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32 Abstract

33 Regulatory regions, like promoters and enhancers, cover an estimated 5-15% of the human 
34 genome. Changes to these sequences are thought to underlie much of human phenotypic 
35 variation and a substantial proportion of genetic causes of disease. However, our 
36 understanding of their functional encoding in DNA is still very limited. Applying machine or 
37 deep learning methods can shed light on this encoding and gapped k-mer support vector 
38 machines (gkm-SVMs) or convolutional neural networks (CNNs) are commonly trained on 
39 putative regulatory sequences.

40 Here, we investigate the impact of negative sequence selection on model performance. By 
41 training gkm-SVM and CNN models on open chromatin data and corresponding negative 
42 training dataset, both learners and two approaches for negative training data are compared. 
43 Negative sets use either genomic background sequences or sequence shuffles of the positive 
44 sequences. Model performance was evaluated on three different tasks: predicting elements 
45 active in a cell-type, predicting cell-type specific elements, and predicting elements' relative 
46 activity as measured from independent experimental data.

47 Our results indicate strong effects of the negative training data, with genomic backgrounds 
48 showing overall best results. Specifically, models trained on highly shuffled sequences 
49 perform worse on the complex tasks of tissue-specific activity and quantitative activity 
50 prediction, and seem to learn features of artificial sequences rather than regulatory activity. 
51 Further, we observe that insufficient matching of genomic background sequences results in 
52 model biases. While CNNs achieved and exceeded the performance of gkm-SVMs for larger 
53 training datasets, gkm-SVMs gave robust and best results for typical training dataset sizes 
54 without the need of hyperparameter optimization.

55

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.28.224485doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.224485
http://creativecommons.org/licenses/by/4.0/


56 Introduction

57 Regulatory sequences play an important role in the control of transcription initiation. Variants 
58 in regulatory elements can lead to changes in gene expression patterns and are associated 
59 with various diseases [1–3]. Deciphering the encryption of regulatory activity in genomic 
60 sequences is an important goal and an improved understanding will inevitably contribute to a 
61 better interpretation of personal genomes and phenotypes. While available approaches for 
62 measuring changes in regulatory sequences activity in a native genomic context are still very 
63 limited in their throughput [4], machine learning methods can be applied for regulatory activity 
64 prediction directly from DNA sequence and reveal enriched sequences patterns and 
65 arrangements [5].

66 There is a strong link between transcription factors (TFs) binding to regulatory elements and 
67 general DNA accessibility, i.e. open chromatin. While the screening of individual TFs is tedious 
68 and restricted by the availability of appropriate antibodies, chromatin accessibility can be 
69 measured genome-wide and in multiple assays (e.g. DNase-seq, ATAC-seq or NOMe-seq). 
70 DNase I hypersensitive site sequencing (DNase-seq) provides a gold-standard for the 
71 detection of chromatin accessibility [6] and is widely used by the ENCODE Consortium as a 
72 sensitive and precise reference measure for mapping regulatory elements [7,8]. It allows the 
73 detection of active regulatory elements, marked by DNase I hypersensitive sites (DHS), across 
74 the whole genome [9,10].

75 Machine learning approaches identify regulatory elements among other coding or non-coding 
76 DNA sequences based on structured patterns of their DNA sequences. Many of these patterns 
77 can be matched to known transcription factor binding sites (TFBSs) [11,12] and their relative 
78 orientation and positioning. TFs are known to have different binding affinities to DNA 
79 sequences and to bind preferentially to a specific set of short nucleotide sequences named 
80 binding motifs [11]. Further, TFs can have preferences for a three-dimensional structure of the 
81 DNA [12]. While DNA structure can be predicted from the local sequence context, the same 
82 DNA shape can be encoded by different nucleotide sequences. There are probably additional 
83 patterns, but GC-related sequence features are commonly identified as predictors of 
84 regulatory activity and can affect nucleosome occupancy due to differential DNA binding 
85 affinity of histone molecules [13]. 

86 Gapped k-mer support vector machines (gkm-SVMs) [14–16] and convolutional neural 
87 networks (CNNs) [17–19] have been recently applied in multiple studies to either predict 
88 regulatory activity/function or to identify key elements of the activity-to-sequence encoding. 
89 While DHS datasets serve as positive training data for these machine learning algorithms, the 
90 ideal composition of the negative training dataset is still an unsolved question. There are two 
91 commonly used approaches for the generation of negative training data, the selection of 
92 sequences from genomic background [16] and k-mer shuffling of the positive sequences [20–
93 22].

94 In case of genomic background sequences, the negative training dataset is composed of 
95 sequences from the genome that are not overlapping DHS regions. However, using non-DHS 
96 regions does not guarantee selecting only inactive sequences, due to incomplete sampling of 
97 the cell-type under consideration or activity in other cell types. Typically, when selecting 
98 background sequences certain properties of the positive training set, e.g. sequence length 
99 and repeat fraction, are preserved. Due to this matching of sequence features, this method 

100 can be computationally expensive. An alternative approach, k-mer shuffling, is 
101 computationally efficient and generates synthetic DNA sequences. A collection of negative 
102 sequences according to this approach is composed of the shuffled DHS sequences while 
103 preserving each original sequence' k-mer counts.
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104 Our work investigates the choice of the negative training dataset and its impact on model 
105 performance for predicting regulatory activity from DNA sequences. By applying gkm-SVM 
106 and CNN models, both machine learning methods and approaches for negative training data 
107 generation are compared. Models are trained on DHS regions from experiments in five 
108 different cell lines and various matching negative sets. Performance of the resulting models is 
109 evaluated on three different tasks. The first task is the binary classification of DNA sequences 
110 into active and inactive for the specific cell line, i.e. classical hold-out performance for 
111 individual DHS datasets. The second task tests the ability to learn tissue-specificity and 
112 evaluates performance in identifying cell-type specific DHS sequences. In the third task, 
113 models are applied to the prediction of enhancer activity and evaluated on an experimental 
114 dataset of activity readouts from a reporter assay [23]. 

