
Identifying hidden drivers of heterogeneous inflammatory diseases 
 
Authors: Natalie Garzorz-Stark1,2,3,†, Richa Batra3,,8*,†, Felix Lauffer3,†, Manja Jargosch3,5†, 
Caroline Pilz3, Sophie Roenneberg3, Alexander Schäbitz1,3, Alexander Böhner3, Peter 
Seiringer3, Jenny Thomas5, Bentolhoda Fereydouni1, Lam C Tsoi6, Johann E Gudjonsson6, 
Fabian Theis F4,7, Tilo Biedermann3, Carsten B Schmidt-Weber5, Nikola Müller4, ‡, Stefanie 
Eyerich5, ‡, Kilian Eyerich1,2,3, *,‡ 
 

Affiliations:  
1Division of Dermatology and Venereology, Department of Medicine Solna, and Center for 
molecular medicine, Karolinska Institutet; Stockholm, Sweden;  
2Unit of Dermatology, Karolinska University hospital, Stockholm, Sweden;  
3Department of Dermatology and Allergy, Technical University of Munich, Munich, 
Germany;  
4Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany; 
5ZAUM – Center of Allergy and Environment, Helmholtz Center and Technical University of 
Munich, Munich, Germany;  
6Department of Dermatology, University of Michigan, Ann Arbor, MI, USA;   

7Department of Mathematics, Technical University of Munich, Garching, Germany;  
8Institute for Computational Biomedicine, Englander Institute for Precision Medicine, 
Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, 
USA 
 
*Correspondence to: rib4003@med.cornell.edu or kilian.eyerich@ki.se  

 

†N.G.Z., R.B., F.L. and M.J. contributed equally to this work. 

‡N.M., S.E. and K.E. contributed equally to this work. 

 
Abstract: Chronic inflammatory diseases of the cardiovascular system, brain, gut, joints, skin 
and lung are characterized by complex interactions between genetic predisposition and tissue-
specific immune responses. This heterogeneity complicates diagnoses and the ability to 
exploit omics approaches to improve disease management, develop more effective 
therapeutics, and apply precision medicine. Using skin inflammation as a model, we 
developed a bio-computational approach that assigns deep clinical phenotyping information to 
transcriptome data of lesional and non-lesional skin (564 samples) to identify biologically-
relevant gene signatures. This identified previously unknown key factors, including CCAAT 
Enhancer-Binding Protein Beta (CEBPB) in neutrophil invasion, and Pituitary Tumor-
Transforming 2 (PTTG2) in the pathogenic epithelial response to inflammation. These were 
validated using genetically-modified human skin equivalents, migration assays, and in situ 
imaging. Thus, by combining deep clinical phenotyping and omics data with sophisticated 
bio-computational algorithms we present a methodological advance to identify hidden drivers 
of clinically-relevant biological processes within omics datasets. 

 

