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Abstract 28 

The development of new therapeutic targets for cancer immunotherapies and the 29 

development of new biomarkers require deep understanding of T cells. To date, the complete 30 

landscape and systematic characterization of long noncoding RNAs (lncRNAs) in T cells in 31 

cancer immunity are lacking. Here, by systematically analyzing full-length single-cell RNA 32 

sequencing (scRNA-seq) data of more than 20,000 T cell libraries across three cancer types, 33 

we provide the first comprehensive catalog and the functional repertoires of lncRNAs in 34 

human T cells. Specifically, we developed a custom pipeline for de novo transcriptome 35 

assembly obtaining 9,433 novel lncRNA genes that increased the number of current human 36 

lncRNA catalog by 16% and nearly doubled the number of lncRNAs expressed in T cells. We 37 

found that a portion of expressed genes in single T cells were lncRNAs which have been 38 

overlooked by the majority of previous studies. Based on metacell maps constructed by 39 

MetaCell algorithm that partition scRNA-seq datasets into disjointed and homogenous groups 40 

of cells (metacells), 154 signature lncRNAs associated with effector, exhausted, and 41 

regulatory T cell states are identified, 84 of which are functionally annotated based on co-42 

expression network, indicating that lncRNAs might broadly participate in regulation of T cell 43 

functions. Our findings provide a new point of view and resource for investigating the 44 

mechanisms of T cell regulation in cancer immunity as well as for novel cancer-immune 45 

biomarker development and cancer immunotherapies. 46 

KEYWORDS: LncRNA; Transcriptome assembly; Metacell; Immune regulation; Functional 47 

annotation 48 
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Introduction 50 

T cell checkpoint inhibition therapies, such as targeting exhausted CD8+ T cells and 51 

regulatory T cells (Tregs), have shown remarkable clinical benefit in many cancers [1-3]. 52 

Nevertheless, the mechanisms underlying therapy response or resistance are largely unknown, 53 

which leads to the different therapeutic efficacies among cancer patients [4-8]. To better 54 

understand the mechanisms that underlie successful response to immunotherapy, more 55 

comprehensive studies to explore the whole transcriptome of individual T cells in tumor 56 

ecosystems are desired. Long non-coding RNAs (lncRNAs), defined as a class of non-coding 57 

RNAs longer than 200 nucleotides with no or low protein-coding potential, comprise a large 58 

proportion of the mammalian transcriptome [9-12]. Accumulating evidence has suggested 59 

that lncRNAs are widely expressed in immune cells and play crucial roles in cancer immunity 60 

by regulating the differentiation and function of T cells [13-17]. For example, overexpression 61 

of NKILA, an NF-κB-interacting lncRNA, correlated with T cell apoptosis and shorter patient 62 

survival [18], and an enhancer-like lncRNA NeST regulates epigenetic marking patterns of 63 

IFN-γ-encoding chromatin and induce synthesis of IFN-γ in CD8 T cells [19]. However, 64 

previous studies seem to be somewhat scattered and the landscape and comprehensive 65 

functional analysis of lncRNAs in T cells in cancer immunity are still lacking. 66 

The dramatic advances of single-cell RNA sequencing (scRNA-seq) technologies have 67 

gained unprecedented insight into the high diversity in T cell types and states compared to 68 

bulk RNA sequencing methods, which do not address the complex structures of tumor 69 

microenvironment [20-25]. Despite the advantages of single-cell resolution, in current most 70 

scRNA-seq studies of cancer immunology have generally focused on coding genes, 71 

overlooking the large amounts of lncRNAs. Detailed understanding of lncRNAs at the single-72 

cell level was challenging owing to their relatively low and cell-specific expression [26-28]. 73 

As a widely used scRNA-seq approach, 3’-end sequencing technologies such as droplet-74 

based 10X Genomics have lower RNA capture efficiencies, leading to the dropout evets and 75 

technological noise for lowly expressed lncRNAs [29]. Furthermore, accurate identification 76 

of novel lncRNAs is not suitable for the 3’-end sequencing technologies, but such analysis 77 

could be achieved by using full-length scRNA-seq technologies such as SMART-seq2 [30]. 78 

In addition, the sampling noise in scRNA-seq is generated through sampling of limited RNA 79 

transcripts from each cell [31], leading to a highly noisy estimation for most lncRNAs. 80 

Therefore, to effectively characterize the lncRNA landscape at single-cell level, attention 81 

should be paid to choosing appropriately scRNA-seq data and analytical approaches. 82 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.22.215855doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.22.215855


Here, using unprecedentedly large-scale full-length single-cell transcriptome data of more 83 

than 20,000 T cells from various tissues across three cancer types, we created a full 84 

annotation of the T cell lncRNA transcriptome and analyzed the functional roles associated 85 

with different T cell states. Our study aims to provide a basic and valuable resource for the 86 

future exploration of lncRNA regulatory mechanisms in T cells, which may facilitate novel 87 

cancer-immune biomarker development. 88 

 89 

Results 90 

De novo transcriptome assembly of lncRNAs from scRNA-seq data of T cells 91 

To investigate the landscape of human lncRNAs in T cells across different tissues, patients 92 

and cancer types, we collected the data of 24,068 T cells (the size of the gzip-compressed 93 

FASTQ file was 7.5 TB) generated by full-length single-cell RNA sequencing with SMART-94 

seq2, including the raw data of 9,878 cells from colorectal cancer (CRC) patients (2.8 TB) , 95 

10,188 cells from non-small-cell lung cancer (NSCLC) patients (3.1 TB), and 4,002 cells 96 

from 5 hepatocellular carcinoma (HCC) patients (1.6 TB) [32-34] (Figure S1A and Table S1). 97 

These cells were collected from peripheral blood, adjacent normal, and tumor tissue from 98 

each patient and sorted into CD3+CD8+ (CD8) and CD3+CD4+ (CD4) T cells. The reads of 99 

each cell were mapped to the human reference genome (hg38/GRCh38), and the cells with 100 

unique mapping rates of less than 20% were removed. The remaining cells with on average 101 

