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1 Overview of Partially Connected Bayesian Neural Networks

Biologically annotated neural networks (BANNSs) are feedforward Bayesian models with have partially
connected architectures that are inspired by the hierarchical nature of biological enrichment analyses
in GWA studies. The BANNs software takes in one of two data types from genome-wide association
(GWA) studies: (i) individual-level data D = {X,y} where X is an N x J matrix of genotypes with J
denoting the number of single nucleotide polymorphisms (SNPs) encoded as {0, 1,2} copies of a reference
allele at each locus and y is an N-dimensional vector of quantitative traits (see Figure 1 in the main
text); or (i) GWA summary statistics D = {R, 8} where R is a J x J empirical linkage disequilibrium
(LD) matrix of pairwise correlations between SNPs and 6 are marginal effect size estimates for each
SNP computed using ordinary least squares (OLS) (see Supplementary Figure 1). In either setting, the
BANNS software also requires a predefined list of SNP-set annotations {S1, ..., Sg} to construct partially
connected network layers that represent different scales of genomic units. In this section, we review the
hierarchical probabilistic specification of the BANNs framework for individual data; however, note that
extensions to summary statistics is straightforward and only requires substituting the genotypes X for
the LD matrix R and substituting the phenotypes y for the OLS effect sizes 6.

Without loss of generality, let SNP-set g represent an annotated collection of SNPs j € S, with
cardinality |S,|. The BANNs framework is probabilistically represented as a nonlinear mixed model

Y=Y h(Xy0,+ 100w, + 162, (1)

g=1

where X, = [x1,...,X|s,|| is the subset of SNPs annotated for SNP-set g; 8, = (01,...,0s,|) are
the corresponding inner layer weights; h(e) denotes the nonlinear activations defined for neurons in
the hidden layer; w = (w1,...,w¢) are the weights for the G-predefined SNP-sets in the hidden layer;

b = (bgl), ey bg)) and b(®) are deterministic biases that are produced during the network training phase
in the input and hidden layers, respectively; and 1 is an N-dimensional vector of ones. For convenience,
we assume that the genotype matrix (column-wise) and trait of interest have been mean-centered and
standardized. In the main text, h(e) is defined as a Leaky rectified linear unit (Leaky ReLU) activation
function [1], where h(x) = @ if * > 0 and 0.0l otherwise. Throughout this Supplementary Note, we
will equivalently write Eq. (1) in matrix notation as

y = H(@)w + 12,

where H(0) = [h(X107 + lbgl))7 oo h(Xebe + lbg))] denotes the matrix of nonlinear neurons in the
hidden layer which are empirically computed given estimates the input layer weights. The hierarchical
structure of the joint likelihood can be seen as a nonlinear take on classical integrative and structural
regression models frequently used in GWA analyses [2-8].

As explained in the main text, we treat the weights of the input (8) and hidden layers (w) as random
variables which allows for multi-scale genomic inference on both SNPs and SNP-sets, simultaneously. We
assume that SNP-level effects follow a K-mixture of normal distributions

K-1 K—-1
0 ~ Z TorN(0,05,) + moxcbo, mor =1 — Z ok (2)
k=1 k=1
where g is a point mass at zero; O‘g = (031, . 703K71) are variance of the K — 1 nonzero mixture
components; wg = (mg1,...,Tgx—1) represents the marginal (unconditional) probability that a randomly

selected SNP belongs to the k-th mixture component; and Zf:_ll mgr denotes the total proportion of
SNPs that have a nonzero effect on the trait of interest. Notice that we write the mixture prior slightly



different from the main text to simplify updates in the algorithm for posterior inference. For reference,
one can think of the K-th component as a normal distribution with fixed variance o3, = 0. Intuitively,
specifying a larger K allows the neural network to learn general SNP effect size distributions spanning
over a diverse class of trait architectures. For example, one can take a nonparametric approach and allow
K — oo such that Eq. (2) mirrors a Dirichlet process Gaussian mixture [9]. For results in the main text,
we follow previous work and fix K = 3 [10-12]. This corresponds to the general hypothesis that SNPs
can have large, moderate, and small effects on phenotypic variation [13]. For inference on the hidden
layer, we assume that enriched SNP-sets contain at least one SNP with a nonzero effect. This simpler
criterion is formulated by placing a spike and slab prior on the hidden weights

wy ~ TN (0, 012”) + (1 — my)do. (3)

where, due to the integrative form of the likelihood in Eq. (1), the magnitude of association for a SNP-set
will be directly influenced by the effect size distribution of the SNPs it contains.
For all hyper-parameters in the model, we assume the following prior distributions

log(mr) ~ U(—log(J),log(1)), o3y, ~ Inv-Gamma(ug, vg), (4)
log(mw) ~ U(—log(G),log(1)), 02 ~ Inv-Gamma(ty,, vy ). (5)

Following previous work [9], we set the shape and scale of the inverse-gamma distributions to be up = u,, =
0.1 and vy = vy, = 0.1, respectively. Relatively uninformative uniform priors are placed on logmg; and
log m,, to reflect our lack of knowledge a priori about the proportion on associated SNP and SNP-sets with
nonzero weights [14-16]. To facilitate posterior computation and interpretable inference, we also introduce
two vectors of binary indicator variables v5 = (71, - --,7v6s) € {0,1} and 74, = (Y1, - - -, Ywg) € {0, 1}¢
where we implicitly assume a priori that

K1
Pr[yg; = 1] = Pr[f; # 0] = Z Tok, Pr[yug = 1] = Prlw, # 0] = my. (6)
k=1

Alternatively, we say vp; and .4 take values of 1 when weights 6; and w, are drawn from the normal
“slab”, respectively; they take values of 0 otherwise. In the main text, we refer to these indicators
as inclusion probabilities [17] and we use the marginal posterior means of these quantities as general
summaries of evidence that SNPs and SNP-sets are statistically associated with phenotypic variation.

2 Variational Expectation-Maximization (EM) Algorithm

We modify a previously developed variational expectation-maximization (EM) algorithm to estimate the
posterior distribution of parameters in the BANNs framework. The derivations in this section largely
follow those developed in previous work [7,9,18-20]. As mentioned in the main text, the overall goal
of variational inference is to approximate the true posterior distribution for network parameters with a
similar distribution from an approximating family [21-25]. The EM algorithm we use aims to minimize
the Kullback-Leibler divergence between the exact and approximate posterior distributions, respectively.
To begin, we assign exchangeable uniform hyper-priors over a grid of values on the log-scale for gy and
7w [15]. We then run the EM algorithm while iterating through each combination of these values. In the
E-step, we use co-ordinate ascent to update the free parameters of the approximate variational posterior.
In the M-step, we derive updates for the model hyper-parameters by solving for the roots of their gradients.
Finally, in the last step, we empirically compute (approximate) posterior values for the network connection
weights (0, w) and their corresponding inclusion probabilities (79,7, ) by marginalizing over the different
model combinations for 7y and ,, with normalized importance weights [19,20]. A complete overview of
the algorithm is given below.



Given the formulation of the BANNs model and the partially connected neural network architecture,
the weights in the second layer are conditionally independent of the weights in the input layer given
the activations (or outputs) from the first layer. This means that we can break up the model fitting
procedure into two integrative parts and assess two different lower bounds for the input and hidden layer
weights, respectively, to ensure convergence. Specifically estimates on the SNP-level are first maximized
with respect to the trait of interest; while, parameters corresponding to the SNP-set level are maximized
with respect to the observed trait. The software code iterates between the “inner” lower bound and
the “outer” lower bound each step of the algorithm until convergence. Iterations in the algorithm are
terminated when either one of two stopping criteria are met: (¢) the difference between the lower bound
of two consecutive updates are within some small range (specified by tolerance argument €), or (ii) a
maximum number of iterations is reached. For the simulations and real data analyses ran in this paper,
we set € = 1 x 10™* for the first criterion and used a maximum of 10,000 iterations for the second.

2.1 Input Layer (SNP-Level) Updates

For the SNP-level effects in the input layer, we aim to find a distribution ¢(8, ) that approximates the
true posterior distribution p(0,~y | D), where 8 = (64,...,0¢) and D is used to denote the individual-
level data and all relevant hyper-parameters. The similarity between these two distributions is maximized
by minimizing the Kullback-Leibler (KL) divergence between them. This is formulated by

KL(q(8,70) [| p(0,70 | D)) = /10g L)(qe(e,’y%} q(6,7¢) A0 drs. (7)

In this work, we specify the following variational mixture distribution for each of the individual weights
K- .
q(0;,765: ¢5) = et gk Mmges ) i 05 =1 (8)
’ ’ - K-1 .
S (1 =22kt k) do if y9; =0

where, in addition to previous notation, ¢; = {ajk, Mk, s?k}sz_ll is a collection of free parameters. To
compute the approximations, we make the mean-field assumption that the variational posterior can be
factorized over ¢ = (¢1,...,¢5) [26,27]. The basic idea behind the variational approximation is to
formulate a lower bound to the marginal likelihood, then to iteratively adjust the free parameters in ¢
so that this bound becomes as tight as possible [19,20,25]. Finding the “best” factorized variational
distribution amounts to finding the free parameters ¢ that make the Kullback-Leibler divergence in
Eq. (7) as small as possible. The specific class of variational distributions in Eq. (8) yields the following
analytical expression for the lower bound on the inner layer (or SNP-level)

J
N 1 1
LB(T"OaagaTQQ) = —Elog(Qm-g) - ﬁﬂy - X@H% ~ 3 Z(XTX)ij[ej]
0 =

(9)

J K J K-1 2 2 2

Qg 1 S5k S5k T mjy,

- ajilog <J> + = ajr |1+ log -

where 77 ~ V[h(0) — X3y] estimates the variance of residual training error in the input layer; || o ||
is the Euclidean norm; B3y is a J-dimensional estimate of the posterior mean for € with individual
elements By; = Zf:_ll a;pmji; the term (XT7X);; is the j-th diagonal component of the matrix (X7X);
and V[0;] = ZkK;ll aje(m?, + 5%.) — (Zf;ll ajrm;i)? is the variance of the j-th weight under the
approximating distribution in Eq. (8). As part of our contribution, we point out that the lower bound in
Eq. (9) is implicitly maximized with respect to the hidden neurons during the backpropagation step in the
algorithm. We now describe the expectation and maximization steps of the approximate EM algorithm
below (see Software Details in Supplementary Note, Section 9).



1. E-Step: Update the Variational Free Parameters. In the E-step of the algorithm, we take
the partial derivatives of the lower bound with respect to the free parameters in ¢ and set them
equal to zero. Solving for my, s?k, and oy, yields the following co-ordinate ascent updates

2
s“
Mk = T%k (XTy); = Y (XTX);1B01 (10)
0 I#j
117!
S?k = {(X X)jj + 52 } (11)
Tk
2
L Ul Sj m;
o, = Sigmoid <log (1 _0;%) + log <09:;_0> + 2;%2) (12)
J

where Y, aji = Pr[yg; = 1|y, X, mg,03,75] and the sigmoid function is set to be the standard
logistic function. Intuitively, the E-step of the algorithm for the input layer produces a collection of
a; = (1, .., 05x—1) values to determine whether each SNP has a nonzero effect on the phenotypic
variance.

2. M-Step: Update the Variance Hyper-Parameters. In the M-step of the algorithm, we fix
values of the variational free parameters and derive the following updates for each o3, and 77,

J K-1 K-1

= D0 D cmlmiy + s3) / DI (13)
j=1 k=1 j=1 k=1
J K-1 -t J J K-1
ik
NES S| |y = X8l + XXV + 30N S 4520 | (14)
j=1 k=1 j=1 j=1 k=1 0k

where N is equal to the dimensionality of the trait vector (i.e., the sample size when modeling
individual-level data).

Following previous work [7,14-16,19,20], we account for our lack of a priori knowledge about the “correct”
proportion of associated SNPs with nonzero effects by placing an exchangeable uniform hyper-prior
distribution over an L-valued grid of possible values where {71'((91), . (L)} € [1/J,1]. We then use the
lower bound to the likelihood in Eq. (9) to approximate the posterior distribution of 7. Formally, we

approximate Pr[my = ﬂél) |y, X] with the normalized importance weights

LB(ﬂ'él), o3, 73)

L I :
D=1 LB(W(g ) ”67 792)

Ny = (15)

As a final step in the model fitting procedure, we empirically compute (approximate) SNP-level posterior
inclusion probabilities 9 by marginalizing over the different grid combinations for 9. Namely,

L

l l
Prlyg; = 1|y, X] = Z)\é) Prlvg; =1 |y,X,1ré),0'g,7'92}. (16)
=1

This final step can be viewed as an analogy to Bayesian model averaging where marginal distributions are
estimated via a weighted average of conditional distributions multiplied by importance weights [19,20,28].



2.2 Outer Layer (SNP-Set Level) Updates

In this section, we detail the posterior computation for parameters in the outer layer of the partially
connected neural network. We are now interested in finding a distribution ¢(w,~y,,) that approximates
the true posterior p(w,~y, | D, 0). Here, it is important to note that, due to the integrative setup of the
joint likelihood used in the BANNs framework, the true posterior for the weights in the outer layer is
conditionally dependent upon the posterior estimates for the weights in the input layer. Since we assume
that enriched SNP-sets contain at least one SNP with a nonzero effect, we consider a simpler family of
variational distributions

agN(mg,s2) if vy =1

17
(1 — ag) (50 if 'ng =0 ( )

Q(wga Ywg> 'L/)g) = {

where ¢, = (g, mg, 53) is used to describe a new set free parameters for the g-th SNP-set. Once again,
our goal is to find the “best” factorized variational distribution amounts with free parameters 1 that
minimize the Kullback-Leibler divergence between the exact and approximate posteriors. The specific
class of variational distributions in Eq. (17) yields the following analytical expression for the lower bound
on the outer layer (or SNP-set level)

N 1
LB(ru, 03,72 10) = — > log(2n72) — 5 5 ly ~ H(O)Bul3 — 5 Z (H(6)TH()),,, VI,
w
< a G l—«a
_ —9 ) _ _ g
Zaglog (Ww> Z(l ag)log (1 — 7Tw> (18)
g=1 g=1
G 2 2 2
1 Sq my + s
+§qZ:1a9 L +log (O’%Ti) B o212

where, similar to the input layer updates, 72 ~ V[y —H(0)3,,] estimates the variance of residual training
error in the outer layer; the term (3, is a G-dimensional estimate of the posterior mean for w with
elements 3, = agmy for the g-th SNP-set; the matrix H(0)TH(0) is deterministically computed given
posterior estimates of the weights 6 from the input layer, and V]w,] = ozg(mg —|—3£2]) —&—agmg is the variance
of the g-th weight under the approximating distributional family in Eq. (17). We describe the explicit
expectation and maximization steps of the approximate EM algorithm for the outer layer below.

1. E-Step: Update the Variational Free Parameters. In the E-step of the algorithm, we this
time take the partial derivatives of the lower bound in Eq. (18) with respect to the free parameters
in 7 and set them equal to zero. Solving for my, 83, and ag yields the following co-ordinate updates

2
s
my = % ;{H 0)}14 Bui (19)
11!
so =1 {{H(B)TH(O)}gg + 02] (20)
. . T Sg m?]
ag = Sigmoid | log T, + log - + 232 (21)
w ww g
where ay ~ Pr[y,, = 1|y, X,0,7,,02%,72] and, again, we set the sigmoid function to be the

standard logistic function.



2. M-Step: Update the Variance Hyper-Parameters. In the M-step of the algorithm we fix
values of the variational free parameters and derive the following updates for o2 and 72 as

o2 = [Z ag(m?]—f—sg) /<732a9> (22)
G -1 G
= <N+Zag> [nyH ﬁw\|2+Z{H H(6)},, V[w,] + Z (mg + s7)

g=1 g=1

(23)
where, again, N is equal to the dimensionality of the phenotypic response vector y.