One Sentence Summary: Deciphering the pathogenesis of chronic inflammatory diseases by 
assigning transcriptome profiles to deep clinical phenotyping.  
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Main text:  
Applying computing power to data with high volume and variety, so-called “big data“, plays a 
pivotal role in biomedicine (1). For example, deep neural networks can classify diseases from 
images at least as well, if not better, than specialists, as demonstrated for malignant melanoma 
(2), cardiology (3) and breast cancer (4). Machine learning approaches are also used to guide 
diagnoses from laboratory results (5), and whole exome sequencing data sets can be used to 
identify driver mutations in monogenetic diseases and cancer (6). In melanoma and 
glioblastoma, deep neural networks can even be used to design personalized vaccination 
strategies for patients with impressive clinical success (7, 8). However, not all disease 
conditions are equally amenable to these approaches. For example, identifying causative 
factors in chronic inflammatory processes is challenging as they are clinically heterogeneous 
and characterized by a complex interplay between genetic predisposition, immune responses 
against environmental-, self-, or microbiome-derived antigens, and tissue-specific immune 
response patterns of e.g. the gastrointestinal system, joints, lung, or skin. In addition and 
contrast to cancer, which is usually characterized by mutation-driven inexorable progression, 
inflammatory diseases typically show a relapsing-remitting disease course with a broad 
spectrum of phenotypes (9) ultimately resulting in a pronounced data variety wherein the 
various distinct signals are not well separated. In line with this, standardized experimental and 
animal models of human inflammation do not sufficiently reflect the comprehensive human 
situation (10-12), and available human big data sets are insufficiently characterized to dissect 
disease heterogeneity or identify distinct disease endotypes.  
As they are relatively easy to assess and phenotype, non-communicable inflammatory skin 
diseases (ncISD) represent prototype diseases for chronic inflamation to develop a strategy 
that identifies relevant molecular events within a complex network of overlaying gene 
expression signatures. ncISD are a group of several hundred diseases including psoriasis and 
atopic dermatitis (AD). They are defined by physicians using a subjective “best fit” model 
when investigating a variety of attributes such as clinical phenotype, tissue and laboratory 
analysis (13). Today, three umbrella phenotypes can be defined according to the immune 
response pattern in the skin: type 1 ncISD, characterized by cytotoxic immune cells in the 
skin (so-called interface dermatitis) and comprising the diseases lichen planus and cutaneous 
lupus; type 2 ncISD, characterized by impaired epidermal barrier and innate immunity and 
comprising eczematous diseases (atopic dermatitis, dishydrotic eczema, nummular eczema, 
hyperkeratotic-rhagadiform eczema); and type 3 ncISD defined by Th17 immunity and the 
presence of neutrophil granulocytes in the skin, e.g. psoriasis and variants (guttate psoriasis, 
pustular psoriasis) as well as Pityriasis rubra pilaris. Other diagnoses such as cutaneous 
lymphoma or the pre-malignancy parapsoriasis as well as cutaneous side effects to biologics 
can be more variable and are not generally attributed to one of these three ncISD clusters. The 
subjective nature of diagnosing together with the heterogeneity and dynamics of ncISD result 
in overlapping phenotypes and potential misdiagnoses. This problem is general to many 
human complex inflammatory diseases of the cardiovascular system, brain, gut, joints, skin or 
lung, which are increasing in prevalence and account for the majority of global years lived 
with disability as well as deaths (14). Patient’s disease burden and socio-economic costs are 
high and will dramatically increase (15). It is estimated that nearly one trillion dollars are 
wasted due to inefficient treatments alone in the US each year (16), so action towards 
precision medicine is urgently needed. Just like in many chronic inflammatory diseases, there 
is a clear progress in the development of novel therapeutic agents for the two most common 
ncISD, psoriasis and Atopic Dermatitis (17), but even highly specific biologic therapies still 
have a substantial number of non-responders (18, 19), and causative therapies are missing. 
Meanwhile, the ability of scientific methods to assess a multitude of biologic processes in an 
unlimited number of tissue samples is rising (20-24). Given that the costs can be reduced by 
technological progress, the major limitation of research in the field of complex diseases is the 
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ideal approach of bio-computational interpretation – and the assigned metadata, in particular 
clinical information at the time of tissue collection. 
Thus, to achieve a substantial breakthrough on the path towards precision medicine, the 
complex pathogenesis of inflammatory diseases such as ncISD and the resulting disease 
heterogeneity need to be acknowledged in research strategies. Here, we applied deep clinical 
phenotyping to 287 ncISD patients using 62 attributes including clinical picture, skin 
architecture, laboratory parameters, and information on the patient´s history, and generated 
RNA-seq transcriptomes of tissue biopsies of paired lesional and non-lesional skin. To trace 
gene expression signatures unique to underlying biological processes as captured by the 
attributes of the deep clinical phenotypes, we developed a novel bio-computational 
framework, called AUGER. AUGER created a gene expression atlas of chronic cutaneous 
inflammation to an unprecedented granularity level. Thus, we could identify previously 
unknown genes driving relevant biological processes. Experimental validation of newly 
identified key factors shed light on the drivers of neutrophil granulocyte migration into tissue 
and the pathogenic epithelial response to inflammation that ultimately modulate skin tissue 
architecture.   
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Results: 
Deep phenotyping explains substantially more transcriptomic variance than the diagnosis 
alone 
Given the heterogeneity in ncISD patients, we hypothesized that current clinical diagnoses 
only partially reflect the molecular events occurring in the skin. To test this, we collected 
lesional skin biopsies from 287 patients covering 13 different diagnoses of ncISD (Fig. 1A) 
and performed RNA-sequencing (RNAseq). Principal component analysis (PCA) of the 
normalized read count of the RNAseq data showed a mixing of ncISD type 1, type 2, and type 
3 diagnoses in the first two major principle components (PC1 and PC2; Fig.1A), which 
indicates a discrepancy between the diagnosis and the similarity of the transcriptomes at least 
in some patients. To exclude the possibility that transcriptional heterogeneity is driven by 
intra-individual differences, we included normalized read counts of RNAseq measurements of 
autologous non-lesional skin biopsies (n = 564 samples in total) and performed again a PCA 
on the top-most variable genes (Fig. S1). The status of the skin (lesional or non-lesional) 
explained the separation of PC1 and in total 32 % of the variance in the gene expression data 
set, with genes related to skin inflammation driving the separation (Fig. S1A, B). Another 9 % 
of the variance mainly in lesional samples was explained by gender, which was confirmed by 
the expression of genes located on sex chromosomes (Fig. S1A, B). Thus, we performed 
unsupervised hierarchical clustering of lesional transcriptomes excluding genes encoded on 
the sex chromosomes. There were still patients with different diagnoses in the same clusters 
(Figure S1C), indicating that gender correction alone is insufficient to improve the correlation 
of transcriptomes and clinical phenotypes. 
To identify how other disease-relevant factors impact the transcriptional heterogeneity seen in 
patients, we performed deep phenotyping of the 287 patients using 62 attributes from the data 
recorded by dermatologists during diagnosis that reflect clinical picture, histologic 
architecture, laboratory results, investigation of comorbidities, and personal and family 
history (Fig. 1B, Fig. S2). This generated 287 unique patient fingerprints (Fig. S3). We first 
analyzed the fingerprints from four patients with the diagnosis psoriasis (n = 2) or AD (n = 2). 
Three of these clustered closely based on transcriptional profiles, while one AD patient was 
located far from the other three patients in the PCA analysis (Fig. 1C). At this single patient 
level, patients with transcriptionally-similar profiles indeed represented individuals whose 
attribute-based fingerprints showed more similarities despite the fact they had different 
diagnoses than patients with the same diagnosis but different locations in the PCA i.e., 
transcriptionally dissimilar profiles (Fig. 1C). Hence, we investigated whether deep clinical 
phenotyping by attributes is superior over the physicians’ diagnosis to explain variance in the 
transcriptome. A linear mixed model was used to attribute variance to either diagnosis or 
separate attributes in lesional data. We found that patients’ diagnoses only explained 7.8 % of 
the total transcriptional variance in the skin (Figure 1D). In contrast, the 62 attributes of the 
deep phenotyping together explained 36.7 % of the total transcriptional variance (Fig. 1D, E).  
Thus, multiple, clinically-relevant attributes in a patient more closely drive their lesional 
transcriptional profiling than the clinician’s diagnosis alone, and may improve disease 
management and enable the identification of novel, biologically- and clinically-relevant 
molecular events. 