115 We show a large impact of the negative training dataset on model performance. Models 
116 trained on highly shuffled sequences perform worse except for hold-out performance, while 
117 models trained on genomic sequences excel on the more complex tasks of tissue-specific 
118 activity prediction and quantitative activity prediction. We speculate that models trained on 
119 sequence shuffles learn features of artificial sequence rather than regulatory activity. We also 
120 note that insufficient matching of selected genomic background sequences may result in 
121 model biases. While CNN performance was improved and exceeded gkm-SVMs for larger 
122 training datasets, gkm-SVMs gave better results for small training dataset sizes.

123 Materials and Methods
124
125 Training, validation and test data

126 In general, positive and negative sequences (except for the independent liver enhancer 
127 dataset, see 2.1.4.) were split into three datasets for training, validation, and testing. The 
128 validation (hyperparameter optimization) and test sets (performance evaluation) were 
129 chromosome hold-out sets of chromosomes 21 and 8, respectively. Training was performed 
130 on sequences located on the remaining autosomes and gonosomes.
131
132 Positive training data: DNase I hypersensitive (DHS) data

133 DNase-seq datasets were used as positive datasets for regulatory sequence prediction. Seven 
134 DNase-seq datasets (narrow peak calls) from experiments in five different cell lines (A549, 
135 HeLa-S3, HepG2, K562, MCF-7) were downloaded from ENCODE. Multiple technical 
136 replicates were merged into one file per experiment, combining overlapping (minimum of 1 bp) 
137 or adjacent sequences into a single spanning sequence. For cell lines A549 and MCF-7 two 
138 pooled DHS datasets exist (S1 Table), we refer to those as experiments A and B. DHS regions 
139 were defined 300 bp around the center of the narrow peaks and reference genome sequences 
140 used (GRCh38 patch release 7, GRCh38.p7). Sequences located on alternative haplotypes, 
141 on unlocalized genomic contigs, or containing non-ATCG bases were excluded. An overview 
142 of the used DNase-seq datasets is presented in S1 Table.
143
144 Negative training data: Genomic background data and k-mer shuffling

145 To obtain genomic background sequences as negative training datasets, DNA sequences with 
146 matching repeat and GC content (as in the DHS set) were randomly selected from the 
147 genome. While matching repeat content is supposed to correct for potential alignment biases, 
148 GC matching is performed to compensate for potential biases caused by better experimental 
149 recovery of high GC sequences in DNA handling. Datasets were generated using the 
150 genNullSeqs function of the R package gkmSVM [15]. For this purpose, genome sequences 
151 (GRCh38.p7) were obtained from UCSC and stored in Biostrings 
152 BSgenome.Hsapiens.UCSC.hg38.masked 
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153 (https://bioconductor.org/packages/release/data/annotation/html/BSgenome.Hsapiens.UCSC
154 .hg38.masked.html, accessed 02/26/2020). To make sure that matching sequences were 
155 found for at least 80% of the samples in each dataset, the batch size and maximum number 
156 of trials were increased (batchsize=10000, nMaxTrials=100). The tolerance for differences in 
157 repeat ratio and relative sequence length were set to 0, but the tolerance for differences in GC 
158 content was varied for different training datasets (tGC={0.02, 0.05, 0.1}).
159 To generate neutral DNA sequence for the negative training dataset, positive sequences were 
160 shuffled while preserving the k-mer counts. Here, k-mer shuffling datasets were generated 
161 using fasta_ushuffle (https://github.com/agordon/fasta_ushuffle, accessed 02/26/2020), a 
162 wrapper for the fasta file format to uShuffle [24]. The parameter k which indicates the size of 
163 the preserved k-mers was varied for different datasets (k=[1,7]). For each positive sequence, 
164 200 shuffled sequences were generated and the sequence with minimal 8-mer overlap to the 
165 respective positive sequence chosen.
166
167 Tissue-specific test data

168 Assessing the capability of models to predict tissue-specific regulatory activity, datasets with 
169 tissue-specific DHS regions were used for testing. For each of the five cell lines, one positive 
170 and one negative dataset was generated. For A549 and MCF-7, experiments B were chosen 
171 based on best hold-out performance of the gkm-SVM model (shuffled, k=2). Positive datasets 
172 contain non-overlapping DHS regions to the other four cell lines. The corresponding negative 
173 datasets contain DHS regions of the other four cell lines not overlapping with DHS regions of 
174 the cell line under consideration. A maximum 30% overlap of regions was tolerated. Tissue-
175 specific datasets were not used for training, but split up in validation and test (i.e. chromosome 
176 hold-out sets of chromosomes 21 and 8, respectively; S2 Table) to exclude overlaps with 
177 model training.
178
179 Liver enhancer activity data

180 Models were tested on an independent dataset of experimental activity readouts [23] to 
181 evaluate the models’ ability to quantitatively predict enhancer activity. The underlying 
182 Massively Parallel Reporter Assay experiments were performed in HepG2 cells infected with 
183 lentiviral reporter constructs bearing candidate enhancer sequences chosen on the basis of 
184 ENCODE HepG2 chromatin immunoprecipitation sequencing (ChIP-seq) peaks for EP300 
185 and H3K27ac marks. We used log2 RNA/DNA ratios reported for the wild-type integrase 
186 experiments and excluded control/synthetic sequences. GRCh37 sequence coordinates were 
187 converted to GRCh38.p7 and regulatory sequences where coordinate liftover changed the 
188 fragment length were excluded (1 out of 2236). The original fragment size of 171 bp was 
189 extended on both ends to a total of 300 bp. 
190
191 Merged datasets of different sizes

192 A total of six DHS datasets of different sizes from a mixture of the five cell lines were created. 
193 100k or 120k DHS regions from each cell line were randomly chosen and resulted in datasets 
194 of 500k or 600k DHS regions, respectively. Derived from the 500k dataset, smaller datasets 
195 (50k, 100k, 200k and 350k) were randomly sampled.
196
197 Gapped k-mer support vector machine (gkm-SVM)

198 Gkm-SVM models were trained with default parameters (word length l=10, informative 
199 columns k=6) and a weighted gkm kernel, as these parameters were previously used for 
200 regulatory sequence prediction [16]. To handle big training datasets, the R package LS-GKM 
201 [15,25] was used.
202
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203 Convolutional neural network (CNN)