Similar to the algorithmic updates in the input layer, we account for our lack of a priori knowledge
about the “correct” proportion of enriched SNP-sets by placing another exchangeable uniform hyper-
prior distribution over an L-valued grid of possible values where {m(ul ). ,m(UL)} € [1/G,1]. Here, we
now use the variational lower bound in Eq. (18) to approximate the posterior distribution of m,. As a
final step in the model fitting procedure, we again conduct a Bayesian model averaging-like procedure
by integrating over the different grid combinations for 7, and computing marginal posterior inclusion
probabilities for each of the G-annotated SNP-sets as the following

L
Privwg =1y, X, 0] = Z A Prlyy =11y, X, 0,70, 02 72]. (24)
=1

where each importance weight ALY takes on a form similar to the normalized ratio described in Eq. (14).

Algorithm 1 BANNs Model with Individual Level Data

1: Input genotype data X, continuous trait y, and annotations {Si,...,Sg}.
2: Choose the number of models L, number of maximum iterations 7', and tolerance parameter e.
Randomly initialize variational parameters ¢; = {a;x, mjx, ?k}kKjl and 792, and 9, = (ag,mg,sf])

and 72 for the inner and outer layer, respectively, across the L models.

3: fOI‘l—l%LdO

4: Compute hidden layer neurons H(8).

5: Compute inner and outer lower bounds LB_inner new and LB_outer_new.
6: fort=1—T do

7 Set LB_inner = LB_inner _new and LB_outer = LB_outer_new.

8: Update inner layer parameters {¢;,0;} for j =1,...,J SNPs.

9: Update hidden layer neurons H(8).

10: Update outer layer parameters {14, w,} for g =1,...,G SNP-sets.
11: Update lower bounds LB_inner new and LB_outer_new.

12: if LB_inner new — LB_inner < € and LB_outer_new — LB_outer < ¢ then
13: Break

14: end if

15: end for

16: Save maximized lower bounds.

17: end for

18: Compute normalized importance weights )\((91) and Aél) forl =1,..., L models.

19: Compute (marginal) posterior means for network weights 8 and w

20: Compute (marginal) posterior inclusion probabilities (PIPs) s and ~,,.

21: Compute the phenotypic variance explained by the input and hidden layers PVE(0) and PVE(w).
22: Return {0, w,~y, V., PVE(0), PVE(w)}.




Algorithm 2 BANN-SS Model with GWA Summary Statistics

1: Input LD matrix R, OLS effect size estimates §, and annotations {Sy,...,Sa¢}.
2: Choose the number of models L, number of maximum iterations 7', and tolerance parameter e.
Randomly initialize variational parameters ¢; = {ajk,mjk,sfk}kK:_ll and 77, and ¢, = (ag, my, s2)

@

and 72 for the inner and outer layer, respectively, across the L models.

4: forl=1— L do

5: Compute hidden layer neurons H(8).

6: Compute inner and outer lower bounds LB_inner new and LB_outer_new.
7 fort=1—T do

8: Set LB_inner = LB_inner new and LB_outer = LB_outer_new.

9: Update inner layer parameters {¢;,6;} for j =1,...,J SNPs.

10: Update hidden layer neurons H(6).

11: Update outer layer parameters {¢4, wy} for g =1,...,G SNP-sets.
12: Update lower bounds LB_inner new and LB_outer_new.

13: if LB_inner new — LB_inner < € and LB_outer_new — LB_outer < € then
14: Break

15: end if

16: end for

17: Save maximized lower bounds.

18: end for

19: Compute normalized importance weights )\((,l) and )\_((,l) for I =1,...,L models.

20: Compute (marginal) posterior means for network weights 6 and w

21: Compute (marginal) posterior inclusion probabilities (PIPs) «p and ~,,.

22: Compute the phenotypic variance explained by the input and hidden layers PVE(0) and PVE(w).
23: Return {0, w,~y, v, PVE(0), PVE(w)}.

3 Accounting for Non-Additive Genetic Effects

As mentioned in the main text, the BANNs framework jointly models the proportion of phenotypic
variance that is explained by sparse genetic effects (both additive and non-additive) and random effects
collectively [15]. This primarily done through the inclusion of the nonlinear Leaky ReLU activation func-
tion h(e) in the hidden layer [1]. In other areas of statistical genetics, similar nonlinear functions have
been used to model non-additive random effects that contribute to phenotypic variation [29-35]. For ex-
ample, it has been shown that the Taylor series expansion of the Gaussian kernel function enumerates all
higher-order interaction terms between SNPs [36-39], thus alleviating potential combinatorial concerns
with exhaustive searches [40]. The ReLU function family, generally defined as h(X,0,) = max(0,X,0,)
for SNPs in the g-th SNP-set, shares this same property. To see this, we take the infinitely differen-
tiable smooth ReLU (softplus) approximation h(X,0,) ~ log(1 + exp{X,0,}) such that function can be
rewritten with infinite terms like the Gaussian kernel. The Taylor series expansion of the inside term is

o0 1S "
1
1+ exp{X460,} =1+ E o) E x;0; | (25)
m=1 T\j=1

where the term on the right hand side includes the summation of first order effects in the form xJij/ for
the j-th and j'-th SNP, and also includes the m — oo higher-order (polynomial) interactions between
SNPs. Notice that the first order effect terms are elements of the conventional relatedness matrix in
linear mixed models, which has been well known to effectively control for population structure in genetic
association studies [41-45]. Through our simulation studies, we demonstrate the ability to accurately



prioritize/rank associated SNPs and enriched SNP-sets in the BANNs framework, both in the presence
of pairwise SNP-by-SNP interactions, as well as random effects driven by population structure.

4 Estimating Phenotypic Variance Explained (PVE)

As described in the main text, we are able to provide an estimate of phenotypic variance explained
(PVE) within the BANNs framework as the total proportion of phenotypic variance that is explained by
sparse genetic effects (both additive and non-additive) and random effects collectively [15]. Given the
true values of the neural network parameters, we define this proportion on the SNP-level in the inner
layer and SNP-set level in the outer layer as the following

V[X6]
Viy] ’

V[H(9)w]
Viy]

PVE(0) ~ PVE(w) ~ (26)

where, as a reminder, VJ]e] is the variance function and H(0) = [A(X10; + lbgl)), .., h(Xglg + lbg))]
denotes the matrix of deterministic nonlinear neurons in the hidden layer given estimates of the input
layer weights. In practice, we estimate PVE using posterior values of the network parameters derived
from the variational EM algorithm described in the previous section. Specifically, after averaging over the
grid of different models, we use the (approximate) marginal posterior means 3y and 3,, for the input and
outer layer weights from Egs. (9) and (17), respectively. We also approximate the variance of residual
error that is observed during the training phase of both layers with estimates of 792 and 72 from Eqgs. (14)
and (23). This yields the following empirical estimate for the PVE of complex traits

VIH(By)Bu]
[H(IBQ)ﬁw] + TE) 7

PVE(9) ~ VIX]

N — PVE ~
VX + 72 VE(wW) ~ 5

(27)

where the matrix hidden neurons is empirically estimated as H(Bp) = [h(X1801 + bgl))7 o h(XeBea +
bg))]. Note that this formula is similar to the traditional form used for estimating PVE, except here
we also consider the contribution of both non-additive and random genetic effects through the nonlinear
Leaky ReLU activation function h(e) [1]. Through various simulations, we demonstrate the ability to ac-
curately estimate PVE in the BANNs framework under additive sparse architectures (see Supplementary
Figs. 24 and 25). We underestimate PVE in both polygenic traits and traits with pairwise SNP-by-SNP
interactions, which we believe is caused by a misestimation of the approximate posterior mean for net-
work weights during the variational EM algorithm. Similar observations have been noted when using
variational inference [9,19,25,46]. Results from other work also suggest that the sparsity assumption on
the SNP-level effects can lead to the underestimation of the PVE [14,15].

5 Data Quality Control Procedures for Stock of Mice

Some of the real data analysis results in this work made use of GWA data from the Wellcome Trust Centre
for Human Genetics (http://mtweb.cs.ucl.ac.uk/mus/www/mouse/index.shtml). This study contains
N = 1,814 heterogenous stock of mice from 85 families (all descending from eight inbred progenitor
strains) [47], and 131 quantitative traits that are classified into 6 broad categories including behavior,
diabetes, asthma, immunology, haematology, and biochemistry (http://mtweb.cs.ucl.ac.uk/mus/wuw/
GSCAN/index.shtml/index.old.shtml). In the main text, we focused on six specific phenotypes from
these categories including: body mass index (BMI) (Obesity.BMI), body weight (Glucose.BodyWeight),
percentage of CD8+ cells (Imm.PctCD8), mean corpuscular hemoglobin (MCH) (Haem.MCH), high-density
lipoprotein content (Biochem.HDL), and low-density lipoprotein content (Biochem.LDL). All phenotypes
were previously corrected for sex, age, body weight, season, year, and cage effects [47]. For individuals
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with missing genotypes, we imputed values by the mean genotype of that SNP in their corresponding
family. Only polymorphic SNPs with minor allele frequency above 5% were kept for the analyses. This
left a total of J = 10,227 autosomal SNPs that were available for all mice. For annotations, we used the
Mouse Genome Informatics database (http://www.informatics.jax.org) to map SNPs to the closest
neighboring gene(s). Here, pseudogenes, quantitative trait loci (QTL), and genes with only 1 annotated
SNP within their boundary were excluded from the analyses. Unannotated SNPs located within the same
genomic region were labeled as being within the “intergenic region” between two genes. Altogether, a
total of G = 1,925 SNP-sets were analyzed.

6 Data Quality Control Procedures for Framingham Heart Study

The other real data analysis results made use of human GWA data from the Framingham Heart Study
(https://www.ncbi.nlm.nih.gov/gap) [48]. This study originally contains N = 6,950 individuals and
J = 394,174 SNPs. For quality control on these data, we removed (i) SNPs with minor allele frequency
less than 2.5%, (ii) SNPs not in Hardy-Weinberg Equilibrium (Fisher’s exact test P > 1x107%), and (iii)
SNPs in high linkage disequilibrium (using the flag -—indep-pairwise 50 5 0.8 with PLINK 1.9 [49]).
This resulted in a final dataset containing J = 372,131 SNPs, where any missing values for a given SNP
were imputed by using the estimated mean genotype of that SNP. Next, we used the NCBI’s Reference
Sequence (RefSeq) database in the UCSC Genome Browser [50] to annotate SNPs with appropriate genes.
Gene annotations with only 1 SNP within their boundary were excluded from all analyses. Unannotated
SNPs located within the same genomic region were labeled as being within the “intergenic region” between
two genes. Altogether, a total of G = 18,364 SNP-sets were analyzed—which included 8,658 intergenic
SNP-sets and 9,706 annotated genes.

7 Data Quality Control Procedures for UK Biobank

The simulation results and lipoprotein replication study presented in the main text made use of imputed
data released from the UK Biobank [51]. Quality control procedures for these data are as follows. First,
we only studied individuals who self-identified as “white British” people. From this cohort, we further
excluded individuals identified by the UK Biobank to have high heterozygosity, excessive relatedness,
or aneuploidy (1,550 individuals removed). We also removed individuals whose kinship coefficient was
greater than 0.0442 (i.e., close relatives). Next, we removed (i) monomorphic SNPs, (it) SNPs with
minor allele frequency less than 2.5%, (4ii) SNPs not in Hardy-Weinberg Equilibrium (Fisher’s exact test
P > 1x107%), (iv) SNPs with missingness greater than 1%, and (v) SNPs in high linkage disequilibrium
(using the flag —-indep-pairwise 50 5 0.9 with PLINK 1.9 [49]). After all QC steps, we had a final
dataset of N = 349,414 individuals and J = 1,070,306 SNPs. Next, we used the NCBI’s Reference
Sequence (RefSeq) database in the UCSC Genome Browser [50] to annotate SNPs with appropriate genes.
Gene annotations with only 1 SNP within their boundary were excluded from all analyses. Unannotated
SNPs located within the same genomic region were labeled as being within the “intergenic region” between
two genes. Altogether, a total of G = 28,644 SNP-sets were analyzed.

8 Simulation Setup and Scenarios

In our simulation studies, we used the following general simulation scheme to generate quantitative traits
using real genotype data on chromosome 1 from ten thousand randomly sampled individuals of European
ancestry in the UK Biobank [51]. This setup follows mostly from previous studies [13,38-40]. We will
denote this genotype matrix as X, with x; denoting the genotypic vector for the j-th SNP. Following
quality control procedures detailed in the previous section, our simulations included J = 36,518 SNPs
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distributed across genome. Again, we used the NCBI’s RefSeq database in the UCSC Genome Browser to
assign SNPs to genes which resulted in 1,408 genes to be used in the simulation study. We also consider
the unnanotated SNPs between two genes to be located within intergenic regions. Altogether, a total of
G = 2,816 SNP-sets were analyzed.

After the annotation step, we assume that all simulated traits have been standardized such that
V]y] = 1 and that all observed genetic effects explain a fixed proportion of this value (i.e., broad-sense
heritability, H?). Next, we use the N x J matrix of genotypes X to generate real-valued phenotypes
that mirror genetic architectures affected by a combination of linear (additive) and interaction (epistatic)
effects. We randomly select a certain percentage of truly associated SNP-sets and denote the SNPs that
they contain as C. Within C, we select causal SNPs in a way such that each associated SNP-set contains
at least two SNPs with non-zero effects. The additive effect size for all causal SNPs are assumed to
come from a standard normal distribution, 8 ~ N(0,I). Next, we create a separate matrix W which
holds the pairwise interactions between the causal SNPs in enriched SNP-sets. This is done by taking
the Hadamard (element-wise) product between genotypic vectors of SNPs within C. The corresponding
interaction effect sizes are drawn as ¢ ~ A(0,I). We scale both the additive and pairwise genetic effects
so that collectively they explain a fixed proportion of genetic variance. Namely, the additive effects make
up p% while the pairwise interactions make up the remaining (1 — p)%. Alternatively, the proportion
of the heritability explained by additivity is said to be V[>_x.0.] = pH?, while the proportion detailed
by genetic interactions is given as V[W¢] = (1 — p)H?. We consider two choices for the parameter
p = {0.5,1}. Intuitively, p = 1 represents the limiting case where the variation of a trait is driven by
solely additive effects. For p = 0.5, the additive and pairwise interaction effects are assumed to equally
contribute to the phenotypic variance. Once we obtain the final effect sizes for all causal variants, we
draw normally distributed random errors as & ~ A(0,I) to make up the remaining percentage of the
total variance. Quantitative continuous traits are then generated under the following two general linear
models:

(i) Standard Model: y = > __-X.0. + W + ¢;

ceC
(ii) Population Stratification Model: y = Zp + Y~ .o X0 + W + €;

where Z contains the top 10 genotype principal components (PCs) representing additional population
structure, and p are the corresponding fixed effects which are also assumed to follow a standard multi-
variate normal distribution. Alternatively, one can think of the term Zu as an additional genetic random
effect [15]. To this end, simulations under model (i) assume that the genotypic PCs explain an additional
10% of the overall phenotypic variation explained (PVE) within the trait [15]. Therefore, under model
(i) the total PVE = H?; while under model (ii) the total PVE = H? 4 10%. It is important to note
that genotype PCs are not included in any of the model fitting procedures, and no other preprocessing
normalizations were carried out to account for the added population structure.

Given the simulation procedure above, we randomly sample N = 10,000 individuals and simulate
a wide range of scenarios for comparing the performance of both SNP and SNP-set level association
methods. Here, we vary the following simulation parameters:

e Broad-sense heritability: H? = 0.2 and 0.6;
e Contribution of interaction effects: (1 — p) = 0 and 0.5;
e Percentage of associated SNP-sets: 1% (sparse architecture) and 10% (polygenic architecture);

Lastly, we set the number of causal SNPs with non-zero effects to be some fixed percentage of all SNPs
located within the selected associated SNP-sets. We set this percentage to be 0.125% in the 1% associated
SNP-set case, and 3% in the 10% associated SNP-set case. All performance comparisons are based on
100 different simulated runs for each parameter combination. For evaluating the performance of each
method, we assessed the following:
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e The power and false discovery rates when identifying causal SNPs or associated SNP-sets at a
Bonferroni-corrected threshold for frequentist approaches (P = 0.05/36518 = 1.37 x 107° at the
SNP-level and P = 0.05/2816 = 1.78 x 107> at the SNP-set level) or according to the median
probability model for Bayesian methods (posterior enrichment probability > 0.5) [52];

e The ability to rank true positive (TP) genes over false positives (FP) via receiver operating char-
acteristic (ROC) and precision-recall curves.

