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KEY POINTS  35 

• lncRNA LOUP coordinates with RUNX1 to induces PU.1 long-range transcription, conferring 36 

myeloid differentiation and inhibiting cell growth. 37 

• RUNX1-ETO limits chromatin accessibility at the LOUP locus, causing inhibition of LOUP and 38 

PU.1 expression in t(8;21) AML. 39 

 40 

KEYWORDS  41 

Chromatin structure; enhancer; promoter; lncRNA; long-range transcription; single-cell sequencing; cell 42 

type-specific gene induction; transcription factor fusion; t(8;21) AML; myeloid differentiation   43 

 44 

ABSTRACT 45 

The mechanism underlying cell type-specific gene induction conferred by ubiquitous transcription 46 

factors as well as disruptions caused by their chimeric derivatives in leukemia is not well understood. 47 

Here we investigate whether RNAs coordinate with transcription factors to drive myeloid gene 48 

transcription. In an integrated genome-wide approach surveying for gene loci exhibiting concurrent 49 

RNA- and DNA-interactions with the broadly expressed transcription factor RUNX1, we identified the 50 

long noncoding RNA LOUP. This myeloid-specific and polyadenylated lncRNA induces myeloid 51 

differentiation and inhibits cell growth, acting as a transcriptional inducer of the myeloid master 52 

regulator PU.1. Mechanistically, LOUP recruits RUNX1 to both the PU.1 enhancer and the promoter, 53 

leading to the formation of an active chromatin loop. In t(8;21) acute myeloid leukemia, wherein RUNX1 54 

is fused to ETO, the resulting oncogenic fusion protein RUNX1-ETO limits chromatin accessibility at the 55 

LOUP locus, causing inhibition of LOUP and PU.1 expression. These findings highlight the important 56 

role of the interplay between cell type-specific RNAs and transcription factors as well as their oncogenic 57 

derivatives in modulating lineage-gene activation and raise the possibility that RNA regulators of 58 

transcription factors represent alternative targets for therapeutic development. 59 

 60 

INTRODUCTION 61 

Lineage-control genes that dictate cellular identities are often expressed in dynamic and 62 

hierarchical patterns.1-3 Disturbance of these established normal patterns results in anomalies.4 In the 63 

blood system, the ETS-family transcription factor PU.1 (also known as Spi-1) is essential for myeloid 64 

differentiation. PU.1 is silent in most tissues and cell types but expressed at highest levels in myeloid 65 

cells including granulocytes and monocytes.5 Downregulation of PU.1 impairs myeloid cell 66 

differentiation leading to acute myeloid leukemia (AML).6,7 PU.1 is a major downstream transcriptional 67 
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target of Runt-related transcription factor 1 (RUNX1) that is expressed in many different cell types and 68 

plays diverse biological roles in hematopoiesis, development of neurons, hair follicles, and skin.8-12 In 69 

AML with t(8;21) chromosomal translocation, a portion of RUNX1 containing the Runt DNA binding 70 

domain is fused to ETO, giving rise to the oncogenic transcription factor fusion RUNX1-ETO.13,14 71 

Previously, we have reported that RUNX1-ETO inhibits PU.1 expression15 but the mechanism 72 

underlying this transcriptional inhibition remains to be determined. In general, how broadly expressed 73 

transcription factors, such as RUNX1, modulate cell type- and gene-specific induction and how their 74 

chimeric derivatives disrupt this normal regulation in leukemia are poorly understood.   75 

 76 

Transcription of many cell type-specific genes are induced by enhancer elements, which are 77 

located at variable distances from gene targets.16,17 For instance, PU.1 transcription is induced by the 78 

formation of a specific chromatin loop resulting from the interaction between the upstream regulatory 79 

element (URE) (-17 kb in human and -14 kb in mouse) and the proximal promoter region (PrPr).18-20 80 

Interestingly, abrogation of RUNX1-binding motifs at the URE reduces URE-PrPr interaction, resulting 81 

in decreased PU.1 expression in myeloid cells.8,15 Because RUNX1 is broadly expressed, it remains 82 

unclear how this transcription factor modulates chromatin structure in such a gene- and cell type-83 

specific manner. 84 

 85 

With advances in whole transcriptome sequencing over the last decade, thousands of noncoding 86 

RNAs (ncRNA) have been unveiled.21 Arbitrarily defined as ncRNAs having at least 200 nucleotides in 87 

length, long noncoding RNAs (lncRNA) are implicated to display tissue-specific expression patterns22,23 88 

and might undergo post-transcriptional processing such as splicing and polyadenylation.24 Through 89 

interactions with DNAs, proteins and other RNAs, lncRNAs regulate fundamental cellular processes 90 

including transcription, RNA stability, and DNA methylation.24-26 To date, only a few lncRNAs have been 91 

precisely mapped and functionally defined,23 leaving most lncRNAs poorly annotated and largely 92 

unexplored. 93 

 94 

In this study, we identified a myeloid-specific lncRNA termed “Long noncoding RNA Originating 95 

from the URE of PU.1”, or LOUP, from an integrated genome-wide approach aimed at screening for 96 

gene loci exhibiting concurrent RNA- and DNA-interactions with RUNX1. We demonstrated that LOUP 97 

induces PU.1 expression, conferring myeloid differentiation, and inhibiting cell growth. LOUP serves as 98 

a central hub in opposing regulation by RUNX1 and its derived oncogenic fusion, RUNX1-ETO. Our 99 

findings provide a model explaining how a lineage gene is activated in normal myeloid development 100 

and dysregulated in leukemia. 101 

 102 
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METHODS  103 

Cell lines and Cell Culture 104 

U937, HL-60, K562, HEK293T, RAW 264.7, NB4, Jurkat, Kasumi-1 and THP-1 cells were obtained 105 

from the American Type Culture Collection (ATCC). U937, HL-60, NB4, Jurkat, and K562 cells were 106 

cultured in full RPMI-1640 medium (supplemented with 10% (vol/vol) fetal bovine serum (FBS; Cellgro) 107 

and 1% penicillin-streptomycin). Kasumi-1 cells were cultured in the same medium plus 20% (vol/vol) 108 

