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Abstract 23 

IncF plasmids are diverse and of great clinical significance, often carrying genes conferring 24 

antimicrobial resistance (AMR) such as extended-spectrum β-lactamases, particularly in 25 

Enterobacteriaceae. Organising this plasmid diversity is challenging, and current knowledge is 26 

largely based on plasmids from clinical settings. Here, we present a network community 27 

analysis of a large survey of IncF plasmids from environmental (influent, effluent, and 28 

upstream/downstream waterways surrounding wastewater treatment works) and livestock 29 

settings. We use a tractable and scalable methodology to examine the relationship between 30 

plasmid metadata and network communities. This reveals how niche (sampling compartment 31 

and host genera) partition and shape plasmid diversity. We also perform pangenome-style 32 

analyses on network communities. We show that such communities define unique combinations 33 

of core genes, with limited overlap. Building plasmid phylogenies based on alignments of these 34 

core genes, we demonstrate that plasmid accessory function is closely linked to core gene 35 

content. Taken together, our results suggest that stable IncF plasmid backbone structures can 36 

persist in environmental settings while allowing dramatic variation in accessory gene content 37 

that may be linked to niche adaptation. The recent association of IncF plasmids with AMR 38 

likely reflects their suitability for rapid niche adaptation.   39 

 40 

Introduction 41 

Environmental (non-clinical, non-human) populations of Enterobacteriaceae may act as a genetic 42 

reservoir for antimicrobial resistance (AMR). This includes livestock [1-5] and water-borne [6] 43 

resistance. Frequent horizontal gene transfer (HGT) in Enterobacteriaceae populations results in a 44 

large and open pangenome, enabling the wide-spread transmission of the genes conferring AMR [7-45 

9]. This includes AMR transmission between humans and the environment and vice versa [10]. 46 

However, evidence for this transmission is often context and sequence type (ST)-specific, with 47 

broader transmission patterns less conclusive [10, 11]. IncF plasmids are a diverse group of 48 

Enterobacteriaceae-associated replicons which mediate the transfer of AMR genes. They have also 49 

been observed in other Proteobacteria, such as Aeromonadaceae and Comamonadaceae [12]. In 50 
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particular, their involvement in the dissemination of genes encoding extended-spectrum β-lactamases 51 

(ESBLs), such as bla-CTX-M-15, is of major clinical concern [13, 14], and almost 40% of plasmid-borne 52 

carbapenemases are carried on IncF plasmids [15]. IncF plasmids are often low copy-number and 53 

conjugative [16]. Further, recent database analysis suggests IncF alleles are carried in over 50% of 54 

multireplicon plasmids [12].  55 

 56 

Previous studies of IncF plasmids have often focussed on clinically relevant isolates, often only those 57 

encoding ESBLs [15]. Further, they have been limited to studies with smaller sample sizes. Here we 58 

analyse hundreds of IncF plasmids drawn from a survey of environmental diversity in 59 

Enterobacteriaceae, sampled in 2017 from a region of south-central England, UK [17]. Sampling was 60 

from livestock (cattle, pig, sheep), and from influent, effluent, and upstream/downstream waterways 61 

surrounding wastewater treatment works (collectively termed WwTWs). Potential seasonal variation 62 

was accounted for by sampling over three time-points at each site. This provided a high-quality 63 

dataset of n=726 plasmids for characterising natural plasmid populations. 64 

 65 

Frequent co-integration and HGT events mean plasmid evolution cannot be described with a 66 

phylogenetic tree. Instead, networks based on sequence similarity can be used [18]. In such networks, 67 

nodes represent plasmids, and edges are weighted by a metric on the plasmid sequences. This captures 68 

both vertical and horizontal evolution at the cost of not providing a most recent common ancestor. 69 

Communities are a topological property of networks. They are defined as subsets of nodes with dense 70 

intra-connections, but sparse inter-connections [19]. In our analyses, they represented groups of 71 

similar plasmid sequences. Detecting these structures gives a coarse-grained view of the plasmid 72 

population. Previous efforts have often focussed on the relationship between network features used in 73 

plasmid classification schemes, such as replicon presence, MOB-type, or predicted mobility [20-23]. 74 

Further, studies have often focussed on curated selections from online databases [20, 22-24]. It is yet 75 

to be seen if similar community structure is present in large-scale natural populations. Additionally, it 76 

is important to develop fast and scalable methods for analysis of large and diverse WGS datasets. 77 

Here we aimed to provide a framework applicable to such studies. 78 
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 79 