Unique attribute-gene signatures identified by effective demixing of the transcriptional signal 
Since single attributes are not specific for a distinct disease but still contribute to shaping the 
lesional skin transcriptome, the traditional approach of comparing diseases is limited due to a 
high background noise caused by these conserved attributes. Thus, we developed a bio-
computational algorithm that dissects the lesional skin transcriptome into gene expression 
signatures of each attribute to identify previously unknown genes driving relevant biological 
processes - AuGER (Attribute Gene Expression Regularization, Fig. 2A). First, to simplify 
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the data by removing redundant attributes, we performed pairwise correlation analysis, which 
revealed groups of highly correlated attributes (Fig. 2A 1-3, Fig. 2B, Table S3). As expected, 
attributes used to describe an ncISD disease type highly correlated with each other: 
specifically, the ncISD type 1 attributes, “number of dyskeratoses”, “interface dermatitis 
qualitative” and “quantitative”, “localization of dyskeratoses”; the ncISD type 2 attributes, 
“serum crusts”, and “spongiosis”; and the ncISD type 3 attributes, “neutrophils qualitative” 
and “quantitative”, and “parakeratosis” (Figure 2B). One representative attribute (= core 
attribute) per group of highly correlated attributes was selected based on clinical relevance, 
favouring quantitative measures over qualitative discretization, resulting in a total of 24 core 
attributes used for further analysis (Fig. 2C).  
To identify unique gene sets whose transcriptional activity is associated with core attributes, 
multivariate regression with elastic net penalty was performed. For each of the 24 core 
attributes regression analysis was carried out, whereat the respective core attribute was used 
as the response variable and the genes of the complete transcriptome data as the predictor 
variables. The remaining 23 core attributes were used as covariates to control for their impact 
on the response variable. For each gene, a regression coefficient was calculated for the 
respective attribute, and all genes with non-zero regression coefficients were collected (Fig. 
2A 4-5). To finally identify the disease-specific associations between individual attributes and 
genes that have clinical relevance for ncISD, we not only analysed individual attribute 
signatures linked to the corresponding lesional transcriptome (n = 287) but also to the 
respective autologous non-lesional transcriptome obtained (n = 277).  To filter out attribute-
associated genes that are not specific for inflammation, only genes with non-zero coefficient 
in lesional but not in nonlesional skin were selected (Fig. 2A 6). To improve robustness, 
regression analysis for both lesional and non lesional transcriptome was conducted five times, 
respectively, using five sets of imputed core attributes. Specific unique and shared 
associations were obtained between a total of 621 genes and 18 of the 24 attributes creating a 
bipartite network (Fig. 2A 7, Figure S4). For the first time, AuGER acknowledges disease 
heterogeneity of ncISD by dissecting diseases into multiple clinically-relevant attributes and 
associating these attributes to gene signatures. These gene signatures reveal the molecular 
basis of complex and biologically-relevant processes, e.g. the presence of neutrophil 
granulocytes in the skin or pathogenic epithelial thickening as a consequence of inflammation, 
so-called acanthosis. 