1.04 million uniquely mapped read pairs (0.63 million splices on average) and at least one 102 

pair of T cell receptor (TCR) α and β chains enabled us to detect the expressed lncRNAs 103 

(Figure S1B-D). 104 

Next, to generate the comprehensive T cell transcriptome beyond the currently reference 105 

annotation, we performed de novo transcriptome assembly using the StringTie method [35]. 106 

Although StringTie could be run by providing the reference annotation to guide the transcript 107 

construction, in current study we focused on to what extent it could assemble the whole 108 

transcriptome without the prior annotation. Based on the T cell dataset from HCC patients, 109 

we first measured the extent of assembly in each T cell and found that an average of 4,752 110 

transcripts could be assembled at single-cell level, and an average of 69.8% (3,318/4,752) 111 

were matched to reference models (including reference protein-coding genes from 112 

GENCODE v31 and reference lncRNA genes from RefLnc database) (Figure 1A).  113 
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To explore the best way to obtain novel transcripts, we compared the assembly results 114 

using three different approaches based on HCC dataset: (1) mapping and assembling for each 115 

single cell individually (cell-level); (2) assembling transcripts based on merged mapping 116 

results from each cell type of each patient (cell type-level); (3) assembling transcripts based 117 

on merged mapping results from each tissue of each patient (tissue-level). The transcripts 118 

assembled from each approach were merged independently and compared with reference 119 

genes respectively (Figure S1E). We found that the number of assembled transcripts 120 

matching to reference genes based on the cell type-level strategy (average 105,527 transcripts) 121 

was significantly higher than in cell-level or tissue-level methods (average 77,860 and 49,689 122 

transcripts respectively, P-value < 0.001, Wilcoxon rank sum test) (Figure 1B). Furthermore, 123 

the average number of matched transcripts from the cell type-level was more than twice that 124 

from the bulk-seq method (average 48,854 transcripts) (Figure 1B). 125 

According to the cell-type pooling strategy, the cells from all patients across three cancer 126 

types were partitioned into 266 subsets (Figure 1C and Figure S1A), and the mapping results 127 

of cells from the same subset were merged and fed into assembling program. We found the 128 

number of assembled transcripts across different subsets showed positive correlations with 129 

the number of cells in these subsets in both CRC and NSCLC datasets (Pearson correlation 130 

coefficients = 0.6 and 0.72, P-value = 4.3e-11 and < 2.2e-16, respectively), but not in the 131 

HCC dataset (Pearson correlation coefficient = 0.22, P-value = 0.17) (Figure 1D and Figure 132 

S1F). Then, assembled transcripts from all subsets were merged together, and a total of 133 

751,710 primary genes were obtained. Next, we compared our assembled transcriptome with 134 

reference gene models. The results showed that reference lncRNAs had a lower detection rate 135 

than protein-coding genes. Specifically, 82% (16,399/19,938) of the known protein-coding 136 

genes in GENCODE v31 could be verified (44%, 8,893/19,938 were complete match with the 137 

same intron chain), while 16% (9,567/59,489) of known lncRNA genes were verified (5%, 138 

3,140/59,489 were complete match) (Figure 1E). These findings suggested that lncRNAs 139 

were expressed in a much more cell-specific manner than protein-coding genes and further 140 

studies to uncover novel lncRNAs specifically expressed in human T cells were needed. 141 

From the primary assembly, we developed a custom pipeline to identify novel lncRNAs. 142 

Briefly, we first selected transcripts that were no shorter than 200 nucleotides and have 143 

multiple exons. The transcripts that overlapped with both known protein-coding and known 144 

lncRNA genes were filtered out. Then, the transcripts lacking coding potential predicted by 145 

both CPC [36] and CNCI [37] utility were retained. Finally, the remaining transcripts that 146 
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were reconstructed in at least two subsets with complete match were defined as the novel 147 

lncRNA catalog (Figure 1C). Through this multi-layered analysis, we identified 9,433 148 

previously unknown lncRNA genes (13,025 transcripts with mean length of 1,112 149 

nucleotides), which increased the number of current human lncRNA catalog [38] by 16% and 150 

nearly doubled the number of lncRNAs expressed in human T cells. 151 

Finally, we performed experimental validation to evaluate the robustness of our identified 152 

novel lncRNAs. First, fresh peripheral blood samples were collected from three CRC patients 153 

(Table S2). Then, mononuclear cells were isolated from each sample. CD8 and CD4 T cells 154 

were separated by immunomagnetic beads and the separation efficiency was verified by flow 155 

cytometry (Figure 2A). Next, we selected 50 novel lncRNAs for quantitative real-time 156 

polymerase chain reaction (qRT-PCR) analysis and Sanger sequencing across T cell samples. 157 

As a result, 38 novel lncRNAs could be verified successfully by Sanger sequencing (Table 158 

S3). As an example, for a novel lncRNA TCONS_00180551 located in an intergenic region of 159 

chromosome 11, the blat search result of Sanger sequencing exactly matches the junction of 160 

this novel lncRNA (Figure 2B). 161 

The characterization and expression analyses of lncRNAs in T cells 162 

Based on the relative genomic locations to reference protein-coding genes, the novel 163 

lncRNAs were classified into three locus biotypes, including 6,525 as intergenic, 3,187 as 164 

intronic and 3,313 as antisense lncRNAs. As in the case of reference lncRNAs, these novel 165 

lncRNAs showed fewer exons (the average number of exons was 2), lower detection rates 166 

and average gene abundance than protein-coding genes at single-cell level (Figure 3A-B). 167 

Specifically, by using pseudoalignment of scRNA-seq reads to both reference and novel 168 

lncRNA transcriptomes, on average 5,902 genes were detected (counts larger than 1) in each 169 

cell, 41% (2,397) of which were lncRNAs, including 1,258 reference and 1,139 novel 170 

lncRNAs (Figure 3A). Furthermore, for both reference and novel lncRNA genes, the average 171 

number of expressed genes across T cells was significantly lower than that of protein-coding 172 

genes. More precisely, we found that an average of 5,596 protein-coding and 2,093 lncRNA 173 

genes were expressed in at least 25% of cells. In such a situation, novel lncRNAs exhibited a 174 

higher average expression number and expression rate (1,489 and 15.8%, 1,489/9,433) than 175 

did reference lncRNAs (604 and 1%, 604/59,489) (Figure 3B), suggesting that novel 176 

lncRNAs exhibited more enrichment than known lncRNAs in T cells in cancer. Moreover, 177 

we performed further analysis to investigate the specifically expressed lncRNAs in different 178 
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tissues for each cancer type. In brief, for both CD4 and CD8 T cells of each cancer type, we 179 

identified 96 and 90 lncRNAs including 44 and 40 novel lncRNAs that expressed in tissue-180 

specific pattern (Table S4). For example, some novel lncRNAs such as XLOC-301694 and 181 