All figures and tables show the mean performances (and standard errors) across all simulated replicates.

9 Software Details

Source code for the BANNs framework is freely available at https://github.com/lcrawlab/BANNs and
is licensed under the GNU General Public License (version 3.0). We have released two versions of the
BANNSs software: one implemented within Python 3 (release version 3.7.7) and other within R (com-
patible with versions 3.3.2 through 3.6.3). The BANNs GitHub repository includes example data, doc-
umentation, and instructions for how to execute the code within both coding languages. Results in the
main text and Supplementary Notes are based on the Python 3 implementation which depends on the
pandas library (version 1.0.1) [53] for automatically creating partial neural network architectures based
on the biological annotations provided by the user; the NumPy (version 1.18-19) [54] and Numba (version
0.48.0) [55] packages for efficient matrix operations; and the multiprocessing library (version 2.6) [56]
for parallelizing posterior computation over multiple threads and providing faster execution. Training,
estimation of the network parameters, and optimization was done by using an Adam optimizer [57] in
TensorFlow (version 1.5). While the software can be run directly using the source code, it can also be
installed as a package through pip with the command: pip3 install BANNs. All dependencies are also
automatically installed with the package.

The R implementation uses the dplyr package (version 0.8.5) [58] for automatically creating partial
neural network architectures based on the biological annotations provided by the user; the Matrix package
(version 1.2-18) [59] for efficient matrix operations; and the doParallel (version 1.0.15) [60], forEach
(version 1.4.8) [61], iterators (version 1.0.12) [62], and standard parallel packages for parallelized
execution of the variational expectation-maximization algorithm. Similarly, the R implementation of the
software can be run by directly downloading the source code or it can be installed using devtools [63]
with the commands: devtools::install("lcrawlab/BANNs") and library (BANNs).

Software Details for Competing Approaches. In this work, comparisons to SNP-level associa-
tion mapping methods were made using software for CAVIAR (version 2.0.0; http://genetics.cs.
ucla.edu/caviar/), FINEMAP (version 1.4; http://www.christianbenner.com), and SuSiE (ver-
sion 0.9.0; https://github.com/stephenslab/susieR). Comparisons to SNP-set mapping methods
were made using software for GBJ (version 0.5.3; https://cran.r-project.org/web/packages/GBJ/),
GSEA (https://www.nr.no/en/projects/software-genomics), MAGMA (version 1.07b; https://
ctg.cncr.nl/software/magma), PEGASUS (version 1.3.0; https://github.com/ramachandran-1lab/
PEGASUS), RSS (version 1.0.0; https://github.com/stephenslab/rss), and SKAT (version 1.3.2.1;
https://wwuw.hsph.harvard.edu/skat), which are also publicly available. All software for competing
methods were fit using the default settings, unless otherwise stated in the main text and Supplementary
Notes.
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Supplementary Figure 1. Biologically annotated neural networks also take in GWA summary statistics (BANN-
SS) for multi-scale genotype-phenotype by specifying a partially connected architecture based on the hierarchical
nature of enrichment studies. (a) The BANN-SS framework requires a J-dimensional vector of SNP-level GWA marginal
effect size (OLS) estimates @ = (6y,...,6,); an empirical J x J linkage disequilibrium (LD) matrix R = [ry,...,r,], where
r; = [r(x;,%1),...,r(xj,xs)] is a vector of correlation coefficients between the j-th SNP and all other SNPs in the study; and a
list of G-predefined SNP-sets {S1,...,S¢}. In this work, SNP-sets are defined as genes and intergenic regions (between genes)
given by the NCBI's Reference Sequence (RefSeq) database in the UCSC Genome Browser [50]. (b) A partially connected
Bayesian neural network is constructed based on the annotated SNP groups. In the first hidden layer, only SNPs within
the boundary of a gene are connected to the same node. Similarly, SNPs within the same intergenic region between genes
are connected to the same node. Completing this specification for all SNPs gives the hidden layer the natural interpretation
of being the “SNP-set” layer. (c) The hierarchical nature of the network is represented as nonlinear mixed model. The
corresponding weights in both the SNP (8) and SNP-set (w) layers are treated as random variables with biologically motivated
sparse prior distributions. Posterior inclusion probabilities (PIPs) ~y and -,, summarize associations at the SNP and SNP-set
level, respectively. The BANN-SS framework uses the same variational inference procedure that is used when we have access to
individual-level data.
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Supplementary Figure 2. Receiver operating characteristic (ROC) curves comparing the
performance of the BANNs (red) and BANN-SS (black) models with competing SNP and
SNP-set mapping approaches in simulations. Here, quantitative traits are simulated to have broad-
sense heritability of H? = 0.2 with only contributions from additive effects (i.e., p = 1). We show power
versus false positive rate for two different trait architectures: (a, b) sparse where only 1% of SNP-sets are
enriched for the trait; and (c, d) polygenic where 10% of SNP-sets are enriched. We then set the number
of causal SNPs with non-zero effects to be 0.125% and 3% of all SNPs located within the selected enriched
SNP-sets, respectively. To derive results, the full genotype matrix and phenotypic vector are given to the
BANNs model and all competing methods that require individual-level data. For the BANN-SS model
and other competing methods that take GWA summary statistics, we compute standard GWA SNP-level
effect sizes and P-values (estimated using ordinary least squares). (a, ¢) Competing SNP-level mapping
approaches include: CAVIAR [64], SuSiE [65], and FINEMAP [66]. The software for SuSiE requires
an input ¢ which fixes the maximum number of causal SNPs in the model. We display results when
this input number is high (¢ = 3000) and when this input number is low (¢ = 10). (b, d) Competing
SNP-set mapping approaches include: RSS [7], PEGASUS [67], GBJ [68], SKAT [69], GSEA [70], and
MAGMA [71]. Note that the upper limit of the x-axis has been truncated at 0.1. All results are based
on 100 replicates (see Supplementary Note, Section 8).
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Supplementary Figure 3. Receiver operating characteristic (ROC) curves comparing the
performance of the BANNs (red) and BANN-SS (black) models with competing SNP and
SNP-set mapping approaches in simulations with population stratification. Here, quantitative
traits are simulated to have broad-sense heritability of H? = 0.2 with only contributions from additive
effects (i.e., p = 1). In these simulations, traits were generated while using the top ten principal com-
ponents (PCs) of the genotype matrix as covariates. We show power versus false positive rate for two
different trait architectures: (a, b) sparse where only 1% of SNP-sets are enriched for the trait; and (c,
d) polygenic where 10% of SNP-sets are enriched. We then set the number of causal SNPs with non-zero
effects to be 0.125% and 3% of all SNPs located within the selected enriched SNP-sets, respectively.
To derive results, the full genotype matrix and phenotypic vector are given to the BANNs model and
all competing methods that require individual-level data. For the BANN-SS model and other compet-
ing methods that take GWA summary statistics, we compute standard GWA SNP-level effect sizes and
P-values (estimated using ordinary least squares). (a, c¢) Competing SNP-level mapping approaches
include: CAVIAR [64], SuSiE [65], and FINEMAP [66]. The software for SuSiE requires an input ¢ which
fixes the maximum number of causal SNPs in the model. We display results when this input number
is high (¢ = 3000) and when this input number is low (¢ = 10). (b, d) Competing SNP-set mapping
approaches include: RSS [7], PEGASUS [67], GBJ [68], SKAT [69], GSEA [70], and MAGMA [71]. Note
that the upper limit of the x-axis has been truncated at 0.1. All results are based on 100 replicates (see
Supplementary Note, Section 8).
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Supplementary Figure 4. Receiver operating characteristic (ROC) curves comparing the
performance of the BANNs (red) and BANN-SS (black) models with competing SNP and
SNP-set mapping approaches in simulations with population stratification. Here, quantitative
traits are simulated to have broad-sense heritability of H? = 0.6 with only contributions from additive
effects (i.e., p = 1). In these simulations, traits were generated while using the top ten principal com-
ponents (PCs) of the genotype matrix as covariates. We show power versus false positive rate for two
different trait architectures: (a, b) sparse where only 1% of SNP-sets are enriched for the trait; and (c,
d) polygenic where 10% of SNP-sets are enriched. We then set the number of causal SNPs with non-zero
effects to be 0.125% and 3% of all SNPs located within the selected enriched SNP-sets, respectively.
To derive results, the full genotype matrix and phenotypic vector are given to the BANNs model and
all competing methods that require individual-level data. For the BANN-SS model and other compet-
ing methods that take GWA summary statistics, we compute standard GWA SNP-level effect sizes and
P-values (estimated using ordinary least squares). (a, c¢) Competing SNP-level mapping approaches
include: CAVIAR [64], SuSiE [65], and FINEMAP [66]. The software for SuSiE requires an input ¢ which
fixes the maximum number of causal SNPs in the model. We display results when this input number
is high (¢ = 3000) and when this input number is low (¢ = 10). (b, d) Competing SNP-set mapping
approaches include: RSS [7], PEGASUS [67], GBJ [68], SKAT [69], GSEA [70], and MAGMA [71]. Note
that the upper limit of the x-axis has been truncated at 0.1. All results are based on 100 replicates (see
Supplementary Note, Section 8).
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Supplementary Figure 5. Receiver operating characteristic (ROC) curves comparing the
performance of the BANNs (red) and BANN-SS (black) models with competing SNP and
SNP-set mapping approaches in simulations. Here, quantitative traits are simulated to have broad-
sense heritability of H? = 0.2 with equal contributions from additive effects and epistatic interactions
(i.e.,, p = 0.5). We show power versus false positive rate for two different trait architectures: (a, b)
sparse where only 1% of SNP-sets are enriched for the trait; and (c, d) polygenic where 10% of SNP-sets
are enriched. We then set the number of causal SNPs with non-zero effects to be 0.125% and 3% of all
SNPs located within the enriched SNP-sets, respectively. To derive results, the full genotype matrix and
phenotypic vector are given to the BANNs model and all competing methods that require individual-level
data. For the BANN-SS model and other competing methods that take GWA summary statistics, we
compute standard GWA SNP-level effect sizes and P-values (estimated using ordinary least squares). (a,
c) Competing SNP-level mapping approaches include: CAVIAR [64], SuSiE [65], and FINEMAP [66].
The software for SuSiE requires an input ¢ which fixes the maximum number of causal SNPs in the
model. We display results when this input number is high (¢ = 3000) and when this input number is low
(¢ = 10). (b, d) Competing SNP-set mapping approaches include: RSS [7], PEGASUS [67], GBJ [68],
SKAT [69], GSEA [70], and MAGMA [71]. Note that the upper limit of the x-axis has been truncated
at 0.1. All results are based on 100 replicates (see Supplementary Note, Section 8).
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Supplementary Figure 6. Receiver operating characteristic (ROC) curves comparing the
performance of the BANNs (red) and BANN-SS (black) models with competing SNP and
SNP-set mapping approaches in simulations. Here, quantitative traits are simulated to have broad-
sense heritability of H? = 0.6 with equal contributions from additive effects and epistatic interactions
(i.e., p = 0.5). We show power versus false positive rate for two different trait architectures: (a, b)
sparse where only 1% of SNP-sets are enriched for the trait; and (c, d) polygenic where 10% of SNP-sets
are enriched. We then set the number of causal SNPs with non-zero effects to be 0.125% and 3% of all
SNPs located within the enriched SNP-sets, respectively. To derive results, the full genotype matrix and
phenotypic vector are given to the BANNSs model and all competing methods that require individual-level
data. For the BANN-SS model and other competing methods that take GWA summary statistics, we
compute standard GWA SNP-level effect sizes and P-values (estimated using ordinary least squares). (a,
c) Competing SNP-level mapping approaches include: CAVIAR [64], SuSiE [65], and FINEMAP [66].
The software for SuSiE requires an input ¢ which fixes the maximum number of causal SNPs in the
model. We display results when this input number is high (¢ = 3000) and when this input number is low
(¢ = 10). (b, d) Competing SNP-set mapping approaches include: RSS [7], PEGASUS [67], GBJ [68],
SKAT [69], GSEA [70], and MAGMA [71]. Note that the upper limit of the x-axis has been truncated
at 0.1. All results are based on 100 replicates (see Supplementary Note, Section 8).
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Supplementary Figure 7. Receiver operating characteristic (ROC) curves comparing the
performance of the BANNs (red) and BANN-SS (black) models with competing SNP and
SNP-set mapping approaches in simulations with population stratification. Here, quantitative
traits are simulated to have broad-sense heritability of H? = 0.2 with equal contributions from additive
effects and epistatic interactions (i.e., p = 0.5). In these simulations, traits were generated while using
the top ten principal components (PCs) of the genotype matrix as covariates. We show power versus false
positive rate for two different trait architectures: (a, b) sparse where only 1% of SNP-sets are enriched
for the trait; and (¢, d) polygenic where 10% of SNP-sets are enriched. We then set the number of
causal SNPs with non-zero effects to be 0.125% and 3% of all SNPs located within the enriched SNP-sets,
respectively. To derive results, the full genotype matrix and phenotypic vector are given to the BANNs
model and all competing methods that require individual-level data. For the BANN-SS model and other
competing methods that take GWA summary statistics, we compute standard GWA SNP-level effect sizes
and P-values (estimated using ordinary least squares). (a, ¢) Competing SNP-level mapping approaches
include: CAVIAR [64], SuSiE [65], and FINEMAP [66]. The software for SuSiE requires an input ¢ which
fixes the maximum number of causal SNPs in the model. We display results when this input number
is high (¢ = 3000) and when this input number is low (¢ = 10). (b, d) Competing SNP-set mapping
approaches include: RSS [7], PEGASUS [67], GBJ [68], SKAT [69], GSEA [70], and MAGMA [71]. Note
that the upper limit of the x-axis has been truncated at 0.1. All results are based on 100 replicates (see
Supplementary Note, Section 8).
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Supplementary Figure 8. Receiver operating characteristic (ROC) curves comparing the
performance of the BANNSs (red) and BANN-SS (black) models with competing SNP and
SNP-set mapping approaches in simulations with population stratification. Here, quantitative
traits are simulated to have broad-sense heritability of H2 = 0.6 with equal contributions from additive
effects and epistatic interactions (i.e., p = 0.5). In these simulations, traits were generated while using
the top ten principal components (PCs) of the genotype matrix as covariates. We show power versus false
positive rate for two different trait architectures: (a, b) sparse where only 1% of SNP-sets are enriched
for the trait; and (¢, d) polygenic where 10% of SNP-sets are enriched. We then set the number of
causal SNPs with non-zero effects to be 0.125% and 3% of all SNPs located within the enriched SNP-sets,
respectively. To derive results, the full genotype matrix and phenotypic vector are given to the BANNs
model and all competing methods that require individual-level data. For the BANN-SS model and other
competing methods that take GWA summary statistics, we compute standard GWA SNP-level effect sizes
and P-values (estimated using ordinary least squares). (a, ¢) Competing SNP-level mapping approaches
include: CAVIAR [64], SuSiE [65], and FINEMAP [66]. The software for SuSiE requires an input ¢ which
fixes the maximum number of causal SNPs in the model. We display results when this input number
is high (¢ = 3000) and when this input number is low (¢ = 10). (b, d) Competing SNP-set mapping
approaches include: RSS [7], PEGASUS [67], GBJ [68], SKAT [69], GSEA [70], and MAGMA [71]. Note
that the upper limit of the x-axis has been truncated at 0.1. All results are based on 100 replicates (see
Supplementary Note, Section 8).
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Supplementary Figure 9. Precision-recall curves comparing the performance of the BANNs
(red) and BANN-SS (black) models with competing SNP and SNP-set mapping approaches
in simulations. Here, quantitative traits are simulated to have broad-sense heritability of H? = 0.2 with
only contributions from additive effects (i.e., p = 1). We show precision versus recall for two different trait
architectures: (a, b) sparse where only 1% of SNP-sets are enriched for the trait; and (c, d) polygenic
where 10% of SNP-sets are enriched. We then set the number of causal SNPs with non-zero effects to
be 0.125% and 3% of all SNPs located within the selected enriched SNP-sets, respectively. To derive
results, the full genotype matrix and phenotypic vector are given to the BANNs model and all competing
methods that require individual-level data. For the BANN-SS model and other competing methods that
take GWA summary statistics, we compute standard GWA SNP-level effect sizes and P-values (estimated
using ordinary least squares). (a, ¢) Competing SNP-level mapping approaches include: CAVIAR [64],
SuSiE [65], and FINEMAP [66]. The software for SuSiE requires an input ¢ which fixes the maximum
number of causal SNPs in the model. We display results when this input number is high (¢ = 3000)
and when this input number is low (£ = 10). (b, d) Competing SNP-set mapping approaches include:
RSS [7], PEGASUS [67], GBJ [68], SKAT [69], GSEA [70], and MAGMA [71]. Note that, for traits
with sparse architectures, the top ranked SNPs and SNP-sets are always true positives, and therefore the
minimal recall is not 0. All results are based on 100 replicates (see Supplementary Note, Section 8).
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Supplementary Figure 10. Precision-recall curves comparing the performance of the
BANNSs (red) and BANN-SS (black) models with competing SNP and SNP-set mapping
approaches in simulations. Here, quantitative traits are simulated to have broad-sense heritability
of H? = 0.6 with only contributions from additive effects (i.e., p = 1). We show precision versus recall
for two different trait architectures: (a, b) sparse where only 1% of SNP-sets are enriched for the trait;
and (c, d) polygenic where 10% of SNP-sets are enriched. We then set the number of causal SNPs
with non-zero effects to be 0.125% and 3% of all SNPs located within the selected enriched SNP-sets,
respectively. To derive results, the full genotype matrix and phenotypic vector are given to the BANNs
model and all competing methods that require individual-level data. For the BANN-SS model and other
competing methods that take GWA summary statistics, we compute standard GWA SNP-level effect sizes
and P-values (estimated using ordinary least squares). (a, ¢) Competing SNP-level mapping approaches
include: CAVIAR [64], SuSiE [65], and FINEMAP [66]. The software for SuSiE requires an input ¢ which
fixes the maximum number of causal SNPs in the model. We display results when this input number
is high (¢ = 3000) and when this input number is low (¢ = 10). (b, d) Competing SNP-set mapping
approaches include: RSS [7], PEGASUS [67], GBJ [68], SKAT [69], GSEA [70], and MAGMA [71]. Note
that, for traits with sparse architectures, the top ranked SNPs and SNP-sets are always true positives,
and therefore the minimal recall is not 0. All results are based on 100 replicates (see Supplementary
Note, Section 8).
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Supplementary Figure 11. Precision-recall curves comparing the performance of the
BANNSs (red) and BANN-SS (black) models with competing SNP and SNP-set mapping
approaches in simulations with population stratification. Here, quantitative traits are simulated
to have broad-sense heritability of H? = 0.2 with only contributions from additive effects (i.e., p = 1).
In these simulations, traits were generated while using the top ten principal components (PCs) of the
genotype matrix as covariates. We show precision versus recall for two different trait architectures: (a,
b) sparse where only 1% of SNP-sets are enriched for the trait; and (c, d) polygenic where 10% of
SNP-sets are enriched. We then set the number of causal SNPs with non-zero effects to be 0.125% and
3% of all SNPs located within the selected enriched SNP-sets, respectively. To derive results, the full
genotype matrix and phenotypic vector are given to the BANNs model and all competing methods that
require individual-level data. For the BANN-SS model and other competing methods that take GWA
summary statistics, we compute standard GWA SNP-level effect sizes and P-values (estimated using ordi-
nary least squares). (a, ¢c) Competing SNP-level mapping approaches include: CAVIAR [64], SuSiE [65],
and FINEMAP [66]. The software for SuSiE requires an input ¢ which fixes the maximum number of
causal SNPs in the model. We display results when this input number is high (¢ = 3000) and when
this input number is low (¢ = 10). (b, d) Competing SNP-set mapping approaches include: RSS [7],
PEGASUS [67], GBJ [68], SKAT [69], GSEA [70], and MAGMA [71]. Note that, for traits with sparse
architectures, the top ranked SNPs and SNP-sets are always true positives, and therefore the minimal
recall is not 0. All results are based on 100 replicates (see Supplementary Note, Section 8).
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Supplementary Figure 12. Precision-recall curves comparing the performance of the
BANNSs (red) and BANN-SS (black) models with competing SNP and SNP-set mapping
approaches in simulations with population stratification. Here, quantitative traits are simulated
to have broad-sense heritability of H? = 0.6 with only contributions from additive effects (i.e., p = 1).
In these simulations, traits were generated while using the top ten principal components (PCs) of the
genotype matrix as covariates. We show precision versus recall for two different trait architectures: (a,
b) sparse where only 1% of SNP-sets are enriched for the trait; and (c, d) polygenic where 10% of
SNP-sets are enriched. We then set the number of causal SNPs with non-zero effects to be 0.125% and
3% of all SNPs located within the selected enriched SNP-sets, respectively. To derive results, the full
genotype matrix and phenotypic vector are given to the BANNs model and all competing methods that
require individual-level data. For the BANN-SS model and other competing methods that take GWA
summary statistics, we compute standard GWA SNP-level effect sizes and P-values (estimated using ordi-
nary least squares). (a, ¢c) Competing SNP-level mapping approaches include: CAVIAR [64], SuSiE [65],
and FINEMAP [66]. The software for SuSiE requires an input ¢ which fixes the maximum number of
causal SNPs in the model. We display results when this input number is high (¢ = 3000) and when
this input number is low (¢ = 10). (b, d) Competing SNP-set mapping approaches include: RSS [7],
PEGASUS [67], GBJ [68], SKAT [69], GSEA [70], and MAGMA [71]. Note that, for traits with sparse
architectures, the top ranked SNPs and SNP-sets are always true positives, and therefore the minimal
recall is not 0. All results are based on 100 replicates (see Supplementary Note, Section 8).
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Supplementary Figure 13. Precision-recall curves comparing the performance of the
BANNSs (red) and BANN-SS (black) models with competing SNP and SNP-set mapping
approaches in simulations. Here, quantitative traits are simulated to have broad-sense heritability of
H? = 0.2 with equal contributions from additive effects and epistatic interactions (i.e., p = 0.5). We show
precision versus recall for two different trait architectures: (a, b) sparse where only 1% of SNP-sets are
enriched for the trait; and (c, d) polygenic where 10% of SNP-sets are enriched. We then set the number
of causal SNPs with non-zero effects to be 0.125% and 3% of all SNPs located within the selected enriched
SNP-sets, respectively. To derive results, the full genotype matrix and phenotypic vector are given to the
BANNs model and all competing methods that require individual-level data. For the BANN-SS model
and other competing methods that take GWA summary statistics, we compute standard GWA SNP-level
effect sizes and P-values (estimated using ordinary least squares). (a, ¢) Competing SNP-level mapping
approaches include: CAVIAR [64], SuSiE [65], and FINEMAP [66]. The software for SuSiE requires
an input ¢ which fixes the maximum number of causal SNPs in the model. We display results when
this input number is high (¢ = 3000) and when this input number is low (¢ = 10). (b, d) Competing
SNP-set mapping approaches include: RSS [7], PEGASUS [67], GBJ [68], SKAT [69], GSEA [70], and
MAGMA [71]. Note that, for traits with sparse architectures, the top ranked SNPs and SNP-sets are
always true positives, and therefore the minimal recall is not 0. All results are based on 100 replicates
(see Supplementary Note, Section 8).
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Supplementary Figure 14. Precision-recall curves comparing the performance of the
BANNSs (red) and BANN-SS (black) models with competing SNP and SNP-set mapping
approaches in simulations. Here, quantitative traits are simulated to have broad-sense heritability of
H? = 0.6 with equal contributions from additive effects and epistatic interactions (i.e., p = 0.5). We show
precision versus recall for two different trait architectures: (a, b) sparse where only 1% of SNP-sets are
enriched for the trait; and (¢, d) polygenic where 10% of SNP-sets are enriched. We then set the number
of causal SNPs with non-zero effects to be 0.125% and 3% of all SNPs located within the selected enriched
SNP-sets, respectively. To derive results, the full genotype matrix and phenotypic vector are given to the
BANNs model and all competing methods that require individual-level data. For the BANN-SS model
and other competing methods that take GWA summary statistics, we compute standard GWA SNP-level
effect sizes and P-values (estimated using ordinary least squares). (a, ¢) Competing SNP-level mapping
approaches include: CAVIAR [64], SuSiE [65], and FINEMAP [66]. The software for SuSiE requires
an input ¢ which fixes the maximum number of causal SNPs in the model. We display results when
this input number is high (¢ = 3000) and when this input number is low (¢ = 10). (b, d) Competing
SNP-set mapping approaches include: RSS [7], PEGASUS [67], GBJ [68], SKAT [69], GSEA [70], and
MAGMA [71]. Note that, for traits with sparse architectures, the top ranked SNPs and SNP-sets are
always true positives, and therefore the minimal recall is not 0. All results are based on 100 replicates
(see Supplementary Note, Section 8).



