A CRISPR/Cas9 vector system for neutrophil-specific gene disruption in zebrafish

Yueyang Wang1, #, Alan Y. Hsu1, #, $, Eric M. Walton2, Ramizah Syahirah1, Tianqi Wang1, Wenqing Zhou1, $$, Chang Ding1, Abby Pei Lemke1, David M. Tobin2, Qing Deng1,3,4,*

1. Department of Biological Sciences, Purdue University, West Lafayette, IN 47907 USA
2. Departments of Molecular Genetics and Microbiology, and Immunology, Duke University School of Medicine, Durham, NC 27710 USA
3. Purdue Institute for Inflammation, Immunology, & Infectious Disease, Purdue University, West Lafayette, IN 47907 USA
4. Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907 USA

#, these authors contributed equally.

$, present address: Department of Lab Medicine, The Stem Cell Program, Boston Children’s Hospital, Boston, MA 02115, USA; Department of Pathology, Harvard Medical School, Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA

$$, present address: Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology, Weill Cornell Medicine, Cornell University, New York, NY 10065 USA

*Corresponding author:

G231 Biological Sciences
Purdue University
Abstract

Tissue-specific knockout techniques are widely applied in biological studies to probe the tissue-specific roles of specific genes in physiology, development, and disease. CRISPR/Cas9 is a widely used technology to perform fast and efficient genome editing in vitro and in vivo. Here, we report a robust CRISPR-based gateway system for tissue-specific gene inactivation in zebrafish. A transgenic fish line expressing Cas9 under the control of a neutrophil-restricted promoter was constructed. As proof of principle, we transiently disrupted rac2 or cdk2 in neutrophils using plasmids driving the expression of sgRNAs from U6 promoters. Loss of the rac2 or cdk2 gene in neutrophils resulted in significantly decreased cell motility, which could be restored by re-expressing Rac2 or Cdk2 in neutrophils in the corresponding knockout background. The subcellular location of Rac activation and actin structure and stress in the context of neutrophil migration was determined in both the wild-type and rac2 knockout neutrophils in vivo. In addition, we evaluated an alternative approach where the Cas9 protein is ubiquitously expressed while the sgRNA is processed by ribozymes and expressed in a neutrophil-restricted manner. Cell motility was also reduced upon rac2 sgRNA expression. Together, our work provides a potent tool that can be used to advance the utility of zebrafish in identification and characterization of gene functions in neutrophils.

Introduction

Over the past decade, zebrafish (Danio rerio) has become increasingly popular as a model system for various biological studies, including neutrophil biology. Zebrafish-specific characteristics, including transparent embryos, a fast life cycle, a highly conserved innate
immune system3 as well as ease of genetic manipulation4 make the zebrafish perfect for live imaging and dissecting new mechanisms regulating neutrophil migration.

Tissue-specific knockout technology is an important approach to investigating gene function in vivo. However, most current gene inactivation approaches are not practical for tissue-specific loss-of-function studies in zebrafish model. The Cre/loxP site-specific recombination system was one of the earliest conditional gene modification systems5 and has been widely applied in transgenic mice6. The first Cre/loxP system in zebrafish was developed in 2005, by injecting Cre RNA into embryos of a floxed \textit{gfp} transgenic line7. Since then, the Cre/loxP system was adapted to the zebrafish model for tissue-specific gene modification8–10. However, the generation of floxed alleles is complex and time-consuming, and the available cell-specific or tissue-specific Cre driver lines are limited, which restricted the utility of this technology in zebrafish11. Other gene-silencing approaches such as RNA interference (RNAi) is successful in some cases12,13, but are not generally effective in the zebrafish model14. Many studies reported high levels of “off-target” effects after injecting dsRNA into zebrafish embryos15,16. Small interfering RNAs (siRNAs) driven by U6 promoters were not functional in zebrafish17. Therefore, RNAi has not been widely used for studying gene function in zebrafish.

In the past few years, CRISPR/Cas9-based technology has been successfully used in zebrafish to edit the genome efficiently18. The Zon group designed a CRISPR-based vector system, termed miniCooper, that enabled tissue-specific gene inactivation in zebrafish19. Our group has adapted this system and applied it to neutrophils in zebrafish20. Although we achieved high efficiency of gene disruption, a major limitation is observed: knockout efficiency drops significantly when the knockout line is crossed with other lines that use the neutrophil-specific promoter. This created two problems: 1. without a sgRNA-resistant rescue construct, the specificity of the sgRNAs and
the related phenotype cannot be concluded. 2. It is difficult to incorporate biosensors into the knockout lines, limiting the live imaging approaches in the context of the cell-specific knockout. We speculate that the presence of another construct driven by the same neutrophil-specific promoter in the genome competes with the transcriptional factors for Cas9 expression and reduces Cas9 protein to a level that is not sufficient for efficient knockout. In addition to using U6 promoters to drive sgRNA expression, multiple sgRNAs expression under one promoter has been achieved by utilizing the endogenous tRNA processing machinery21. This approach, in theory, can also be used to restrict the expression of Cas9 and sgRNAs and achieve tissue specific disruption.