XLOC-126527 were significantly expressed in CD4 T cells from tumor tissue of CRC 182 

(adjusted P value =3.17E-68 and 1.72E-64 respectively), while others such as XLOC-302096 183 

and XLOC-502999 were significantly enriched in normal tissue and peripheral blood 184 

respectively (adjusted P value =9.18E-82 and 1.35E-44 respectively) (Table S4). Finally, we 185 

assessed the evolutionary conservation of these novel lncRNA transcripts and found that, on 186 

average, 61.2% have orthologous regions in the primate genomes, while only 3.4% mapped 187 

to mouse genome, suggesting the poor sequence conservation of these novel lncRNAs. 188 

Identification of signature lncRNAs associated with T cell states in cancer immunity 189 

based on metacell maps 190 

To explore signature lncRNAs associated with T cell states in cancer immunity, we used the 191 

MetaCell method [31] that partitioned the scRNA-seq datasets into disjointed and 192 

homogeneous cell groups (namely metacells) using the non-parametric K-nn graph algorithm. 193 

For the lowly and specifically expressed nature of lncRNA genes, metacells pooling together 194 

data from cells derived from the same transcriptional states could serve as building blocks for 195 

approximating the distributions of lncRNA gene expression and minimizing the technical 196 

variance and noise. After quality control, 19,572 cells with predefined cluster annotations and 197 

21,205 genes including both protein-coding and lncRNA genes were retained and used for the 198 

following analyses. The expression tables of CD8 and CD4 T cells across three cancers were 199 

fed into the MetaCell pipeline separately, resulting in a detailed map of 43 and 65 metacells 200 

respectively (Figure 4A-B and Table S5-6).  201 

Based on the 2D projections (Figure 4A-B), predefined cell cluster annotations (Table 202 

S1), and the metacell similarity matrices (similarity among 43 or 65 metacells for CD8 or 203 

CD4 T cells respectively) (Figure S2A-B and Figure 4C-D), we organized the complex 204 

transcriptional landscape of CD8 into Naïve, effector/pre-effector, intermediated, and 205 

exhausted metacell groups and CD4 into Naïve, effector, intermediated, exhausted, and 206 

regulatory (including FOXP3+CTLA4low and FOXP3+CTLA4high ) metacell groups respectively 207 

(Figure 4C-D). To evaluate the composition of metacells, we mapped tissue- and cancer-208 

specific patterns in all metacells and achieved results in accordance with previous studies 209 

[32-34] (Figure 4C-D and Figure S3-4). For example, exhausted metacells were preferentially 210 
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enriched in tumors, while effector metacells were prevalent in peripheral blood. Although 211 

some metacells were enriched in different cancer types, they were organized into the same 212 

functional groups (Figure 4C-D). Notably, effector metacell groups (cytotoxic state) and 213 

exhausted metacell groups (dysfunctional state) were located in different directions in the 214 

metacell maps, while the diffuse border was observed between the intermediate and the 215 

cytotoxic or dysfunctional state (Figure 4E-F). These intermediate cells exhibited remarkable 216 

transcriptional heterogeneity indicating functional divergence of these cells (Figure 4E-F and 217 

Figure S3-4). The observed cluster distribution in both CD8 and CD4 metacell maps might 218 

suggest a relative transition from activation to exhaustion that began with Naïve cells, 219 

followed by intermediate cells (such as central memory (CM), effector memory (EM) and 220 

tissue resident memory (RM) cells) and ended with exhausted cells. Moreover, the CD4 221 

metacell map revealed that Tregs were subdivided into FOXP3+CTLA4low Tregs and 222 

FOXP3+CTLA4high Tregs that were preferentially enriched in blood and tumors respectively 223 

(Figure 4D and 4F). These observations demonstrated that the diversity and dynamics of T 224 

cell states in cancer immune infiltrates could be controlled by complex and intricate gene 225 

regulatory mechanisms. Yet, the association between these cell states and lncRNAs was still 226 

poorly characterized, prompting us to subsequently investigate potential roles of lncRNA 227 

genes in T cells. Currently, the cell groups such as FOXP3+CTLA4high Tregs and exhausted T 228 

cells expressing inhibitory receptors (e.g., PDCD1 and TIGIT) have been used as therapeutic 229 

targets for anti-cancer immunotherapies, thus we focused on these cells in the following 230 

analyses. 231 

To explore signature lncRNAs associated with effector T cells, exhausted T cells, and 232 

Tregs, we performed systematic analysis of these metacell groups based on well-defined 233 

anchor genes [39], such as the genes associated with CD8 effector functions (CX3CR1, 234 

FGFBP2, GZMH and PRF1) or with the CD8 exhausted state (HAVCR2, LAG3, PDCD1, 235 

TIGIT and CTLA4). As a result, 154 lncRNAs that were significantly correlated to the anchor 236 

genes were identified and were involved in a set of co-expressed gene modules, including 237 

effector, exhausted and Treg gene modules (Figure 5A-B and Table S7). Interestingly, a 238 

putative CTLA4high Treg gene subset was observed in the Treg module, suggesting its specific 239 

functional roles in tumor-infiltrating Treg cells (Figure 5B). Overall, by combination analysis 240 

with the expression profile across metacell groups, we found 47 and 79 lncRNAs correlated 241 

with effector and exhausted states in CD8 and CD4 cells respectively and were designated as 242 

effector or exhausted signature lncRNAs (Figure 5C and Figure S5). Similarly, 49 lncRNAs 243 
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were highly associated with Treg cells and were designated as Treg signature lncRNAs 244 