The gene expression landscape of ncISD 
To understand how the attributes are connected and if their interaction reflects ncISD types, 
we created an atlas of skin inflammation with its underlying gene signature by compiling a 
network of gene and attribute nodes linked by an edge when the attribute-gene pair was 
identified by AuGER (Fig. 2C, Figure S5, Table S3). On the one hand, this atlas reflects core 
attributes that represent hallmarks of the three ncISD clusters, type 1 (lichen planus and 
cutaneous lupus, here identified by the core attribute “interface dermatitis”), type 2 (eczema 
variants which are typically associated to “dryness” and “eosinophils”), and type 3 (psoriasis 
variants represented by the core attribute “neutrophils”).  
On the other hand, the atlas also illustrates attributes which are not typically associated with 
one of the three ncISD clusters, but still have an impact on the skin transcriptome. These 
include scalp or nail involvement, clinical presentation such as scaling, papules, or erythema; 
or histo-pathological presentation such as acanthosis or orthokeratosis (regular formation of 
the upper epidermis). These attributes may occur in several diseases and thus increase the 
unspecific background noise in traditional approaches comparing different diseases. Finally, 
external factors influencing the lesional skin transcriptome are also captured. This is 
represented by numerous genes associated with the core attributes “alcohol consumption” and 
“smoking” (Fig. 2C).  
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Notably, AuGER identified only one gene associated with the attribute “pruritus”, namely the 
T cell recruiting chemokine CCL18 (25). CCL18 was shared with the core attribute 
“eosinophils” and thus connected to type 2 ncISD, namely eczema. This is in line with the 
fact that most eczema variants are highly pruritic (26). Indeed, levels of CCL18 were highest 
in eczema variants (AD and nummular eczema) as compared to psoriasis (Fig. S6A). This was 
confirmed in an independent data set consisting of skin from healthy volunteers (n = 38) and 
from patients suffering from AD (n = 27) or psoriasis (n = 37). Here, expression of CCL18 
was again significantly higher in AD than in the healthy controls (log2 fold change: 4.9, p 
1.4*10-13) or psoriasis (3.1, p 1.4*10-7) (Fig. S6B). In a third cohort, CCL18 expression was 
higher in lichen planus lesional skin (n = 20) as compared to healthy controls (n = 38). Just 
like eczema, lichen planus is typically pruritic (27)(Fig. S6B).  
All attributes except “mucin” shared at least one link with another attribute in the network, 
thus constructing a comprehensive gene map of skin inflammation. “Mucin” is a core attribute 
comprising an enhanced level of extracellular material (28). It is not associated with an 
inflammation cluster and is usually the result of inflammation of deeper skin layers rather 
than of the epidermis. Connections of the individual gene signatures of each attribute were 
also identified at the level of pathway analysis. Some pathways were associated with only one 
attribute, e.g. the expected cytotoxicity-mediating pathway “IFN-gamma signaling” 
associated with the ncISD type 1 core attribute “interface dermatitis” (29). Numerous 
pathways were associated with at least five different attributes. For example, pathways of cell 
cycle and proliferation, such as “EGF signaling”, “Ras signaling”, “Oncostatin M signaling”, 
and the stem cell factor “Wnt signaling”, connected the clinical attributes “elevation” 
(palpable skin lesions) and “papules”, both of which may be related to exaggerated 
proliferation of the epidermis (Fig. S5). Next, the network was developed further by 
considering protein-protein interactions. Taken together, the atlas of skin inflammation 
reflects interactions of biologically-relevant processes, and furthermore gives a much higher 
resolution of genes driving these processes due to acknowledging the heterogeneity of ncISD 
through AuGER.  