Here, we report a robust CRISPR/Cas9 system for neutrophil-specific knockout in zebrafish. We successfully disrupted different genes in neutrophils and applied biosensor-based imaging in the knockout background. To test the efficacy of our system, we inactivated the rac2 gene. Rac2 is essential for actin polymerization, migration and signaling. Loss of Rac2 activity leads to defects in neutrophil motility and chemotaxis in zebrafish22, 23, 24. However, the subcellular localization of Rac activation during neutrophil migration \textit{in vivo} remains unclear. Our observation of the subcellular localization of Rac activation and related actin structure in zebrafish neutrophils sheds light on the dynamic role of Rac2 in regulating neutrophil migration.

Results

\textit{A Gateway cloning system for tissue-specific knockout}

We optimized the Gateway system using untagged Cas9. Our strategy was to express Cas9 specifically in neutrophils and the sgRNA ubiquitously to achieve neutrophil-specific knockout. The first construct of the system, cell-specific Cas9 expression, was generated from
recombination of four Gateway plasmids, containing, respectively, the neutrophil-specific promoter, Cas9 with nuclear localization sequences, SV40 polyA, and a Tol2 backbone with GFP reporter gene driven by the α-crystallin (cry) promoter. GFP positive lenses enable selection of zebrafish with stable genomic integration of this construct (Fig. 1A). The transgenic line Tg(lyzC:cas9, cry:GFP)pu26 was generated using this plasmid. The second construct of the system introduces ubiquitous sgRNA expression. This plasmid has a GFP reporter gene controlled by lyzC promoter, and zebrafish RNA polymerase (RNAP) III-dependent U6 promoters (U6a and U6c), each driving one gene-specific sgRNA (Fig. 1B). The successful incorporation of sgRNA sequences into the zebrafish genome can be visualized by GFP expression in neutrophils.

To test the efficiency of the gene knockout using this system, we injected the F2 embryos of the Tg(lyzC:cas9, cry:GFP)pu26 line with the plasmids carrying rac2 sgRNAs or ctrl sgRNAs for transient gene inactivation. The sequences of the sgRNAs are described in Fig. 1C, D. A longer sequence with no predicted binding sites in the zebrafish genome was used as a control sgRNA (Fig. 1D). As expected, we observed significantly decreased neutrophil motility in larvae of Tg(lyzC:cas9, cry:GFP)pu26 fish transiently expressing sgRNAs targeting rac2 (Fig. 1E, F and Movie S1), indicating that sufficient disruption of the rac2 gene had been achieved.

To test the knockout efficiency in stable lines, we generated transgenic lines of Tg(U6a/c: ctrl sgRNAs, lyzC:GFP)pu27 or Tg(U6a/c: rac2 sgRNAs, lyzC:GFP)pu28, crossed the F1 fish with Tg(lyzC:cas9, cry:GFP)pu26 and quantified the velocity of neutrophils in the head mesenchyme of embryos at 3 dpf. A significant decrease of motility was observed in the neutrophils expressing Cas9 protein and rac2 sgRNAs (Fig. 1G, H and Movie S2).
To ensure that the U6-induced sgRNAs alone did not influence neutrophil motility, we compared neutrophil motility in the transgenic lines of Tg(U6a/c: ctrl sgRNAs, lyzC:GFP)pu27 or Tg(U6a/c: rac2 sgRNAs, lyzC:GFP)pu28 with Tg(lyzC:GFP)25. All lines displayed similar neutrophil motility, indicating that the migration defects are dependent on the successful disruption of rac2 in neutrophils (Fig. 1I, J and Movie S3).

Expression of sgRNAs-resistant rac2 rescued neutrophil migration defects resulted from rac2 disruption

To confirm that the observed decrease in neutrophil motility was due to the disruption of the rac2 using the knockout system, we constructed plasmids carrying wild type (WT) or a dominant negative version, D57N (DN)22, of sgRNA-resistant rac2 which also carries the rac2 sgRNAs (Fig. 2A). As shown in Fig. 2B, C and Movie S4, restored expression of WT, but not the DN, Rac2 rescued the neutrophil motility defects resulted from neutrophil-specific rac2 disruption.

A constitutively active (CA) version of RAC2, Q61L, has been reported to induce abnormal cell proliferation in human cells26. However, whether this mutation impacts neutrophil migration is yet to be determined. Here, we generated a transgenic zebrafish line, Tg(lyzC:mcherry-2A-Rac2CA)pu29, overexpressing the Rac2 CA in neutrophils (Fig. 2D).