(Figure S5). Among these signature lncRNAs, 14 and 7 lncRNA genes were shared between 245 

CD8 and CD4 effector states and between CD8 and CD4 exhausted states respectively. 21 246 

lncRNA genes associated with Tregs overlapped with those characteristics in the exhausted 247 

CD4 T cells (Table S7), indicating the presence of shared regulatory roles of these lncRNAs. 248 

In contrast, no signature lncRNA was shared between exhausted and effector states. 249 

Functional prediction of signature lncRNAs associated with T cell states based on co-250 

expression network 251 

To gain further insights into the functional roles of lncRNA in different T cell states in cancer, 252 

we built a coding-noncoding network (CNC), as we previously reported [40, 41], using linear 253 

correlation over all metacells. Applying this strategy, the functions of 54% (84/154) signature 254 

lncRNAs were annotated (Table S8). As expected, both CD8 and CD4 exhausted T cells have 255 

the functional enrichments of signature lncRNAs that were markedly different from effector 256 

CD8 or CD4 T cells, including regulation manners in immune system processes and several 257 

signalling pathways (Figure 6A-B). For example, exhausted signature lncRNAs were 258 

significantly enriched in immunoinhibitory functions such as negative regulation of immune 259 

response (adjusted P-value = 2.96e-14), negative regulation of T cell activation (adjusted P-260 

value = 1.24e-06), and positive regulation of interleukin-10 biosynthetic process (adjusted P-261 

value = 1.02e-18). In comparison, effector signature lncRNAs were enriched in cytotoxic 262 

programs such as T cell proliferation involved in immune response (adjusted P-value = 263 

8.16e-09), positive regulation of cytokine secretion (adjusted P-value = 4.65e-05), and 264 

positive regulation of cytolysis (adjusted P-value = 1.59e-19) (Figure 6A-B and Table S9-10). 265 

These results consisted with the phenotypes of exhausted or effector states of T cells as 266 

described in previous studies [1, 32-34, 42]. In addition, the enriched functions of Treg 267 

signature lncRNAs were similar with those of CD4 exhausted signature lncRNAs involving 268 

multiple immunosuppressive programs (Figure 6C and Table S11), suggesting the shared 269 

regulatory roles of these lncRNAs in CD4 Tregs and exhausted CD4 T cells. Further analysis 270 

of the functions of co-signature lncRNAs that were shared between CD8 and CD4 exhausted 271 

or effector states, as well as between CD4 exhausted and Treg states (Figure S6), suggests 272 

that the signature lncRNAs might broadly participate in regulation of T cell functions within 273 

the human tumor microenvironment. 274 
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For example, a known lncRNA TM4SF19-AS1, defined as a signature lncRNA for both 275 

CD8 effector and CD4 effector T cells and was transcribed in the antisense orientation to the 276 

TM4SF19 gene, was co-expressed with 66 protein-coding and 11 lncRNA genes (Figure 6D-277 

E). Of note, TM4SF19-AS1 was highly correlated and located in the same topologically 278 

associated domain (TAD) with its host gene TM4SF19 (Pearson correlation coefficient = 0.88) 279 

(Figure 6D), a member of the four-transmembrane L6 superfamily participating in various 280 

cellular processes including cell proliferation, motility, and cell adhesion [43-46]. 281 

Consistently, TM4SF19-AS1 was significantly enriched in several effector T cell associated 282 

processes such as cellular response to cholesterol (adjusted P-value = 1.09e-30), cell adhesion 283 

(adjusted P-value = 5.25e-27) and regulation of tumor necrosis factor biosynthetic process 284 

(adjusted P-value = 3.75e-11) (Figure 6F). Interestingly, a recent study suggested that anti-285 

tumor response of CD8 T cells could be enhanced by regulating cholesterol metabolism [47]. 286 

For another example, a novel lncRNA XLOC-633950, defined as a signature lncRNA for 287 

both CD4 exhausted T cells and Treg cells, was an intergenic gene and transcribed from the 288 

promoter-enhancer cluster region of the SLA and CCN4 genes (Figure 6G). Furthermore, 289 

XLOC-633950 as a novel gene, whose expression was supported by multiple expressed 290 

sequence tags (EST), was located in the same TAD with the SLA gene which acted as an 291 

inhibitor of antigen receptor signalling by negative regulation of positive selection and 292 

mitosis of T cells [48-51] (Figure 6G). In accordance with SLA functions, the functional 293 

enrichments of XLOC-633950 according to its co-expressed protein-coding genes were 294 

mainly associated with immunoinhibitory processes, such as negative regulation of T cell 295 

cytokine production (adjusted P-value = 4.56e-13) and negative regulation of T cell 296 

proliferation and activation (adjusted P-value = 7.25e-11 and 5.85e-08 respectively) (Figure 297 

6H-I). These results provided a starting point for future dissecting the mechanisms of 298 

signature lncRNAs. 299 

Discussion 300 

Despite the obvious advantages, most scRNA-seq data was still limited in its ability to study 301 

lncRNAs, which were emerging as central players and key regulators in a number of 302 

biological processes such as anti-tumor immune response [52, 53]. In comparison with many 303 

scRNA-seq methods that amplified only the 3’ end of transcripts, the SMART-seq2 protocol 304 

could generate full-length cDNA from polyadenylated transcripts which results in data 305 

suitable for analysis of lncRNAs [30, 54]. In current study, we preformed systematic analyses 306 
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of SMART-seq2 full-length scRNA-seq datasets and provided the first comprehensive atlas 307 

of lncRNA in T cells of human cancer.  308 

Recently, Jiang et al. presented a comprehensive human lncRNA catalog (RefLnc) [38] 309 

containing 77,900 lncRNAs based on analysis of 14,166 polyA(+) RNA-Seq libraries and 310 

previous known annotations. Among the RefLnc lncRNAs, only 16% could be assembled and 311 

expressed in T cells. In addition, compared with bulk-seq data, scRNA-seq data could 312 

detected more known and novel transcripts. These observations suggested that despite the 313 

vast number of lncRNAs that have been identified using bulk-seq data [10, 12, 26, 38, 55], 314 

the catalog of human lncRNAs is still far from being complete at single-cell resolution, due to 315 

their low and cell-specific expression patterns. Based on the cell-pooling strategy and more 316 

than 20,000 scRNA-seq libraries from 31 patients across three cancer types, we identified 317 