Results. 80 

A natural population of complete plasmids with IncF replicons. 81 

We recovered n=726 circularised plasmids containing an IncF replicon (see Table S6) from a large 82 

dataset of high-quality Enterobacteriaceae genomes, obtained by hybrid assembly using both short-83 

read (Illumina, 150bp paired end) and long-read (PacBio or Nanopore) sequencing of cultured isolates 84 

[17]. These isolates were collected over three time-points in 2017 from a region of south-central 85 

England, UK. Sampling was from 14 livestock farms (4 pig, 5 cattle, 5 sheep) and from waterways 86 

(influent, effluent and rivers) surrounding five WwTWs. Of the livestock plasmids, 120 were from 87 

pigs, 137 were from cattle and 150 were from sheep. The remaining 319 plasmids were from 88 

WwTWs. 89 

 90 

IncF plasmids were found across all four genera in the dataset: Citrobacter (53 C. freundii), 91 

Enterobacter (67: 65 E. cloacae, 2 untyped Enterobacter sp.), Escherichia (471 E. coli), and 92 

Klebsiella (135: 61 K. oxytoca, 67 K. pneumoniae, 7 untyped Klebsiella sp.). Livestock plasmids 93 

mostly came from Escherichia (392/407), whereas WwTW plasmids had a more uniform distribution 94 

over all four genera in line with the greater diversity of genera in WwTW isolates (Fig. 1a).  Our 95 

plasmids originated from n=558 host Enterobacteriaceae isolates, with a majority of chromosomes 96 

circularised (431/558). 97 

 98 

Plasmids ranged in length from approximately 20kb to 480kb (Fig. 1b). A majority of plasmids were 99 

predicted to be conjugative (516/726), with a smaller number predicted to be mobilisable (39/726) or 100 

non-mobilisable (171/726) (see Materials and Methods). Plasmid length was linked to mobility, with 101 

conjugative plasmids generally larger than mobilisable and non-mobilisable plasmids (Kruskal-Wallis 102 

test [H=36.7, p=1.08e-8] followed by Dunn test with Holm adjusted p-value [Conj—Mob: Z=3.45, p-103 

value=1.14e-03; Conj—Non-Mob:  Z=5.39, p-value=2.07e-07; Mob—Non-Mob: Z=-0.54, p-104 

value=0.59]). We found 25 different replicons across all plasmids, including 11 in unspecified gene 105 

clusters, present in 62 different combinations or 'replicon haplotypes' (Table S1). 28 replicon 106 
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haplotypes appeared only once in the sample. Plasmids carried between 1 and 5 replicons, with a 107 

majority carrying 2 (318/726) or 3 (209/726). Plasmid length was positively associated with number 108 

of replicons carried (one-way ANOVA test [F(4, 721)=5.64, p-value=1.8e-4] followed by Tukey’s 109 

HSD). All plasmids contained at least one IncF replicon: IncFIA (147), IncFIB (460), IncFII (574) 110 

and IncFIIA (370). Of the remaining replicons, IncI1 was most common (28), and was always found 111 

with an IncFII replicon. We observed different replicon co-occurrrence patterns (Fig. 1c), with 112 

individual IncF replicons associated with different non-IncF replicons. For instance, IncU and IncN 113 

replicons were only found with IncFIB and IncFII respectively. Overall, these co-occurrence patterns 114 

corroborate previously observed patterns of frequent IncF association with replicons such as IncI1, 115 

IncX and IncR [12]. 116 

 117 

IncF plasmids tended to be AT-rich relative to their host chromosomes. This trend has been widely 118 

reported before [25, 26]. However, we found that relative AT-richness significantly varied between 119 

host genus (one-way ANOVA test [F(3, 561)=111, p-value<2e-16] followed by Tukey’s HSD), 120 

independently of average host GC-content, with Klebsiella plasmids having a greater relative AT-121 

richness than other Enterobacteriaceae plasmids (Fig. 1d). 122 

 123 

Detecting communities in plasmid k-mer networks. 124 

Plasmid sequence distances were calculated using MASH, a k-mer based distance estimation [27] (see 125 

Materials and Methods), and these distances used as weighted edges in a plasmid network. The output 126 

MASH edge list is presented in Table S7. Communities were detected using the Louvain algorithm, 127 

which optimises the modularity of the networks, and is a weighted community detection algorithm, 128 

meaning it also accounts for the MASH distances [19]. To effectively detect communities, we reduced 129 

the density of the network by thresholding the edges (i.e. by ‘sparsification’). Fig. 2a-b shows how the 130 

number of identified communities and percentage of plasmids covered changed as the edge (i.e. 131 