Interestingly, in the Tg(lyzC:mcherry-2A-Rac2CA)pu29 stable line, no significant change was observed regarding neutrophil motility in the F2 zebrafish larvae comparing to the that of the Tg(lyzC:mcherry-2A-Rac2WT)pu30 line, which overexpresses wild-type Rac2 (Fig. 2E, F and Movie S5). On the other hand, the Rac2 CA could not rescue the motility defects resulted from neutrophil-specific rac2 disruption (Fig. 2B, C). This indicates that the Q61L CA mutant rac2
does not have a dominant function but only impacts neutrophil mobility in the rac2 knockout background. Rac2 CA alone cannot coordinate neutrophil migration.

Disruption of cdk2 using the tissue-specific knockout system also suppressed neutrophil motility

Our previous study revealed an unexpected and critical role of Cdk2 in neutrophil migration and chemotaxis\(^2^7\). To ensure that our neutrophil-specific knockout system is feasible for disrupting other genes, we injected plasmids carrying cdk2 sgRNAs into Tg(lyzC:cas9, cry:GFP)\(^{pu26}\) embryos. Neutrophil motility was significantly reduced by the tissue-specific cdk2 disruption (Fig.3C, D and Movie S6), recapitulating the phenotypes observed in the stable lines overexpressing a dominant negative form of Cdk2\(^2^7\).

To exclude possible off-target effects for the sgRNAs targeting cdk2 gene, we also re-expressed WT or DN versions of sgRNA-resistant cdk2. As shown in Fig. 3F, G and Movie S7, restored WT, but not to the DN, Cdk2 expression could partially rescue the neutrophil migration defects caused by cdk2 gene disruption.

Neutrophil-specific rac2 knockout disrupts Rac activation

To observe alternations of Rac activation resulted from rac2 disruption, we used a Rac-binding domain of PAK fused with GFP (PBD-GFP)\(^2^8\) to mark the location of active Rac in neutrophils. This reporter was used in previous studies in human neutrophil-like HL-60 cells and revealed that active Rac localizes to the cell front during migration *in vitro*\(^2^9,3^0,3^1\). Here, in zebrafish the PBD-GFP probe was enriched at both the front and rear in the migrating neutrophils expressing control sgRNAs. When the neutrophil started to migrate, Rac activity oscillates: active Rac
first concentrated on the cell front and later shifted to the back. No discernible enrichment of Rac activity was detected in the rac2 deficient neutrophils (Fig. 4B, C and Movie S8).

Forster resonance energy transfer (FRET)-based biosensors have been widely used to detect protein-protein interactions. To investigate the Rac activity with a second approach, the “Raichu” (Ras superfamily and interacting protein chimeric unit) Rac1-FRET probe developed by the Matsuda group32 was cloned into our sgRNA plasmids. Raichu is composed of CFP-RAC1-Pak-CRIB-YFP-caax. CRIB, the CDC42/Rac interactive binding motif of Pak, binds to GTP-bound Rac. When RAC is activated, the binding of RAC-GTP to Pak-CRIB will cause FRET and increase YFP/CFP fluorescence ratio (Fig. 4D). This Rac-FRET probe has been used to generate a Rac reporter mouse strain. Neutrophils were isolated from this strain and active Rac localizes at both the front and back of chemotaxing neutrophils33. Consistent with the observation with the PBD-GFP probe, Rac activity is higher along the cell periphery and oscillated between the front and back of migrating neutrophils expressing control sgRNAs. The rac2 defective neutrophils lost the ability to polarize and protrude and did not display proper RAC activity (Fig. 4E, F and Movie S9).

\textit{Neutrophil-specific rac2 knockout led to actin cytoskeletal changes}

To observe the alternations in the actin cytoskeleton as a result of rac2 disruption, we cloned genes of calponin-homology domain of utrophin (Utr-CH)-GFP34,35,36, which labels stable F-actin, into the sgRNA plasmids. This (Utr-Ch)-GFP has been applied and well established in leukocyte studies in zebrafish, including neutrophils37,38. In \textit{Tg(lyzC:cas9, cry:GFP)pu26} larvae transiently expressing control sgRNAs, stable F-actin was enriched at the rear of migrating neutrophils. On the contrary, rac2 knockout neutrophils lost cell polarity and actin dynamics,
as (Utr-CH)-GFP was not enriched at specific intracellular locations (Fig. 5B, C and Movie S10).

An actin FRET probe named actin–cpstFRET–actin (AcpA) was designed by Meng group to report real-time forces within F-actin filaments. The sensor consists of a FRET pair flanked with β-actin monomers on each side with protein linkers. After incorporating into F-actin filaments, the mechanical force in actin twists AcpA and decreases FRET efficiency and YFP intensity. Thus, the real-time Actin stress can be reflected with CFP/YFP ratio (Fig. 5D).

We incorporated the AcpA probe into our neutrophil-specific knockout system and expressed the sensor along with control or rac2 sgRNAs in Tg(lyzC:cas9, cry:GFP)μ26 embryos. As shown in Fig. 5E, F and Movie S11, the actin stress FRET reporter revealed more focused actin stress at the front and rear of neutrophils in control cells during migration, while rac2 knockout neutrophils showed decreased actin stress, suggesting that Rac2 is required for actin polymerization and force generation.