9,433 previously non-annotated lncRNAs. These results significantly expand the current 318 

lncRNA catalog and enable us to carry out in-deep analysis of the T cell context-specific 319 

lncRNA transcriptome. Notably, all the scRNA-seq data used in current study was generated 320 

by sequencing the polyadenylated (ployA) transcriptome, in which non polyadenylated 321 

lncRNAs were absent. 322 

Several previous studies have applied full-length scRNA-seq to unleash tumor infiltrating 323 

lymphocytes in HCC [34], NSCLC [32], and CRC[33], providing a deep understanding of the 324 

immune landscape of T cells in cancer. Nevertheless, the physiological function of lncRNAs 325 

in different T cell states during the cancer immune response remains elusive. Although the 326 

abundance of lncRNA was relatively low and hard to distinguish from technical noise in 327 

single T cells, pooling the transcripts from multiple cells that are derived from the same cell 328 

state allows more accurate quantification of lncRNAs, making it feasible to explore their 329 

signatures and putative regulatory mechanisms associated with T cell states in cancer 330 

immunity. Based on such partitioning and pooling strategies, we used the MetaCell method to 331 

identify homogeneous T cell groups from scRNA-seq data and derived a detailed map of 43 332 

and 65 metacells for CD8 and CD4 T cells respectively. These metacells with higher 333 

homogeneity, allowed a more accurate quantification of lncRNAs as well as identification of 334 

T cell differentiation gradients. For example, we observed 7 metacells involved in CD8 335 

effector cell cluster, which might reflect the transcriptional heterogeneity in this cluster 336 

(Figure 4C). The roles of lncRNAs in these different subsets (metacells) of CD8 effector T 337 

cells need further investigation. While MetaCell was not designed to perform single-cell 338 
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lncRNA analysis, the MetaCell partitioning algorithm facilitated robust cell grouping of 339 

scRNA-seq data which enabled us to study lncRNAs more accurately. 340 

According to the metacell maps (Figure 4E-F), in contrast to the pool of intermediate T 341 

cells with diffuse borders with other cell states, a discrete pool of effector T cells, exhausted 342 

T cells and Tregs were observed that show clear gaps among them, thus facilitating unbiased 343 

analysis of signature lncRNAs in these cell states. In total, the 154 signature lncRNAs were 344 

obtained providing a useful reference lncRNA resource to further investigate their functions 345 

in T cell mediated cancer immunity. Since lncRNAs generally interact with protein-coding 346 

genes, and highly correlated genes generally have similar functions, the putative functions of 347 

these signature lncRNAs could be predicted by the co-expressed coding genes. Therefore, by 348 

constructing the ‘two color’ co-expression network in which both coding and lncRNA genes 349 

were involved, the functions of 84 signature lncRNAs were annotated. Some lncRNAs were 350 

genomically co-located with their host genes, that revealed the complicated regulation 351 

mechanisms of lncRNAs in cancer immunity. For example, as described above, TM4SF19-352 

AS1 was both co-expressed and co-located with their host gene TM4SF19, whose family has 353 

functions in various biological processes including cell proliferation and adhesion that are 354 

consistent with the characteristics of effector T cells [43-46]. 355 

In summary, the current study provides the first comprehensive catalog and the functional 356 

repertoires of lncRNAs in human cancer T cells. Although the expression pattern and exact 357 

mechanisms of these signature lncRNAs in regulating T cell states needs further experimental 358 

validation, we provide the groundwork for future studies to investigate the functional 359 

mechanisms of lncRNAs in the T cell mediated cancer immunity, especially in two of the 360 

essential states of T cells: effector state and exhausted state. These signature lncRNAs of 361 

CD8 exhausted T cells and tumor Tregs, may serve as new targets for novel cancer-immune 362 

biomarker development and cancer immunotherapies. 363 

Materials and methods 364 

Full-length scRNA-seq and bulk RNA-seq datasets from cancer patients 365 

Raw sequencing data of three compendium datasets used in the current study were authorized 366 

by the European Genome-phenome Archive (EGA) and obtained from the EGA database 367 

under study accession id: EGAS00001002791, EGAS00001002430, and EGAS00001002072. 368 

The CRC scRNA-seq dataset (EGAS00001002791) contains the raw data of 11,138 single T 369 
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cells isolated from different tissues (peripheral blood, adjacent normal and tumor tissues) of 370 

12 CRC patients [33]. The NSCLC scRNA-seq dataset (EGAS00001002430) contains the 371 

raw data of 12,346 single T cells from 14 NSCLC patients [32]. The HCC scRNA-seq dataset 372 

(EGAS00001002072) contains the raw data of 5,063 single T cells from 6 HCC patients [34]. 373 

All the data were generated by Illumina HiSeq 2500 sequencer with 100 bp pair-end reads or 374 

Illumina Hiseq 4000 sequencer with 150 bp pair-end reads. The cells from HCC patient 375 

P1202 (TCRs could not be assembled in those cells) were not analyzed in the current study. 376 

After preliminary filtration, 24,075 T cells with at least one pair of TCR alpha-beta chain 377 

were retained. The bulk RNA-seq data of five tumor samples from HCC patients were 378 

obtained from HCC dataset.  379 

According to the cell annotations from original papers [32-34], these T cells were 380 

classified into different subtypes (Figure S1A and Table S1). PTC, NTC, and TTC represent 381 

CD3+CD8+ T cells that were isolated from peripheral blood, adjacent normal, and tumor 382 

tissues respectively. The PTH, NTH, and TTH represent CD3+CD4+CD25low T cells that were 383 

isolated from the three tissues. PTR, NTR, and TTR represent CD3+CD4+CD25high T cells 384 

that were isolated from the three tissues.  385 

Reads mapping and transcripts assembly 386 

Clean reads from each T cell were mapped to the human reference genome (version 387 

hg38/GRCh38) using STAR aligner (v2.7.1) [56] with the twopassMode set as Basic. The 388 

bam files of T cells from each cell-type of each patient were merged using SAMtools merge 389 