FBS. THP-1 cells were cultured in full RPMI-1640 medium supplemented with 2-mercaptoethanol to a 109 

final concentration of 0.05 mM. HEK293T and RAW 264.7 cells were cultured in DMEM supplemented 110 

with 10% (vol/vol) FBS and 1% penicillin-streptomycin. All cells were grown at 37°C in 5% (vol/vol) CO2 111 

and humidified incubators. 112 

 113 

AML patient sample collection 114 

Bone Marrow (BM) samples were obtained from newly diagnosed AML patients at the Tor Vergata 115 

University Hospital, Rome with informed consent.  Diagnoses were performed according to “The 2016 116 

revision to the World Health Organization classification of myeloid neoplasms and acute leukemia”.27 117 

Bone marrow mononuclear cells (BM-MNCs) were isolated by Ficoll gradient centrifugation using 118 

Lympholyte-H (Cedarlane), according to the manufacturer’s instructions.   119 

 120 

Methods for assaying interactions of RNA, DNA, and protein with chromatin, chromatin structure and 121 

gene expression manipulation as well as bioinformatic analyses are in supplemental methods. 122 

 123 

RESULTS 124 

Identification of RUNX1-interacting RNAs at myeloid gene loci 125 

We started out by performing a transcriptome-wide survey for RUNX1-interacting RNAs in the 126 

monocytic cell line THP-1 using formaldehyde RNA immunoprecipitation sequencing (RIP-seq).28,29 127 

RUNX1-interacting RNAs were captured by anti-RUNX1 antibody (Figures S1A-C) and sequenced by 128 

paired-end massively parallel sequencing. By annotating 14,067 high-confident RUNX1-RIP peaks to 129 

the GRCh38.p12 gene catalog,30 we identified 5,774 gene loci carrying at least one of these peaks 130 

(Figure S1D, left). Most of the peaks were detected within transcript bodies and promoters (Figure 131 

S1E). To identify genes exhibiting concurrent RUNX1-RNA and RUNX1-DNA interactions, we 132 

annotated 24,132 high-confident RUNX1-ChIP peaks to the same gene catalog and identified 13,272 133 

corresponding gene loci (Figure S1D, right). The majority of these peaks were found at intronic, 134 

promoter, and intergenic regions (Figure S1F). Because most of peaks identified by both RUNX1-RIP 135 

and RUNX1-ChIP peaks were distributed at coding gene loci (Figures 1A-B), we focused our analyses 136 
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on this gene group. By intersecting these genes with a list of 78 myeloid genes defined by their known 137 

roles in myeloid development, or myeloid molecular markers (Table S1), we obtained 15 myeloid gene 138 

loci displaying both RUNX1-RIP and RUNX1-ChIP peaks (Figure 1C). PU.1, a master regulator of 139 

myeloid development and a well-known transcriptional target of RUNX1,8 was among these genes. 140 

Intriguingly, we observed RNA peaks at the upstream region of PU.1 (Figure 1D). We further validated 141 

this observation by RUNX1 RIP-qPCR (Figure 1E). Additional myeloid genes showing RUNX1-RIP 142 

peaks and RUNX1-ChIP peaks are presented in Figure S1G. The presence of previously 143 

uncharacterized RNAs, arising from the upstream region of the PU.1 locus, and able to interact with 144 

RUNX1, suggests their potential role in controlling PU.1 expression through RUNX1-mediated 145 

transcriptional regulation.  146 

 147 

Characterization of the RUNX1-interacting lncRNA LOUP  148 

To map the RUNX1-interacting transcript(s), we inspected the RNA expression and epigenetic 149 

landscape at the upstream region of the PU.1 locus (Figure 2A). Remarkably, the RNA-seq track view 150 

revealed two distinct RNA peaks. A narrow peak was observed at the URE, which corresponded to an 151 

area of open chromatin in myeloid cells as indicated by strong DNase I hypersensitivity signals (Figure 152 

2A, DNase-seq). This element was also enriched with histone post-translational modifications such as 153 

H3K27ac, H3K4me1, and H3K4me3 (Figure 2A, ChIP-seq), which are typical features of active 154 

enhancers.31,32 A broad peak was proximal to the promoter region. Notably, these peaks were present 155 

in myeloid cell lines (THP-1 and HL-60) and primary monocytes, but not in the lymphoid cell line Jurkat, 156 

which does not express PU.1 mRNA, indicating a cell-type specific expression pattern. RT-PCR and 157 