Taken together, the combination of the neutrophil-specific knockout system with various biosensors allows live imaging of the dynamic signaling events during cell migration in the knockout background.

Ribozymes mediated gRNA generation for neutrophil-specific knockout

We also evaluated another gateway system for neutrophil-specific gene modification, in which the Cas9 protein is ubiquitously expressed while the sgRNA is processed by ribozymes and expressed in a neutrophil-restricted manner. This strategy was adapted from a previous study utilizing a universal promoter and an all-in-one plasmid and we separated the Cas9 and sgRNA into two plasmids. The pME vector contains Hammerhead (HH) and hepatitis delta...
virus (HDV) ribozymes to cleave the RNA at the 5’ and 3’ ends respectively (Fig. 6A). The non-coding RNA, MALAT1, forming a triple helical structure at the 3’ end41,42, is also incorporated to stabilize the reporter gene mRNA, which is not polyadenylated. After Gateway recombination with the neutrophil-restricted promoter, a sgRNA plasmid is obtained that allows neutrophil-specific expression of the sgRNA, together with a red fluorescent protein, tdTomato.

We generated a transgenic zebrafish line, \textit{Tg(ubb:cas9, cry:GFP)}xt48 and incorporated the same control guide and the \textit{rac2} sgRNA1 into the ribozyme-mediated knockout system. The sgRNA plasmids carrying \textit{rac2} sgRNA or \textit{ctrl} sgRNA were injected into the F2 embryos of \textit{Tg(ubb:cas9, cry:GFP)}xt48 line. As shown in Fig.6 B, C and Movie S12, significantly decreased neutrophil motility was observed in the zebrafish larvae carrying \textit{rac2} sgRNA, indicating that sufficient gene disruption was also achieved. Notably, we observed a slight decrease in neutrophil motility when we transiently injected the control sgRNA plasmids into the wild-type background (Fig. D, E and Movie S13), which indicates potential effects the ribozyme-mediated sgRNA processing machinery may have on neutrophils.

\textbf{Discussion}

Here we report a robust neutrophil-specific knockout system in zebrafish. Using a fluorescent phenotype resulting from eye-restricted GFP expression, we can easily select out the positive fish carrying Cas9 protein. Transient expression of sgRNAs and visualization of edited cells can be achieved by injecting plasmids containing sgRNAs and GFP into the Cas9-expressing fish embryos. We also demonstrated the efficiency with sgRNAs against \textit{rac2} and \textit{cdk2} by measuring neutrophil motility. To prove the specificity of our sgRNAs, we rescued the migration phenotype by expressing sgRNA-resistant \textit{rac2} or \textit{cdk2}. The stable lines expressing Cas9 protein or \textit{rac2}
sgRNAs constructed here showed an inheritable ability to generate rac2 knockout lines to the F2 generation. It still needs to be determined if Cas9 expression will be silenced in subsequent generations.

The optimization of the CRISPR/Cas9 vectors from our previous research lies in 1) removing the 2A-mcherry tag and 2) separating the Cas9 and sgRNA elements into two constructs. We expect that the Cas9-driver line can be maintained and crossed with different reporter lines with different sgRNAs to achieve high efficiency multiplexed knockout. With three lyzC promoter-driven constructs in one neutrophil, we were still able to observe the expected phenotypes (Figs 4B and 5B). This optimization also allows easy and flexible incorporation of other elements, such as different types of biosensors and gene specific rescue.

This system allowed novel insights into the role of the constitutively active Rac2 in neutrophil migration. We observed that the phenotypes of CA Rac2 mutant, Q61L, are different in the Rac2 wide-type and knockout background. The CA mutant can only abolish cell mobility in neutrophils without the endogenous wide-type Rac2 expression, which indicates that it cannot function dominantly in the regulation of cell migration.

It is known that the alignment of actin stress fibers in the cell body triggers cell polarization to precede cell migration. However, actin networks and the actin stress distribution in living cells, especially in a 3D tissue environment *in vivo* is not well understood. Our work provides the first observation of actin force in migrating neutrophils in vivo. We observed more focused mechanical force in actin at both the leading edge and trailing edge. The actin stress at the cell front could be attributed to the machinery driving the lamellipodium forward, which are actin networks polymerizing toward the direction of membrane protrusion and generating mechanical force to overcome membrane tension43,44. The actin stress at the trailing edge can
be explained by the actomyosin pulling forces which facilitate the cell retraction45. However, how retraction of the cell rear is controlled and how the actin stress plays the role in completing the migration cycle is not well understood46.