[57]. StringTie (v2.0.3) [35] was used to assemble transcripts based on genomic read 390 

alignments. Assembled transcripts of all cell-types across all patients were merged together 391 

using the Cuffmerge utility of Cufflinks package [58]. 392 

Comparison with reference gene annotation 393 

For reference gene annotation, lncRNA genes were collected from RefLnc [38] and other 394 

genes were collected from GENCODE v31 [59]. According to the “class code” information 395 

outputted by Cuffcompare, the merged assembly was classified into four categories by 396 

comparison with the reference gene annotation, including known coding genes, known 397 

lncRNA genes, potentially novel genes (class code is “i, x, u”), and others. 398 

Identification of novel lncRNAs 399 
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Based on the potentially novel gene catalog derived from single-cell data, we developed a 400 

custom pipeline for identification of reliable novel lncRNAs including the following steps: (1) 401 

transcripts that are no shorter than 200 nt and have more than one exon were selected for 402 

downstream analysis (for intergenic transcripts, at least 1 kb away from known protein-403 

coding genes); (2) CPC (Coding Potential Calculator) [36] and CNCI (Coding Noncoding 404 

Index) [37] software were used to evaluate the protein-coding potential of transcripts, and 405 

transcripts that were reported to lack coding potential by both CPC and CNCI were regarded 406 

as candidate noncoding transcripts; (3) The remaining transcripts that were assembled and 407 

have the same intron chain of at least two cell-types were retained as the final novel lncRNA 408 

catalog. The final lncRNA catalog was obtained by combining the reference lncRNA and 409 

novel lncRNA genes directly. The UCSC liftOver tool (http://genome.ucsc.edu/cgi-410 

bin/hgLiftOver?hgsid=806106955_h2xhcK2iPRI7SiMkxkB41I2mwF9O) was used to 411 

identify the orthologous locations of human novel lncRNAs in the mouse genome and in 412 

primates such as chimpanzee and gorilla, with the parameters: Minimum ratio of bases that 413 

must remap = 0.1 and Min ratio of alignment blocks or exons that must map =0.5. 414 

Experimental validation of novel lncRNAs 415 

Three CRC patients were enrolled at Shenzhen People’s Hospital. The informed consent 416 

forms were provided by patients. The current study was approved by Medical Ethics 417 

Committee of Shenzhen People’s Hospital. The clinical characteristics of three patients are 418 

summarized in Table S2. Peripheral blood samples from three patients were obtained and 419 

treated with anticoagulation. Peripheral blood mononuclear cells (PBMCs) were extracted by 420 

Ficoll-Paque Plus (GE Healthcare, Sweden, 17144003). Then, CD8+ and CD4+ T cells were 421 

separated by immunomagnetic beads (Meltenyi Biotec, Germany, 130045101, 130045101). 422 

The separation efficiency was verified by flow cytometry. The sorted cells were dissolved in 423 

Trizol Reagent (Ambion, USA, 15596026) for RNA extraction according to the 424 

manufacture’s protocol. cDNA was synthesized by PrimerScript RT reagent kit (Takara, 425 

Japan, AHG1552A). We chose 50 novel lncRNAs to perform experimental validation 426 

according to the following criteria: (1) highly expressed in either CD8 or CD4 T cells; (2) 427 

reconstructed in at least ten subsets with complete match; (3) uniquely mapped to human 428 

genome. For each lncRNA, at least two pairs of primers for qRT-PCR were designed using 429 

NCBI Primer-BLAST (https://www.ncbi.nlm.nih.gov/tools/primer-blast). In order to ensure 430 

the specificity of primers, UCSC InSilicon PCR (http://genome.ucsc.edu/cgi-bin/hgPcr) was 431 

used to compare the primer pairs with human genome (hg38). Some primer pairs were 432 
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specifically designed to span splicing sites (exon junctions). QRT-PCR were performed with 433 

SYBR Green master mix (Takara, Japan) on an ABI StepOnePlus (Applied Biosystems, 434 

USA). GAPDH as housekeeping gene was used as positive control. For each lncRNA, we 435 

selected one primer pair product of qRT-PCR for Sanger sequencing. 436 

Quality control (QC) and normalization 437 

We calculated the read counts and transcripts per million (TPM) values using 438 

pseudoalignment of scRNA-seq reads to both protein-coding and lncRNA transcriptomes, as 439 

implemented in Kallisto (v0.46.0) [60] with default parameters, and summarized expression 440 

levels from the transcript level to the gene level. 441 

Low-quality and doublet cells were removed if the number of expressed genes (counts of 442 

more than 1) was fewer than 2000 or higher than the medians of all cells plus 3 × the median 443 

absolute deviation, respectively. Moreover, the cells with the proportion of reads mapped to 444 

mitochondrial genes was larger than 10% were discarded. Genes with average counts of more 445 

than 1 and expressed in at least 1% of cells for each type of cancer were retained. The 446 

combined count tables from all T cells passing the above filtration were normalized using a 447 

pooling and deconvolution method implemented in the R package named 448 

computeSumFactors [61] with the sizes ranged from 80, 100, 120 to 140. According to the 449 

assumption that most genes were not differentially expressed, normalization was performed 450 

within each predefined cluster separately to compute cell size factors. The cell size factors 451 

were rescaled by normalization among clusters. Finally, the counts for each cell were 452 

normalized by dividing the cell counts by the cell size factor. 453 

MetaCell modeling 454 

The MetaCell method [31], that partitioned the scRNA-seq dataset into disjointed and 455 

homogeneous cell groups (metacells) using the K-nn graph algorithm, was performed for 456 

both the CD8 and CD4 T cells independently. We first removed specific mitochondrial genes 457 

(annotated with the prefix “MT-”), that typically mark cells as being stressed or dying, rather 458 

than cellular identity. Based on the count matrices of both protein-coding and lncRNA genes, 459 

feature genes whose scaled variance (variance/mean on down-sampled matrices) exceeded 460 

0.08 were selected and used to compute cell-to-cell similarity using Pearson correlations. 461 