MASH distance) threshold was varied. Generally, the Louvain algorithm became more consistent in 132 

coverage as we sparsified. To ensure the communities represented potential sub-populations, we only 133 

considered those with at least 10 plasmids. The large drop in community coverage seen at 134 
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threshold=0.175 (Fig. 2b) was due to the break-up of a large connected component (analogous plots 135 

for communities with at least 3 plasmid members are shown in Fig. S1a-b). 136 

 137 

The application of different MASH distance thresholds revealed different community structures within 138 

the network. Fig. 2c shows the kernel density estimates (KDEs) of MASH distances stratified by 139 

sampling compartment, with an overall range of [0, 0.602], highlighting that livestock plasmids 140 

(median=0.152) were generally more similar to each other than WwTW plasmids (median=0.258) and 141 

suggesting that plasmid diversity was higher in WwTW isolates. A distance threshold low enough to 142 

reveal the livestock sub-network structure could destroy the structure of the WwTW sub-network, so 143 

for this study, we selected a threshold=0.05, which revealed the structure of livestock plasmids at the 144 

expense of some WwTW structure break-up. Note that this threshold is far lower than those used in 145 

previous plasmid network analyses of global plasmid diversity [21-23]; our sample was smaller and 146 

restricted to a broad plasmid family so required more severe sparsification to reveal communities. At 147 

this level, the network’s largest connected component (LCC) had 201 nodes with 182 connected 148 

components in total (Fig. 2d). It also had the highest number of communities (13) containing at least 10 149 

plasmids (Fig. 2a), and coverage of over 50% (Fig. 2b). There were 99 singleton plasmids, consistent 150 

with high levels of diversity in the population. A visualisation of the network at this threshold with the 151 

13 communities coloured is presented in Fig. 3. 152 

 153 

Community metadata analysis 154 

To evaluate the relationship between the node metadata labels and the network, two entropic measures 155 

were considered: homogeneity (h) and completeness (c) (both range from 0-1; see Materials and 156 

Methods). Homogeneity measures the distribution of labels given a community, with an ideal 157 

community containing a single label: a high homogeneity means that plasmids with similar sequences 158 

tend to have similar metadata labels. Conversely, completeness measures the distribution of 159 

communities given a label: a high completeness means that instances of a label tend to fall within a 160 

single community. Importantly, both homogeneity and completeness are independent of community 161 
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size, the number of communities, and the number of metadata labels. This makes the approach robust 162 

to uneven sampling strategies, such as the disproportionate number of E. coli isolates in our sample. 163 

 164 

Each plasmid was assigned a set of metadata labels, consisting of a sampling compartment (livestock 165 

type [pig, cattle, sheep] or WwTW-association [influent, effluent, upstream, downstream]), a host 166 

genus (Citrobacter, Enterobacter, Escherichia or Klebsiella), and a time-point (1, 2 or 3). 167 

Homogeneity (Table 1) and completeness (Table 2) were averaged over 100 runs of the Louvain 168 

algorithm. Despite the number of communities remaining consistent, some variation in the measures 169 

arose from minor changes in community boundaries. 170 

 171 

Homogeneity scores showed that sampling compartment shaped plasmid similarity. At the coarsest 172 

resolution there was high homogeneity considering livestock versus WwTW (h=0.715; Table 1), 173 

meaning that plasmid communities were largely distinct between livestock and WwTW settings. This 174 

metadata partition is projected on the network in Fig. 4a. However, homogeneity was lower when 175 

comparing different livestock types (pig, cattle, sheep) (h=0.591) and even more so when comparing 176 

different farms (h=0.403), meaning that there was a loss of structure at these levels and plasmid 177 

communities were not well segregated by individual farm. Homogeneity was also low if plasmids 178 

were stratified by individual WwTWs (h=0.467). However, homogeneity increased for 179 

influent/upstream versus effluent/downstream compartments (h=0.550) indicating some differences in 180 

plasmids before and after WwTW treatment. Overall, plasmids from WwTWs were weakly structured 181 

by wastewater catchment. 182 

 183 

Completeness scores highlighted higher WwTW diversity compared to lower livestock diversity. For 184 

the binary livestock or WwTW label plasmid communities scored a low completeness (Table 2; 185 

c=0.199), which changed little when stratified over the individual WwTWs (c=0.238), indicating a 186 

uniform distribution of WwTW labels over the plasmid communities and high diversity. Based on our 187 

