-
ID(g), Cell-ID(c) and 10 alternative state-of-the-art methods (x-axis), measured through Precision (A and C), and 
Recall (B and D). Panels are analogous to the ones described in Figure 3 (A-B) legend. 
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Supplementary Figure 7. Distribution of log-transformed normalized gene expression levels (y-axis) of Schwann 
cell markers (SOX10, S100B, CRYAB, NGFR, CDH19, and PMP22) across pancreatic islet cells from (A) Segerstolpe 
and (B) Muraro datasets. Values their associated boxplots are represented in yellow for the n=4 and n=2 cells in 
the Muraro and Segerstolpe datasets respectively that where identified by both Cell-ID(c) and Cell-ID(g) as 
putative Schwann cells, and in grey for the rest of cells. Brackets and p values indicate the results of two-sided 
Wilcoxon rank sum tests comparing the distribution across putative Schwann cells versus the other cells in the 
dataset. 
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Supplementary Figure 8. t-SNE representation of 7216 cells from mouse small intestinal epithelium, where dots 
representing cells are color coded according to (A) manual cell type annotations provided in Haber et al. and (B) 
Cell-ID(c) and Cell-ID(g) cell type predictions (top and bottom panels, respectively), using as a reference the 
mouse airway epithelial gene signatures extracted from Montoro and Plasschaert datasets (left and right panels, 
respectively). Cells with no significant enrichments were left unassigned and are displayed in grey. (C) Precision, 
Recall and F1 score (y-axis), achieved by Cell-ID(g), Cell-ID(c) and 10 alternative state-of-the-art methods (x-axis), 
for the label transferring results depicted in (B).  
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Supplementary Figure 9. UMAP representation of olfactory epithelium cells from (A) Fletcher et al. and (B) Wu 
et al. datasets. The inset panels focus on cells identified by Cell-ID as putative SCCs. Cells represented by dots are 
color-coded according to (i) their Cell-ID(g) -log10 enrichment p-value using as a reference the mouse brush/tuft 
gene signatures extracted from mouse airway epithelium, and from small intestinal epithelium, as indicated in 
the panel titles; (ii) the log-normalized expression of two solitary chemosensory cells markers, i.e. interleukin 25 
(IL25) and G protein subunit alpha Transducin 3 (GNAT3); and (iii) The -log10 enrichment p-values for 2 functional 
terms, i.e.: “leukotriene biosynthetic process” (Gene Ontology term GO:0019370) and “interleukin-17-mediated 
signalling pathway” (GO:0097400). The color scale throughout panels extends from gray (indicating a non-
significant p value or a lack of detection of gene expression) to red, corresponding to a significant p value or high 
level of gene expression. 
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Supplementary Figure 10. (A-C) t-SNE representation of 57370 cells profiled with scATAC-seq from the Mouse 
ATAC atlas corresponding to the eight tissues for which Tabula Muris SmartSeq scRNA-seq datasets are available, 
i.e.: heart, kidney, liver, lung, bonne marrow, spleen, thymus and large intestine. (D-E) t-SNE representation of 
50284 cells profiled with scATAC-seq from the Mouse ATAC atlas corresponding to the seven tissues for which 
Tabula Muris 10X Genomics scRNA-seq datasets are available, i.e.: heart, kidney, liver, lung, bonne marrow, 
spleen, thymus. Cells in are colored according to the manually annotated cell types provided by the atlas, 
regrouped by the categories represented in the legend and described in Supplementary Table 5, (A and D), as 
well as by the cell type predictions from Cell-ID(g) (B and E), and CellID(c) (C and F) using the group gene 
signatures extracted from (A and D, respectively). 
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Supplementary Figure 11. Heatmap representing the confusion matrix between the manually curated cell type 
annotations from the Mouse ATAC atlas (displayed per rows) and the Cell-ID(c) cell type predictions (displayed 
per columns) using the gene-signatures extracted from the manually annotated cell types provided by the Tabula 
Muris mouse cell atlas. The color code in the heatmap represents the ratio r of the cell types displayed per rows 
that are allocated in the cell types represented per columns, ranging from white (r = 0) to red (r =1). 
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Supplementary Figure 12. Performance measured as F1 score (y-axis) achieved by Cell-ID(g), Cell-ID(c) and 10 
alternative state-of-the-art methods (x-axis), in the cell type label transferring from Tabula Muris scRNAseq to 
scATAC Atlas for 10X (top panel) and smarts-seq (bottom panel), as depicted in Supplementary Figure 10. 
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Supplementary Figure 13. Computational time and memory consumption of label transfer methods on 
simulated datasets. (A and B) Line plots showing on the y axis (A) the computation time and (B) the total memory 
allocation as a function of the number of cells (x axis) randomly sampled from the Tabula Muris 10X data that 
were used as query dataset for cell type label transferring from a reference dataset of 5000 randomly sampled 
cells from the Tabula Muris SmartSeq dataset. Results are plotted for Cell-ID(g), Cell-ID(c) and the 10 state of the 
art methods evaluated. (C and D) Line plots showing on the y axis (C) the computation time and (D) the total 
memory allocation as a function of the number of cells (x axis) randomly sampled from the Tabula Muris 
SmartSeq data used as reference dataset for cell type label transferring on a query dataset of 5000 randomly 
sampled cells from the Tabula Muris 10X data. Results are plotted for Cell-ID(g), Cell-ID(c) and the 10 state of the 
art methods evaluated. 
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Supplementary Figure 14. Novel visualization options provided by Cell-ID for the explorative analysis of single-
cell RNA-seq data. Simultaneous MCA representation of prototypical marker genes (indicated by back cross 
symbols and gene name labels) on (A) Baron human pancreatic cells, and (C) Plasschaert mouse airway cells, 
color-coded according to the cell type labels annotated in the original publication. (B) and (D) Equivalent 
representation of cells in MCA space as depicted in (A) and (C) where cells are color coded according to their 
levels of expression for the corresponding selected markers. (E) and (F) Equivalent representation of cells in MCA 
space as depicted in (A) and (C) where cells are color coded according to their functional enrichment -log10 p-
value for a given functional term or biological pathway, as indicated in the figure titles. 
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Supplementary Tables Legends 
Supplementary Table 1. Functional enrichment analysis results for putative Schwann cells identified in pancreas 
datasets, and for putative solitary chemosensory cells identified in olfactory epithelium datasets. 

Supplementary Table 2. Summary of the datasets used in this article. 

Supplementary Table 3. Summary of external tools and packages used in this article. 

Supplementary Table 4. Blood cell-type gene markers from the XCell repository used in this study. 

Supplementary Table 5. Mapping scheme for the original cell population labels from query data to cell 

population labels in the reference data. 

Supplementary Table 6 Summary of the functional pathways used in this article. 

Supplementary Table 7. Performance metrics for cell type prediction using pre-established marker lists on blood 

cells from CITE-seq and REAP-seq datasets. The table reports precision, recall and F1 score for CellID, AUCell and 

SCINA for each of the evaluated cell types as well as for the overall assessment. 

Supplementary Table 8. Performance metrics for the prediction of rare cell types from pre-established immune 

signatures on 100 simulated subsets of CITEseq. 

Supplementary Table 9. Performance metrics for cell type predictions represented in Figure 3A and 

Supplementary Figure 6 A-B. 

Supplementary Table 10. Performance metrics for cell type predictions represented in Figure 3D and 

Supplementary Figure 8C. 

Supplementary Table 11. Performance metrics for cell type predictions represented in Figure 4D and 

Supplementary Figure 12. 
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