204 Two different CNN architectures were used. The first architecture, named 4conv2pool4norm 
205 (according to 4 convolutional layers, 2 max-pooling layers and 4 normalization layers), was 
206 previously presented as DeepEnhancer for accurate prediction of enhancers based on DNA 
207 sequence [26]. A smaller network named 2conv2norm (according to 2 convolutional layers 
208 and 2 normalization layers), was derived from the 4conv2pool4norm network. Architecture and 
209 layer properties of networks are described in S3 and S4 Tables.
210 Models were trained in the Python deep learning library Keras based on the tensorflow 
211 interface [27]. The Adam optimizer [28] was used with default parameters as previously 
212 suggested [29]. In addition to the default parameters for batch size (200) and learning rate 
213 (0.001), a different parameter set was examined (batch size = 2000, learning rate = 0.0002). 
214 For both architectures, the higher batch size and lower learning rate were chosen based on 
215 accuracy and standard deviation on the validation set (chromosome 21 hold-out, regulatory 
216 activity task). Models were trained over 20 epochs showing a convergence of the estimated 
217 loss on the validation sets and no signs of overfitting (see S1 Figure and S2 Figure). Network 
218 training was repeated 10 times using different seeds. For regulatory activity and tissue-specific 
219 activity prediction, one out of the 10 models was chosen for further analysis based on median 
220 model performance (chromosome 21 hold-out).
221
222 Evaluation tasks and model evaluation

223 Each model was evaluated on three tasks and different performance measures were chosen 
224 depending on the task. Receiver Operating Characteristic (ROC) curve and area under ROC 
225 curve (AUROC) values are commonly used and a good measure if test datasets are balanced 
226 between classes [30] and if the confidence in class labels is similar. An alternative method for 
227 imbalanced datasets are Precision-Recall (PR) curves. In contrast to AUROC, area under PR 
228 curve (AUPRC) depends on the imbalance of the dataset [31]. A perfect model has an AUPRC 
229 value of 1, a random model an AUPRC value equal to the proportion of positive samples in 
230 the test set. The R packages PRROC [32,33] and pROC [34] were used to calculate the 
231 respective values.
232 For task one (regulatory sequence prediction), AUROC, AUPRC and recall values were used 
233 for model evaluation. First models were tested on validation sets to identify best parameters 
234 for generating the negative training set based only on recall measures. Based on the test sets, 
235 performance of models trained on genomic background or shuffled sequences were compared 
236 for each classifier. We evaluated models on their respective hold-out and additionally the 
237 models trained on shuffled data on hold-out using genomic background sequences as 
238 negative sets. Pairwise comparisons of model performance were realized by Wilcoxon signed-
239 rank tests.
240 The second task considered the models’ tissue-specificity. Again, negative training dataset 
241 parameters were chosen according to validation dataset performance. Classifiers and types 
242 of negative training sets were then compared based on the test datasets. To assess the model 
243 performance on task 2 (tissue-specific prediction), PR and ROC curves and corresponding 
244 AUPRC and AUROC values were used. 
245 For the third task, models were tested on a regression problem and used to predict activity of 
246 liver enhancer sequences for which experimental readouts were previously published [23]. 
247 Here, Spearman rank correlations were calculated between prediction scores and available 
248 log2 activity ratios.
249
250 Transcription factor (TF) binding motif analysis 

251 Training dataset sequences were searched for known TF binding profiles and for each dataset 
252 the number of matched motifs per 300 bp calculated. A set of 460 non-redundant profiles 
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253 derived from human TFBSs was exported from the JASPAR CORE database [35]. Profile 
254 matches were identified using FIMO [36] with default parameters and a maximum number of 
255 motif occurrences retained in memory of 500,000.
256
257 Frequency distribution of 8-mers

258 All potential 8-mers consisting only of nucleotides A, C, G and T were extracted from all 
259 autosomes (chromosomes 1-22) of the human reference genome sequence (GRCh37) with 
260 their absolute count. Obtained 8-mer counts where Z-score transformed, i.e. mean-centered 
261 and the standard deviation normalized to 1. Potential 8-mers were further extracted from test 
262 and training sequences and the Z-score of their genomic frequency looked up. We also looked 
263 up Z-scores for the top 100 scoring 8-mer sequences for each of 128 kernels in the first 
264 convolutional layer of the CNN models. In all analyses, 8-mers not observed in the genomic 
265 background were excluded from analysis.
266
267 GC content distribution

268 The GC content distribution was calculated for active DHS regions in HepG2, three 
269 corresponding genomic background datasets with varied GC content tolerance and random 
270 genomic sequences. One million random sequences of length 300 bp were selected from 
271 GRCh38.p7 (excluding alternative haplotypes and unlocalized contigs) as a reference for the 
272 composition of the human genome. For each sequence, GC content was calculated using the 
273 R package ’seqinr’ [37]. 

274 Results
275
276 Training models for regulatory activity prediction

277 To investigate the performance of machine learning methods for regulatory activity prediction 
278 from DNA sequence and the impact of negative data set composition, multiple models were 
279 compared. Two machine learning approaches, gkm-SVMs and CNNs with two different 
280 architectures, were used. The CNN architectures were derived from DeepEnhancer [26] and 
281 are referred to as 2conv2norm and 4conv2pool4norm (see Methods). Each model was trained 
282 on a positive dataset of DHS regions in a specific cell line (active regulatory sequences) and 
283 a corresponding set of negative sequences. Negative training datasets were generated using 
284 two different approaches (genomic background, k-mer shuffles) and variation of parameters 
285 led to ten different negative training sets per positive dataset. In the genomic background 
286 approach three different GC content tolerances (tGC={0.02, 0.05, 0.1}) were tested. In the k-
287 mer shuffling approach, the size of the preserved k-mers varied from 1 to 7. The influence of 
288 the negative training dataset on model performance was evaluated on chromosome hold-out 
289 validation and test sets. First, model hyperparameters were selected on the validation sets, 
290 then the models' capability to predict (tissue-specific) regulatory activity was assessed on the 
291 test sets, as well as from a quantitative prediction of enhancer activity on an independent 
292 experimental dataset.
293
294 Model performance on chromosome hold-out sets