Sanger sequencing analysis identified exon junctions connecting these two peaks in both human and 158 

murine cell lines (Figure S2A). Strand-specific RT-PCR analysis confirmed that the transcript is sense 159 

with respect to the PU.1 gene (Figure 2B). To locate the 5’ end, we inspected Cap analysis gene 160 

expression sequencing (CAGE-seq) tracks from the FANTOM5 project,33 and identified a strong CAGE-161 

seq peak, located within the URE and in the sense genomic orientation (Figure 2A, CAGE-seq), 162 

suggesting the presence of the 5’ end of a transcript. Using the P5-linker ligation method outlined in 163 

Figure S2B, we identified the 5’ end including a transcription start site (TSS) of the RNA within the 164 

homology region 1 (H1) of the URE18 (Figure S2C). Although a splicing event was detected within the 165 

second exon, intron retention was dominant as shown by the presence of a ~2.3 Kb major transcript 166 

and a ~1.0 Kb minor transcript (Figures 2C and S2D). The transcripts were detectable in the myeloid 167 

cell line U937, but not in the lymphoid cell line Jurkat, further indicating their cell-type specificity (Figure 168 

2C). Notably, the RNA exhibited very low coding potential similar to that of other known lncRNAs 169 

(Figure S2E) as assessed by PhyloCSF software.34 Additionally, no known protein domains were found 170 

(data not shown) using PFAM software.35 Thus, we named the RNA transcript “long noncoding RNA 171 
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originating from the URE of PU.1”, or LOUP. qRT-PCR analyses of subcellular fractionations revealed 172 

that LOUP resides in both the cytoplasm and the nucleoplasm compartments, and was particularly 173 

enriched in the chromatin fraction (Figure S2F). The lncRNA is polyadenylated, being detected from 174 

oligo(dT)-primed cDNAs (Figure 2B) and enriched in the polyA+ RNA fraction (Figures 2C-D and S2G). 175 

LOUP is low abundant lncRNA; the spliced form is expressed as ~40, 14, and 5 copies per cells in 176 

U937, HL-60, and NB4, respectively (Figure 2E). The lncRNA was barely detectable as its premature 177 

(non-spliced) form in total RNA as well as in the nuclear RNA fraction (Figures S2H-I). Altogether, these 178 

findings established LOUP as a polyadenylated lncRNA that emanates from the URE and extends 179 

toward the PrPr. 180 

 181 

LOUP is myeloid-specific lncRNA that is co-expressed with myeloid lineage gene PU.1 182 

We sought to explore LOUP expression in normal tissues and cell types. By examining the LOUP 183 

transcript profile in different human tissue types from the Illumina Body Map dataset, we noticed that 184 

this lncRNA was barely detectable in most tissues but elevated in leukocytes (Figure 3A). Remarkably, 185 

comparing with two of its closest neighbor genes, PU.1 and SLC39A13 (Figure S2D), the LOUP 186 

expression pattern was similar to that of PU.1 mRNA (Figures 3A-B) but not of SLC39A13 (Figure 187 

S3A). Additionally, LOUP transcript levels were not correlated with that of its interacting partner, 188 

RUNX1 (Figure S3B). To further delineate the relationship between LOUP and PU.1 transcript levels 189 

and lineage identity in individual blood cells, we employed single-cell RNA-seq analyses (scRNA-seq). 190 

scRNA-seq data of human mononuclear cells isolated from peripheral blood (PBMC) and bone marrow 191 

(BMMC) were retrieved from the 10x Genomic Project36 and pooled together to maximize coverage of 192 

hematopoietic cell lineages (Figure S3C). Notably, LOUP and PU.1 were both enriched in the myeloid 193 

cells, comprising of monocytes, macrophages and granulocytes (Figures S3D-E). Expectedly, RUNX1 194 

was broadly expressed in myeloid cells as well as lymphoid cells (T, B, and Natural Killer (NK)) (Figure 195 

S3F). By stratifying the mononuclear cell population into LOUPhigh/PU.1high and LOUPlow/PU.1low groups 196 

based on LOUP and PU.1 expression levels (see methods for details), we noted that LOUPlow/PU.1low 197 

cells were associated with T, B, and NK cells. Remarkably, 99.3% of LOUPhigh/PU.1high cells were linked 198 

to the myeloid identity (Figure 3C). Consistent with this observation, top biological processes 199 

associated with expression of LOUP and PU.1 were mono/macrophage and granulocyte functions 200 

(Figure S3G and Table S2). We further examined expression patterns of LOUP and PU.1 during 201 

myeloid differentiation. qRT-PCR analyses of purified murine hematopoietic cell populations showed 202 

low Loup levels in long-term hematopoietic stem cells (LT-HSC), short-term hematopoietic stem cells 203 

(ST-HSC), common myeloid progenitors (CMP), and megakaryocyte-erythroid progenitors (MEP). 204 

Remarkably, Loup expression was elevated in myeloid progenitor cells (granulocyte-macrophage 205 

progenitors, GMP) and was highest in definitive myeloid cells (Figure 3D). A similar expression pattern 206 
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was seen with PU.1 (Figures 3E). Taken together, our data indicated that LOUP and PU.1 transcript 207 

levels were associated with the myeloid identity, warranting further investigation regarding molecular 208 

relationship between LOUP and PU.1 in myeloid cells.   209 

 210 

LOUP induces PU.1 expression, promotes myeloid differentiation and inhibits cell growth  211 