We also provide the first evidence that active Rac oscillates between the front and back of migrating neutrophils \textit{in vivo}. Previously, the characterization of Rac activity localization was limited to \textit{in vitro} studies on two-dimensional (2D) surfaces33. The lamellipodium-based migration organized on monolayers on flat 2D surfaces represents only one of many mechanisms of cell migration in three-dimensional (3D) environments in tissues47,48. Due to the distinct modes and complexity of 3D migration, the subcellular location of Rac and its function at different sites \textit{in vivo} was unclear. According to the currently recognized local-excitation global-inhibition model in cell migration, the two opposing processes, local-excitation and global inhibition, balance each other. Upon stimulation, the rapid excitation response overcomes the slower inhibitory signals and initiates sharp internal differences. Rac is considered as one of the front-located proteins that amplify internal asymmetries and lead to further actin polarization induced by directional sensing signals49,50. By using the PAK-GFP reporter for Rac, here we showed that the Rac were not only enriched at the cell membrane of the leading-edge during protrusion, but also shifted to the trailing-edge during the retraction. Fluorescence resonance energy transfer imaging of Rac activity further confirmed this subcellular localization and indicates the potential involvement of Rac in tail contraction during neutrophil migration. Our observation of subcellular location of active Rac in zebrafish neutrophils in tissue contributes to a better understanding of Rac signaling \textit{in vivo}.

Notably, the Rac biosensors we used in theory bind to both Rac1 and Rac2 proteins51. Rac2 is the predominant isoform in human neutrophils52. In murine neutrophils, the amounts of Rac1 and
Rac2 are similar53 and Rac1 plays a major role in mediating tail retraction54. In zebrafish neutrophils, Rac2 is also the dominant isoform23,55. It will be interesting and helpful to further look into their unique functions and signaling pathways in neutrophil migration.

Another neutrophil-specific knockout system was also assessed here. We tried applying ribozymes to generate gRNA in zebrafish neutrophils. Combined with the stable line expressing ubiquitous Cas9, this method also provides a viable approach for generating conditional mutants. For unknown reasons, fewer neutrophils are labeled using plasmid-based transient expression, and, in this case a decrease in neutrophil motility was observed with the expression of sgRNAs. An advantage of this system is that the same driver line, which drives ubiquitous Cas9 expression, can be used to knock out genes in different tissues. Further optimization, such as allowing expression of multiple sgRNAs in the system, can be attempted. Both microRNA based and tRNA based processing machinery to process multiple sgRNAs from one transcript can be incorporated56,57,58.

In summary, we established a robust neutrophil-specific knockout system for zebrafish. By using this system, we gained insight into the role of Rac2 in regulating the actin cytoskeleton and the subcellular location of Rac activation in zebrafish neutrophils. Our system is suitable for various genetic studies and screens, which can be achieved by injecting different sgRNAs into the Cas9-expression fish embryos. We also expect that our system can be adapted for gene function studies in other tissues by using different tissue-specific promoters.

References:

57. Xie, K., Minkenberg, B., Yang, Y. & Doudna, J. A. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. doi:10.1073/pnas.1420294112

Materials and Methods

Animals

The zebrafish experiment was conducted in accordance with internationally accepted standards. The Animal Care and Use Protocol was approved by the Purdue Animal Care and Use
Committee (PACUC), adhering to the Guidelines for Use of Zebrafish in the National Institutes of Health (NIH) Intramural Research Program (protocol number 1401001018). To generate transgenic zebrafish lines, plasmids with the Tol2 backbone were coinjected with Tol2 transposase mRNA into embryos of the AB strain at one-cell stage as described59.

Plasmids

All plasmid constructs were generated by gateway cloning using LR Clonase II Plus enzyme (Invitrogen). The p5E-lyzC entry vector was generated by replacing the ubiquitin promoter with the *lyzC* promoter in pENTR5′_ubi (Addgene \#27320) as described20. The pME-Cas9 plasmid is from Addgene (Addgene \#63154). The pME-GFP, p3E-polyA and the destination vector for sgRNA plasmid, pDestTol2pA2, are from the Tol2Kit60. To design single guide RNAs, CRISPRscan (http://www.crisprscan.org/) were used. Single guide RNAs with the highest score and without any off targets were selected. The destination vector pDestTol2pACryGFP (Addgene \#64022) was used to generate the final Cas9 plasmids. The p3E-U6a-U6c plasmids containing *rac2* sgRNAs or control sgRNAs were same as the ones in previous work20.

In-Fusion cloning (In-Fusion HD Cloning Plus Kit, Clontech) was used to fuse the fragments with the linearized backbone, including the wild type, DN or CA guides-resistant *rac2* (ENSDARG00000038010), or different biosensor elements.