MASH distance KDEs (Fig. 2c), we would expect livestock plasmids to have higher completeness 188 

scores than WwTW plasmids due to the lower levels of diversity; as anticipated, when stratifying the 189 
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livestock metadata, completeness scores increased (c=0.332 and c=0.400). This indicated plasmids 190 

from the same farm were more likely to be found in the same community.  191 

 192 

Host genus also played an important factor in partitioning plasmid diversity.  The homogeneity scores 193 

were very high, implying a significant genetic partition by host (Table 1; h=0.888). This metadata 194 

partition is displayed in Fig. 4b. The lower completeness suggested a moderate level of diversity 195 

across all Enterobacteriaceae plasmids (Table 2; c=0.307). There was a very weak time-point effect 196 

found in the network (Tables 1, 2; h=0.050 and c=0.023). Under a one-tailed permutation test, all 197 

metadata label configurations except time-point had a zero p-value for homogeneity and completeness 198 

(Table S2; see Materials and Methods), indicating that overall, there was a significant association 199 

between niche (sampling compartment and host genus) and plasmid population structure. 200 

 201 

Community pangenomes 202 

To explore the genetic structure of the communities we considered the set of all represented genes 203 

within a community, known as the pangenome (see Materials and Methods). Plasmids had a median 204 

of 35 annotated genes (range=4-112). Genes conferring AMR were found in 17% (122/726) of 205 

plasmids; this included 33 plasmids carrying ESBLs (9 pig, 8 cattle and 16 WwTw), with 4 carrying 206 

blaCTX-M-15 (all WwTW). IncF plasmids in isolates cultured from pigs were disproportionately 207 

associated with AMR genes (45/109 [41%] AMR plasmids). 208 

 209 

Core genes with well-conserved synteny comprise the plasmid ‘backbone’ [18],  which often controls 210 

essential replication and mobility functions. Genes with accessory function, such as AMR genes, are 211 

inserted into the backbone. For the 13 IncF plasmid communities identified in this study using the 212 

0.05 threshold above (see Fig. 3), we found a median of 13 core genes (range=0-88) (Table 3). Each 213 

community possessed a unique combination of core genes, and pairs of communities shared a median 214 

of 0 core genes between them (range=0-21) (Table S3). The communities had a median of 463 215 

accessory genes (range=151-790), sharing a median of 312 accessory genes (range=99-570) (Table 216 

S4). Pairs of communities sharing a higher number of genes tended to have a higher sum of individual 217 
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genes (r=0.820, t=12.505, p-value<2.2e-16), indicating overlap between larger pangenomes. Within a 218 

plasmid community, a lower mean MASH value indicates greater overall sequence similarity; as 219 

anticipated therefore, we found a lower mean MASH distance was associated with more core genes 220 

(r=-0.615, t=-2.586, p-value=0.025) and a lower total number of genes in the pangenome (r=0.654, 221 

t=2.865, p-value=0.015). 222 

 223 

For an example community of 30 IncF plasmids from isolates from sheep farms, we produced a 224 

neighbour-joining phylogeny based on 64/384 core genes (Fig. 5). The tree accounts for homologous 225 

recombination, with events detected in 11/30 leaf nodes and 21 internal nodes, consistent with a high 226 

number of exchange events affecting this plasmid community. The median tract length was 156bp 227 

(range=2bp-2249bp). Annotation of the phylogeny with the 316 accessory genes for this community 228 

revealed that accessory gene presence aligned almost identically with the core gene phylogeny, 229 

suggesting that the evolution of the plasmid backbone is highly linked to accessory function. All host 230 

genera for this plasmid community were diverse E. coli, with 13 known STs present, consistent with 231 

widespread horizontal transfer of the plasmids from this community. Within this community, no 232 

plasmids carried AMR genes. Core genome phylogenies for other plasmid communities also showed a 233 

strong link between accessory gene presence and backbone contents (Figs. S2-S12). 234 

 235 

Discussion 236 

We have analysed plasmid communities using distance-free genomic networks to explore diversity 237 

within a large, natural population of IncF plasmids from four Enterobacteriaceae genera (Citrobacter, 238 

Enterobacter, Escherichia and Klebsiella). These IncF plasmids contained a diversity of replicons 239 