According to the cell-to-cell similarity matrices, two balanced K-nn similarity graphs for 462 

CD8 and CD4 T cells were constructed using the parameter K=100 (the number of neighbors 463 
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for each cell was limited by K). Next, we performed the resampling procedures (resampling 464 

75% of the cells in each iteration with 500 iterations) and co-clustering graph construction 465 

(the minimal cluster size was 50). Finally, the graphs of metacells (and the cells belonging to 466 

them) were projected into 2D spaces to explore the similarities between cells and metacells. 467 

Annotation of metacells 468 

Annotation of metacells was performed based on the metacell confusion matrix and 469 

predefined cluster annotations (File S1) of T cells involved in the metacells. Briefly, we first 470 

created a hierarchical clustering of metacells according to the number of similarity 471 

relationships between their cells. Next, we generated clusters of metacells as confusion 472 

matrices based on the hierarchy results, then annotated these clusters according to the 473 

annotations of T cells. 474 

Defining signature lncRNAs associated with T cell states 475 

To identify signature lncRNAs associated with effector and exhausted T cells as well as 476 

Tregs, as described in recent study [39], we adopted the anchor approach by identifying the 477 

lncRNAs that were significantly correlated to well-defined anchor genes, based on metacells’ 478 

log enrichment scores (lfp values calculated by MetaCell method). The lncRNAs that 479 

significantly correlated with anchor genes (adjusted P-value <0.01 and ranked in the top 0.05 480 

percentile for each anchor gene) were regarded as signature lncRNAs. The anchor genes were 481 

defined as follows: the anchor genes of CD8 exhausted T cells included HAVCR2, LAG3, 482 

PDCD1, TIGIT, and CTLA4; the anchor genes of CD8 effector T cells included CX3CR1, 483 

FGFBP2, GZMH and PRF1; genes associated with Tregs included FOXP3; the anchor genes 484 

of CD4 exhausted T cells included CXCL13, PDCD1, HAVCR2, TIGIT, and CTLA4; genes 485 

associated with CD4 effector T cells included GNLY, GZMB, GZMH, PRF1, and NKG7. 486 

Function prediction of signature lncRNAs based on co-expression network 487 

Based on lfp values of both lncRNA and protein-coding genes across all metacells, we used a 488 

custom pipeline for large-scale prediction of signature lncRNA functions by constructing the 489 

coding-lncRNA gene co-expression network [40, 41]. Briefly, genes with log enrichment 490 

scores ranked in the top 75% of each metacell were retained. Then, P-values of Pearson 491 

correlation coefficients for each gene pair were calculated based on the Fisher’s asymptotic 492 

test using the WGCNA package of R. P-values were adjusted based on the Bonferroni 493 

multiple test correction using the multtest package of R. The gene pairs with an adjusted P-494 
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value < 0.01, Pearson correlation coefficient > 0.7, and ranked in the top 5% for each gene 495 

were involved in co-expression network.  496 

Based on the co-expression network, lncRNA functions were predicted using module- 497 

and hub-based methods. Specifically, the Markov cluster algorithm was adopted to identify 498 

co-expressed modules [40]. For each module, if the known genes were significantly enriched 499 

for at least one Gene Ontology (GO) term, the functions of the lncRNAs involved in the 500 

module were assigned as the same ones. For hub-based method, the functions of a hub 501 

lncRNA (node degree > 10) were assigned, if its immediate neighboring genes were 502 

significantly enriched for at least one GO term. 503 

Data availability 504 

All the novel lncRNA genes identified in current study and their expression files are available 505 

in the NONCODE database (http://www.noncode.org/download.php). 506 
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 687 

Figure Legends 688 

Figure 1  The statistics of assembled transcripts and workflow for novel lncRNA 689 

identification process in T cells during cancer immunity  690 

A. Violin plots showing the number of assembled transcripts and the number of those 691 

matched to the reference at single cell level across five HCC patients. B. Number of 692 

assembled transcripts that matched to reference across five HCC patients based on four 693 

different strategies. *** indicates P-value < 0.001 (Wilcoxon rank sum test). C. Correlation 694 

of the number of cells and the number of assembled transcripts across different subsets for 695 

CRC, HCC and NSCLC. A 95% confidence interval was added and shown as coloured 696 

regions. D. Scheme of pipeline used to identify the novel lncRNAs expressed in T cells 697 

during cancer immunity using three full-length scRNA-seq datasets. E. The statistics of 698 

assembled transcripts that matched to reference protein-coding and reference lncRNA genes. 699 

CRC, colorectal cancer; HCC, hepatocellular carcinoma; NSCLC, non-small-cell lung cancer; 700 

P, peripheral blood; N, adjacent normal tissue; T, tumor tissue. 701 

Figure 2  Single T cell sorting and quality evaluation of an example novel lncRNA 702 

A. The results of flow cytometric analysis. CD8 and CD4 T cells from three patients were 703 

separated by magnetic beads and stained with flow cytometry antibody CD8-APC and CD4-704 

APC respectively (Isotype was used as negative control). B. An example of novel intergenic 705 

lncRNA that was validated by Sanger sequencing. The genomic views are generated from 706 

UCSC genome browser. The spliced sequence outputted by Sanger sequencing is shown. 707 
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Figure 3  Characterization of lncRNA expression patterns at single-cell level 708 

A. The number of protein-coding, reference lncRNA, and novel lncRNA genes expressed in 709 

T cells across three cancer types. *** indicates P-value < 0.001 (Wilcoxon rank sum test). B. 710 

The plots show the percentage of expressing cells against the mean expression level 711 

(logCounts) for protein-coding, reference lncRNA, and novel lncRNA genes across three 712 

cancer types. The numbers of genes that are expressed in at least 25% of cells are labelled.  713 