The In-Fusion primers are listed below:

\begin{verbatim}
pME-reverse remove GFP F:
5’- GCGGCCGCGGTGGAGCTCCAG-3’
pME-reverse remove GFP R:
5’- GGTGGCGAGTCGACCTCGAGGGG-3’
Rac-WT-guide1muta-pME F:
\end{verbatim}
5’- TCTAGGCCTATGGGACACCGCAGGCCAAGAAGATTATGACAGACTGCGGCC-3’
Rac-WT-guide1muta-pME R:
5’- TCCCATAGGCCTAGATTTACCGGCTTGCTATCCACCATTACATTTGCAGAG-3’
Rac-DN-guide1muta-pME-F:
5’- TAGGCCTATGGGAACACCGCAGGCCAAGAAGATTATGACAGACTGCGGCC-3’
Rac-DN-guide1muta-pME-R:
5’- TGTTCCATAGGCCTAGATTTACCGTTTGCTATCCACCATTACATTTGC-3’
Rac-CA-guide1muta-pME-F:
5’- TCTAGGCCTATGGGACACCGCAGGCCTGGAAGATTATGACAGACTGCGG-3’
Rac-CA-guide1muta-pME-R:
5’- TCCCATAGGCCTAGATTTACCGGTTCGTATCCACCATTACATTTGC-3’
Rac-guide2-resistant mutant F:
5’- GCAAGGACTTGCCTTAGCAAAGGAAATAGATGCAGTAAAATACCTGG -3’
Rac-guide2-resistant mutant R:
5’-AAGGCAAGTGCTCTTGCGGATAAATGATCGGTGGCAGTGCTGCAGTTTC-3’
Rac-resistant into pME F:
5’-CGGGCCCCCCCTCGAGGCCACCATGGTGAGCAAGG-3’
Rac-resistant into pME R:
5’-AGCTCCACCGCGCGCCCGCTTAGAGCATCAGGAGCAAGG-3’
Rac-rescue-pME-F:
5’-GGTGCAGCTCGCCACCACATGTGAAGCAGACGACGAGCCC-3’
Rac-rescue-pME-R:
5’-CTCCACCGCGCGCTCTAGAGCATCAGGAGCAAGG-3’
Rac-pME-R:
5’-AGCTCCACCGCGCGCTCTAGAGCATCAGGAGCAAGG-3’
Cdk2-guide-1 F:
5’-AAGGCTCAAAACCTGCTGATCAACGCTCAGGGCGAGATC-3’
Cdk2-guide-1 R:
5’-CAGCAGGTTTTTGGCTTAAGATCTCTGTGAAGAAGACCCG-3’
Cdk2-guide-1 mutant:
5’-CGGGTTCTTCACAGAGATCTTAAGCCTCAAAACCTGCTG-3’
Cdk2-guide-2 F:
5’-TACACCCACGAAGTTGTAACTTTGTGGTACAGAGCTCC-3’
Cdk2-guide-2 R:
5’-AACTTCGTGGGTGTAAGTCCGCACAGGTACACCGAACGC-3’
Cdk2-guide-2 mutant:
5’-GCGTTCCGTCGTAAGTACCTGTGGTACAGACCCACGAAGT-3’
ActinFRET-F-pME:
5’-GGTCGACTCAGCCACCATGGATGATGATATCGCCGCGC-3’
ActinFRET-R-pME:
5’-CTCCACCGCGCCGCCACCCACCCGCGCGCTTTAGAAG-3’
Utrophin-pME F:
5’-GGTCGACTCAGCCACCATGGCCAAGTATGGAGAACATGAAG-3’
Utrophin-pME R:
5’-CTCCACCGCGCCGCCCTTAATCTACGCTCAGTCCCATGCC-3’
PBD-F-pME:
5’-GGTCGACTCAGCCCAACTAATACGCTAAGTTTCTTTTGC-3’
PBD-R-pME:
5’-CTCCACCGCGCCGCCTACGTAATACGACTCAGTATAG-3’
RacFRET-F-pME:
5’-GGTCGACTCAGCCACCATGGTGAGCAAGGGCGAGG-3’
RacFRET-R-pME:
5’-CTCCACCGCGCCGCTTACATAATTACACACTTTGTC-3’
Ribo Ctrl F: 5’-
GTATTGGTCTGCGAGAGACTGCTGATGAGTCCGTGAGGACGAAAGTCGTCGTC-3’
Ribo Ctrl R:
5’- ACTTGCTATTTCATGCTCTAAAACGAGACGACACTGCAGACTGGACGAGCTTACTC GT-3’
Ribo Rac guide F:
5’- GTATTGGTCTGCGAGCACTCCCTGATGAGTCCGTGAGGACGAAACGAGTAAGCTCGT C-3’
Ribo Rac guide R:
5’-
ACTTGCTATTTCATGCTCTAAAACGAGACGACACTGCAGACTGGACGAGCTTACTC GTT-3’

Microinjection

Microinjections were performed as described[^59]. We injected 1 nL of a mixture containing 25 ng/µl plasmid and 35 ng/µl Tol2 transposase mRNA dissolved in an isotonic solution into the cytoplasm of embryos at the one-cell stage. The stable lines were generated as described[^59]. At least 2 founders (F0) for each line were obtained. Experiments were performed with F2 larvae produced by F1 fish derived from multiple founders.