(plasmids contained 21 other replicons, forming 62 unique combinations) and we resolved plasmids 240 

into communities (12 communities of ≥10 plasmids). We found that 15% of IncF plasmids contained 241 

at least one AMR gene, and 5% carried an ESBL. This underlines that non-clinical plasmid 242 

populations can also carry AMR genes, and that WwTW environment and livestock niches are part of 243 

an AMR network for Enterobacteriacae [2, 10].  244 

 245 
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Our network analysis revealed IncF plasmids were well partitioned by sampling compartment, with 246 

distinct communities isolated to WwTWs or livestock; however, there were also clear instances of 247 

sharing events between, for example, specific farm locations. There was also moderate partitioning by 248 

specific livestock species: pig, cattle and sheep. Additionally, there was a difference in plasmids 249 

before and after WwTW treatment. Sampling compartment also influenced diversity, with a higher 250 

diversity in WwTW-associated plasmids than livestock plasmids. This is probably because both river 251 

and wastewater catchments integrate a large number of human, livestock (farmed and wild) and 252 

environmental sources. Further, they also experience higher rates of inflow and outflow than farm-253 

specific environments. The analysis also revealed a significant partition by host genera. Despite IncF 254 

plasmids ranging over all Enterobacteriaceae genera, it suggested some genus-specific adaptations. 255 

Notably, the extent of plasmid-host AT-richness relative to the host chromosome varied depending on 256 

the genus. It remains to be seen how such observed differences relate to plasmid function. However, 257 

this may be related to the livestock-WwTW partition, since our livestock plasmids were 258 

predominantly hosted by E. coli. We did not detect an effect of sampling time-point. This is may be 259 

because our time-points were too close and sample size too small to capture any significant evolution, 260 

or it may indicate that time of year is not a strong factor in determining community structure. It would 261 

be interesting to see how plasmids from clinical samples relate to those from our samples within the 262 

network, especially if pre-WwTW plasmids are considered as a proxy for human gut microbiomes. 263 

 264 

Pangenome analysis of the inferred plasmid communities revealed that core gene content was mostly 265 

unique to communities. Further, they were strongly related to accessory function. Taken with the 266 

above results, we propose that sampling compartment and host greatly influence the function of 267 

plasmids. This includes AMR presence, with pigs, and hence Escherichia, carrying a disproportionate 268 

burden in our sample. The pangenomes for communities varied greatly in the number of core genes, 269 

with one community having zero. This may be because the threshold was not severe enough to 270 

segregate this particular community into uniquely similar groups. It also may result from how 271 

Panaroo (see Materials and Methods) corrects annotation errors, splitting gene clusters too readily. 272 

Generally, more genetically similar communities possessed a greater number of core genes and 273 
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smaller pangenome. Our results for IncF plasmid communities are in line with a recent study of the 274 

wider prokaryotic plasmidome which concluded that clusters of plasmids contain common genomic 275 

backbones [23]. 276 

 277 

Our study has several limitations. One important limitation, which applies more widely to network 278 

approaches which cluster or partition diversity, is that thresholding of the network is highly subjective 279 

and dataset dependent. Trade-offs are required to reveal the intermediate structures of the network 280 

whilst maintaining good community detection performance. We determined a threshold by 281 

considering MASH distance distributions and component evolution alongside Louvain output 282 

diagnostics. When diversity varies greatly between sampling compartments, a single threshold is 283 

unlikely to be globally optimal. In these cases, it is probably best to focus on sub-populations of 284 

interest. Despite only considering several hundred nodes here, our methodology is scalable to far 285 

larger studies. Originally, the Louvain algorithm had runtime complexity O(e), where e is the number 286 

of edges in the network. This has since been improved to O(vlogk), where v is the number of nodes 287 

and k is the average node degree [28]. Further, recent efforts have parallelised the Louvain algorithm 288 

to networks with billions of edges, though this approach was not necessary here [29]. Finally, our 289 

dataset is limited to the four Enterobacteriaceae genera under study and conclusions may not reflect 290 

the wider diversity of IncF plasmids beyond these genera. 291 

 292 

In conclusion, our study adds to the growing literature on distance-free networks to characterise and 293 

partition plasmid diversity, introducing a scalable framework to quantify the relationship between 294 

network structure and plasmid metadata by identifying network communities. Overall, our approach 295 

represented a high-resolution strategy for summarising similarities and differences within plasmid 296 

populations, leveraging the advantages of having complete plasmid sequences and analysing these in 297 

the context of associated metadata. For IncF plasmids we were able to show the distinct, local effects 298 

of sampling compartment on plasmid structure and population, but also identify evidence for sharing 299 

of plasmids between bacterial lineages, farms and WwTW-associated contexts, with relevance for the 300 

"One Health"-associated study of mobile genetic elements and AMR genes. As long-read sequencing 301 
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costs fall, and increasingly large numbers of plasmids can be characterised, future work applying this 302 

method will contribute to better understanding plasmid populations, estimating transfer rates of 303 

important AMR genes and MGEs between potential reservoirs, and identifying hotspots of 304 

selection/transfer that might be amenable to intervention.  305 
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  306 