Novel insights into neutrophil granulocyte biology in tissue 
The comprehensive atlas of the transcriptome landscape of ncISD delivers a plethora of 
previously unknown connections of biologic processes with expression of genes. To 
understand whether these genes are pathogenic, we validated genes associated to the attribute 
“neutrophils”, which was defined as the presence of neutrophil granulocytes in lesional skin 
as observed by dermatopathology. AuGER identified an association of 35 genes with this 
attribute (Fig. 3A). While some of these genes such as CXCL1 or CXCL8  are well-known 
drivers of neutrophil migration and/or biology (30), others were previously unknown in this 
context. As expected, the ncISD type 3 core attribute “neutrophils” was most prominent in 
psoriasis patients, however, intra- and inter-disease variability was high (Fig. 3B, C). Pathway 
enrichment of the identified genes showed they could be attributed to inflammation and 
general processes such as protein binding (Fig. 3D). For biological validation of the attribute-
gene association, we focused on five genes CEBPB, HCAR3, SHC1, HS6ST1 and SLC23A2 as 
they were centrally located in the network (Fig. 2C) and previously not linked to skin 
diseases. We first analyzed the effect of stimulation with pro-inflammatory cytokines IL-17A, 
TNF-α or LPS on gene expression in two potential target cells, primary human keratinocytes 
and neutrophil-like HL-60 cells. Stimulation induced gene expression only of CEBPB 
consistently in both cell types as compared to unstimulated controls (Fig. 4A).  
C/EBP factors, to which CEBPB belongs, have been found to regulate cytokine expression in 
human neutrophils (31). To gain more insight into the function of CEBPB in neutrophil 
biology in particular into the interaction of neutrophils and keratinocytes, we specifically 
knocked-out CEBPB and the irrelevant control gene PTTG2 in keratinocytes using 
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CRISPR/Cas9 technology. CEBPB, but not PTTG2 knock outs, resulted in significant 
reduction of central chemokines for neutrophil migration and activation (CXCL8, CXCL1, 
CXCL2, CXCL5, IL-6) in the supernatant of keratinocytes stimulated with IL-17A (Fig. 4B). 
Meanwhile, CEBPB knock-out cells produced significantly higher amounts of the growth 
factor GM-CSF and the chemokines CCL5 and CCL22, indicating that loss of CEBPB does 
not hamper the ability of keratinocytes to promote bone marrow neutrophil maturation, or 
migration of eosinophils, macrophages or dendritic cells (Fig. 4B). To validate that CEBPB 
regulates neutrophil migration to the skin, we quantified migration of primary human 
neutrophils towards the supernatant of CEBPB or PTTG2 knock-out keratinocytes, compared 
to the supernatant of wild type controls. Here, knock-out of CEBPB significantly reduced the 
capacity of keratinocytes to regulate neutrophil migration (Fig. 4C). Furthermore, knock-out 
of CEBPB directly in the neutrophil-like HL-60 cells resulted in diminished migration 
towards both CXCL8 and keratinocyte supernatant (Fig. 4D). Thus, CEBPB is a pivotal 
regulator of neutrophil biology in the skin, acting at both the keratinocyte and the neutrophil 
level. 