To test our hypothesis that LOUP induces PU.1 expression, we investigated the impact of loss-of-212 

function of LOUP on PU.1 expression. In order to deplete LOUP, we employed CRISPR/Cas9 genome-213 

editing platform which introduces small insertion and deletion (indel) mutations in the LOUP gene via 214 

the non-homologous end-joining (NHEJ) DNA repair mechanism.37,38 The macrophage cell line U937 215 

that expresses high levels of LOUP (Figure 2E) was stably transduced with lentiviruses carrying Cas9 216 

and LOUP-targeting or non-targeting sgRNAs. Double-positive mCherry (CAS9) and eGFP (sgRNA) 217 

cells were selected by fluorescence-activated cell sorting (FACS) (Figures 4A and S4A), and derived 218 

cell clones were analyzed by Sanger DNA sequencing and Inference of CRISPR edits (ICE) analysis.39 219 

Cell clones having indels at LOUP-targeting genomic locations (Figures S4B-D) displayed >80% 220 

depletion of LOUP RNA levels (Figure 4B, left panel). This depletion was paralleled by a significant 221 

reduction in PU.1 mRNA levels (Figure 4B, right panel). In gain-of-function experiments, transient in 222 

trans-overexpression of LOUP in K562 cells resulted in significant induction of PU.1 (Figure 4C). 223 

Remarkably, in cis locus-specific induction of endogenous LOUP via the CRISPR/dCas9-VP64 224 

activation system yielded a comparable increase in PU.1 expression, despite producing lower LOUP 225 

transcripts than the ectopic in trans-expression (Figures 4D-E). Consistent with the important role of 226 

PU.1 in myeloid differentiation,6,7,40,41 LOUP depletion was associated with a reduction in expression of 227 

the myeloid marker CD11b (Figure 4F). Furthermore, LOUP depletion increases cell proliferation 228 

whereas enforced LOUP reduced cell number suggesting that LOUP inhibits cell growth (Figures 4G-229 

H). Together, these results demonstrate that LOUP promotes myeloid differentiation and inhibits cell 230 

growth and that this lncRNA regulator exerts its inducing effect on PU.1 expression primarily in cis.  231 

 232 

LOUP induces enhancer-promoter communication by interacting with chromatin at the PU.1 233 

locus 234 

We have previously reported that the formation of a chromatin loop mediated by URE-PrPr 235 

interaction is crucial for PU.1 induction.18,19 Because LOUP arises from the URE and extends toward 236 

the PrPr, we reasoned that LOUP drives long-range transcription of PU.1 by promoting URE-PrPr 237 

interaction. To elucidate this, we quantified interaction strengths of the URE with the PrPr and the 238 

surrounding area by chromosome conformation capture and Taqman qPCR (3C-qPCR) (Figure 5A). 239 

Consistent with previous reports,18,19 we detected strong interaction between the URE and the PrPr, but 240 

not between the URE and other genomic regions, including the upstream PU.1 promoter, intergenic 241 
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sequences, and the MYBPC3 gene body downstream of the PU.1 locus. Interestingly, LOUP depletion 242 

caused a significant reduction in URE-PrPr communication (Figures 5B). To provide evidence 243 

supporting our prediction that LOUP recruits the URE to the PrPr by physically interacting with the two 244 

elements, we employed the Chromatin Isolation by RNA Purification (ChIRP) assay.42 Biotinylated 245 

LOUP-tiling oligos were able to capture endogenous LOUP RNA in U937 cells (Figure 5C). Enrichment 246 

of the URE and the PrPr co-captured with LOUP RNA was observed in ChIRPed samples with LOUP-247 

tiling probes but not LacZ-tiling controls, suggesting that LOUP occupies both the URE and the PrPr 248 

(Figure 5D). Taken together, our data indicate that by interacting and bringing to close proximity two 249 

regulatory elements, the URE and the PrPr, LOUP promotes the formation of a functional chromatin 250 

loop within the PU.1 locus that is critical in inducing PU.1 expression. 251 

 252 

LOUP binds the Runt domain of RUNX1 and coordinates recruitment of RUNX1 to the enhancer 253 

and the promoter  254 

We next sought to gain a deeper mechanistic understanding of how LOUP modulates the chromatin 255 

structure in a gene specific manner. Point mutations abolishing the RUNX binding sites in the URE are 256 

known to disrupt chromosomal interactions between the URE and the PrPr.15 Additionally, we 257 

demonstrated that LOUP interacts with RUNX1 at the PU.1 locus (Figure 1). Therefore, we asked 258 

whether LOUP mediates the URE-PrPr interaction by cooperating with RUNX1. In line with the previous 259 

finding in murine cells,15 we observed RUNX1 occupancy at the URE in primary CD34+ cells isolated 260 

from healthy donors and patients with AML. Importantly, we noticed a peak at the PrPr, indicating that 261 

RUNX1 also occupies the PrPr (Figure 6A). We further inspected the genomic region surrounding the 262 

PrPr and found a RUNX-DNA binding consensus motif at -220 bp relative to the PU.1 mRNA 263 

transcription start site. To determine if this motif is functional, we performed biotinylated DNA pull-down 264 

(DNAP) assays. Wild-type probes, containing the RUNX consensus motifs embedded in the URE and 265 

the PrPr, efficiently captured endogenous RUNX1 from U937 nuclear extracts. In contrast, probes 266 

mutating the RUNX1 binding sequence, displayed drastic reductions in RUNX1 occupancy (Figures 6B 267 

and S5A). These results suggest that RUNX1 binds its DNA consensus motif at both the URE and the 268 

PrPr. RUNX1 is known to form homodimers to modulate transcription.43,44 Thus, we reasoned that 269 