Live imaging

Larvae at 3 dpf were placed on a glass-bottom dish, and imaging was performed at 28 °C. Time-lapse fluorescence images for neutrophil motility were obtained by a laser scanning confocal microscope (LSM 710, Zeiss) with a 20× objective at 1-min intervals for 30 mins. The green and red channels were acquired sequentially with 0.3 ~ 3% power of lasers. Neutrophil migration with the expression of biosensors was captured every 1 min for 10 min. For (Utr-CH)-GFP and PBD-GFP, the green and red channels were acquired with 0.3 ~ 5% power of the 488-nm laser and 0.5 ~ 2% power of the 561-nm laser, respectively. The 458-nm laser channel with 75%
power was used for the AcpA-FRET and Rac-FRET biosensors. The fluorescent stacks were flattened using the maximum intensity projection and overlaid with or without a single slice of the bright-field image. The velocity of neutrophils was quantified using ImageJ with MTrackJ plugin and plotted in Prism 6.0 (GraphPad). The fluorescence intensity quantification was done by an algorism written in our lab (https://github.com/tomato990/subcellular-intensity-reader). The kymograph was generated using Helm 1.061.

Statistical analysis

Statistical analysis was performed with Prism 6 (GraphPad). An unpaired two-tailed Student's t-test or one-way ANOVA was used to determine the statistical significance of differences between groups. A P-value less than 0.05 was considered as statistically significant.

Individual P values are indicated in the figures, with no data points excluded from statistical analysis. One representative experiment of at least 3 independent repeats is shown.

Acknowledgements: Raichu-Rac1 is a generous gift from Dr. Miki Matsuda (Kyoto University, Japan). The work was supported by National Institutes of Health [R35GM119787 to DQ], [AI125517, AI130236, AI127115 to DT] and [P30CA023168 to Purdue Center for Cancer Research] for shared resources. AH is supported by Cagiantas Fellowship, Purdue University.

Author contributions: YW, AH, EW, DT and DQ designed research and wrote the manuscript. YW and AH performed most experiments and analyzed the data. EW, RS, TW, WZ helped with experiments. AL and CD helped with data analysis. All authors read and approved the manuscript.

Competing interests:
The authors declare no competing interests.

Data availability statement:

Plasmids will be available on Addgene.
Figure 1. Establishment and characterization of the neutrophil-specific knockout system.

(A) Schematics of the gateway vectors to clone constructs for the zebrafish Tg(lyzC:Cas9, Cry:GFP)pu26 line with neutrophil-specific Cas9 expression and green lens. (B) Schematics of the gateway constructs for ubiquitous expression of sgRNAs and neutrophil-specific expression of GFP or other reporters. (C) Schematic of the gene structure of zebrafish rac2 gene. The sgRNA1 and sgRNA2 target exon 3 and exon 5 in the forward strand, respectively. (D) Sequences of control and rac2 sgRNAs. (E, F) Representative tracks (E) and quantification (F) of neutrophil motility in the head mesenchyme of 3 dpf Tg(lyzC:Cas9, Cry:GFP)pu26 larvae injected with plasmids carrying control (ctrl) or rac2 sgRNAs. n=45 for control, and n=46 for rac2 transient knockouts from four different larvae. (G, H) Stable lines were generated by
crossing \(Tg(lyzC:Cas9, Cry:GFP)^{pu26}\) with \(Tg(u6a/c: ctrl\ sgRNA, lyzC:GFP)^{pu27}\) or \(Tg(u6a/c: rac2\ sgRNA, lyzC:GFP)^{pu28}\). Representative tracks (G) and quantification (H) of neutrophil motility in the head mesenchyme of 3 dpf larvae. \(n=55\) for control from four different larvae and \(n=60\) for \(rac2\) knockouts from five different larvae. \(P<0.0001\), Mann–Whitney test. (I, J) Representative images (I) and quantification (J) of neutrophil motility in the head mesenchyme of 3 dpf larvae. \(n=41\) for \(Tg(lyzC:GFP)\), \(n=38\) for \(Tg(u6a/c: ctrl\ sgRNA, lyzC:GFP)^{pu27}\), and \(n=47\) for \(Tg(u6a/c: rac2\ sgRNA, lyzC:GFP)^{pu28}\) from three different larvae. \(P=0.9282\) and \(P=0.4747\) by one-way ANOVA. Scale bars: 100 µm.

See also Movie S1, S2, S3.
Figure 2. Re-expression of rac2 rescued neutrophil motility in neutrophil-specific rac2 knockout fish. (A) Schematics of the plasmids for neutrophil specific rescue. SgRNA-resistant rac2 gene of wild-type (rac2-R-WT), dominant negative (rac2-R-DN), or constitutively active (rac2-R-CA), along with mcherry reporter gene, were cloned into the plasmid carrying rac2 sgRNAs. Representative tracks (B) and quantification (C) of neutrophil motility in the head mesenchyme of 3 dpf Tg(lyzC:Cas9, cry:GFP)pu26 larvae injected with plasmids containing rac2-R (WT), rac2-R-D57N (DN) or rac2-R-Q61L (CA). n=35 for rac2-R-WT, n=27 for rac2-R-DN and n=35 for rac2-R-CA from four or five different larvae respectively. P<0.0001, one-way ANOVA. (D) Schematics of the plasmids used to generate stable Tg(lyzC:rac2-2A-mcherry)pu30 or Tg(lyzC:rac2-Q61L-2A-mcherry)pu29 lines. Representative tracks (E) and quantification (F) of neutrophil motility in the head mesenchyme of 3 dpf Tg(lyzC:rac2-2A-mcherry)pu30 or Tg(lyzC: rac2-Q61L-2A-mcherry)pu29 larvae. n=44 for rac2-WT, n=50 for rac2-CA from three different larvae. p=0.1545, Mann–Whitney test. Scale bars: 100 µm.
See also Movie S4, S5.
Figure 3. Neutrophil-specific knockout of cdk2 reduced neutrophil motility.