27

1.04 1.0
0.8 0.8
— BANN
— BANN — BANN-SS
— BANN-SS --- RSS
- 06 - - CAVIAR o 06 - - PEGASUS
S - - SuSE (high) 2 - - GBJ
3 - - FINEMAP 3 - - SKAT
O - - - SUSIE (low) O -+ GSEA
0.4 0.4 - - MAGMA
0.2 02d .o
0.0 004
T T T T T 1 T T T T T 1
00 02 04 06 08 1.0 0.0 02 0.4 06 08 1.0
Recall Recall
(a) SNP Methods (Sparse Traits) (b) SNP-Set Methods (Sparse Traits)
1.0 1.0-
0.8
— BANN
— BANN — BANN-SS
--- RSS
— BANN-SS
c - - CAVIAR - PEGASUS
S - - SUSEE (high) 2 - -@GBJ
3 - - FINEMAP 3 - - SKAT
o - - - SUSIE (low) o GSEA
- - MAGMA
0.0
T T T T T 1
00 02 04 06 08 10 0.0 02 0.4 06 08 1.0
Recall Recall
(c) SNP Methods (Polygenic Traits) (d) SNP-Set Methods (Polygenic Traits)

Supplementary Figure 15. Precision-recall curves comparing the performance of the
BANNSs (red) and BANN-SS (black) models with competing SNP and SNP-set mapping
approaches in simulations with population stratification. Here, quantitative traits are simulated
to have broad-sense heritability of H? = 0.2 with equal contributions from additive effects and epistatic
interactions (i.e., p = 0.5). In these simulations, traits were generated while using the top ten principal
components (PCs) of the genotype matrix as covariates. We show precision versus recall for two different
trait architectures: (a, b) sparse where only 1% of SNP-sets are enriched for the trait; and (c, d) poly-
genic where 10% of SNP-sets are enriched. We then set the number of causal SNPs with non-zero effects
to be 0.125% and 3% of all SNPs located within the selected enriched SNP-sets, respectively. To derive
results, the full genotype matrix and phenotypic vector are given to the BANNs model and all competing
methods that require individual-level data. For the BANN-SS model and other competing methods that
take GWA summary statistics, we compute standard GWA SNP-level effect sizes and P-values (estimated
using ordinary least squares). (a, ¢) Competing SNP-level mapping approaches include: CAVIAR, [64],
SuSiE [65], and FINEMAP [66]. The software for SuSiE requires an input ¢ which fixes the maximum
number of causal SNPs in the model. We display results when this input number is high (¢ = 3000)
and when this input number is low (£ = 10). (b, d) Competing SNP-set mapping approaches include:
RSS [7], PEGASUS [67], GBJ [68], SKAT [69], GSEA [70], and MAGMA [71]. Note that, for traits
with sparse architectures, the top ranked SNPs and SNP-sets are always true positives, and therefore the
minimal recall is not 0. All results are based on 100 replicates (see Supplementary Note, Section 8).
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Supplementary Figure 16. Precision-recall curves comparing the performance of the
BANNSs (red) and BANN-SS (black) models with competing SNP and SNP-set mapping
approaches in simulations with population stratification. Here, quantitative traits are simulated
to have broad-sense heritability of H? = 0.2 with equal contributions from additive effects and epistatic
interactions (i.e., p = 0.5). In these simulations, traits were generated while using the top ten principal
components (PCs) of the genotype matrix as covariates. We show precision versus recall for two different
trait architectures: (a, b) sparse where only 1% of SNP-sets are enriched for the trait; and (c, d) poly-
genic where 10% of SNP-sets are enriched. We then set the number of causal SNPs with non-zero effects
to be 0.125% and 3% of all SNPs located within the selected enriched SNP-sets, respectively. To derive
results, the full genotype matrix and phenotypic vector are given to the BANNs model and all competing
methods that require individual-level data. For the BANN-SS model and other competing methods that
take GWA summary statistics, we compute standard GWA SNP-level effect sizes and P-values (estimated
using ordinary least squares). (a, ¢) Competing SNP-level mapping approaches include: CAVIAR [64],
SuSiE [65], and FINEMAP [66]. The software for SuSiE requires an input ¢ which fixes the maximum
number of causal SNPs in the model. We display results when this input number is high (¢ = 3000)
and when this input number is low (¢ = 10). (b, d) Competing SNP-set mapping approaches include:
RSS [7], PEGASUS [67], GBJ [68], SKAT [69], GSEA [70], and MAGMA [71]. Note that, for traits
with sparse architectures, the top ranked SNPs and SNP-sets are always true positives, and therefore the
minimal recall is not 0. All results are based on 100 replicates (see Supplementary Note, Section 8).
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Supplementary Figure 17. Scatter plots comparing how the integrative neural network
training procedure enables the ability to identify associated SNPs and enriched SNP-sets
in simulations. Quantitative traits are simulated to have broad-sense heritability of H? = 0.2 with only
contributions from additive effects set (i.e., p = 1). We consider two different trait architectures: (a, b)
sparse where only 1% of SNP-sets are enriched for the trait; and (c, d) polygenic where 10% of SNP-sets
are enriched. We set the number of causal SNPs with non-zero effects to be 0.125% and 3% of all SNPs
located within the enriched SNP-sets, respectively. Results are shown comparing the posterior inclusion
probabilities (PIPs) derived by the BANNs model fit with individual-level data on the x-axis and (a,
c¢) SuSiE [65] and (b, d) RSS [7] on the y-axis, respectively. Here, SuSie is fit while assuming a high
maximum number of causal SNPs (¢ = 3000). The blue horizontal and vertical dashed lines are marked at
the “median probability criterion” (i.e., PIPs for SNPs and SNP-sets greater than 0.5) [52]. True positive
causal variants used to generate the synthetic phenotypes are colored in red, while non-causal variants
are given in grey. SNPs and SNP-sets in the top right quadrant are selected by both approaches; while,
elements in the bottom right and top left quadrants are uniquely identified by BANNs and SuSie/RSS,
respectively. Each plot combines results from 100 simulated replicates (see Section 8).
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Supplementary Figure 18. Scatter plots comparing how the integrative neural network
training procedure enables the ability to identify associated SNPs and enriched SNP-sets
in simulations with population stratification. Quantitative traits are simulated to have broad-sense
heritability of H? = 0.2 with only contributions from additive effects set (i.e., p = 1). We consider two
different trait architectures: (a, b) sparse where only 1% of SNP-sets are enriched for the trait; and
(c, d) polygenic where 10% of SNP-sets are enriched. We set the number of causal SNPs with non-
zero effects to be 0.125% and 3% of all SNPs located within the enriched SNP-sets, respectively. In
these simulations, traits were generated while also using the top ten principal components (PCs) of the
genotype matrix as covariates. Results are shown comparing the posterior inclusion probabilities (PIPs)
derived by the BANNs model fit with individual-level data on the x-axis and (a, ¢) SuSiE [65] and (b, d)
RSS [7] on the y-axis, respectively. Here, SuSie is fit while assuming a high maximum number of causal
SNPs (¢ = 3000). The blue horizontal and vertical dashed lines are marked at the “median probability
criterion” (i.e., PIPs for SNPs and SNP-sets greater than 0.5) [52]. True positive causal variants used to
generate the synthetic phenotypes are colored in red, while non-causal variants are given in grey. SNPs
and SNP-sets in the top right quadrant are selected by both approaches; while, elements in the bottom
right and top left quadrants are uniquely identified by BANNs and SuSie/RSS, respectively. Each plot
combines results from 100 simulated replicates (see Section 8).
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Supplementary Figure 19. Scatter plots comparing how the integrative neural network
training procedure enables the ability to identify associated SNPs and enriched SNP-sets
in simulations with population stratification. Quantitative traits are simulated to have broad-sense
heritability of H? = 0.6 with only contributions from additive effects set (i.e., p = 1). We consider two
different trait architectures: (a, b) sparse where only 1% of SNP-sets are enriched for the trait; and
(¢, d) polygenic where 10% of SNP-sets are enriched. We set the number of causal SNPs with non-
zero effects to be 0.125% and 3% of all SNPs located within the enriched SNP-sets, respectively. In
these simulations, traits were generated while also using the top ten principal components (PCs) of the
genotype matrix as covariates. Results are shown comparing the posterior inclusion probabilities (PIPs)
derived by the BANNs model fit with individual-level data on the x-axis and (a, c¢) SuSiE [65] and (b, d)
RSS [7] on the y-axis, respectively. Here, SuSie is fit while assuming a high maximum number of causal
SNPs (¢ = 3000). The blue horizontal and vertical dashed lines are marked at the “median probability
criterion” (i.e., PIPs for SNPs and SNP-sets greater than 0.5) [52]. True positive causal variants used to
generate the synthetic phenotypes are colored in red, while non-causal variants are given in grey. SNPs
and SNP-sets in the top right quadrant are selected by both approaches; while, elements in the bottom
right and top left quadrants are uniquely identified by BANNs and SuSie/RSS, respectively. Each plot
combines results from 100 simulated replicates (see Section 8).
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Supplementary Figure 20. Scatter plots comparing how the integrative neural network
training procedure enables the ability to identify associated SNPs and enriched SNP-sets
in simulations. Quantitative traits are simulated to have broad-sense heritability of H? = 0.2 with equal
contributions from additive effects and epistatic interactions (i.e., p = 0.5). We consider two different
trait architectures: (a, b) sparse where only 1% of SNP-sets are enriched for the trait; and (c, d)
polygenic where 10% of SNP-sets are enriched. We set the number of causal SNPs with non-zero effects
to be 0.125% and 3% of all SNPs located within the enriched SNP-sets, respectively. Results are shown
comparing the posterior inclusion probabilities (PIPs) derived by the BANNs model fit with individual-
level data on the x-axis and (a, ¢) SuSiE [65] and (b, d) RSS [7] on the y-axis, respectively. Here, SuSie is
fit while assuming a high maximum number of causal SNPs (¢ = 3000). The blue horizontal and vertical
dashed lines are marked at the “median probability criterion” (i.e., PIPs for SNPs and SNP-sets greater
than 0.5) [52]. True positive causal variants used to generate the synthetic phenotypes are colored in red,
while non-causal variants are given in grey. SNPs and SNP-sets in the top right quadrant are selected
by both approaches; while, elements in the bottom right and top left quadrants are uniquely identified
by BANNs and SuSie/RSS, respectively. Each plot combines results from 100 simulated replicates (see
Section 8).
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Supplementary Figure 21. Scatter plots comparing how the integrative neural network
training procedure enables the ability to identify associated SNPs and enriched SNP-sets
in simulations. Quantitative traits are simulated to have broad-sense heritability of H? = 0.6 with equal
contributions from additive effects and epistatic interactions (i.e., p = 0.5). We consider two different
trait architectures: (a, b) sparse where only 1% of SNP-sets are enriched for the trait; and (c, d)
polygenic where 10% of SNP-sets are enriched. We set the number of causal SNPs with non-zero effects
to be 0.125% and 3% of all SNPs located within the enriched SNP-sets, respectively. Results are shown
comparing the posterior inclusion probabilities (PIPs) derived by the BANNs model fit with individual-
level data on the x-axis and (a, ¢) SuSiE [65] and (b, d) RSS [7] on the y-axis, respectively. Here, SuSie is
fit while assuming a high maximum number of causal SNPs (¢ = 3000). The blue horizontal and vertical
dashed lines are marked at the “median probability criterion” (i.e., PIPs for SNPs and SNP-sets greater
than 0.5) [52]. True positive causal variants used to generate the synthetic phenotypes are colored in red,
while non-causal variants are given in grey. SNPs and SNP-sets in the top right quadrant are selected
by both approaches; while, elements in the bottom right and top left quadrants are uniquely identified
by BANNs and SuSie/RSS, respectively. Each plot combines results from 100 simulated replicates (see
Section 8).
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Supplementary Figure 22. Scatter plots comparing how the integrative neural network
training procedure enables the ability to identify associated SNPs and enriched SNP-sets
in simulations with population stratification. Quantitative traits are simulated to have broad-
sense heritability of H? = 0.2 with equal contributions from additive effects and epistatic interactions
(i.e., p = 0.5). We consider two different trait architectures: (a, b) sparse where only 1% of SNP-
sets are enriched for the trait; and (c, d) polygenic where 10% of SNP-sets are enriched. We set the
number of causal SNPs with non-zero effects to be 0.125% and 3% of all SNPs located within the enriched
SNP-sets, respectively. In these simulations, traits were generated while also using the top ten principal
components (PCs) of the genotype matrix as covariates. Results are shown comparing the posterior
inclusion probabilities (PIPs) derived by the BANNs model fit with individual-level data on the x-axis
and (a, ¢) SuSiE [65] and (b, d) RSS [7] on the y-axis, respectively. Here, SuSie is fit while assuming
a high maximum number of causal SNPs (¢ = 3000). The blue horizontal and vertical dashed lines are
marked at the “median probability criterion” (i.e., PIPs for SNPs and SNP-sets greater than 0.5) [52].
True positive causal variants used to generate the synthetic phenotypes are colored in red, while non-
causal variants are given in grey. SNPs and SNP-sets in the top right quadrant are selected by both
approaches; while, elements in the bottom right and top left quadrants are uniquely identified by BANNs
and SuSie/RSS, respectively. Each plot combines results from 100 simulated replicates (see Section 8).
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(d) SNP-Set Methods (Polygenic Traits)