295 To measure model performance, we calculated ratios of correctly predicted positive samples, 
296 i.e. recall and the area under precision recall curve (AUPRC). For each classifier, we chose 
297 one model trained on genomic background and one model using k-mer shuffles for further 
298 experiments. To select these models, we compared their performance on a hold-out set of 
299 active DHS regions on chromosome 21 (validation set). Since we did not observe relevant 
300 effects for parameters of the genomic background set (S3 Figure and S4 Figure), we chose 
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301 the most stringent parameter (tGC=0.02). In contrast, when comparing models trained on 
302 shuffled sequences, model performance depended on the size of preserved k-mer k (S5 
303 Figure and S6 Figure), with small k resulting in better performance and high k falling behind 
304 the genomic background sets. We note that the value of k is anticorrelated to the number of 
305 known transcription factor binding site (TFBS) motifs remaining in the negative training 
306 sequences (S7 Figure) and suggests that models may identify positive samples based on 
307 TFBS frequency. While models with k=1 show the best results, we chose k=2 as shuffled 
308 sequences preserving dinucleotide composition are widely used [20].
309 Selected models were then compared across classifiers on a second chromosome hold-out 
310 dataset (chromosome 8, test set). In accordance with previous studies, CNNs and gkm-SVM 
311 classifiers are both able to predict active DHS regions from the hold-out sets with high recall 
312 and AUPRC values (S8 Figure). We do not see a clear difference between the two CNNs 
313 tested. However, models trained on highly shuffled data perform significantly better than 
314 models trained on genomic background data; potentially the result of an improper evaluation 
315 on varying compositions of the validation sets using different negative data.
316
317 Fig 1: AUROC values for regulatory sequence prediction. Models were trained on 
318 sequences of DHS regions (positive) with corresponding sets of negative sequences. For each 
319 classifier two different negative training sets are compared; sequences were either chosen 
320 from genomic background (tGC=0.02) or generated by shuffling positive sequences and 
321 preserving k-mer counts (k=2). Models were tested on a chromosome 8 hold-out test set. The 
322 top panels show the results for testing on hold-out sets using genomic background sequences 
323 as negative sets, the bottom panels show the results for testing on hold-out sets using shuffled 
324 sequences as negative sets. AUROC values were calculated to compare model performance. 
325 Seven models were trained on data derived for specific cell lines, bars represent the mean 
326 and error bars the standard deviations across models.
327
328 Fig 1 represents AUROC values for all selected models tested on hold-out sets including 
329 genomic background sequences (top panels) or shuffled sequences as negative test sets 
330 (bottom panels). Differences between CNN and gkm-SVM classifiers are marginal in this 
331 comparison and models perform best on the composition that they were trained on. This is in 
332 line with models relying on features from both negative and positive sequences. However, 
333 models trained on shuffled sequences show a larger drop when tested on a test set using 
334 natural sequences as negative class. For example, gkm-SVM models trained on shuffled 
335 sequences drop from a mean AUROC of 0.96 to 0.64, while models trained on natural 
336 sequences drop from a mean AUROC of 0.90 to 0.83. This suggests that model training may 
337 focus more on the shuffled sequences in this case.
338 To explore further, how models were influenced by the negative sets, we analyzed 8-mers in 
339 the different test data set classes as well as 8-mers prioritized in the first convolutional layer 
340 of our CNN models. We compared these 8-mers based on genomic frequency across all 
341 human autosomes. We observe that 8-mers in the genomic background negative sets are on 
342 average more frequent than 8-mers from DHS sites (positive sets) and those are more 
343 frequent than 8-mers from shuffled negative sequences (S10A Figure). While effects are more 
344 subtle, similar effects propagate into 8-mers identified in the first convolutional layers (S10B 
345 Figure), with models trained on genomic background sequences learning to identify more 
346 common 8-mers (Wilcoxon rank tests, p < 2.2e-16). Consequently, rare motifs in shuffled 
347 negative sequences are learned by these models and may negatively impact model 
348 performance.
349 For A549 and MCF-7 cell lines with two available DHS sets from ENCODE, two separate 
350 models were trained and their performance on the test sets compared among all cell lines. We 
351 see that performance generalizes well across diverse cell lines (e.g. breast, cervix, lung, liver 
352 cancer and leukemia), suggesting that organismal rather than tissue-specific active regulatory 
353 regions are predicted. As an example, Table 1 shows recall values for the gkm-SVM models 
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354 ranging from 0.79 to 0.88 for other cell types. Models trained on A549 training sets perform 
355 best on A549 test sets (recall of 0.86 and 0.88, respectively) and MCF-7 models perform best 
356 on MCF-7 datasets (recall of 0.90 and 0.91, respectively).
357
358 Table 1: Recall of test set regulatory sequence prediction for different cell lines. Gkm-
359 SVM models were trained on DHS datasets (positive) and corresponding sets of k-mer 
360 shuffled (k=2) sequences (negative) for A549 or MCF-7 cells; cell lines with two training 
361 datasets (A/B) each. Models were tested on seven different test sets derived from different 
362 cell lines and recall values were calculated to compare model performance. Datasets are 
363 named according to S1 Table.
364

Model

A549 (A) A549 (B) MCF-7 (A) MCF-7 (B)

A549 (A) 0.896 0.863 0.873 0.859

A549 (B) 0.882 0.880 0.855 0.846

HeLa-S3 0.877 0.852 0.863 0.848

HepG2 0.838 0.822 0.813 0.799

K562 0.843 0.802 0.809 0.793

MCF-7 (A) 0.872 0.844 0.905 0.893

Test set

MCF-7 (B) 0.870 0.853 0.906 0.900
365
366 Prediction of tissue-specific regulatory sequences

367 As seen in the previous experiments, models trained on data derived from one cell line may 
368 generalize in predicting active DHS regions in other cell lines. While some regulatory 
369 sequences are active in multiple cell types, others are specifically active in only one cell type. 
370 To further assess the models’ capability to predict tissue-specific regulatory activity, we used 
371 datasets containing tissue-specific DHS sequences for further testing. We selected DHS 
372 sequences only active in the training cell line (positive samples) and DHS regions not active 
373 in this cell line but active in at least one of the other cell lines (negative samples).