(A) Schematic of the gene structure of zebrafish cdk2 gene. The two sgRNAs target sites are in exon 4. (B) Sequences of sgRNAs (control sgRNA or cdk2 sgRNA) used in the system. Representative tracks (C) and quantification (D) of neutrophil motility in the head mesenchyme of 3dpf Tg(lyzC:Cas9, Cry:GFP)pu26 larvae injected with plasmids carrying sgRNAs of control (ctrl) or cdk2. (E) Schematic diagrams of the plasmids used to rescue Cdk2 expression. Representative tracks (F) and quantification (G) of neutrophil motility in the head mesenchyme of 3 dpf Tg(lyzC:Cas9, Cry:GFP)pu26 larvae injected with plasmids carrying cdk2-R-WT or cdk2-R-D145N (DN). n=20 for each group from three different larvae. ****P<0.0001, Mann–Whitney test. Scale bars: 100 µm.
See also Movie S6, S7.
Figure 4. Subcellular location of Rac activation in wild-type and rac2-deficient neutrophils.

(A) Schematic diagram of the plasmid allowing neutrophil specific PBD-GFP expression and ubiquitous sgRNA expression. (B) Simultaneous imaging of PBD-GFP and cytosolic mCherry in neutrophils expressing either ctrl sgRNA or rac2 sgRNA. (C) Kymographs of PBD-GFP signal intensity along the axis of migration in neutrophils expressing either ctrl sgRNA (upper) or rac2 sgRNA (lower). (D) Schematic diagram of the plasmid allowing neutrophil specific Racihu-Rac1 expression and ubiquitous sgRNA expression. (E) Representative images of Rac activity in migrating neutrophils determined by ratiometric FRET live imaging. (F) Kymographs of Racihu-Rac1 FRET intensity along the axis of migration in neutrophils expressing either ctrl sgRNA.
(upper) or rac2 sgRNA (lower). Data are representative of more than 3 separate time-lapse videos. Scale bars: 10 μm.

See also Movie S8, S9.
Figure 5. Subcellular location of stable and stresses actin in wild-type and rac2-deficient neutrophils. (A) Schematic diagram of the plasmid allowing neutrophil specific calponin-homology domain of utrophin (Utr-CH)-GFP expression and ubiquitous sgRNA expression. (B) Simultaneous imaging of UtrCH-GFP and cytosolic mCherry in neutrophils expressing either ctrl sgRNA or rac2 sgRNA. (C) Kymographs of (Utr-CH)-GFP intensity along the axis of migration in neutrophils expressing either ctrl sgRNA (upper) or rac2 sgRNA (lower). (D) Schematic diagram of the plasmid allowing neutrophil specific AcpA-FRET expression and ubiquitous sgRNA expression. (E) Ratiometric FRET live imaging of AcpA-FRET in neutrophils expressing either ctrl sgRNA or rac2 sgRNA. (F) Kymographs of AcpA-FRET intensity along
the axis of migration in neutrophils expressing either ctrl sgRNA (upper) or rac2 sgRNA (lower). Data are representative of more than 3 separate time-lapse videos. Scale bars: 10 µm.

See also Movie S10, S11.
Figure 6. Neutrophil-specific expression of ribozyme-processed rac2-targeting sgRNAs reduced neutrophil motility. (A) Schematic of the design of plasmids for another neutrophil-specific knockout system. Cas9 is expressed ubiquitously whereas a sgRNA is expressed only in neutrophils. Representative tracks (B) and quantification (C) of neutrophil motility in the head mesenchyme of 3 dpf Tg(ubb:Cas9, cry:GFP)\(^{1448}\) larvae injected with plasmids carrying sgRNAs of control (ctrl) or rac2. n=29 for control and n=30 for rac2 transient knockouts from three different larvae. P=0.0001, Mann–Whitney test. Representative tracks (D) and quantification (E) of neutrophil motility in the head mesenchyme of 3 dpf wild-type AB zebrafish larvae injected with Tol2-lyzC-RFP plasmid or plasmids carrying sgRNAs of control (ctrl) or rac2. n=32 for no sgRNA control from three different larvae, n=29 for control sgRNA, and n=28 for rac2 sgRNA from four different larvae. P=0.0018 and P=0.0111 by one-way ANOVA (E). Scale bar: 100 µm.
See also Movie S12, Movie 13.