Figure 1. Overview of plasmid population. (a) Plasmid host genera distribution by compartment. (b) Distribution of plasmid 
sequence lengths with predicted mobilities. (c) Graph representing the association between replicon alleles. IncF nodes are coloured 
pink. Line weight is proportional to frequency of association in the sample. (d) Plasmid GC-content subtracted from host 
chromosome GC-content. A value greater than zero indicates the plasmid is AT-richer than the host. Only plasmids with 
circularised host chromosomes were used (565/726). 

a 

c d 

b 
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Figure 2. Thresholding the plasmid network. (a) Number of communities (at least 10 nodes) detected over a varying MASH 
threshold. Median and IQR bars shown. (b) Community coverage of the network over a varying MASH threshold. Median and 
IQR bars shown. (c) Gaussian kernel density estimates of MASH distances stratified by compartment. Bandwidth calculated by 
Silverman’s ‘rule of thumb’. (d) Evolution of the largest connected component and number of components over a varying MASH 
threshold. 

c d 

a b 
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Figure 3. Plasmid network communities.  The plasmid network at 
threshold=0.05. Each community with at least 10 members has unique 
colour. Unassigned plasmids and those in smaller communities are left 
white. 
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Livestock 
WwTW 

a 
 

b 
 

Figure 4. Plasmid network coloured by metadata. All nodes are coloured, not just those in 
our detected 13 communities of at least 10 members. (a) Partition by livestock or WwTW 
sampling compartment. (b) Partition by plasmid host genera. 
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Figure 5. Community core gene phylogeny. A neighbour-joining tree based on alignments of the 68 core genes. A heatmap of the 
316 accessory genes is also shown. Node colour represents host sequence type and node shape represents farm. Unknown STs are 
labelled by ‘-’. Branch lengths have been corrected for homologous recombination. 
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Table 1. Community metadata homogeneity. 

 Mean ± sd Homogeneity 

Median ± IQR 
Communities 
with at least 10 
Plasmids 

Livestock, 
WwTW 

Pig, 
Cattle, 
Sheep, 
WwTW 

14 
Livestock 
Farms, 
WwTW 

Livestock, 
5 WwTWs 

Livestock, 
Upstream/ 
Influent, 
Downstream/ 
Effluent 

Host 
Genera 

Time-
point 

13 ± 0 0.715 ± 
0.002 

0.591 ± 
0.008 

0.403 ± 
0.005 

0.467 ± 
0.012 

0.550 ± 0.009 0.888 ± 
0.000 

0.050 ± 
0.001 

Table 2. Community metadata completeness. 

 Mean ± sd Completeness 

Median ± IQR 
Communities 
with at least 10 
Plasmids 

Livestock, 
WwTW 

Pig, 
Cattle, 
Sheep, 
WwTW 

14 
Livestock 
Farms, 
WwTW 

Livestock, 
5 WwTWs 

Livestock, 
Upstream/ 
Influent, 
Downstream/ 
Effluent 

Host 
Genera 

Time-
point 

13 ± 0 0.199 ± 
0.002 

0.332 ± 
0.001 

0.400 ± 
0.001 

0.238 ± 
0.002 

0.211 ± 0.002 0.307 ± 
0.002 

0.023 ± 
0.000 

Table 1. Community metadata homogeneity. Homogeneity score averages over 100 runs of the Louvain 
algorithm for all 13 communities.  

Table 2. Community metadata completeness. Completeness score averages over 100 runs of the Louvain 
algorithm for all 13 communities.  
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Table 3. Community pangenome results. 

Community Nodes Edges MASH 
mean 

Core 
Genes 

Soft Core 
Genes 

Shell 
Genes 

Cloud 
Genes 

Total 
Genes 

1 61 1252 0.0284 3 6 172 263 444 

2 82 1817 0.0314 4 18 138 364 524 

3 46 325 0.0355 35 8 86 369 498 

4 12 21 0.0382 2 0 290 129 421 

5 14 23 0.0383 2 0 225 260 487 

6 21 111 0.0366 13 6 354 430 803 

7 34 263 0.0344 2 1 278 359 640 

8 23 135 0.0222 27 1 142 362 532 

9 12 34 0.0344 18 0 364 324 706 

10 13 37 0.0233 0 0 309 38 347 

11 15 55 0.0194 62 0 116 35 213 

12 30 391 0.0242 68 3 126 187 384 

13 12 45 0.0223 88 0 195 48 331 

Table 3. Community pangenomes. Characteristics of each of the 13 communities, including number of nodes, 
edges and MASH mean (mean weight of all edges), and gene counts at each level of the pangenome: core genes, 
soft core genes, shell genes and cloud genes are those found in [100, 99], (99, 95], (95, 15], and (15, 0] percent of 
plasmids respectively. 
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 313 