374 Again, we first tested parameter choice on a validation set (chromosome 21 hold-out). We 
375 notice that performance is considerably reduced compared to the first task and see big 
376 differences regarding model performance across different training cell lines (S5 and S6 
377 Tables). Since HeLa-S3 models performed best, we focused on this cell line. While models 
378 trained using genomic background showed similar performance independent of the GC 
379 content tolerance (S11 Figure), performance was dependent on k for shuffled sequences. 
380 Model performance tends to increase with higher size of preserved k-mers in shuffled 
381 sequences (S12 Figure). For the genomic background set, we chose again the most stringent 
382 parameter (tGC=0.02) and for shuffled sequences k=7 based on precision recall. This high 
383 value of k preserves a number of TFBS motifs (46±2 motifs per 300 bp) similar to the positive 
384 set (47±2 motifs per 300 bp, S7 Figure), suggesting that presence of tissue-specific factors as 
385 well as relative positioning may be most critical for model performance.
386
387
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388 Fig 2: HeLa-S3 model performance for tissue-specific regulatory sequence prediction. 
389 Models were trained on sequences of DHS regions active in HeLa-S3 cells (positive) and 
390 negative sequence sets of either matched genomic background sequences (tGC=0.1) or k-mer 
391 shuffled (k=7) sequences. Models were tested on DHS sequences only active in HeLa-S3 
392 (positive) and DHS sequences active only in one or multiple other cell lines (A549, HepG2, 
393 K562, MCF-7) (negative). Dashed lines represent random model performance. Panels (A) and 
394 (B) show ROC and PR curves for 2conv2norm models, (C) and (D) show ROC and PR curves 
395 for 4conv2pool4norm models, (E) and (F) show ROC and PR curves for gkm-SVM models. 
396 Corresponding AUROC and AUPRC values are provided.

397 We present HeLa-S3 models for the final evaluation on the hold-out test set (chromosome 8). 
398 Fig 2 shows ROC and PR curves for 2conv2norm (Fig. 2A/2B), 4conv2pool4norm (Fig. 2C/2D) 
399 and gkm-SVM (Fig. 2E/2F) models. Predicting tissue-specific regulatory activity, the 
400 performance of models is low, but models trained on genomic background data generally 
401 perform better than models trained on shuffled sequences (e.g. AUROC differences of 
402 6.7/6.8% for the two different CNN architectures). We do not measure a clear performance 
403 difference between the two different CNN architectures, but observe that the gkm-SVM model 
404 performed a bit better (AUROC +2%) on this task.
405
406 Quantitative enhancer activity prediction

407 Lastly, we evaluated the models capability of predicting quantitative enhancer activity for an 
408 independent experimental dataset. For this purpose, we used enhancer activity readouts from 
409 published data [23] and calculated Spearman correlation of predicted scores with known 
410 activity readouts. 
411 Since enhancer activity was measured in HepG2 cells, we first applied our models trained on 
412 HepG2 DHS data. In contrast to earlier results, model performance differs across models 
413 trained using different GC content matching of the genomic background datasets. Models 
414 trained on sequences that varied most from positive sequences regarding their GC content, 
415 performed best (S13 Figure). Therefore, this less stringent matching parameter was 
416 considered here. Next, the shuffling parameter k was evaluated on enhancer activity prediction 
417 for HepG2 models. Here, the extremes, i.e. models trained on highly shuffled sequences (k=1) 
418 or models with low shuffling (k=7) performed worse for the different model types (S14 Figure). 
419 Best performance is achieved for k={3,4} for gkm-SVM, while for the CNN architectures 
420 k={5,3} perform best. Based on these results, the parameter k=3 was chosen.

421
422 Fig 3: HepG2 and K562 model performance for enhancer activity prediction. Models were 
423 trained either on DHS sequences active in HepG2 or K562 cells (positive) and negative 
424 sequences, where sets are either composed of genomic background (tGC=0.1) or shuffled 
425 (k=3) sequences. Models were tested on enhancer sequence activity readouts previously 
426 published for HepG2 cells [23]. Spearman rank correlation of predicted scores and log2 
427 RNA/DNA ratios was used to evaluate model performance. For 2conv2norm and 
428 4conv2pool4norm bars represent the median of multiple model training runs (n=10) while error 
429 bars represent 1st and 3rd quartiles. The dashed black line (Spearman’s ρ=0.276) represents 
430 a reference value which was previously achieved [23].

431 Our HepG2 models did not achieve the performance of a Spearman’s ρ of 0.28 reported before 
432 [23] (see Fig 3). Therefore, other cell-type models were also tested and A549, HeLa-S3 and 
433 K562 models achieved or exceeded the reference performance (Fig 3 incl. HepG2 and K562, 
434 further cell-types see S15 Figure). Compared to others, the HepG2 training set is smaller 
435 (123k compared to 281k HeLa-S3, 222k K562 and 192k A549, S1 Table). To investigate 
436 whether the size of the training dataset influences model performance, new models were 
437 trained on datasets of varying size (50k to 600k), by sampling sequences from all cell lines 
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438 (see Methods). We note that sampling across cell lines dilutes a tissue-specific signal and we 
439 expect that correlation with experimental readouts might be reduced. 

440 Again, we evaluated the correlation of prediction scores and activity readouts. Results are 
441 presented in Fig 4. Model performance of gkm-SVM classifier seems very stable across 
442 training set sizes and repeated training runs, but due to runtime we did not test more than 
443 350,000 positive training examples. Using genomic background sequences clearly 
444 outperformed shuffled sequences. For CNNs, the more complex architecture 
445 (4conv2pool4norm) outperformed 2conv2norm on both negative sets. To achieve or exceed 
446 the gkm-SVM performance, 4conv2pool4norm required larger training datasets (6-7x more 
447 data). Looking across 10 trained CNN models per data set, we see considerable variance in 
448 model performance, suggesting high stochasticity in training, likely originating from non-
449 optimal parameters (e.g. batch size, learning rate, convergence). Gkm-SVM (0.29) and 
450 4conv2pool4norm models (0.30) both exceeded the reference Spearman’s ρ value (0.28, Fig 
451 4), despite effects of pooling training datasets across cell lines. 
452
453 Fig 4: Model performance in enhancer activity prediction for different training set sizes. 
454 Models were trained on datasets of different sizes composed of DHS sequences (positive) 
455 created by sampling of multiple DHS sets of different cell types, and corresponding negative 
456 sequence sets, composed of genomic background (tGC=0.1) (on the left) or shuffled (k=3) 
457 sequences (on the right). Classifiers are represented with different colors. Due to long training 
458 durations, gkm-SVM models were trained up to a maximum size of 350k positive samples. 
459 Models were tested on enhancer sequences active in HepG2 cells from which activity readouts 
460 were previously published [23]. Spearman rank correlation of predicted scores and log2 
461 RNA/DNA ratios was used to evaluate model performance. Dots represent median values of 
462 repeated model training (n=10) while ribbons represent 1st and 3rd quartiles. The dashed black 
463 line (Spearman’s ρ=0.276) represents a reference value achieved previously [23].