Figure 4  Characterization of T cell states based on 2D projection of T cells and the 714 

annotation of metacell maps 715 

A. 2D projection of CD8 T cells from three cancer types into 43 metacells. B. 2D projection 716 

of CD4 T cells from three cancer types into 65 metacells. C, D. CD8 (C) and CD4 (D) 717 

metacells (rows) are ordered by groups and organized within each group. The first panel of 718 

the bar plot shows the number of cells of different clusters in each metacell. The second and 719 

third panel of the bar plots show the percentage of cells from different cancer types and 720 

tissues in each metacell respectively. Heatmaps show the confusion matrix (the pairwise 721 

similarities between metacells) for CD8 (C) and CD4 (D) metacells. The annotations of 722 

different metacell groups are shown on the right. E, F. 2D projections of the composition of 723 

CD8 (E) and CD4 (F) T cells from different clusters. P, peripheral blood; N, adjacent normal 724 

tissue; T, tumor tissue. 725 

Figure 5  The correlation and expression analyses of signature lncRNAs associated with 726 

different T cell states 727 

A, B. Gene-gene correlation heatmap for signature lncRNA and anchor genes in CD8 (A) and 728 

CD4 (B) T cells. The signature gene modules and two anchor genes (CTLA4 and FOXP3) are 729 

labelled on the right. C. Expression of signature lncRNA and anchor genes across CD8 730 

metacells. Metacells and metacell groups associated with effector and exhausted functions are 731 

shown on the bottom. The anchor genes are marked with red color on the right. 732 

Figure 6  Functional annotation analyses of signature lncRNAs 733 

A-C. Functional enrichment maps of CD8 effector/exhausted (A), CD4 effector/exhausted (B) 734 

and CD4 Treg (C) signature lncRNAs. The enriched gene sets from Gene Ontology based on 735 

the predicted functions of signature lncRNA genes are visualized by Cytoscape plugin 736 

Enrichment Map. Each node represents a gene set; size of the node is indicative of the 737 
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number of genes and the color intensity reflects the level of significance. Effector signature 738 

gene sets are shown in red circles, exhausted or Treg ones in green and the common gene sets 739 

in orange. Maps are differently magnified for easier visualization. D-F. The genomic view 740 

(D), co-expressed genes (E) and functional annotations (F) of effector signature lncRNA 741 

TM4SF19-AS1. G-I. The genomic view (G), co-expressed genes (H) and functional 742 

annotations (I) of exhausted signature lncRNA XLOC-633950 (novel). The genomic views 743 

are generated from UCSC genome browser. In (E) and (H), co-expressed protein-coding, 744 

reference lncRNA and novel lncRNA genes are colored by pink, light green and light yellow 745 

respectively. 746 

Supplementary material 747 

Figure S1  The statistics of T cell data analysis 748 

 A. The number of cells in different subsets across all patients from three cancer types. B, C. 749 

The number (B) and the ratio (C) of uniquely mapped read pairs of T cell sequencing data. D. 750 

The number of splices of mapping results. E. The different strategies used to explore the best 751 

way to obtain novel transcripts. F. The number of assembled transcripts in each subset. PTC, 752 

CD8+ cytotoxic T cells from peripheral blood; TTC, CD8+ cytotoxic T cells from tumor 753 

tissue; NTC, CD8+ cytotoxic T cells from adjacent normal tissue; PTH, CD4+CD25- cells 754 

from peripheral blood; TTH, CD4+CD25- cells from tumor tissue; NTH, CD4+CD25- cells 755 

from adjacent normal tissue; PTR, CD4+CD25hi cells from peripheral blood; TTR, 756 

CD4+CD25hi cells from tumor tissue; NTR, CD4+CD25hi cells from adjacent normal tissue; 757 

PTY, CD4+CD25int cells from peripheral blood; TTY, CD4+CD25int cells from tumor tissue; 758 

NTY, CD4+CD25int cells from adjacent normal tissue; PPQ, CD4+ T cells from peripheral 759 

blood; TPQ, CD4+ T cells from tumor tissue; NPQ, CD4+ T cells from adjacent normal tissue; 760 

CRC, colorectal cancer; HCC, hepatocellular carcinoma; NSCLC, non-small-cell lung cancer. 761 

Figure S2  The cluster hierarchy of metacells  762 

A, B. The cluster hierarchy of CD8 (A) and CD4 (B) metacells. Subtrees in blue, sibling 763 

subtrees in gray. The metacells are colored and labelled on bottom. 764 

Figure S3  2D projections of CD8 T cells 765 
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A, B. The composition of CD8 T cells from different clusters (A) and cancer types (B). 766 

Metacells and the cells involved in them are marked by different colors. The number of cells 767 

within each cluster is shown in brackets. 768 

Figure S4  2D projections of CD4 T cells 769 

A, B. The composition of CD4 T cells from different clusters (A) and cancer types (B). 770 

Metacells and the cells involved in them are marked by different colors. The number of cells 771 

within each cluster is shown in brackets. 772 

Figure S5  Expression of signature lncRNA and anchor genes across CD4 metacells 773 

Metacells and metacell groups associated with effector, exhausted and Treg functions are 774 

shown on the bottom. The anchor genes are marked with red color on the right. 775 

Figure S6  Functional enrichment maps of shared signature lncRNAs 776 

A-C. Functional enrichment maps of shared signature lncRNAs between CD8 effector and 777 

CD4 effector function (A), between CD8 exhausted and CD4 exhausted function (B) and 778 

between CD4 exhausted and CD4 Treg function (C). Each node represents a gene set; size of 779 

the node is indicative of the number of genes and the color intensity reflects the level of 780 

significance. Maps are differently magnified for easier visualization. 781 

Table S1 The basic information of single T cell data 782 

Table S2  Clinical characteristics of three cancer patients 783 

Table S3  The list of novel lncRNAs successfully validated by Sanger sequencing  784 

Table S4  The list of specific-expressed lncRNAs 785 

Table S5  The composition of CD8 metacells 786 

Table S6  The composition of CD4 metacells 787 

Table S7  The list of signature lncRNAs 788 

Table S8  Functional annotations of 84 signature lncRNAs 789 

Table S9  Functional enrichment results of CD8 effector/exhausted signature lncRNAs 790 

Table S10  Functional enrichment results of CD4 effector/exhausted signature lncRNAs 791 
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Table S11  Functional enrichment results of CD4 Treg signature lncRNAs 792 

Supplementary Table1-8 are Excel format, and Supplementary Table9-11 are Word format.  793 
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