Supplementary Figure 23. Scatter plots comparing how the integrative neural network
training procedure enables the ability to identify associated SNPs and enriched SNP-sets
in simulations with population stratification. Quantitative traits are simulated to have broad-
sense heritability of H? = 0.6 with equal contributions from additive effects and epistatic interactions
(i.e., p = 0.5). We consider two different trait architectures: (a, b) sparse where only 1% of SNP-
sets are enriched for the trait; and (c, d) polygenic where 10% of SNP-sets are enriched. We set the
number of causal SNPs with non-zero effects to be 0.125% and 3% of all SNPs located within the enriched
SNP-sets, respectively. In these simulations, traits were generated while also using the top ten principal
components (PCs) of the genotype matrix as covariates. Results are shown comparing the posterior
inclusion probabilities (PIPs) derived by the BANNs model fit with individual-level data on the x-axis
and (a, c¢) SuSiE [65] and (b, d) RSS [7] on the y-axis, respectively. Here, SuSie is fit while assuming
a high maximum number of causal SNPs (¢ = 3000). The blue horizontal and vertical dashed lines are
marked at the “median probability criterion” (i.e., PIPs for SNPs and SNP-sets greater than 0.5) [52].
True positive causal variants used to generate the synthetic phenotypes are colored in red, while non-
causal variants are given in grey. SNPs and SNP-sets in the top right quadrant are selected by both
approaches; while, elements in the bottom right and top left quadrants are uniquely identified by BANNs
and SuSie/RSS, respectively. Each plot combines results from 100 simulated replicates (see Section 8).
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Supplementary Figure 24. Boxplots depicting the ability of the BANNs and BANN-SS
models to estimate the phenotypic variation explained (PVE) by SNPs (pink) and SNP-
sets (blue) for complex traits in simulations. In this work, we define PVE as the total proportion
of phenotypic variance that is explained by fixed and random genetic effects, collectively [15]. Here,
quantitative traits are simulated to have broad-sense heritability of H? = 0.2 with different levels of
contributions from additive effects and epistatic interactions. We consider two different trait architectures:
(a, b) sparse where only 1% of SNP-sets are enriched for the trait; and (c, d) polygenic where 10%
of SNP-sets are enriched. The number of causal SNPs with non-zero effects is set to be 0.125% and
3% of all SNPs located within the selected enriched SNP-sets, respectively. For panels (b, d), traits
were generated while also assuming that the top ten principal components (PCs) of the genotype matrix
contribute 10% to the phenotypic variance. Therefore, in panels (a, c), the true PVE = H? = 20%;
while, in panels (b, d), the true total PVE = H? + 10% = 30%. These true values are shown as the
dashed grey horizontal lines. The root mean square error (RMSE) between the BANNs model estimates
of the PVE and the true values are also provided.
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(c) Polygenic Traits (d) Polygenic Traits with Population Structure
Supplementary Figure 25. Boxplots depicting the ability of the BANNs and BANN-SS
models to estimate the phenotypic variation explained (PVE) by SNPs (pink) and SNP-
sets (blue) for complex traits in simulations. In this work, we define PVE as the total proportion
of phenotypic variance that is explained by fixed and random genetic effects, collectively [15]. Here,
quantitative traits are simulated to have broad-sense heritability of H? = 0.6 with different levels of
contributions from additive effects and epistatic interactions. We consider two different trait architectures:
(a, b) sparse where only 1% of SNP-sets are enriched for the trait; and (¢, d) polygenic where 10%
of SNP-sets are enriched. The number of causal SNPs with non-zero effects is set to be 0.125% and
3% of all SNPs located within the selected enriched SNP-sets, respectively. For panels (b, d), traits
were generated while also assuming that the top ten principal components (PCs) of the genotype matrix
contribute 10% to the phenotypic variance. Therefore, in panels (a, c), the true PVE = H? = 60%;
while, in panels (b, d), the true total PVE = H? + 10% = 70%. These true values are shown as the
dashed grey horizontal lines. The root mean square error (RMSE) between the BANNs model estimates
of the PVE and the true values are also provided.
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(c) High-Density and Low-Density Lipoprotein

Supplementary Figure 26. Manhattan plots of variant-level fine mapping results for six
traits in heterogenous stock of mice from the Wellcome Trust Centre for Human Genetics.
Traits are grouped based on their category and include: (a) body mass index (BMI) and body weight,
(b) percentage of CD8+ cells and mean corpuscular hemoglobin (MCH), and (c) high-density and low-
density lipoprotein (HDL and LDL, respectively) cholesterol. Posterior inclusion probabilities (PIP) for
the input layer weights are derived from the BANNs model fit on individual-level data and are plotted for
each SNP against their genomic positions. Chromosomes are shown in alternating colors for clarity. The
black dashed line is marked at 0.5 and represents the “median probability model (MPM)” threshold [52].
Here, we only color code SNPs that had a PIP greater than 1% in either trait. SNPs with PIPs exceeding
1% in both traits are marked by a star and denoted as falling in the “overlap” category. BANNs estimated
the following PVEs on the SNP and SNP-set levels for these traits, respectively: (i) 0.09 and 0.08 for
BMI, (iz) 0.39 and 0.40 for body weight, (i) 0.51 and 0.48 for percentage of CD8+ cells, (iv) 0.34 and
0.32 for MCH, (v) 0.34 and 0.28 for HDL, and (vi) 0.15 and 0.15 for LDL.
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a) Combined # of sig. genes (b) Combined # of sig. genes
p value q value Odds.ratio score in dbGaP p value q value Odds.ratio score in dbGaP
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Metabolic syndrome 4.7526-06 1.032¢-03 88.89 1089.51 3 BB - v in mid cognitive impaiment 5 4305 5.2756-03 256.41 2724.40 2
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Supplementary Figure 27. Gene set enrichment analyses using the significant SNP-sets identified by BANNs for high-
density and low-density lipoprotein (HDL and LDL, respectively) traits in the Framingham Heart Study [48]. Here, SNP-
set annotations are based on gene boundaries defined by the NCBI’s RefSeq database in the UCSC Genome Browser [50]. Unannotated
SNPs located within the same genomic region were labeled as being within the “intergenic region” between two genes. Posterior inclusion
probabilities (PIP) for the input and hidden layer weights are derived by fitting the BANNs model on individual-level data. A SNP-set is
considered significant if it has a PIP «,, > 0.5 (i.e., the median probability model” threshold [52]). We take these significant SNP-sets
and conduct “gene set enrichment analysis” using Enrichr [72,73] to identify the categories they overrepresent in (a, b) the database of
Genotypes and Phenotypes (dbGaP) and (c, d) the GWAS Catalog (2019). We highlight categories with @Q-values (i.e., false discovery
rates) below 0.05. Nearly all enriched categories are related with (a, ¢) HDL and (b, d) LDL, respectively. Note that in LDL, the
BANNSs framework identified the gene APOB as having a high PIP (5, = 0.976). There have been hypotheses connecting LDL to
cognitive traits [74,75], and APOB has been shown to be related to cerebrospinal fluid and memory [76-78]. Therefore, we argue that
results in panel (d) are also relevant.
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(b) Low-Density Lipoprotein (LDL)

Supplementary Figure 28. Manhattan plot of variant-level fine mapping results for high-
density and low-density lipoprotein (HDL and LDL, respectively) traits in ten thousand
randomly sampled individuals of European ancestry from the UK Biobank [51]. Posterior
inclusion probabilities (PIP) for the neural network weights are derived from the BANNs model fit
on individual-level data and are plotted for each SNP against their genomic positions. Chromosomes
are shown in alternating colors for clarity. The black dashed line is marked at 0.5 and represents the
“median probability model” threshold [52]. SNPs with PIPs above that threshold are color coded based
on their SNP-set annotation. Here, SNP-set annotations are based on gene boundaries defined by the
NCBTI’s RefSeq database in the UCSC Genome Browser [50]. Unannotated SNPs located within the same
genomic region were labeled as being within the “intergenic region” between two genes. These regions
are labeled as Genel-Gene2 in the legend. Gene set enrichment analyses for these SNP-sets can be found
in Supplementary Figure 29. Stars denote SNPs and SNP-sets that replicate findings from our analyses
of HDL and LDL in the Framingham Heart Study (See Figure 4 in the main text).