464 Discussion
465 We found that CNN models and gkm-SVM models are equally suited for active DHS 
466 prediction. While similar in performance, CNN models showed larger variance across training 
467 runs and the smaller 2conv2norm network architecture reduced performance on genomic 
468 background sets. These and results of k-mer shuffled negative sets suggest that models 
469 primarily learn representation differences of short motifs. We note that we selected all shuffles 
470 to minimize the 8-mer overlap with the positive sequence template, i.e. sequences that mutate 
471 the overall motif positioning. We could also show that k-mer size is correlated to the number 
472 of known TFBS motifs found in the negative training sequences and that shuffled sequences 
473 have a higher proportion of rare genomic 8-mers than DHS sequences and genomic 
474 background sequences. We suggest that learning rare motifs is the reason that model 
475 performance for active DHS prediction seems highest when using highly shuffled sequences 
476 (k={1..3}) as negative training data, but drops considerably when applying models to validation 
477 sets using genomic background negative sets. Independent of that effect, genomic 
478 background sequences also outperformed shuffles for k higher than 4 for active DHS 
479 prediction.
480 Since shuffled sequences are artificial and lack biological constraints, models based on this 
481 kind of negative set may learn differential sequence motif representations that correspond to 
482 genuine TFBS motifs (both active or inactive in the specific cell-type) and differential motif 
483 representation due to other biological constraints (e.g. underrepresentation of CpG 
484 dinucleotides). While density of binding sites was previously shown to be predictive of 
485 regulatory activity [38,23], quantitative and tissue-specific predictions require the models to 
486 learn motifs directly related to sequence activity (e.g. active TFBS in a certain cell-type). 
487 Consequently, for the two tasks of tissue-specific activity and quantitative activity prediction, 
488 genomic background sequences perform always better than sequence shuffles. In line with 
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489 these observations, models trained on longer preserved k-mers perform better for these tasks, 
490 while still falling behind models using the genomic background. We conclude that with 
491 background genomic sequences as negative training data, model training tends to ignore 
492 patterns present in natural DNA sequences and is able to focus on more subtle differences in 
493 binding site representation. 
494 These patterns are consistent across gkm-SVM and CNN models. On the "complex" tasks, 
495 gkm-SVM models outperformed the CNN models in our setup. While we do not see a clear 
496 difference between CNN architectures for tissue-specific DHS regions, in the quantitative 
497 enhancer activity predictions, the more complex 4conv2pool4norm architecture performs 
498 considerably better. For biologically meaningful results, appropriate training datasets are 
499 always required and we showed on this last task that training set sizes for CNNs need to be 
500 much larger to reach gkm-SVM model performance. The amount of training data is also just 
501 one parameter that influences CNN model performance and there are many other network 
502 and training hyperparameters that can be tuned.
503 The quantitative predictions also revealed an issue with the commonly used software package 
504 for drawing background sequences from the genome. While in the first two tests, the GC 
505 matching parameter did not seem to make a difference, a larger deviation in GC matching 
506 provided a performance increase in quantitative enhancer activity prediction. Concurrently, the 
507 HepG2 enhancer activity readouts show a positive correlation of GC content with enhancer 
508 activity (Spearman ρ of 0.24 with MaxGC feature in the previous publication, [23]). We 
509 therefore looked more rigorously at the GC matching and noticed that even for the most 
510 stringent setting, high GC-content DHS regions are not sufficiently matched with genomic 
511 background sequences (S16 Figure). This causes the models to learn sequence GC content 
512 as predictive of regulatory activity rather than specific sequence patterns. We need to highlight 
513 a necessary balance in sequence matching attempts though. While trying to compensate for 
514 experimental biases in open chromatin data, we might need to acknowledge a real GC signal 
515 due to an enrichment of open chromatin in GC-rich active open chromatin regions, like CpG 
516 island promoters [39].