LOUP promotes looping formation by conferring occupancy of RUNX1 dimers concurrently at their 270 

binding motifs within the URE and the PrPr. Indeed, LOUP depletion reduced RUNX1 occupancy at 271 

both the URE and the PrPr (Figure 6C), indicating that LOUP promotes placement of RUNX1 dimers at 272 

the URE and the PrPr. By aligning LOUP sequence with itself using the Basic Local Alignment Search 273 

Tool (BLAST), we unexpectedly uncovered a highly repetitive region (RR) of 670 bp near the 3’ end of 274 

LOUP (Figure S5B). Interestingly, by performing RNA pull-down assays (RNAP) assay, we noted that 275 

biotinylated LOUP RR was able to capture endogenous RUNX1 proteins in U937 nuclear extracts at a 276 
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level that was comparable to biotinylated full-length LOUP, indicating that the RR contains RUNX1-277 

binding region (Figure 6D). To further locate the binding region, we first computed potential interaction 278 

strength of putative elements within the RR to RUNX1 protein by using the catRAPID algorithm.45 By 279 

doing so, we identified two ~100 bp candidate regions, termed region 1 (R1) and region 2 (R2) within, 280 

with high interaction scores (Figures S5C and 6E). RNAP analysis confirmed that R1 and R2 bind 281 

recombinant RUNX1 (Figure 6F). Additionally, recombinant Runt domain of RUNX1 was able to bind 282 

R1 and R2 (Figure 6G), suggesting that the Runt domain is responsible for LOUP binding. These data, 283 

together, suggests that LOUP binds RUNX1 and coordinates deposition of RUNX1 dimers to the URE 284 

and the PrPr.  285 

 286 

RUNX1-ETO down-regulates LOUP in t(8;21) AML by inhibiting histone H3 acetylation and 287 

reducing promoter accessibility 288 

We further examined how the oncogenic fusion protein RUNX1-ETO, derived from t(8;21) 289 

chromosomal translocation, affects the regulatory function of LOUP.  By examining LOUP transcript 290 

profiles in an AML RNA-seq dataset downloaded from The Cancer Genome Atlas (TCGA), we noticed 291 

that LOUP RNA levels were significantly lower in t(8;21) AML patients as compared to AML patients 292 

with normal karyotype (Figure 7A, left panel). Consistent with our data demonstrating the PU.1 is a 293 

downstream target of LOUP, PU.1 levels were also lower in t(8;21) AML patients (Figure 7A, right 294 

panel). These finding were further confirmed by qRT-PCR using patient samples (Figure 7B). Thus, we 295 

reasoned that LOUP may act as an inhibitory target of RUNX1-ETO in t(8;21) AML. Indeed, depletion of 296 

RUNX1-ETO in t(8;21) AML cells Kasumi-1, resulted in a robust increase in LOUP transcript levels 297 

which was accompanied by a significant induction in PU.1 mRNA (Figure 7C). RUNX1-ETO is capable 298 

of recruiting Nuclear Receptor Corepressor Histone Deacetylase Complex and associates with histone 299 

deacetylase activity.46-48 To examine whether RUNX1-ETO inhibits LOUP transcription by affecting local 300 

histone acetylation, we analyzed histone acetylation and chromatin accessibility at the URE, where 301 

LOUP transcription is initiated, upon depletion of RUNX1-ETO.49 As expected, knockdown of RUNX1-302 

ETO reduces RUNX1-ETO occupancy at the URE (Figure 7D, top panel). Interestingly, depletion of 303 

RUNX1-ETO resulted in robust induction of the H3K9Ac histone acetylation mark that is associated 304 

with active promoters and Dnase I accessibility at the URE (Figure 7D, middle and bottom panels), 305 

indicating that RUNX1-ETO inhibits LOUP transcription by deacetylating and limiting its promoter 306 

accessibility.  307 

 308 

In summary, we established LOUP as a myeloid-specific lncRNA that promotes myeloid 309 

differentiation and inhibits cell growth via cooperating with RUNX1 to induce PU.1 expression, and that 310 

RUNX1-ETO disrupts the action of LOUP in t(8;21) AML. Thus, lncRNA LOUP acts as a regulatory hub 311 
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delivering opposing effects from a broadly expressed transcription factor and its oncogenic derivative 312 

on long-range transcription of an important lineage gene (Figure 7E). 313 

 314 

DISCUSSION 315 

In this study, we discovered that RUNX1, which is expressed and exerts its regulatory roles in 316 

diverse cell types,50,51 cooperates with a myeloid-specific lncRNA LOUP to induce long-range 317 

transcription of PU.1, and that RUNX1-ETO impairs LOUP-mediated PU.1 induction by inhibiting LOUP 318 

expression in t(8;21) AML. Our study reported several important mechanistic findings. We reveal LOUP 319 

as a cellular RNA-interacting partner of RUNX1. We also demonstrate that LOUP recruits RUNX1 to 320 

respective RUNX1-binding motifs at both the URE and the PrPr, thereby promoting formation of the 321 

URE-PrPr chromatin loop at the PU.1 locus. Additionally, we identify a repetitive region serving as the 322 

RUNX1-binding platform for LOUP. Furthermore, we show that LOUP is a inhibitory target of RUNX1-323 

