Supplementary Notes

Mathematical formulations

Our model to be solved is:
Y =u;+ug+e (1)

Where u; ~ N(0,07K;), ug ~ N(0,02K,), and & ~ N(0,0Z1).
Step 1: estimating the genetic variance component af,

First, we controlled the population structure through solving aj to remove the
correlation between individuals. We use Y., a centered Y, to regress on the random
term u, and errors ¢ as follows:

Ye=uy +e¢ (2)

where Y, =Y — Y, Yis the average of Y, u, ~ N(0,02K,), and & ~ N(0,021). The
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eigen-decomposition of K, is K; = U,S,Ux', where S, = [ :

0
: ] is a matrix
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of eigenvalues. A new parameter § = Z—E is defined so that Y, ~ MVN (0, o2(K, +

61)). The estimated variance components for o2, o2 are therefore written in the

following equations.
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Where V, = U,"Y, , A,; is the eigen value, § can be estimated by solving the non-
linear equation below through Newton-Raphson method.
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In Newton-Raphson method, we let g(5,) = Y-, 2
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approximately solve the equation, yielding an estimate of & (the variance ratio).
Then we can calculate the estimates of &; and 62. Then the decorrelation matrix

D, can be formed:

until 8,41 — 8,] < 107°, we can

then by repeating the process: §,,,1 = 6, —

1
D, = (82S, + 621) 2UT (6)

Proof of the soundness of the decorrelation procedure

In equation (2) Y, =u, +¢

Var(Y,) = 0Ky + ¢l
= 0ZU,S, Uf + 02U, Uy
= U, (02Sy + 021)UY

1
The following derivation justifies that D, = (62S, + 621) Uf  will lead to the desired

property that Var(D,Y) = 1.
Var(D,Y) = D, Var(Y)DI
= D, U(02S, + 621)UIDT
1 1T
= (028 + 021) 2UTU(02S, + 021)UF <(agzsx +021) 2U§>
_1 _L
= (028, + 021) 2UTU,(02Sy, + 021)UTU,(02Sy + 021) 2
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= (028, + 02I) 21(02Sy, + o21)I(02Sy + d21) 2

= (025, + 0821)0
=1

Hence multiplying the decorrelation matric D, to Y can control the population
stratification by removing the correlation between individuals.

Step 2: solving the local variance component ¢?>

After getting the decorrelation matrix D, from step 1, we applied this matrix to Y.,
and get Y. = D, Y,. So, equation (1) can be reformat to equation (7) as below, where



u; ~ N(0,07K;). The next step was to solve o7 using low-rank trick proposed by
FaST-LMM.
Y =u;+e¢ (7)

For details, please refer to the original paper of FaST-LMM (Lippert et al. 2011).

Details of running ILMM, LOCAL, EMMAX, SKAT

ILMM, LOCAL, and EMMAX (Kang et al. 2010) methods are all implemented in
Jawamix5 (Long et al. 2013; Xiong et al. 2019). More details can be found in the user
manual in the GitHub (https://github.com/theLongLab/Jawamix5) for reference.

1. Convert genotype file from .csv format to .hdf5 format
a. Command line: java - Xmx4g —jar /path/to/jawamix5.jar import -ig
genotype.csv -0 genotype.hdf5
b. Parameters:
i. -ig: input genotype file in plain text (.CSV format)
ii. -o:outputin HDF5 in format
c. Input file: genotype.csv
d. Output file: genotype.hdf5
2. Generate the genetic relationship matrices (GRM) based on input genotype
file
a. Command line: java —Xmx4g —jar /path/to/jawamix5.jar kinship -ig
genotype.hdf5 -0 genotype.kin
b. Parameters:
i. -ig: input genotype file in HDF5 format
ii. -o:the output file prefix
c. Input file: genotype.hdf5
d. Output files:
i. genotype.kin.rescaled.IBS
3. Run ILMM method
a. Command line: java —Xmx4g —jar /path/to/jawamix5.jar compound -ig
genotype.hdf5 -ip phenotype.tsv -0 ./ILMM_res/ -ik_g
genotype.kin.rescaled.IBS -ic hic_info.txt
b. Parameters:
i. -ig: input genotype file in HDF5 format
ii. -ip: phenotype file
iii. -o: output folder
iv. -ik_g: the global genetic relationship matrices file
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V. -ic:input regions
c. Input files:
i. genotype.hdf5
ii. phenotype.tsv
iii. genotype.kin.rescaled.IBS
iv. hic_info.txt (three columns separated by tab, an example listed
below)
#header: Index Region1(chr; start; end) Region2
#content: CO  1;840000;850000  1;890000;900000
d. Output file:
i. JILMM_res/xxx.csv
4. Run LOCAL method
a. Command line: java—Xmx4g —jar /path/to/jawamix5.jar local -ig
genotype.hdf5 -ip phenotype.tsv -0 ./LOCAL _res/ -ik_g
genotype.kin.rescaled.IBS -w 5000
b. Parameters:
i. -ig: input genotype file in HDF5 format
ii. -ip: phenotype file
iii. -o: output folder
iv. -w: tiling window size
v. -ik_g: the global genetic relationship matrices file
c. Input file:
i. genotype.hdf5
ii. phenotype.tsv
iii. genotype.kin.rescaled.IBS
d. Output file:
i. .JLOCAL_res/xxx.csv
5. Run EMMAX method
a. Command line: java—Xmx4g —jar /path/to/jawamix5.jar emmax -ig
genotype.hdf5 -ip phenotype.tsv -0 ./EMMAX _res/ -ik
genotype.kin.rescaled.IBS -p 0.05
b. Parameters:
i. -ig: input genotype file in HDF5 format
ii. -ip: phenotype file
iii. -o: output folder
iv. -ik: genetic relationship matrices file generated by function
“kinship” or other user defined method



v. -p: Bonferroni correction, variants whose p-values above
0.05/number of tests will not be written to the file.

c. Input file:

i. genotype.hdf5

ii. phenotype.tsv

iii. genotype.kin.rescaled.IBS
d. Output file:

i. JEMMAX res/xxx.top

SKAT (Wu et al. 2010; Wu et al. 2011) was download as an R package
(https://cran.r-project.org/web/packages/SKAT/index.html) and the p-values for

regions were obtained by first computing the parameters and residuals for SKAT
using following command line a).
a) >> obj<-SKAT_Null_Model(y ~ 1, out_type="D"), where y denotes phenotype
matrix, out_type="D” means the phenotype is dichotomous.

To perform the association studies between the SNPs set and the phenotype, we
used the command line b)

b) >>res_p_value <- SKAT(x, obj)$p.value. Here, obj is generated by either a)
or b) and x refers to genotype matrix for all SNPs in the SNPs set.
“res_p_value” is the p-value for a tested SNP set associated with phenotype
y. Please refer to the manual of SKAT for more details.
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Supplementary Figure S1. Uniform QQ plot for simulated phenotype under null hypothesis.
(a): Dichotomous phenotype (0 or 1); (b): Phenotype from normal distribution (mean zero and

standard deviation 1).
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Supplementary Figure S2. D’ values for 69 interacting regions associated with both ASD

and gene expressions in the brain tissues.
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