517 Conclusions
518 Regulatory sequences are essential for all cellular processes as well as cell-type specific 
519 expression in multicellular organisms. A better understanding of the encoding of regulatory 
520 activity in DNA sequences is critical and will help to decipher the complex mechanisms of gene 
521 expression. Supervised machine learning methods like gkm-SVMs and CNNs can identify 
522 associated patterns in DNA sequences [5], however to build the respective models, positive 
523 sets of active regulatory sequences and negative sets of inactive sequences are required. 
524 While proxies for active regions (e.g. DHS open chromatin sites) are widely available for many 
525 cell-types and organisms, negative sets are typically computationally derived from genomic 
526 background sequences or shuffles of the positive sequences. 
527 To assess whether one approach is preferable over the other, we contrasted both in several 
528 experiments. Our results indicate an important influence of negative training data on model 
529 performance. Multiple results show that genomic sequences are the better choice for more 
530 biologically meaningful results and, when using shuffled sequences, the model performance 
531 highly depends on the size of the preserved k-mers. 
532 While k-mer shuffling is computationally efficient and generates synthetic DNA sequences, 
533 selection of genomic background sequences involves matching of certain properties of the 
534 positive training set (e.g. length, GC content, repeat fraction) which makes it computationally 
535 more expensive. With the genomic background method applied here [15], we notice that GC 
536 matching should be improved to closely reproduce the continuous GC density distribution of 
537 the positive set rather than a mean and standard deviation. Further, for both types of negative 
538 sets, it is only assumed that sequences are regulatory inactive. For the shuffles this 
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539 assumption is based on the artificial nature of sequences, for the background it is based on 
540 the excluded overlap with active sequences. While this might generally argue for semi-
541 supervised learning approaches, comprehensive positive sets may somewhat alleviate the 
542 issue for genomic background sets. 
543 Comparing two different machine learning approaches, we show that gkm-SVMs give very 
544 robust and good results, while CNNs performance could be improved by larger training 
545 datasets. This is inline with gkm-SVMs being the simpler machine learning approach (despite 
546 being slower in their current implementation) and we see this as a cautionary reminder to keep 
547 models simple, especially if training data is limited. Apart from the negative training data 
548 analyzed here, network architecture and training parameters of CNNs should be explored and 
549 optimized in future work. The parameter space of CNNs is immense and remains largely 
550 underexplored. Further, multi-task CNN implementations show improved performance [18,40], 
551 potentially also due to the effective increase in training data. However, to focus our analysis 
552 on the effects of the negative set and to keep comparisons to gkm-SVMs possible, we did not 
553 include these here.
554 To conclude, this study provided relevant insights about how regulatory activity is encoded in 
555 DNA sequence, like highlighting the importance of short sequence motifs, and yielded 
556 important insights for training machine learning models. We show that negative training data 
557 is of high importance for model performance and that the best results are obtained when using 
558 sufficiently large and well-matched genomic background datasets. Comparing different 
559 learners, we see that gkm-SVMs are very robust and provide good overall performance. While 
560 CNNs have the potential to outperform these simpler models, they require careful attention to 
561 the selection of adequate architectures and hyperparameter optimization. While not a focus of 
562 this work, models may be further interpreted with respect to their sequence features learned 
563 [41,42], in order to shed more light upon the sequence encoding of gene regulation.
564
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691 Supporting information
692
693 S1 Figure: Estimated loss on the training and validation sets over training epochs for 
694 2conv2norm models. Each model was trained on a HeLa-S3 DHS (positive) training dataset 
695 and a 2-mer shuffled (negative) training dataset using the 2conv2norm classifier. Training was 
696 repeated 10 times and results are represented in different shades of blue while the mean 
697 values are represented in orange. Estimated loss in the training set and the validation set are 
698 displayed on the left and right, respectively.
699
700 S2 Figure: Estimated loss on the training and validation sets over training epochs for 
701 4conv2pool4norm models. Each model was trained on a HeLa-S3 DHS (positive) training 
702 dataset and a 2-mer shuffled (negative) training dataset using the 4conv2pool4norm classifier. 
703 Training was repeated 10 times and results are represented in different shades of blue while 
704 the mean values are represented in orange. Estimated loss in the training set and the 
705 validation set are displayed on the left and right, respectively.
706
707 S3 Figure: Recall values for regulatory sequence prediction on validation sets of 
708 models trained on genomic background sequences. Each model was trained on a DHS 
709 (positive) training dataset and a genomic background (negative) training dataset and tested 
710 on a chromosome 21 hold-out validation set. Recall was calculated as a measure of model 
711 performance. For each classifier three different negative training sets are compared where the 
712 tolerances of differences in GC content composition (tGC) is varied. Each model was trained 
713 on data derived from one cell line. Bars represent the mean of multiple cell lines and technical 
714 replicates (n=7 for gkm-SVM, n=70 for CNNs: 10 replicates per cell line) while error bars 
715 represent the standard deviation.
716
717 S4 Figure: AUPRC values or regulatory sequence prediction on validation sets of 
718 models trained on genomic background sequences. Each model was trained on a DHS 
719 (positive) training dataset and a genomic background (negative) training dataset and tested 
720 on a chromosome 21 hold-out validation set. Area under precision recall curve (AUPRC) was 
721 calculated as a measure of model performance. For each classifier three different negative 
722 training sets are compared where the tolerances of differences in GC content composition 
723 (tGC) is varied. Each model was trained on data derived from one cell line. Bars represent the 
724 mean of multiple cell lines and technical replicates (n=7 for gkm-SVM, n=70 for CNNs: 10 
725 replicates per cell line) while error bars represent the standard deviation.
726
727 S5 Figure: Recall values for regulatory sequence prediction on validation sets of 
728 models trained on shuffled sequences. Each model was trained on a DHS (positive) 
729 training dataset and a k-mer shuffled (negative) training dataset and tested on a chromosome 
730 21 hold-out validation set. Recall was calculated as a measure of model performance. For 
731 each classifier seven different negative training sets are compared where the size of preserved 
732 k-mers during shuffling is varied. Each model was trained on data derived from one cell line. 
733 Bars represent the mean of multiple cell lines and technical replicates (n=7 for gkm-SVM, n=70 
734 for CNNs: 10 replicates per cell line) while error bars represent the standard deviation.
735
736 S6 Figure: AUPRC values for regulatory sequence prediction on validation sets of 
737 models trained on shuffled sequences. Each model was trained on a DHS (positive) 
738 training dataset and a k-mer shuffled (negative) training dataset and tested on a chromosome 
739 21 hold-out validation set. Area under precision recall curve (AUPRC) was calculated as a 
740 measure of model performance. For each classifier seven different negative training sets are 
741 compared where the size of preserved k-mers during shuffling is varied. Each model was 
742 trained on data derived from one cell line. Bars represent the mean of multiple cell lines and 