ETO, in t(8;21) AML. These findings provide important insight into how long-range transcription is 324 

induced in a gene-specific manner by ubiquitous transcription factors and how their chimeric derivative 325 

disrupt normal gene induction in leukemia. 326 

 327 

Our findings that RUNX1, known to be crucial for the URE-PrPr interaction, occupies both the URE 328 

and the PrPr of the PU.1 locus, provides a molecular understanding of locus-specific activation. We 329 

propose that, once the URE and the PrPr are brought into close proximity, RUNX1 molecules that are 330 

parts of separate URE- and PrPr-bound complexes might interact, resulting in the formation of the 331 

URE-PrPr (enhancer-promoter) transcriptional activation complex. In supporting of this mechanism, 332 

RUNX1 sites at enhancers and promoters have been shown to be critical for induction of CSF2 333 

(encoding GM-CSF), CD34, and CEBPA (encoding C/EBPa),43,52-54 suggesting that RUNX1 could also 334 

contribute to specific enhancer-promoter docking at these gene loci. In line with this notion, locus-335 

specific enhancer-promoter interaction could be induced by artificially tethering transcription factor to 336 

promoter.55 Our findings, therefore, support a model in which specific and on-target enhancer-promoter 337 

interactions are achieved by transcription factors, bound to specific motifs both at the enhancer and the 338 

target promoter, that are able to dimerize or multimerize, thereby helping to fuse enhancer and 339 

promoter transcriptional complexes together. 340 

 341 

How chromatin-bound protein complexes at enhancers and target promoters are brought together in 342 

a highly specific manner is still poorly understood. Our findings offer several exciting avenues that 343 

might explain how locus-specific induction is accomplished. First, we demonstrated that LOUP 344 

modulates recruitment of RUNX1 to its binding motifs at both the URE and the PrPr, suggesting that 345 

LOUP might serve as an “RNA bridge”, bringing the separate RUNX1-containing-URE and -PrPr 346 
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transcriptional complexes into proximity which finally fused into an URE-PrPr complex via RUNX1 347 

dimerization. Second, locus specificity might also be enhanced based on our finding that LOUP arises 348 

from the URE and acts in cis to modulate chromatin looping at the nearby PU.1 locus. Accordingly, 349 

even when a small number of transcripts are being produced, local molecular concentration of LOUP 350 

could be enriched enough to profoundly influence rapid PU.1 mRNA induction. Indeed, we found that 351 

LOUP is a low-abundance lncRNA but is enriched in the chromatin fraction. Third, we revealed that 352 

LOUP is expressed exclusively in myeloid cells. This could explain why RUNX1, which is expressed in 353 

diverse cell types, induces URE-PrPr interaction and PU.1 expression specifically in myeloid cells. 354 

These findings, together, provide mechanistic understanding of gene-specific enhancer-promoter 355 

interaction and cell type-specific gene induction. 356 

 357 

Our findings also contribute to the growing body of knowledge with regard to molecular functions of 358 

lncRNAs. Indeed, among thousands of lncRNAs that are implicated to arise throughout the genome, 359 

only a few have been precisely mapped and molecularly characterized.23 The herein described lncRNA 360 

LOUP, presenting as spliced and polyadenylated transcripts, binds the Runt domain of RUNX1 via a 361 

repetitive region. To our knowledge, LOUP is the first cellular RNA-interacting partner of RUNX1 being 362 

reported. Remarkably, we also discovered that LOUP is down-regulated by RUNX1-ETO. It also worth 363 

mentioning that a normal allele of RUNX1 is retained alongside RUNX1-ETO fusion gene in t(8;21) 364 

AML cells56 and that RUNX1-ETO is implicated to exert opposing effect by competing with RUNX1 for 365 

binding to protein partners and the same chromatin locations.49,57,58 Collectively, our findings uncover a 366 

heretofore-unknown cross-regulation and molecular interactions of lncRNAs with transcription factors 367 

and their oncogenic derivatives, providing mechanistic understanding underlying their molecular 368 

functions.  369 

 370 

In summary, we identified lncRNA LOUP with several important molecular features, including cell-371 

type specific expression and harboring a RUNX1-binding platform enabling LOUP to coordinate with 372 

RUNX1 to drive long-range transcription of PU.1 in myeloid cells. LOUP, a downstream inhibited target 373 

of the oncogenic fusion protein RUNX1-ETO, is capable of inducing myeloid differentiation and 374 

inhibiting cell growth. Our finding raises the possibility that RNA regulators of transcription factor 375 

represent alternative targets for therapeutic development and provide a molecular mechanism 376 

explaining, at least in part, how ubiquitous transcription factors contribute to enhancer-promoter 377 

communication in both cell-type and gene-specific manner and how their chimeric derivatives disrupt 378 

this normal regulation in leukemia.  379 

 380 

 381 
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 537 

FIGURE LEGENDS  538 

Figure 1. Screening of gene loci exhibiting concurrent RUNX1 RNA and DNA interactions in 539 

THP-1 cells 540 

(A and B) Pie charts showing proportions of RUNX1 RIP-seq peaks and RUNX1 ChIP-seq peaks in 541 

coding and noncoding gene families. ChIP-seq data was from published source 59 under the Gene 542 

Expression Omnibus (GEO) accession number: GSE79899.  543 

(C) Venn diagram intersecting RUNX1 RIP-seq, RUNX1 ChIP-seq gene lists and the myeloid gene list. 544 

(D) Gene track view of the PU.1 locus including the upstream region (highlighted in blue). Shown are 545 