—

—

a) Combined # of sig. genes (b) Combined # of sig. genes
p value q value Odds.ratio score in dbGaP p value q value Odds.ratio score in dbGaP
Upoprofens, HOL 2812010  9701e08  67.84 149182 6 Upoprolens, LOL 3579006  125¢:03 9804 122045 3
Cholestedl HDL 121609  2008e07 1780 35690 o 7 - <0002 13.18 11243 4
RS - /50--05 5.474e-04 89.96 1102.42 3 Metabolic Syndrome X 1.938¢-07 3.329¢-04 51.15 201.72 1
[Upidmetaboism | 7.2626-05 6.2646-03 15327 1460.57 2 [chotestersl ] 2131602 1.000 8.78 3379 2
[Erectrocargiography | 2.677¢-04 1.847e-02 23.78 195.61 3 [venopause | 2.604e-02 1.000 37.95 138.45 1
[rigycerides ] 4.038¢-04 2.3226-02 11.31 88.35 4 [chotesterol, LoL | 2.694e-02 1.000 7.34 27.97 2
_ 1.310e-03 6.457¢-02 37.28 247.44 2 _ 3.840e-02 1.000 25.58 83.37 1
_ 1.412e-03 6.091e-02 13.43 88.16 3 LHFeietElis; (AIa 5.062e-02 1.000 19.29 57.54 1
- 4.343¢-03 1.665e-01 229.89 1250.34 1 AlzheimenDisease 6.589€-02 1.000 14.71 40.00 1
-~ 5.7886-03 1.997¢-01 172.41 888.28 1 Salpap Rl ease 6.749¢-02 1.000 14.35 38.68 1

C) Combined # of sig. genes (d) Combined # of sig. genes
p value q value Odds.ratio score in GWAS Catalog p value q value Odds.ratio score in GWAS Catalog
High densi lpoproei cholesterollevels 67870014 117010 7770 235618 8 OLoholestel  5756e00  1000e05 3000 73990 6
Metbolosyndrome  26e0e18  2837e10 10728 310510 7 RS eEeg - 07 sooce0s 16807 208875 3
RO 5033 16602 8 R 1:73c06  8530e04 13072 175531 3
HDLoholesterol 7740043  3361e-10 2898 808.09 10 ‘Body mass index x age interaction 4942606 2146e-03 8824 1078.03 3
_4e-1 0 153.26 4167.47 6 —king years interaction)  6,790e-06 2.359e-03 470.59 5600.05 2
_1 2e-10 53.05 1441.12 8 _ 1.705e-05 4.935e-03 24.77 271.94 4
[vetabolitelevels —— ooiae 40 | 6733610 49.70 1323.78 8 - - <choopnrenia 1.898-05 4710003 20412 3197.64 2
_ 1.205e-11 2.617e-09 111.84 2811.73 6 _ 2.058e-05 4.469e-03 55.15 595.10 3
_'95‘“' levels (pleiotropy) ¢ g03e-11 1.313¢-08 172.41 4036.39 5 -99>5°> 2.581e-05 4.982¢-03 51.15 540.39 3
-"‘a' 3.479e-10 6.043¢-08 19.90 868.93 7 -“" 4.120e-05 7.156e-03 19.77 199.65 4

Supplementary Figure 29. Gene set enrichment analyses using the significant SNP-sets identified by BANNs for high-
density and low-density lipoprotein (HDL and LDL, respectively) traits in ten thousand randomly sampled individuals
of European ancestry from the UK Biobank [51]. Here, SNP-set annotations are based on gene boundaries defined by the NCBI'’s
RefSeq database in the UCSC Genome Browser [50]. Unannotated SNPs located within the same genomic region were labeled as being
within the “intergenic region” between two genes. Posterior inclusion probabilities (PIP) for the input and hidden layer weights are derived
by fitting the BANNs model on individual-level data. A SNP-set is considered significant if it has a PIP ~,, > 0.5 (i.e., the "median
probability model” threshold [52]). We take these significant SNP-sets and conduct “gene set enrichment analysis” using Enrichr [72,73]
to identify the categories they overrepresent in (a, b) the database of Genotypes and Phenotypes (dbGaP) and (¢, d) the GWAS Catalog
(2019). We highlight categories with @Q-values (i.e., false discovery rates) below 0.05. Nearly all enriched categories are related with (a,
¢) HDL and (b, d) LDL, respectively. Note that in LDL, the BANNs framework again identifies the gene APOB as having a high PTP
(replicating the finding in the Framingham Heart Study). There have been hypotheses connecting LDL to cognitive traits [74, 75], and
APOB has been shown to be related to cerebrospinal fluid and memory [76-78]. Therefore, we argue that results in panel (b) are also
relevant (a similar argument can be made for Supplementary Figure 27).
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11 Supplementary Tables

SNP-Level Approaches
Trait Type | Metric BANN BANN-SS SuSiE (High) | SuSiE (Low) | CAVIAR | FINEMAP
Power | 0.614 (0.106) | 0.609 (0.106) | 0.608 (0.087) | 0.424 (0.103) | 0.597 (0.167) | 0.529 (0.156)
Sparse  TERR | 0211(0.092) | 0210 (0.104) | 0.207 (0.052) | 0512 (0.088) | 0.331 (0.155) | 0.346 (0.048)
| Power | 0.119 (0.039) | 0.120 (0.053) [ 0.103 (0.021) | 0.072 (0.037) | 0.098 (0.032) | 0.101 (0.044)
Polygenic o R T 0224 (0.098) | 0227 (0.107) | 0.217 (0.034) | 0.491 (0.051) | 0.244 (0.086) | 0.257 (0.103)
SNP-Set Level Approaches
Trait Type | Metric BANN BANN-SS RSS PEGASUS SKAT MAGMA GSEA
Power | 0.608 (0.132) | 0.602 (0.161) | 0.609 (0.127) | 0.672 (0.118) | 0.543 (0.142) | 0.737 (0.123) | 0.431 (0.138)
Sparse LR R [0.052 (0.107) | 0.067 (0.098) | 0.088 (0.103) | 0.514 (0.137) | 0.466 (0.156) | 0.571 (0.126) | 0.579 (0.149)
| Power | 0.078(0.027) | 0.081 (0.041) [ 0.073 (0.024) | 0.148 (0.032) | 0.112 (0.042) | 0.152 (0.039) | 0.081 (0.031)
Polygenic ™ En R 170166 (0.151) | 0.163 (0.126) | 0.065 (0.112) | 0.179 (0.098) | 0.181 (0.101) | 0.191 (0.018) | 0.221 (0.141)

Supplementary Table 1. Comparing the empirical power and false discovery rates (FDR) of the BANNs framework
against competing SNP and SNP-set mapping approaches in simulations. Here, quantitative traits are simulated to have
broad-sense heritability of H? = 0.2 with only contributions from additive effects set (i.e., p = 1). We consider two different trait
architectures: sparse where only 1% of SNP-sets are enriched for the trait; and polygenic where 10% of SNP-sets are enriched. We set the
number of causal SNPs with non-zero effects to be 0.125% and 3% of all SNPs located within the enriched SNP-sets, respectively. (Top)
Competing SNP-level mapping approaches include: CAVIAR [64], SuSiE [65], and FINEMAP [66]. The software for SuSiE requires an
input ¢ which fixes the maximum number of causal SNPs in the model. We display results when this input number is high (¢ = 3000)
and when this input number is low (£ = 10). (Bottom) Competing SNP-set mapping approaches include: RSS [7], PEGASUS [67],
GBJ [68], SKAT [69], GSEA [70], and MAGMA [71]. Results for the BANN, BANN-SS, and other Bayesian methods are evaluated based
on the “median probability criterion” (i.e., PIPs for SNPs and SNP-sets greater than 0.5) [52]. Results for the frequentist approaches
are based on Bonferroni-corrected thresholds for multiple hypothesis testing (P = 0.05/36518 = 1.37 x 107¢ at the SNP-level and
P =0.05/2816 = 1.78 x 107° at the SNP-set level, respectively). All results are based on 100 replicates and standard deviations of the
estimates across runs are given in the parentheses. Approaches with the greatest power are bolded in purple, while methods with the
lowest FDR is bolded in blue.
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SNP-Level Approaches
Trait Type | Metric BANN BANN-SS | SuSiE (High) | SuSiE (Low) | CAVIAR | FINEMAP
Power | 0.851 (0.096) | 0.812 (0.081) | 0.803 (0.034) | 0.631 (0.098) | 0.774 (0.159) | 0.722 (0.132)
Sparse  TERR | 0.201 (0.027) | 0.196 (0.020) | 0.185 (0.063) | 0522 (0.106) | 0.196 (0.093) | 0.248 (0.083)
| Power [ 0.374 (0.071) | 0.369 (0.067) | 0.296 (0.074) | 0.198 (0.061) | 0.319 (0.106) | 0.332 (0.044)
Polygenic ™ pr R 170212 (0.018) | 0.198 (0.026) | 0.208 (0.022) | 0.414 (0.042) | 0.205 (0.031) | 0.307 (0.109)
SNP-Set Level Approaches
Trait Type | Metric BANN BANN-SS RSS PEGASUS | SKAT MAGMA GSEA
Power | 0.823 (0.108) | 0.821 (0.112) | 0.783 (0.105) | 0.815 (0.102) | 0.757 (0.114) | 0.821 (0.097) | 0.627 (0.123)
Sparse  TERR | 0.121 (0.087) | 0.127 (0.091 | 0.099 (0.096) | 0.713 (0.081) | 0.692 (0.089) | 0.742 (0.061) | 0.581 (0.051)
| Power [ 0276 (0.083) [ 0.279 (0.097) [ 0.272 (0.029) | 0.416 (0.076) | 0.331 (0.038) | 0.451 (0.049) | 0.241 (0.022)
Polygenic om R T 0.171 (0.034) | 0.166 (0.041) | 0.069 (0.040) | 0.309 (0.087) | 0.282 (0.079) | 0.383 (0.083) | 0.322 (0.018)

Supplementary Table 2. Comparing the empirical power and false discovery rates (FDR) of the BANNs framework
against competing SNP and SNP-set mapping approaches in simulations. Here, quantitative traits are simulated to have
broad-sense heritability of H? = 0.6 with only contributions from additive effects set (i.e., p = 1). We consider two different trait
architectures: sparse where only 1% of SNP-sets are enriched for the trait; and polygenic where 10% of SNP-sets are enriched. We set the
number of causal SNPs with non-zero effects to be 0.125% and 3% of all SNPs located within the enriched SNP-sets, respectively. (Top)
Competing SNP-level mapping approaches include: CAVIAR [64], SuSiE [65], and FINEMAP [66]. The software for SuSiE requires an
input ¢ which fixes the maximum number of causal SNPs in the model. We display results when this input number is high (¢ = 3000)
and when this input number is low (£ = 10). (Bottom) Competing SNP-set mapping approaches include: RSS [7], PEGASUS [67],
GBJ [68], SKAT [69], GSEA [70], and MAGMA [71]. Results for the BANN, BANN-SS, and other Bayesian methods are evaluated based
on the “median probability criterion” (i.e., PIPs for SNPs and SNP-sets greater than 0.5) [52]. Results for the frequentist approaches
are based on Bonferroni-corrected thresholds for multiple hypothesis testing (P = 0.05/36518 = 1.37 x 10~¢ at the SNP-level and
P =0.05/2816 = 1.78 x 107> at the SNP-set level, respectively). All results are based on 100 replicates and standard deviations of the
estimates across runs are given in the parentheses. Approaches with the greatest power are bolded in purple, while methods with the
lowest FDR is bolded in blue.
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SNP-Level Approaches
Trait Type | Metric BANN BANN-SS | SuSiE (High) | SuSiE (Low) | CAVIAR | FINEMAP
Power | 0.604 (0.117) | 0.600 (0.098) | 0.598 (0.133) | 0.424 (0.097) | 0.537 (0.152) | 0.529 (0.146)
Sparse  TERR | 0.211 (0.087) | 0223 (0.103) | 0.207 (0.067) | 0512 (0.062) | 0.331 (0.128) | 0.346 (0.099)
| Power [ 0.119 (0.091) | 0.108 (0.088) | 0.103 (0.046) | 0.070 (0.017) | 0.096 (0.026) | 0.101 (0.056)
Polygenic I pn R 170224 (0.074) | 0.219 (0.091) | 0.217 (0.025) | 0.491 (0.083) | 0.244 (0.073) | 0.257 (0.091)
SNP-Set Level Approaches
Trait Type | Metric BANN BANN-SS RSS PEGASUS SKAT MAGMA GSEA
Power | 0.624 (0.126) | 0.641 (0.131) | 0.611 (0.114) | 0.694 (0.122) | 0.583 (0.123) | 0.760 (0.119) | 0.491 (0.123
Sparse FDR | 0.312 (0.073) | 0.308 (0.081) | 0.325 (0.109) | 0.793 (0.074) | 0.755 (0.089) | 0.807 (0.073) | 0.812 (0.121
| Power [ 0.131 (0.062) | 0.129 (0.053) | 0.081 (0.027) [ 0.152 (0.023) | 0.121 (0.021) | 0.164 (0.028) | 0.151 (0.034
Polygenic ™R 10.217 (0.114) | 0.231 (0.096) | 0.259 (0.123) | 0.541 (0.124) | 0.542 (0.184) | 0551 (0.109) | 0.623 (0.115

Supplementary Table 3. Comparing the empirical power and false discovery rates (FDR) of the BANNs framework
against competing SNP and SNP-set mapping approaches in simulations with population stratification. Here, quantitative
traits are simulated to have broad-sense heritability of H? = 0.2 with only contributions from additive effects set (i.e., p = 1). We consider
two different trait architectures: sparse where only 1% of SNP-sets are enriched for the trait; and polygenic where 10% of SNP-sets are
enriched. We set the number of causal SNPs with non-zero effects to be 0.125% and 3% of all SNPs located within the enriched SNP-sets,
respectively. In these simulations, traits were generated while also using the top ten principal components (PCs) of the genotype matrix
as covariates. (Top) Competing SNP-level mapping approaches include: CAVIAR [64], SuSiE [65], and FINEMAP [66]. The software
for SuSiE requires an input ¢ which fixes the maximum number of causal SNPs in the model. We display results when this input number
is high (¢ = 3000) and when this input number is low (¢ = 10). (Bottom) Competing SNP-set mapping approaches include: RSS [7],
PEGASUS [67], GBJ [68], SKAT [69], GSEA [70], and MAGMA [71]. Results for the BANN, BANN-SS, and other Bayesian methods are
evaluated based on the “median probability criterion” (i.e., PIPs for SNPs and SNP-sets greater than 0.5) [52]. Results for the frequentist
approaches are based on Bonferroni-corrected thresholds for multiple hypothesis testing (P = 0.05/36518 = 1.37 x 10~¢ at the SNP-level
and P = 0.05/2816 = 1.78 x 107" at the SNP-set level, respectively). All results are based on 100 replicates and standard deviations of
the estimates across runs are given in the parentheses. Approaches with the greatest power are bolded in purple, while methods with the
lowest FDR is bolded in blue.
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SNP-Level Approaches
Trait Type | Metric BANN BANN-SS | SuSiE (High) | SuSiE (Low) | CAVIAR | FINEMAP
Power | 0.817 (0.126) | 0.798 (0.117) | 0.792 (0.092) | 0.563 (0.104) | 0.752 (0.134) | 0.726 (0.128)
Sparse FDR | 0.182 (0.038) | 0.191 (0.045) | 0.346 (0.057) | 0.467 (0.075) | 0.337 (0.076) | 0.382 (0.084)
| Power [ 0.348 (0.109) | 0.319 (0.094) | 0.305 (0.081) | 0.211 (0.039) | 0.327 (0.093) | 0.338 (0.053)
Polygenic ™ pn R 170239 (0.047) | 0.221 (0.038) | 0.224 (0.042) | 0.385 (0.035) | 0.309 (0.041) | 0.325 (0.091)
SNP-Set Level Approaches
Trait Type | Metric BANN BANN-SS RSS PEGASUS SKAT MAGMA GSEA
Power | 0.781 (0.109) | 0.749 (0.117) | 0.743 (0.105) | 0.814 (0.112) | 0.773 (0.127) | 0.802 (0.091) | 0.699 (0.118
Sparse FDR | 0.121 (0.104) | 0.124 (0.098) | 0.312 (0.099) | 0.827 (0.056) | 0.805 (0.065) | 0.833 (0.051) | 0.841 (0.077
| Power | 0.294 (0.042) | 0.281 (0.053) | 0.301 (0.034) | 0.419 (0.047) | 0.341 (0.038) | 0.465 (0.038) | 0.318 (0.078
Polygenic ™ onR 1 0.166 (0.054) | 0.159 (0.071) | 0.178 (0.062) | 0.452 (0.089) | 0.418 (0.095) | 0.471 (0.079) | 0.516 (0.214