Pathogenic epidermal hyperplasia is driven by previously unknown genes 
Pathogenic hyperplasia of the epidermis caused by excessive proliferation and disturbed 
differentiation of keratinocytes, so-called acanthosis, is a process frequently observed in 
different kinds of skin inflammation. Therefore, acanthosis is a representative example of how 
AuGER filters and identifies previously unknown biologic drivers of this conserved clinical 
phenotype. 69 genes were associated with acanthosis (Fig. 2C, Fig. 5A). Acanthosis is neither 
specific for a ncISD type, nor is it observed in all patients suffering from an ncISD. In line 
with this, in our cohort, acanthosis as an attribute was variably distributed across the 13 types 
of ncISD (Fig. 5B) and unsupervised hierarchical clustering of genes associated with 
acanthosis in all 287 patients did not correlate with distinct diseases (Fig. 5C). These 
acanthosis-associated genes were assigned to pathways describing cell-cell adhesion and 
activity (Fig. 5D).  
For biological validation of the attribute-gene association, we selected PTTG2, SYNE1, and 
CEBPB. Keratinocytes stimulated with the pro-inflammatory cytokines IL-17A and TNF-α 
showed an upregulation of CEBPB and a downregulation of SYNE1 gene expression, while 
PTTG2 expression remained unaltered (Fig. 6A). Knock-out of either PTTG2, SYNE1, or 
CEBPB in primary human keratinocytes did not alter the cellular morphology or the 
architecture of three-dimensional human skin equivalents (Fig. 6B). The cytokine IL-22 is a 
known inducer of keratinocyte growth and induces acanthosis (32). We next investigated the 
effects of CEBPB, SYNE1 and PTTG2 knock-out on epidermal thickness as a proxy for 
acanthosis in response to IL-22. In line with the differences in gene regulation, knock-out of 
both PTTG2 and CEBPB significantly inhibited the induction of acanthosis by IL-22 
compared to the control (noRNP) model, with CEBPB preventing it completely. In contrast, 
knock-out of SYNE1 markedly increased the thickness of the three-dimensional skin model 
(Fig. 6B, C; Fig. S8). Notably, proliferation of keratinocytes was also reduced by knock-out 
of CEBPB or PTTG2 but induced by SYNE1 (Fig. 6C, D, E). Finally, knock-out of CEBPB 
resulted in altered epithelial differentiation after IL-22 stimulation, namely in clearly 
diminished expression of the early differentiation marker keratin 10, and keratin 16, which is 
typically associated with proliferative keratinocytes (33) (Fig. 6E). Hence, CEBPB and 
PTTG2 are essential for the development of acanthosis, while SYNE1 is a negative regulator 
of epidermal thickness.  
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Discussion: 
Here, we show that previously unknown biologic drivers of key pathogenic events in human 
inflammatory diseases can be identified from transcriptome information when disease 
heterogeneity is acknowledged. We investigate non-communicable inflammatory skin 
diseases (ncISD) as prototype examples of heterogeneous human inflammatory disorders.  
We observed that assigning disease names to data sets alone only explains a minority of the 
transcriptome variation. In contrast, metadata with a higher granularity of the observed 
clinical heterogeneity explain a substantially higher proportion of the transcriptome variability 
associated with inflammation. Furthermore, we demonstrate that common hallmarks of the 
interplay between skin epithelia and immune cells are shared between different patient 
cohorts independent of the disease background. We and others recently followed this 
approach for ncISD that share the histological hallmark “interface dermatitis”, which 
represents cytotoxic activity of lymphocytes at the basal membrane of the epidermis and is 
frequently observed in type 1 ncISD such as lichen planus and lupus (29, 34). Here, 
identification of the molecular mechanism, type 1 immune mediated epithelial apoptosis and 
necroptosis, led to potential novel therapeutic strategies (35). Our current analysis now takes 
into account other dependent clinical attributes and gives an even clearer picture of the genes 
involved in interface dermatitis. 
Even in settings that are heavily researched and where numerous drivers are known, such as 
neutrophil biology, assigning more granular metadata of clinical phenotyping identifies 
previously unknown, but important mechanistic factors. In particular, our newly developed 
algorithm AuGER identified CEBPB as a master regulator of neutrophil biology in the skin. 
C/EBP proteins are known to be involved in cytokine production such as CXCL8 and CCL3 
by neutrophils (31, 36). We show here that CEBPB is also expressed in keratinocytes, and 
knock-out of CEBPB in primary human keratinocytes results in reduced chemokine secretion 
and reduced neutrophil migration. This newly identified dual mechanism of action to inhibit 
neutrophil inflammation in tissue renders CEBPB a potentially powerful therapeutic target for 
neutrophilic inflammatory diseases of the skin, such as psoriasis or pyoderma gangrenosum 
but also for diseases beyond the skin as for example reactive arthritis or neutrophil-rich 
chronic obstructive lung disease (COPD). 
Our approach not only reveals the most significant genes contributing to an attribute, but vice 
versa also identifies the mechanistic significance of single genes for corresponding attributes 
representing complex mechanistic processes. This was proven for the less restricted attribute 
“acanthosis”. Acanthosis corresponds to reactive thickening of the epidermis in inflammatory 
conditions and it can be observed in multiple ncISD but is not part of a disease definition (37). 
PTTG2, a hub gene for acanthosis in our analysis, has not been proposed in the context of 
acanthosis before. PTTG2 is involved in cell viability and migration by regulating the 
expression of vimentin and E-cadherin and overexpression of PTTG2 was described in 
psoriatic epidermis (38, 39). We now show that PTTG2 is directly involved in acanthosis, as 
inhibiting this single factor significantly impaired acanthosis formation in vitro. SYNE1, 
another gene significantly correlated to acanthosis from our network, encodes an important 
scaffold protein. In genetically modified mice, loss of SYNE1 leads to thickening of the 
epidermis (40), an observation we validated in the human system by showing increased 
thickness of three-dimensional skin equivalents comprised of SYNE1 knocked-out 
keratinocytes. Interestingly, CEBPB, associated with the attribute “neutrophil” was also 
associated with “acanthosis” and the third candidate gene we validated for its contribution to 
acanthosis in vitro. In fact, human skin equivalents of keratinocytes lacking CEBPB were vital 