RIP-seq tracks (Input, IgG and RUNX1) and RUNX1 ChIP-seq tracks (GSM2108052). Data was 546 

integrated in the UCSC genome browser. 547 

(E) RUNX1 RIP-qPCR confirmation. Left panel: Location of three PCR amplicons (#1, #2, #3). Right 548 

panel: Enrichment of RNAs captured by anti-RUNX1 antibody and IgG control at three amplicons 549 

relative to input. Error bars indicate SD (n=3). 550 

See also Figure S1 and Table S1. 551 

 552 

 553 
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Figure 2. Characterization of long noncoding RNA LOUP  554 

(A) Gene track view of the genomic region encompassing the PU.1 locus. RNA-seq tracks include THP-555 

1, HL60, primary monocytes, and Jurkat. DNAse-seq and ChIP-seq are overlay tracks of monocyte and 556 

myeloid cell lines. These data were processed from published data in GEO (see methods for details). 557 

CAGE-seq track was imported from the FANTOM5 project. #1, #2 and arrows point to locations of the 558 

RNA peaks.  559 

(B) RT-PCR analysis of LOUP’s transcript features. First-strand cDNAs were generated from HL-60 560 

total RNA using a primer that does not anneal to the PU.1 locus (Unrelated), Random hexamers, 561 

Oligo(dT), and strand-specific primers (Anti-sense and Sense).  562 

(C) Northern blot analysis of LOUP. polyA- and polyA+ RNA fractions were isolated from U937 and 563 

Jurkat cells. Top panel: schematic of the probe location spanning exon junction (E1 and E2a; see 564 

Figure S2D). Middle panel: Northern blot detection of LOUP’s major and minor transcripts. Lower panel: 565 

RNA gel demonstrating relative migration between 28S and 18S rRNAs stained with ethidium bromide. 566 

(D) qRT-PCR analysis of LOUP levels in polyA- and polyA+ RNA fractions isolated from HL-60 cells. 567 

Error bars indicate SD (n=3). ***p < 0.001. 568 

(E) Calculation of LOUP transcript per cell by qRT-PCR. LOUP RNA standard curve was generated by 569 

in vitro transcription. Error bars indicate SD (n=3). 570 

See also Figure S2. 571 

 572 

Figure 3. Expression profiles of LOUP and PU.1 in normal tissues and cell lineages 573 

(A and B) Transcript profiles of LOUP and PU.1 in human tissues. Shown are transcript counts from the 574 

Illumina Body Map RNA-seq data dataset (AEArrayExpress: E-MTAB-513). Error bars indicate SD 575 

(n=2). 576 

(C) Proportion of cell lineages corresponding to LOUP and PU.1 transcript levels. Myeloid: includes 577 

monocytes, macrophages and granulocytes; TCD4+: T helper cell; TCD8+: Cytotoxic T cell; Treg: Regulatory 578 

T cell; B: B lymphocyte; Plas: Plasma cell; NK: Natural killer cell; DC: Dendritic cell; Ery: Erythrocyte; 579 

Meg: Megakaryocyte.  580 

(D and E) qRT-PCR analysis of Loup RNA and PU.1 mRNA levels in murine hematopoietic stem, 581 

progenitor, and mature (myeloid) cell populations. LT-HSC: long-term hematopoietic stem cells; 582 

ST-HSC: short-term hematopoietic stem cells; CMP:  common myeloid progenitors, MEP: 583 

megakaryocyte-erythroid progenitors; LMPP: lymphoid-primed multipotent progenitors; 584 

GMP: granulocyte-macrophage progenitors, myeloid cells (Mac1+Gr1+). Data are shown relative to LT-585 

HSC. Error bars indicate SD (n=2).  586 

See also Figure S3 and Table S2. 587 

 588 
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Figure 4. The effect of LOUP on PU.1 expression, myeloid differentiation and cell growth 589 

(A) Schematic diagram of the upstream genomic region of the PU.1 locus. Shown are sgRNA-binding 590 

sites (#D1 and #D2) for LOUP depletion using CRISPR/Cas9 technology. 591 

(B) qRT-PCR expression analysis for LOUP (left panel) and PU.1 (right panel) in non-targeting (N) and 592 

LOUP-targeting (L) U937 cell clones. Data are shown relative to N1 control.     593 

(C) qRT-PCR expression analysis of LOUP RNA (left panel) and PU.1 mRNA (right panel) in K562 cells 594 

transfected with LOUP cDNA or empty vector (EV) by electroporation.  595 

(D) Schematic diagram of the LOUP promoter region showing sgRNA-binding sites (#A1 and #A2) for 596 

LOUP induction. Distance from the TSS of LOUP is indicated in bp 597 

(E) qRT-PCR expression analysis of LOUP (left panel) and of PU.1 (right panel) in K562 dCas9-VP64-598 

stable cells infected with LOUP-targeting (#A1 and #A2) or non-targeting (control) sgRNAs.  599 

(F) FACS analysis of CD11b myeloid marker in U937 cell clones with LOUP homozygous indels (L2a 600 

and L2b) and controls (N1 and N2) using PACBLUE-conjugated CD11b antibody. 601 

(G) Edu incorporation was measured by flow cytometry for cell proliferation. 602 

(H) Trypan blue exclusion and manual cell counts for kinetics of cell growth (shControl v.s. shLOUP 603 

(#A1 and #A2).  604 

Error bars indicate SD (n=3). *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001, n.s: not significant.  605 

See also Figure S4. 606 

 607 

Figure 5. 3C and ChIRP assays measuring the effect of LOUP on chromatin looping 608 