Supplementary Table 4. Comparing the empirical power and false discovery rates (FDR) of the BANNs framework
against competing SNP and SNP-set mapping approaches in simulations with population stratification. Here, quantitative
traits are simulated to have broad-sense heritability of H? = 0.6 with only contributions from additive effects set (i.e., p = 1). We consider
two different trait architectures: sparse where only 1% of SNP-sets are enriched for the trait; and polygenic where 10% of SNP-sets are
enriched. We set the number of causal SNPs with non-zero effects to be 0.125% and 3% of all SNPs located within the enriched SNP-sets,
respectively. In these simulations, traits were generated while also using the top ten principal components (PCs) of the genotype matrix
as covariates. (Top) Competing SNP-level mapping approaches include: CAVIAR [64], SuSiE [65], and FINEMAP [66]. The software
for SuSiE requires an input ¢ which fixes the maximum number of causal SNPs in the model. We display results when this input number
is high (¢ = 3000) and when this input number is low (¢ = 10). (Bottom) Competing SNP-set mapping approaches include: RSS [7],
PEGASUS [67], GBJ [68], SKAT [69], GSEA [70], and MAGMA [71]. Results for the BANN, BANN-SS, and other Bayesian methods are
evaluated based on the “median probability criterion” (i.e., PIPs for SNPs and SNP-sets greater than 0.5) [52]. Results for the frequentist
approaches are based on Bonferroni-corrected thresholds for multiple hypothesis testing (P = 0.05/36518 = 1.37 x 10~¢ at the SNP-level
and P = 0.05/2816 = 1.78 x 107" at the SNP-set level, respectively). All results are based on 100 replicates and standard deviations of
the estimates across runs are given in the parentheses. Approaches with the greatest power are bolded in purple, while methods with the
lowest FDR is bolded in blue.
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SNP-Level Approaches
Trait Type | Metric BANN BANN-SS | SuSiE (High) | SuSiE (Low) | CAVIAR | FINEMAP
Power | 0.522 (0.122) | 0.406 (0.094) | 0.402 (0.082) | 0.312 (0.077) | 0.309 (0.093) | 0.307 (0.087)
Sparse FDR | 0.296 (0.113) | 0.311 (0.102) | 0.187 (0.061) | 0.421 (0.089) | 0.207 (0.099) | 0.214 (0.068)
| Power [ 0.104 (0.058) | 0.083 (0.033) | 0.094 (0.042) | 0.053 (0.032) | 0.081 (0.027) | 0.092 (0.031)
Polygenic morR | 0217 (0.061) | 0.186 (0.042) | 0.193 (0.063) | 0.398 (0.092) | 0.194 (0.054) | 0.203 (0.059)
SNP-Set Level Approaches
Trait Type | Metric BANN BANN-SS RSS PEGASUS SKAT MAGMA GSEA
Power | 0.528 (0.113) | 0.421 (0.098) | 0.476 (0.092) | 0.504 (0.109) | 0.426 (0.113) | 0.443 (0.128) | 0.378 (0.099)
Sparse FDR | 0.073 (0.024) | 0.095 (0.032) | 0.079 (0.023) | 0.201 (0.098) | 0.231 (0.106) | 0.312 (0.129) | 0.347 (0.127)
| Power | 0.069 (0.029) | 0.051 (0.041) [ 0.057 (0.024) | 0.056 (0.032) [ 0.112 (0.042) | 0.152 (0.039) | 0.081 (0.031)
Polygenic R 1 0.166 (0.151) | 0.163 (0.126) | 0.065 (0.112) | 0.179 (0.098) | 0.181 (0.101) | 0.191 (0.018) | 0.221 (0.141)

Supplementary Table 5. Comparing the empirical power and false discovery rates (FDR) of the BANNs framework
against competing SNP and SNP-set mapping approaches in simulations. Here, quantitative traits are simulated to have
broad-sense heritability of H? = 0.2 with contributions from both additive and epistatic effects set (i.e., p = 0.5). We consider two
different trait architectures: sparse where only 1% of SNP-sets are enriched for the trait; and polygenic where 10% of SNP-sets are
enriched. We set the number of causal SNPs with non-zero effects to be 0.125% and 3% of all SNPs located within the enriched SNP-sets,
respectively. (Top) Competing SNP-level mapping approaches include: CAVIAR [64], SuSiE [65], and FINEMAP [66]. The software for
SuSiE requires an input ¢ which fixes the maximum number of causal SNPs in the model. We display results when this input number
is high (¢ = 3000) and when this input number is low (¢ = 10). (Bottom) Competing SNP-set mapping approaches include: RSS [7],
PEGASUS [67], GBJ [68], SKAT [69], GSEA [70], and MAGMA [71]. Results for the BANN, BANN-SS, and other Bayesian methods are
evaluated based on the “median probability criterion” (i.e., PIPs for SNPs and SNP-sets greater than 0.5) [52]. Results for the frequentist
approaches are based on Bonferroni-corrected thresholds for multiple hypothesis testing (P = 0.05/36518 = 1.37 x 10~ at the SNP-level
and P = 0.05/2816 = 1.78 x 107" at the SNP-set level, respectively). All results are based on 100 replicates and standard deviations of
the estimates across runs are given in the parentheses. Approaches with the greatest power are bolded in purple, while methods with the
lowest FDR is bolded in blue.
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SNP-Level Approaches
Trait Type | Metric BANN BANN-SS | SuSiE (High) | SuSiE (Low) | CAVIAR | FINEMAP
Power | 0.851 (0.096) | 0.812 (0.081) | 0.803 (0.034) | 0.631 (0.098) | 0.774 (0.159) | 0.722 (0.132)
Sparse  TERR | 0.201 (0.027) | 0.196 (0.020) | 0.185 (0.063) | 0522 (0.106) | 0.196 (0.093) | 0.248 (0.083)
| Power [ 0.374 (0.071) | 0.369 (0.067) | 0.296 (0.074) | 0.198 (0.061) | 0.319 (0.106) | 0.332 (0.044)
Polygenic ™ pr R 170212 (0.018) | 0.198 (0.026) | 0.208 (0.022) | 0.414 (0.042) | 0.205 (0.031) | 0.307 (0.109)
SNP-Set Level Approaches
Trait Type | Metric BANN BANN-SS RSS PEGASUS | SKAT MAGMA GSEA
Power | 0.823 (0.108) | 0.821 (0.112) | 0.783 (0.105) | 0.815 (0.102) | 0.757 (0.114) | 0.821 (0.097) | 0.627 (0.123)
Sparse  TERR | 0.121 (0.087) | 0.127 (0.091) | 0.099 (0.096) | 0.713 (0.081) | 0.692 (0.089) | 0.742 (0.061) | 0.581 (0.051)
| Power [ 0276 (0.083) [ 0.279 (0.097) [ 0.272 (0.029) | 0.416 (0.076) | 0.331 (0.038) | 0.451 (0.049) | 0.241 (0.022)
Polygenic om R T 0.171 (0.034) | 0.166 (0.041) | 0.069 (0.040) | 0.309 (0.087) | 0.282 (0.079) | 0.383 (0.083) | 0.322 (0.018)

Supplementary Table 6. Comparing the empirical power and false discovery rates (FDR) of the BANNs framework
against competing SNP and SNP-set mapping approaches in simulations. Here, quantitative traits are simulated to have
broad-sense heritability of H?> = 0.6 with contributions from both additive and epistatic effects set (i.e., p = 0.5). We consider two
different trait architectures: sparse where only 1% of SNP-sets are enriched for the trait; and polygenic where 10% of SNP-sets are
enriched. We set the number of causal SNPs with non-zero effects to be 0.125% and 3% of all SNPs located within the enriched SNP-sets,
respectively. (Top) Competing SNP-level mapping approaches include: CAVIAR [64], SuSiE [65], and FINEMAP [66]. The software for
SuSiE requires an input ¢ which fixes the maximum number of causal SNPs in the model. We display results when this input number
is high (¢ = 3000) and when this input number is low (¢ = 10). (Bottom) Competing SNP-set mapping approaches include: RSS [7],
PEGASUS [67], GBJ [68], SKAT [69], GSEA [70], and MAGMA [71]. Results for the BANN, BANN-SS, and other Bayesian methods are
evaluated based on the “median probability criterion” (i.e., PIPs for SNPs and SNP-sets greater than 0.5) [52]. Results for the frequentist
approaches are based on Bonferroni-corrected thresholds for multiple hypothesis testing (P = 0.05/36518 = 1.37 x 10~ at the SNP-level
and P = 0.05/2816 = 1.78 x 107" at the SNP-set level, respectively). All results are based on 100 replicates and standard deviations of
the estimates across runs are given in the parentheses. Approaches with the greatest power are bolded in purple, while methods with the
lowest FDR is bolded in blue.
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SNP-Level Approaches
Trait Type | Metric BANN BANN-SS | SuSiE (High) | SuSiE (Low) | CAVIAR | FINEMAP
Power | 0.499 (0.094) | 0.372 (0.061) | 0.371 (0.082) | 0.263 (0.060) | 0.332 (0.094) | 0.327 (0.091)
Sparse  TEBR | 0.243 (0.100) | 0.245 (0.113) | 0.228 (0.074) | 0.436 (0.126) | 0.364 (0.142) | 0.381 (0.109)
| Power [ 0.105 (0.042) [ 0.087 (0.034) [ 0.094 (0.032) | 0.063 (0.016) | 0.095 (0.015) | 0.083 (0.035)
Polygenic ™ Hn R 170203 (0.064) | 0.241 (0.101) | 0.238 (0.037) | 0.449 (0.091) | 0.268 (0.081) | 0.283 (0.101)
SNP-Set Level Approaches
Trait Type | Metric BANN BANN-SS RSS PEGASUS | SKAT MAGMA GSEA
Power | 0.483 (0.102) | 0.378 (0.082) | 0.397 (0.105) | 0.403 (0.076) | 0.321 (0.077) | 0.472 (0.074) | 0.304 (0.076)
Sparse FDR | 0.104 (0.04) | 0.138 (0.087) | 0.088 (0.099) | 0.372 (0.082) | 0.430 (0.098) | 0.672 (0.087) | 0.593 (0.0133)
| Power [ 0.103 (0.049) [ 0.079 (0.032) [ 0.082 (0.017) [ 0.094 (0.015) | 0.071 (0.013) [ 0.102 (0.018) | 0.094 (0.021)
Polygenic ™R 10.249 (0.103) | 0.254 (0.106) | 0.281 (0.135) | 0.472 (0.134) | 0.491 (0.102) | 0.606 (0.120) | 0.653 (0.137)

Supplementary Table 7. Comparing the empirical power and false discovery rates (FDR) of the BANNs framework
against competing SNP and SNP-set mapping approaches in simulations with population stratification. Here, quantitative
traits are simulated to have broad-sense heritability of H? = 0.2 with contributions from both additive and epistatic effects set (i.e.,
p =0.5). We consider two different trait architectures: sparse where only 1% of SNP-sets are enriched for the trait; and polygenic where
10% of SNP-sets are enriched. We set the number of causal SNPs with non-zero effects to be 0.125% and 3% of all SNPs located within the
enriched SNP-sets, respectively. In these simulations, traits were generated while also using the top ten principal components (PCs) of the
genotype matrix as covariates. (Top) Competing SNP-level mapping approaches include: CAVIAR [64], SuSiE [65], and FINEMAP [66].
The software for SuSiE requires an input ¢ which fixes the maximum number of causal SNPs in the model. We display results when this
input number is high (£ = 3000) and when this input number is low (£ = 10). (Bottom) Competing SNP-set mapping approaches include:
RSS [7], PEGASUS [67], GBJ [68], SKAT [69], GSEA [70], and MAGMA [71]. Results for the BANN, BANN-SS, and other Bayesian
methods are evaluated based on the “median probability criterion” (i.e., PIPs for SNPs and SNP-sets greater than 0.5) [52]. Results for
the frequentist approaches are based on Bonferroni-corrected thresholds for multiple hypothesis testing (P = 0.05/36518 = 1.37 x 1076 at
the SNP-level and P = 0.05/2816 = 1.78 x 10~° at the SNP-set level, respectively). All results are based on 100 replicates and standard
deviations of the estimates across runs are given in the parentheses. Approaches with the greatest power are bolded in purple, while
methods with the lowest FDR is bolded in blue.
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SNP-Level Approaches
Trait Type | Metric BANN BANN-SS | SuSiE (High) | SuSiE (Low) | CAVIAR | FINEMAP
Power | 0.817 (0.126) | 0.798 (0.117) | 0.792 (0.092) | 0.563 (0.104) | 0.752 (0.134) | 0.726 (0.128)
Sparse FDR | 0.182 (0.038) | 0.191 (0.045) | 0.346 (0.057) | 0.467 (0.075) | 0.337 (0.076) | 0.382 (0.084)
| Power [ 0.348 (0.109) | 0.319 (0.094) | 0.305 (0.081) | 0.211 (0.039) | 0.327 (0.093) | 0.338 (0.053)
Polygenic ™ pn R 170239 (0.047) | 0.221 (0.038) | 0.224 (0.042) | 0.385 (0.035) | 0.309 (0.041) | 0.325 (0.091)
SNP-Set Level Approaches
Trait Type | Metric BANN BANN-SS RSS PEGASUS SKAT MAGMA GSEA
Power | 0.781 (0.109) | 0.749 (0.117) | 0.743 (0.105) | 0.814 (0.112) | 0.773 (0.127) | 0.802 (0.091) | 0.699 (0.118
Sparse FDR | 0.121 (0.104) | 0.124 (0.098) | 0.312 (0.099) | 0.827 (0.056) | 0.805 (0.065) | 0.833 (0.051) | 0.841 (0.077
| Power | 0.294 (0.042) | 0.281 (0.053) | 0.301 (0.034) | 0.419 (0.047) | 0.341 (0.038) | 0.465 (0.038) | 0.318 (0.078
Polygenic ™ onR 1 0.166 (0.054) | 0.159 (0.071) | 0.178 (0.062) | 0.452 (0.089) | 0.418 (0.095) | 0.471 (0.079) | 0.516 (0.214

Supplementary Table 8. Comparing the empirical power and false discovery rates (FDR) of the BANNs framework
against competing SNP and SNP-set mapping approaches in simulations with population stratification. Here, quantitative
traits are simulated to have broad-sense heritability of H? = 0.6 with contributions from both additive and epistatic effects set (i.e.,
p =0.5). We consider two different trait architectures: sparse where only 1% of SNP-sets are enriched for the trait; and polygenic where
10% of SNP-sets are enriched. We set the number of causal SNPs with non-zero effects to be 0.125% and 3% of all SNPs located within the
enriched SNP-sets, respectively. In these simulations, traits were generated while also using the top ten principal components (PCs) of the
genotype matrix as covariates. (Top) Competing SNP-level mapping approaches include: CAVIAR [64], SuSiE [65], and FINEMAP [66].
The software for SuSiE requires an input ¢ which fixes the maximum number of causal SNPs in the model. We display results when this
input number is high (£ = 3000) and when this input number is low (£ = 10). (Bottom) Competing SNP-set mapping approaches include:
RSS [7], PEGASUS [67], GBJ [68], SKAT [69], GSEA [70], and MAGMA [71]. Results for the BANN, BANN-SS, and other Bayesian
methods are evaluated based on the “median probability criterion” (i.e., PIPs for SNPs and SNP-sets greater than 0.5) [52]. Results for
the frequentist approaches are based on Bonferroni-corrected thresholds for multiple hypothesis testing (P = 0.05/36518 = 1.37 x 1076 at
the SNP-level and P = 0.05/2816 = 1.78 x 10~° at the SNP-set level, respectively). All results are based on 100 replicates and standard
deviations of the estimates across runs are given in the parentheses. Approaches with the greatest power are bolded in purple, while
methods with the lowest FDR is bolded in blue.
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Simulation Parameters Average Run Time (seconds)

SNPs | Samples Sizes | BANN | SuSiE (low) | SuSiE (high) | CAVIAR | FINEMAP
1000 3.34 1.89 4.22 8.21 56.99

2500 2000 6.71 2.87 8.72 8.21 56.99
4000 10.82 8.42 13.63 8.21 56.99
1000 7.42 2.49 7.12 31.48 102.58

5000 2000 13.21 5.04 21.84 31.48 102.58
4000 21.34 9.45 32.81 31.48 102.58
1000 31.39 3.52 52.24 118.98 145.51

10000 2000 127.18 10.22 159.97 118.98 145.51
4000 318.81 22.62 754.63 118.98 145.51

Supplementary Table 9. Computational time for running Bayesian annotated neural net-
works (BANNSs) and other SNP-level association mapping approaches, as a function of the
total number SNPs analyzed and the number of samples in the data. Methods compared
include: BANNs, CAVIAR [64], SuSiE [65], and FINEMAP [66]. Each table entry represents the average
computation time (in seconds) it takes each approach to analyze a dataset of the size indicated. Run times
were measured on an Intel i5-8259U CPU with base frequency of 2.30GHz, turbo frequency of 3.80GHz,
and memory 16GB 2133 MHz LPDDR3. Here, we used 4 cores for parallelization when applicable. The
software for SuSiE requires an input £ which fixes the maximum number of causal SNPs in the model.
We display results when this input parameter is high (¢ = 3000) and when this input parameter is low
(¢ =10). Note that we implemented BANNSs using the Python 3 version of the software, and the timing
for its variational algorithm includes inference on both SNPs and SNP-sets. CAVIAR and FINEMAP
are set up to work with GWA summary statistics, so their inputs (and timing) are the same irrespective
of the sample size.
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Simulation Parameters Average Run Time (seconds)
SNP-Sets | SNPs per SNP-set | BANN RSS PEGASUS | GBJ | SKAT | MAGMA | GSEA
10 12.58 13.12 241 2.68 2.13 0.03 2.48
250 20 44.32 58.21 2.13 5.18 3.82 0.08 4.68
40 189.44 224.62 2.22 9.64 6.47 0.18 8.51
10 48.92 59.31 5.11 5.37 5.23 0.09 5.31
500 20 223.14 244.07 5.02 11.26 9.22 0.21 11.12
40 965.48 1026.12 5.72 2791 | 14.84 0.24 20.36
10 194.62 249.57 8.67 12.27 | 11.31 0.72 11.41
1000 20 1213.19 | 2176.33 8.93 27.62 | 18.16 1.48 24.93
40 6823.31 | 14495.72 10.21 61.37 | 30.83 4.26 60.82