Materials and Methods 314 

Plasmids and corresponding host isolates were sampled and sequenced on behalf of the REHAB 315 

project in 2017, which aimed to characterise the non-clinical, non-human Enterobacteriaceae 316 

microbiome in south-central England, with a focus on better understanding antimicrobial resistance 317 

(AMR) spread. Specifically, livestock (pig farms, cattle farms and sheep farms) and wastewater 318 

treatment work environments (WwTWs; influent, effluent, upstream and downstream waterways) 319 

were sampled. To account for seasonal variation, sampling occurred at three discrete time-points 320 

(TPs): January-April 2017 (TP1), June-July 2017 (TP2), October-November 2017 (TP3). All the 321 

plasmids presented have at least one IncF replicon (classified by with MOB-typer, see below).  In 322 

total, we present n=726 plasmids originated from n=558 isolates. This comprises a subset of the entire 323 

REHAB dataset, which overall contains n=2,293 circularised plasmids recovered from n=828 isolates. 324 

This dataset is described in more detail [17]. 325 

 326 

Livestock. Four pig farms (RH01-04), five cattle (RH06-10) and five sheep farms (RH11-15) were 327 

selected for sampling over all three TPs. All participating farmers provided written consent for 328 

participation. Specific details on farm recruitment and sampling procedure can be found in [17] and 329 

Anjum et al. (paper in preparation). 330 

 331 

Wastewater treatment works (WwTWs) environment. Five WwTWs (WTP01-05) were selected 332 

based on a number of criteria, including; geographic location within the region, wastewater treatment 333 

configuration, wastewater population equivalent (PE) served, consented flow, and the accessibility of 334 

the effluent receiving river for sampling both upstream and downstream. The chosen WwTWs and 335 

their details are shown in Table S5. Sampling took place over all three TPs. Specific details are 336 

provided in [17]. 337 

 338 

DNA sequencing. The isolates were selected for sequencing to represent diversity within the four 339 

major genera (Citrobacter, Enterobacter, Escherichia and Klebsiella) in each niche, including the use 340 
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of third-generation cephalosporin resistance to identify a subset of multi-drug resistant isolates within 341 

each genus. Sequencing involved either PacBio SMRT (n=293) or Oxford Nanopore Technologies 342 

(ONT) (n=268) methodologies. Specific details are provided in [17]. 343 

 344 

Genome assembly, assignment and typing. We used the hybrid assembly and sequencing methods 345 

described in our pilot study [30] to produce high-quality Enterobacteriaceae genomes from short and 346 

long reads. We assigned species and sequence type (ST) from assembled genomes using mlst (version 347 

2.16.43) [31].  Further details on validation are provided in [17]. 348 

 349 

Plasmid assembly. We used the hybrid assembly and sequencing methods described in a pilot study 350 

[30] to produce high-quality Enterobacteriaceae genomes from short and long reads. In short, we 351 

used Unicycler (version 0.4.7) [32] with ‘normal’ mode, --min_component_size 500, --352 

min_dead_end_size 500, and otherwise default parameters. From these, we selected n=726 plasmids 353 

which contained an IncF replicon after classification with MOB-typer (see below). We searched all 354 

plasmids against PLSDB (version 2020-03-04) [33] which contains 20,668 complete published 355 

plasmids, using mash screen [34] and keeping the top hit. All plasmids had a match. 356 

 357 

Mobility typing. We used MOB-typer from MOB-suite (version 2.0.0) [35]. We clustered plasmids 358 

using MOB-cluster and assigned replicon types with MOB-typer, both part of the MOB-suite. MOB-359 

cluster uses single linkage clustering with a cutoff of a mash distance of 0.05 (corresponding to 95% 360 

ANI). A recent large-scale study [12] showed MOB-typer to have a higher correct classification rate 361 

than the widely used PlasmidFinder [36]. 362 

 363 

Plasmid distance estimation. Distances between the complete plasmid sequences was calculated 364 

using MASH (version 2.2) [27]. MASH reduces sequences to a fixed-length MinHash sketch, which 365 

is used to estimate the Jaccard index. This measures extent of k-mer sharing between plasmids. The 366 

representative sketch is far shorter than the original sequence, making distance calculations efficient 367 

over large datasets. A k-mer length of 13 and a sketch size of 5000 was used. All other settings were 368 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.24.215889doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.24.215889
http://creativecommons.org/licenses/by/4.0/