(A) Schematic diagram illustrating potential 3C interactions between the URE and genomic viewpoints 609 

surrounding the PU.1 locus. Included are restriction recognition sites of ApoI used in the assay. -8Kb, 610 

and -4Kb: distances from the PrPr in kilo bases. Int: intergenic. 611 

(B) 3C-qPCR TaqMan probe-based assay comparing crosslinking frequencies at chromatin viewpoints. 612 

The U937 cell clone L2a, carrying a LOUP homozygous indel that does not alter the recognition pattern 613 

of ApoI (Figure S4D), was used to compare with non-targeting control (sgControl, N1). n.d.: not 614 

detectable.  615 

(C) qRT-PCR assay evaluating levels of LOUP RNA and control GAPDH captured by biotinylated 616 

LOUP-tiling and LacZ-tiling probes using ChIRP. 617 

(D) ChIRP assay assessing LOUP occupancies at the URE, the PrPr, and ACTB promoter. LOUP-tiling 618 

oligos were used to capture endogenous LOUP in U937 cells. LacZ-tiling oligos were used as negative 619 

control.  620 

Error bars indicate SD (n=3); *p < 0.05; ****p < 0.0001, n.s: not significant.  621 
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Figure 6. LOUP cooperates with RUNX1 to facilitate URE-PrPr interaction 623 

(A) Gene track view of the ~26 kb region encompassing the URE and the PrPr. Shown are RUNX1 624 

ChIP-seq tracks derived from CD34+ cells from healthy donors (GSM1097884), an AML patient with 625 

FLT3-ITD AML (GSM1581788), and a non-t(8;21) AML patient (GSM722708) (top panel). The bottom 626 

panel is a schematic showing the corresponding genomic locations of LOUP and the 5’ region of PU.1. 627 

(B) DNA pull-down assay showing binding of RUNX1 to the RUNX1-binding motifs at the URE and the 628 

PrPr. Proteins captured by biotinylated DNA oligos (wt: wildtype oligo containing RUNX1-binding motif, 629 

mt: oligo with mutated RUNX1-binding motif) in U937 nuclear lysate were detected by immunoblot. 630 

(C) ChIP-qPCR analysis of RUNX1 occupancy at the URE and the PrPr. LOUP-depleted U937 631 

(sgLOUP, L2a) and control (sgControl, N1) clones were used. PCR amplicons include the URE 632 

(contains known RUNX1-binding motif at the URE), PrPr (contains putative RUNX1-binding motif in the 633 

PrPr) and GENE DESERT (a genome region that is devoid of protein-coding genes). Error bars indicate 634 

SD (n=3). 635 

(D) RNA pull-down analysis of the RUNX1-LOUP interaction. Upper panel: Schematic diagram of 636 

LOUP showing relative position of the repetitive region RR. Arrows underneath the diagram illustrate 637 

direction and relative lengths of in vitro-transcribed and biotin-labeled LOUP fragments (Bead: no RNA 638 

control; EGFP: EGFP mRNA control; AS: full-length antisense control; S: full-length sense, and RR: 639 

repetitive region). Lower panel: LOUP fragments were incubated with U937 nuclear lysate. Retrieved 640 

proteins were identified by immunoblot.  641 

(E) Schematic diagram of the repetitive region RR showing predicted binding regions R1 and R2.  642 

(F and G) RNAP binding analysis of R1 and R2 with recombinant full-length and Runt domain of 643 

RUNX1. In vitro-transcribed and biotin-labeled RNAs include R1-AS (R1 antisense control); R1-S (R1 644 

sense); and R2-S (R2 sense). The vertical line demarcates where an unrelated lane was removed from 645 

the figure.  646 

See also Figure S5. 647 

 648 

Figure 7. Effects of RUNX1-ETO on regulatory function of LOUP  649 

(A) Transcript count for LOUP levels in AML patient samples (RNA-seq data was retrieved from TCGA 650 

portal. normal:  normal karyotype n=87, t(8;21) n=7); Mann–Whitney U test: **p<0.01, ****p<0.0001.  651 

(B) RT-qPCR analysis of AML patient samples. normal:  normal karyotype (n=14), t(8;21) (n=7).  652 

Mann–Whitney U test: ***p<0.001.  653 

(C) qRT-PCR expression analysis of RUNX1-ETO (left panel), LOUP RNA (middle panel) and PU.1 654 

mRNA (right panel) in Kasumi-1 cells transfected with Renilla-targeting shRNA (shControl) and 655 

RUNX1-ETO targeting shRNA (shRUNX1-ETO). Error bars indicate SD (n=4), *p<0.05, **p<0.01, 656 

***p<0.001.  657 
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(D) Gene track view at the LOUP locus including the URE where LOUP transcription initiation is 658 

located. Shown are RUNX1-ETO ChIP-seq tracks (top panels), H3K9Ac ChIP-seq tracks (middle 659 

panels) and DNase-seq tracks of Kasumi-1 cells upon depletion of RUNX1-ETO. Cells were transfected 660 

with either nontargeting siRNA (siControl) or RUNX1-ETO-targerting siRNA. Data was processed from 661 

published dataset (GEO: GSE29222) and integrated in the UCSC genome browser. 662 

(E) Model of how LOUP coordinates with RUNX1 to modulate chromatin looping resulting in PU.1 663 

induction, myeloid differentiation, and cell growth, and how RUNX1-ETO interferes with LOUP-664 

mediated molecular functions. 665 
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