and did not show any morphological alterations, but they did not respond to IL-22, an 
inflammatory stimuli that normally induces acanthosis (32). Hence, CEBPB seems an ideal 
target to both address diseases in which neutrophils and acanthosis are concomitantly present, 
in particular in psoriasis, hidradenitis suppurativa, or severe acne. 
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Our proof-of-concept study has limitations. First, phenotyping was partially based on 
subjective information, such as the patient´s narrative, clinical examination and histological 
evaluation. Second, though we performed RNA-Sequencing of 287 patient’s tissue samples, 
the sample size is still limited, and underestimation of real biologic effects cannot be ruled 
out. To raise our network approach to the next level and with it eventually identify robust 
predictive markers for medically-relevant outcomes such as response to therapy, more data 
sets from multiple sources need to be fed into the network. However, a highly advanced 
neural network of diseases can only be generated provided that each molecular data point is 
assigned to metadata as it has been done in this study. However, the study clearly shows 
already at this stage that assigning clinical phenotypes to large datasets critically determines 
the quality of outcome of the analysis. Phenotyping methods such as image-based machine-
learning will further improve our novel approach in the future.  
Taken together, exemplifying ncISD we show here that combining deep clinical phenotyping 
with transcriptome datasets and novel bio-computational algorithms might be key to define 
pathogenic events in complex processes such as chronic human inflammation and thus build 
the basis for precision medicine in the field. 
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Fig. 1. Transcriptome heterogeneity of ncISD requires deep clinical phenotyping. A) Principal 
component (PC) analysis of gene expression determined by RNA sequencing of lesional skin 
biopsies obtained from 287 patients suffering from 13 different non-communicable 
inflammatory skin diseases. Patients are colored by diagnosis as indicated in the legend. The 
PCA reveals three, albeit not very concise, subclusters consisting of lichen planus/ lupus (type 
1 ncISD) (light and dark orange), nummuluar eczema/ atopic eczema (type 2 ncISD) (light 
purple/light blue) and psoriasis (type 3 ncISD) (brown) B) Overview of clinical attributes 
(n=62) subgrouped into morphology, comorbidity, histology, patient’s history (history), and 
laboratory parameters (lab), used to obtain a deep clinical phenotype of each patient. C) 
Exemplary fingerprints of four patients (two atopic dermatitis and two psoriasis patients) 
attribute composition (radar plots), histological examination (middle) and clinical picture 
(right) demonstrating that two patients with a transcriptionally similar profile also have a 
similar clinical phenotype (radar plot) despite receiving a different clinical diagnosis (patients 
highlighted in the circle). However, patients with the same diagnosis (e.g. atopic dermatitis as 
indicated) may have a heterogeneous clinical phenotype combined with transcriptional 
diversity. D) To understand if clinical phenotyping is superior to the diagnosis in explaining 
the variance in the transcriptome data, a linear mixed model was used to attribute variance to 
diagnosis and attributes revealing that diagnosis can explain less variance (7.8%) of the data 
set than attributes (36.7%). E) Overview of the contribution of each individual clinical 
attribute to the variance in the transcriptome data set. BMI: body mass index, GPT: Glutamat-
Pyruvat-Transaminase, Hb: hemoglobin, IBD: inflammatory bowel disease, RCA: 
rhinoconjunctivitis allergica. See also Figure S1, S2 and S3. 
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Fig. 2. The concept and resulting network of AuGER (Attribute Gene Expression 
Regularization). A) Schematic of the AuGER approach. 1st step: Definition of core attributes. 
The 62 attributes (1) of all samples i= {1…n} were subjected to pairwise comparisons (2) to 
identify highly correlated attributes. Clinically most relevant attributes representative for a set 
of highly correlated attributes were selected resulting in a set of 24 core attributes j (j= 
{1…m} (2) and thus in the attribute matrix Ai,j. (3), 2nd step: Gene-attribute association. First, 
RNASeq count data was split into lesional and non-lesional sets of k genes (o = {1… k}, gene 
matrix Gik), respectively) (4). Next, multivariate regression with elastic net penalty was used 
to identify the association between each core attribute (blue box) and gene expression (here 
illustrated for lesional skin only, orange box). The m-1 attributes not in response were used as 
covariates to control for the influence on response variable (dashed blue box). Beta 
coefficients βattr and βgene (yellow box) for each predictor variable were estimated (5), 
however, only genes unique to lesional skin were selected (6). Next, genes with a non-zero 
βgene coefficient in lesional skin only were filtered for each attribute and the association of 
genes and clinical attributes was visualized as a bipartite network (7). B) Exemplary highly 
correlated attributes belonging to type 1, type 2, or type 3 ncISD clusters with their core 
attribute name in italics. C) Network visualization of gene sets derived from AuGER. 
Attributes (green diamonds) and genes represent nodes, and thickness of edges represent 
strength of an association. Colors indicate core attributes of the three ncISD clusters. See also 
Figure S4, S5, and Table S3. 
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Fig. 3. Gene expression landscape of neutrophil granulocytes in inflamed tissue. A) A focus 
on the clinical attribute ‘neutrophils’ and its associated genes. Line thickness indicates the 
strength of gene-attribute association determined by the presence of the association in five 
iterating bio-computational cycles (thickest line=five times present). B) Distribution of the 
attribute ‘neutrophils’ across the 13 investigated non-communicable inflammatory skin 
diseases. Each bar represents one patient, and the height of the bar indicates the number of 
neutrophils present in skin histology with 0 = no, 1 = low, 2 = moderate, 3 = high numbers of 
lesional neutrophils (see Fig. S2). C) Hierarchical clustering of neutrophil-associated genes 
assigned with diagnosis (colors) and presence of neutrophils (grayscale). D) Gene ontology 
terms associated with the neutrophil gene set. CL: cutaneous lymphoma; CSB: cutaneous side 
effect of biologics; DE: dishydrotic eczema; GP: guttate psoriasis; Parapso: parapsoriasis; PP: 
psoriasis pustulosa; PRP: pityriasis rubra pilaris. 