 

22 

default. Using MASH considerably reduces distance computation time from exact k-mer profile 369 

methods, whilst maintaining good performance. 370 

 371 

Louvain community detection. The Louvain algorithm detects communities by optimising the 372 

modularity by iterative expectation-maximisation (EM) [19]. This aims to maximise the density of 373 

edges within communities against edges between communities. The algorithm was implemented using 374 

the python-louvain (version 0.14) Python module. 375 

 376 

Community metadata analysis. Homogeneity (h) and completeness (c) are dual conditional entropy-377 

based measures [37]. They are independent of clustering algorithm, dataset size, number of label-378 

types, number of communities and community sizes. This means they are appropriate for uneven 379 

metadata distributions. A community partition satisfies homogeneity (h = 1) if all members have the 380 

same metadata label-type. Suppose we have network with 𝑁𝑁 nodes, partitioned by a set of metadata 381 

labels, 𝑀𝑀 = {𝑚𝑚𝑖𝑖|𝑖𝑖 = 1, … ,𝑛𝑛}, and a set of communities, 𝐶𝐶 = {𝑐𝑐𝑗𝑗|𝑗𝑗 = 1, … ,𝑚𝑚}. Let 𝐴𝐴 = {𝑎𝑎𝑖𝑖𝑗𝑗} 382 

represent the 𝑖𝑖𝑗𝑗th entry in the contingency table of partitions. Hence, 𝑎𝑎𝑖𝑖𝑗𝑗 counts the number of nodes 383 

with label 𝑚𝑚𝑖𝑖 in community 𝑐𝑐𝑗𝑗. We then say 384 

 385 

where 386 

 387 

and 388 

 389 

are the conditional entropy of the metadata given the communities and the entropy of the 390 

communities, respectively 𝐻𝐻(𝑀𝑀|𝐶𝐶) = 0 when the community partition coincides with the metadata 391 

partition, and no new information is added. A community partition satisfies completeness (c =1) if all 392 
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instances of a metadata label-type are assigned the same community. Completeness is defined dually 393 

by 394 

 395 

The measures were calculated using the scikit-learn (version 0.22.2) Python module [38]. 396 

 397 

Permutation test. We first calculated a Louvain partition for the network and selected all nodes in 398 

communities with at least 10 members. Homogeneity and completeness score medians were used 399 

from Table 1 and Table 2. The partition labels were then randomly permuted 1,000 times. For each 400 

permutation, the homogeneity and completeness scores were calculated. These were then used to 401 

calculate a right-tailed p-value. The results are shown in Table S2. 402 

 403 

Plasmid annotation and pangenome analysis. Plasmids were annotated using Prokka (version 404 

1.14.6) [39]. Pangenome analysis used Panaroo (version 1.2.2) [40]. Core genes, soft core genes, shell 405 

genes and cloud genes are those found in [100, 99], (99, 95], (95, 15], and (15, 0] percent of 406 

sequences respectively. Within the pangenome, core genes are typically defined as those shared by 407 

≥99% of constituent plasmids. However, since no plasmid community in this study had >100 408 

members, core genes were strictly shared by 100%. AMR annotations used Abricate (version 0.9.8) 409 

[41] with with the NCBI AMRFinder Plus database [42] with a threshold of 90% sequence identity 410 

and 90% coverage. 411 

 412 

Community phylogeny. Alignment of core genes used Clustal Omega (version 1.2.4) [43], and 413 

ClonalFrameML (version 1.2) [44] was used to adjust for homologous recombination. We used ggtree 414 

(version 3.11) [45] to visualise the phylogeny. 415 

 416 
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Data visualization. All figures were made in using the R package ggplot2 (version 3.3.0) [46], except 417 

for the network figures (1c, 3 and 4a-b), which were made using Cytoscape (version 3.8.0) [47]. 418 

Cytoscape was also used to calculate some network descriptive statistics. 419 

 420 

Code and data availability. Plasmid sequence data, metadata (Table S6) and MASH edge list (Table 421 

S7) output are available in a figshare collection (https://doi.org/10.6084/m9.figshare.c.5066684.v1). 422 

Further details on computing methods can be found in the GitHub repository for the paper 423 

(https://github.com/wtmatlock/plasmid-network-analysis). This includes scripts for calculating the 424 

LCC and NCCs, Louvain performance diagnostics, and running the permutation test. Other data can 425 

be found in [17]. 426 
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