Supplementary Table 10. Computational time for running Bayesian annotated neural net-
works (BANNs) and other SNP-set level enrichment approaches, as a function of the total
number SNP-sets analyzed and the number of SNPs within each SNP-set. Methods compared
include: BANNs, RSS [7], PEGASUS [67], GBJ [68], SKAT [69], GSEA [70], and MAGMA [71]. Here,
we simulated 10 datasets for each pair of parameter values (number of SNP-sets analyzed and number of
SNPs within each SNP-set). Sample size was held constant at n = 10,000 individuals. Each table entry
represents the average computation time (in seconds) it takes each approach to analyze a dataset of the
size indicated. Run times were measured on an Intel i5-8259U CPU with base frequency of 2.30GHz,
turbo frequency of 3.80GHz, and memory 16GB 2133 MHz LPDDR3. Here, we used 4 cores for paral-
lelization when applicable. Note that PEGASUS, GBJ, SKAT, and MAGMA are score-based methods
and, thus, are expected to take the least amount of time to run. Both the BANNs framework and RSS
are regression-based methods. The increased computational burden of these approaches results from its
need to do (approximate) Bayesian posterior inference; however, the sparse and partially connected archi-
tecture of the BANNSs model allows it to scale more favorably for larger dimensional datasets. Note that
we implemented BANNs using the Python 3 version of the software, and the timing for its variational
algorithm includes inference on both SNPs and SNP-sets.
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Supplementary Table 11. SNP and SNP-set results for body mass index (BMI) in the
heterogenous stock of mice from the Wellcome Trust Centre for Human Genetics. We
analyze J = 10,000 SNPs and G = 1,925 SNP-sets from N = 1,814 mice—with specific numbers varying
slightly depending on the quality control procedure for each phenotype (Supplementary Note, Section
5). Here, SNP-set annotations are based on gene boundaries defined by the Mouse Genome Informatics
database (see URLs listed in the main text). Unannotated SNPs located within the same genomic region
were labeled as being within the “intergenic region” between two genes. This file gives the posterior
inclusion probabilities (PIPs) for the input and hidden layer neural network weights after fitting the
BANNSs model on the individual-level data. We assess significance for both SNPs and SNP-sets according
to the “median probability model” threshold [52] (i.e., PIP > 0.5). Page #1 provides the variant-level
fine mapping results with columns corresponding to: (1) chromosome; (2) SNP ID; (3) chromosomal
position in base-pair (bp) coordinates; and (4) SNP PIP. Page #2 provides the SNP-set level enrichment
results with columns corresponding to: (1) chromosome; (2) SNP-set ID; (3-4) the starting and ending
position of the SNP-set chromosomal boundaries; (5) SNP-set PIP; (6) the number of SNPs that have
been annotated within each SNP-set; (7) the “top” associated SNP within each SNP-set; and (8) the PIP
of each top SNP. (XLSX)

Supplementary Table 12. SNP and SNP-set results for body weight in the heterogenous
stock of mice from the Wellcome Trust Centre for Human Genetics. We analyze J ~ 10,000
SNPs and G = 1,925 SNP-sets from N = 1,814 mice—with specific numbers varying slightly depending
on the quality control procedure for each phenotype (Supplementary Note, Section 5). Here, SNP-set
annotations are based on gene boundaries defined by the Mouse Genome Informatics database (see URLs
in the main text). Unannotated SNPs located within the same genomic region were labeled as being within
the “intergenic region” between two genes. This file gives the posterior inclusion probabilities (PIPs) for
the input and hidden layer neural network weights after fitting the BANNs model on the individual-level
data. We assess significance for both SNPs and SNP-sets according to the “median probability model”
threshold [52] (i.e., PIP > 0.5). Page #1 provides the variant-level fine mapping results with columns
corresponding to: (1) chromosome; (2) SNP ID; (3) chromosomal position in base-pair (bp) coordinates;
and (4) SNP PIP. Page #2 provides the SNP-set level enrichment results with columns corresponding
to: (1) chromosome; (2) SNP-set ID; (3-4) the starting and ending position of the SNP-set chromosomal
boundaries; (5) SNP-set PIP; (6) the number of SNPs that have been annotated within each SNP-set;
(7) the “top” associated SNP within each SNP-set; and (8) the PIP of each top SNP. (XLSX)
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Supplementary Table 13. SNP and SNP-set results for percentage of CD8+ cells in the
heterogenous stock of mice from the Wellcome Trust Centre for Human Genetics. We
analyze J = 10,000 SNPs and G = 1,925 SNP-sets from N = 1,814 mice—with specific numbers varying
slightly depending on the quality control procedure for each phenotype (Supplementary Note, Section
5). Here, SNP-set annotations are based on gene boundaries defined by the Mouse Genome Informatics
database (see URLs listed in the main text). Unannotated SNPs located within the same genomic region
were labeled as being within the “intergenic region” between two genes. This file gives the posterior
inclusion probabilities (PIPs) for the input and hidden layer neural network weights after fitting the
BANNSs model on the individual-level data. We assess significance for both SNPs and SNP-sets according
to the “median probability model” threshold [52] (i.e., PIP > 0.5). Page #1 provides the variant-level
fine mapping results with columns corresponding to: (1) chromosome; (2) SNP ID; (3) chromosomal
position in base-pair (bp) coordinates; and (4) SNP PIP. Page #2 provides the SNP-set level enrichment
results with columns corresponding to: (1) chromosome; (2) SNP-set ID; (3-4) the starting and ending
position of the SNP-set chromosomal boundaries; (5) SNP-set PIP; (6) the number of SNPs that have
been annotated within each SNP-set; (7) the “top” associated SNP within each SNP-set; and (8) the PIP
of each top SNP. (XLSX)

Supplementary Table 14. SNP and SNP-set results for high-density lipoprotein (HDL)
cholesterol in the heterogenous stock of mice from the Wellcome Trust Centre for Human
Genetics. We analyze J ~ 10,000 SNPs and G = 1,925 SNP-sets from N = 1,814 mice—with specific
numbers varying slightly depending on the quality control procedure for each phenotype (Supplementary
Note, Section 5). Here, SNP-set annotations are based on gene boundaries defined by the Mouse Genome
Informatics database (see URLs listed in the main text). Unannotated SNPs located within the same
genomic region were labeled as being within the “intergenic region” between two genes. This file gives
the posterior inclusion probabilities (PIPs) for the input and hidden layer neural network weights after
fitting the BANNs model on the individual-level data. We assess significance for both SNPs and SNP-
sets according to the “median probability model” threshold [52] (i.e., PIP > 0.5). Page #1 provides
the variant-level fine mapping results with columns corresponding to: (1) chromosome; (2) SNP ID; (3)
chromosomal position in base-pair (bp) coordinates; and (4) SNP PIP. Page #2 provides the SNP-set level
enrichment results with columns corresponding to: (1) chromosome; (2) SNP-set ID; (3-4) the starting
and ending position of the SNP-set chromosomal boundaries; (5) SNP-set PIP; (6) the number of SNPs
that have been annotated within each SNP-set; (7) the “top” associated SNP within each SNP-set; and
(8) the PIP of each top SNP. (XLSX)
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Supplementary Table 15. SNP and SNP-set results for low-density lipoprotein (LDL)
cholesterol in the heterogenous stock of mice from the Wellcome Trust Centre for Hu-
man Genetics. We analyze J =~ 10,000 SNPs and G = 1,925 SNP-sets from N = 1,814 mice—with
specific numbers varying slightly depending on the quality control procedure for each phenotype (Sup-
plementary Note, Section 5). Here, SNP-set annotations are based on gene boundaries defined by the
Mouse Genome Informatics database (see URLs listed in the main text). Unannotated SNPs located
within the same genomic region were labeled as being within the “intergenic region” between two genes.
This file gives the posterior inclusion probabilities (PIPs) for the input and hidden layer neural network
weights after fitting the BANNs model on the individual-level data. We assess significance for both
SNPs and SNP-sets according to the “median probability model” threshold [52] (i.e., PIP > 0.5). Page
#1 provides the variant-level fine mapping results with columns corresponding to: (1) chromosome; (2)
SNP ID; (3) chromosomal position in base-pair (bp) coordinates; and (4) SNP PIP. Page #2 provides
the SNP-set level enrichment results with columns corresponding to: (1) chromosome; (2) SNP-set ID;
(3-4) the starting and ending position of the SNP-set chromosomal boundaries; (5) SNP-set PIP; (6) the
number of SNPs that have been annotated within each SNP-set; (7) the “top” associated SNP within
each SNP-set; and (8) the PIP of each top SNP. (XLSX)

Supplementary Table 16. SNP and SNP-set results for mean corpuscular hemoglobin
(MCH) in the heterogenous stock of mice from the Wellcome Trust Centre for Human
Genetics. We analyze J ~ 10,000 SNPs and G = 1,925 SNP-sets from N = 1,814 mice—with specific
numbers varying slightly depending on the quality control procedure for each phenotype (Supplementary
Note, Section 5). Here, SNP-set annotations are based on gene boundaries defined by the Mouse Genome
Informatics database (see URLs listed in the main text). Unannotated SNPs located within the same
genomic region were labeled as being within the “intergenic region” between two genes. This file gives
the posterior inclusion probabilities (PIPs) for the input and hidden layer neural network weights after
fitting the BANNs model on the individual-level data. We assess significance for both SNPs and SNP-
sets according to the “median probability model” threshold [52] (i.e., PIP > 0.5). Page #1 provides the
variant-level fine mapping results with columns corresponding to: (1) chromosome; (2) SNP ID; (3) chro-
mosomal position in base-pair (bp) coordinates; and (4) SNP PIP. Page #2 provides the SNP-set level
enrichment results with columns corresponding to: (1) chromosome; (2) SNP-set ID; (3-4) the starting
and ending position of the SNP-set chromosomal boundaries; (5) SNP-set PIP; (6) the number of SNPs
that have been annotated within each SNP-set; (7) the “top” associated SNP within each SNP-set; and
(8) the PIP of each top SNP. (XLSX)
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Supplementary Table 17. SNP and SNP-set results for high-density lipoprotein (HDL)
cholesterol in individuals assayed within the Framingham Heart Study. We analyze J =
394,174 SNPs and G = 18, 364 SNP-sets from N = 6,950 people. Here, SNP-set annotations are based on
gene boundaries defined by the NCBI’s RefSeq database in the UCSC Genome Browser [50]. Unannotated
SNPs located within the same genomic region were labeled as being within the “intergenic region” between
two genes. This file gives the posterior inclusion probabilities (PIPs) for the input and hidden layer neural
network weights after fitting the BANNs model on the individual-level data. We assess significance for
both SNPs and SNP-sets according to the “median probability model” threshold [52] (i.e., PIP > 0.5).
Page #1 provides the variant-level fine mapping results with columns corresponding to: (1) chromosome;
(2) SNP ID; (3) chromosomal position in base-pair (bp) coordinates; and (4) SNP PIP. Page #2 provides
the SNP-set level enrichment results with columns corresponding to: (1) chromosome; (2) SNP-set ID;
(3-4) the starting and ending position of the SNP-set chromosomal boundaries; (5) SNP-set PIP; (6) the
number of SNPs that have been annotated within each SNP-set; (7) the “top” associated SNP within
each SNP-set; and (8) the PIP of each top SNP. (XLSX)

Supplementary Table 18. SNP and SNP-set results for low-density lipoprotein (LDL)
cholesterol in individuals assayed within the Framingham Heart Study. We analyze J =
394,174 SNPs and G = 18,364 SNP-sets from N = 6,950 people. Here, SNP-set annotations are based
on gene boundaries defined by the NCBI’s RefSeq database in the UCSC Genome Browser [50]. Unanno-
tated SNPs located within the same genomic region were labeled as being within the “intergenic region”
between two genes. This file gives the posterior inclusion probabilities (PIPs) for the input and hidden
layer neural network weights after fitting the BANNSs model on the individual-level data. We assess sig-
nificance for both SNPs and SNP-sets according to the “median probability model” threshold [52] (i.e.,
PIP > 0.5). Page #1 provides the variant-level fine mapping results with columns corresponding to: (1)
chromosome; (2) SNP ID; (3) chromosomal position in base-pair (bp) coordinates; and (4) SNP PIP. Page
#2 provides the SNP-set level enrichment results with columns corresponding to: (1) chromosome; (2)
SNP-set ID; (3-4) the starting and ending position of the SNP-set chromosomal boundaries; (5) SNP-set
PIP; (6) the number of SNPs that have been annotated within each SNP-set; (7) the “top” associated
SNP within each SNP-set; and (8) the PIP of each top SNP. (XLSX)

Supplementary Table 19. SNP and SNP-set results for high-density lipoprotein (HDL)
cholesterol in ten thousand randomly sampled individuals of European ancestry from the
UK Biobank. We analyze the same J = 394,174 SNPs and G = 18,364 SNP-sets used in the Fram-
ingham Heart Study analyses. Here, SNP-set annotations are based on gene boundaries defined by the
NCBTI’s RefSeq database in the UCSC Genome Browser [50]. Unannotated SNPs located within the
same genomic region were labeled as being within the “intergenic region” between two genes. This file
gives the posterior inclusion probabilities (PIPs) for the input and hidden layer neural network weights
after fitting the BANNs model on the individual-level data. We assess significance for both SNPs and
SNP-sets according to the “median probability model” threshold [52] (i.e., PIP > 0.5). Page #1 provides
the variant-level fine mapping results with columns corresponding to: (1) chromosome; (2) SNP ID; (3)
chromosomal position in base-pair (bp) coordinates; and (4) SNP PIP. Page #2 provides the SNP-set
level enrichment results with columns corresponding to: (1) chromosome; (2) SNP-set ID; (3-4) the start-
ing and ending position of the SNP-set chromosomal boundaries; (5) SNP-set PIP; (6) the number of
SNPs that have been annotated within each SNP-set; (7) the “top” associated SNP within each SNP-set;
and (8) the PIP of each top SNP. (XLSX)
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Supplementary Table 20. SNP and SNP-set results for low-density lipoprotein (LDL)
cholesterol in ten thousand randomly sampled individuals of European ancestry from the
UK Biobank. We analyze the same J = 394,174 SNPs and G = 18,364 SNP-sets used in the Fram-
ingham Heart Study analyses. Here, SNP-set annotations are based on gene boundaries defined by the
NCBTI’s RefSeq database in the UCSC Genome Browser [50]. Unannotated SNPs located within the
same genomic region were labeled as being within the “intergenic region” between two genes. This file
gives the posterior inclusion probabilities (PIPs) for the input and hidden layer neural network weights
after fitting the BANNs model on the individual-level data. We assess significance for both SNPs and
SNP-sets according to the “median probability model” threshold [52] (i.e., PIP > 0.5). Page #1 provides
the variant-level fine mapping results with columns corresponding to: (1) chromosome; (2) SNP ID; (3)
chromosomal position in base-pair (bp) coordinates; and (4) SNP PIP. Page #2 provides the SNP-set
level enrichment results with columns corresponding to: (1) chromosome; (2) SNP-set ID; (3-4) the start-
ing and ending position of the SNP-set chromosomal boundaries; (5) SNP-set PIP; (6) the number of
SNPs that have been annotated within each SNP-set; (7) the “top” associated SNP within each SNP-set;
and (8) the PIP of each top SNP. (XLSX)
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