 
 
Fig. 4. CEBPB is a key regulator of neutrophil granulocyte biology. A) Five genes with a 
strong association to the attribute ‘neutrophils’ and a yet unknown function in this field were 
selected and their relative gene expression was evaluated in primary human keratinocytes 
(stimulated with IL-17A and TNF-α) and neutrophil-like cells (differentiated HL60 cells) 
(stimulated with LPS) compared to non-stimulated controls by real time PCR. B) CEBPB and 
PTTG2 were knocked out in primary human keratinocytes using the RNP-CRISPR 
technology. Knock-out (RNP) and wild-type (no-RNP) keratinocytes were cultured and 
stimulated with recombinant IL-17A for 72 hours to induce neutrophil-relevant genes. The 
supernatant was analysed for cytokine/chemokine content by multiplex technology and 
relative changes are given in the graphs as percentage compared to no-RNP controls. C) 
Frequency of neutrophils migrated towards the supernatant of keratinocytes stimulated with 
recombinant IL-17A after CEBPB or PTTG2 knock-out compared to IL-17A-stimulated wild 
type keratinocytes. D) Knockout of CEBPB or PTTG2 in neutrophil-like cells (differentiated 
HL60 cells) and consecutive migration towards CXCL8 or supernatant of wild type 
keratinocytes (wt KC SN) stimulated with recombinant IL-17A. KC: keratinocyte; RNP: 
ribonucleoprotein; SN: supernatant. 
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Fig. 5. Gene expression landscape of acanthosis. A) A focus on the clinical attribute 
‘acanthosis’ and its associated genes. Line thickness indicates the strength of the gene-
attribute association determined by the presence of the association in five iterating bio-
computational cycles (thickest line=five times present). B) Distribution of the attribute 
‘acanthosis’ across the 13 investigated non-communicable inflammatory skin diseases. Each 
bar represents one patient, and the height of the bar indicates the level of acanthosis measured 
by skin histology, with 0 = no, 1 = low-, 2 = moderate, 3 = strong acanthosis (see also Fig. 
S2). C) Hierarchical clustering of acanthosis-associated genes assigned with diagnosis 
(colors) and strength of acanthosis (grayscale). D) Gene ontology terms associated with the 
acanthosis gene set. CL: cutaneous lymphoma; CSB: cutaneous side effect of biologics; DE: 
dishydrotic eczema; GP: guttate psoriasis; Parapso: parapsoriasis; PP: psoriasis pustulosa; 
PRP: pityriasis rubra pilaris.  
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Fig. 6. CEBPB, SYNE1, and PTTG2 are mutually antagonistic regulators of acanthosis. A) 
Genes with a strong and yet unknown association to the attribute acanthosis were chosen and 
their expression was evaluated in primary human keratinocytes after IL-17A and TNF-α 
stimulation by real time PCR. B) The acanthosis-associated genes CEBPB, SYNE1 and 
PTTG2 were knocked out in primary human keratinocytes using CRISPR-Cas9. 3D skin 
models of knock-out (RNP) and wild-type (no-RNP) were stimulated with recombinant IL-22 
to induce acanthosis or left untreated (control) and stained for the proliferation marker Ki67. 
Representative stainings are shown. Bars represent 40µm. C) Relative delta thickness of 3D 
skin models with RNP-CRISPR knock-out for CEBPB, SYNE1 or PTTG2 (n = 11). Here, 
thickness of each IL-22 stimulated model was normalized to its untreated control followed by 
calculation of percental changes of RNP vs no-RNP treated models. D) Quantification of 
Ki67 positive cells in 3D skin models shown in B). E) Representative Keratin 10 (KT10) 
(red), Keratin 16 (KT16) (yellow), and Ki67 (green) immunofluorescence staining of 3D skin 
models with a RNP-CRISPR knock out of CEBPB with or without (control) IL-22 
stimulation. Nuclei were stained with DAPI (blue). The dotted white line indicates the border 
between basal keratinocytes and the culture membrane. Results on SYNE1 and PTTG2 are 
given in Fig. S8. Bars represent 50 µm. KT: kerat
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