743 technical replicates (n=7 for gkm-SVM, n=70 for CNNs: 10 replicates per cell line) while error 
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744 bars represent the standard deviation.
745
746 S7 Figure: Number of transcription factor binding motifs in training sequences.
747 Known human transcription factor binding site (TFBS) motifs were matched in training 
748 sequences of different datasets from different cell lines (n=7). Bars represent the mean value, 
749 error bars the standard deviation.
750
751 S8 Figure: Recall values for regulatory sequence prediction. Models were trained on 
752 sequences of DHS regions (positive) with corresponding sets of negative sequences and 
753 tested on a chromosome 8 hold-out test set. For each classifier two different negative training 
754 sets are compared; sequences were either chosen from genomic background (tGC=0.02) or 
755 generated by shuffling positive sequences and preserving k-mer counts (k=2). Recall was 
756 calculated to compare model performance. Seven models were trained on data derived for 
757 specific cell lines, bars represent the mean and error bars the standard deviations across 
758 models. Pairwise comparisons were performed with Wilcoxon signed-rank tests and asterisks 
759 represent significance levels (*p<0.05, **p<0.01, ***p<0.001).
760
761 S9 Figure: AUPRC values for regulatory sequence prediction on test sets. Each model 
762 was trained on a DHS (positive) training dataset and a set of neutral sequences (negative) 
763 and tested on a chromosome 8 hold-out test set. Recall was calculated as a measure of model 
764 performance. For each classifier two different negative training sets are compared. Sequences 
765 were either chosen from genomic background (tGC=0.02) or generated by shuffling positive 
766 sequences and preserving k-mer counts (k=2). Each model was trained on data derived from 
767 one cell line. Bars represent the mean of multiple cell lines (n=7) while error bars represent 
768 standard deviations. Pairwise comparisons were performed with Wilcoxon signed-rank test 
769 and asterisks represent significance levels (*p<0.05, **p<0.01, ***p<0.001).
770
771 S10 Figure: Genomic frequency of 8-mers in different classes of the test sets and the 
772 first convolutional layer of the CNN models. Exemplary for all cell-types, the figure shows 
773 results for HeLa-S3. Genomic frequency of 8-mers was extracted across all human autosomes 
774 and Z-Score transformed (i.e. mean-centered and standard deviation normalized to one). 
775 Eight-mers absent from the genome were discarded in the plots. Panel (A) shows the genomic 
776 frequency of 8-mers in the test sets split out as DHS sites (black, positive class), genomic 
777 background sequences (red, negative class) and different k-mer shuffles (blue, alternative 
778 negative class). Smaller k-mer shuffles contain more rare genomic 8-mers. Panel (B) shows 
779 the distribution of the genomic 8-mer frequency for the top 100 sequences for each of 128 
780 kernels in the first convolutional layer for 2conv2norm (left) and 4conv2pool4norm (right) 
781 architectures.
782
783 S11 Figure: HeLa-S3 model performance for tissue-specific regulatory sequence 
784 prediction on validation sets of models trained on genomic background sequences. 
785 Models were trained on DHS sequences (positive) active in HeLa-S3 cells and neutral 
786 sequences from genomic background (negative) with varied GC content tolerance (tGC). 
787 Models were tested on DHS sequences specifically active in HeLa-S3 (positive) and DHS 
788 sequences active only in one or multiple other cell lines (A549, HepG2, K562, MCF-7) 
789 (negative). (A) and (B) show ROC and PR curves for 2conv2norm models, (C) and (D) show 
790 ROC and PR curves for 4conv2pool4norm models, (E) and (F) show ROC and PR curves for 
791 gkm-SVM models. Corresponding AUROC and AUPRC values are included.
792
793 S12 Figure: HeLa-S3 model performance for tissue-specific regulatory sequence 
794 prediction on validation sets of models trained on shuffled sequences. Models were 
795 trained on DHS sequences (positive) active in HeLa-S3 cells and neutral sequences from 
796 genomic background (negative) with varied size of preserved k-mers. Models were tested on 
797 DHS sequences specifically active in HeLa-S3 (positive) and DHS sequences active only in 
798 one or multiple other cell lines (A549, HepG2, K562, MCF-7) (negative). (A) and (B) show 
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799 ROC and PR curves for 2conv2norm models, (C) and (D) show ROC and PR curves for 
800 4conv2pool4norm models, (E) and (F) show ROC and PR curves for gkm-SVM models. 
801 Corresponding AUROC and AUPRC values are included.
802
803 S13 Figure: HepG2 model performance for enhancer activity prediction of models 
804 trained on genomic background sequences. Models were trained on HepG2 DHS 
805 sequences (positive) and genomic background sequences (negative), where different 
806 genomic background sets result from a variation of the GC content tolerance (tGC). Models 
807 were tested on enhancer activity readouts in HepG2 cells [23]. Spearman rank correlation of 
808 predicted scores and log2 RNA/DNA ratios was used to evaluate model performance.
809
810 S14 Figure: HepG2 model performance for enhancer activity prediction of models 
811 trained on shuffled sequences. Models were trained on HepG2 DHS sequences (positive) 
812 and genomic background sequences (negative), where different genomic background sets 
813 result from a variation of the size of preserved k-mers. Models were tested on enhancer activity 
814 readouts in HepG2 cells [23]. Spearman rank correlation of predicted scores and log2 
815 RNA/DNA ratios was used to evaluate model performance.
816
817 S15 Figure: Model performance for enhancer activity prediction of A549, HeLa-S3 and 
818 MCF-7 models. Models were trained either on DHS sequences active in A549, HeLa-S3 or 
819 MCF-7 cells (positive) and neutral sequences (negative), where different negative sets are 
820 composed of genomic background (tGC=0.1) or shuffled (k=3) sequences. Models were tested 
821 on activity readouts of enhancer sequences in HepG2 cells [23]. Spearman rank correlation 
822 of predicted scores and log2 RNA/DNA ratios was used to evaluate model performance. For 
823 2conv2norm and 4conv2pool4norm bars represent the median of multiple replicates (n=10) 
824 while error bars represent 1st and 3rd quartiles. The dashed black line represents a reference 
825 value (Spearman’s ρ=0.276) achieved previously [23].
826
827 S16 Figure: Distribution of GC content in sequences of HepG2 training datasets. The 
828 distribution of the sequences’ GC contents in a dataset of active DHS regions in HepG2, three 
829 corresponding genomic background datasets with varied GC content tolerance (tGC) and a set 
830 of random 300 bp sequences from the genome is shown.
831
832 S1 Table: Overview of DNase-seq datasets. The number of DHS sequences is given after 
833 merging replicates and exclusion of alternative haplotypes, unlocalized genomic contigs and 
834 sequences containing non-ATCG bases. The datasets were split up into training, validation 
835 (chromosome 21) and test (chromosome 8) sets. The number of samples in these sets are 
836 given in the respective columns. Experiment and Replicate IDs are referring to ENCODE 
837 accessions[8].
838
839 S2 Table: Overview of tissue-specific validation and test sets. Tissue-specific positive 
840 samples are DHS sequences of one cell line not overlapping with DHS sequences of the other 
841 cell lines. In contrast, negative samples are DHS sequences of other cell lines not overlapping 
842 with the first cell line. For A549, one dataset was chosen (B, named according to S1 Table). 
843 For MCF-7 one dataset was chosen (B, named according to S1 Table). The number of DHS 
844 sequences is given after exclusion of alternative haplotypes, unlocalized genomic contigs and 
845 sequences containing non-ATCG bases. The validation and test sets contain sequences 
846 located on chromosome 21 and 8, respectively.
847
848 S3 Table: Layer properties of 4conv2pool4norm network. The column named ‘Size’ 
849 provides the convolutional kernel size, the max-pooling window size, the relative dropout size 
850 and the dense layer size depending on information given in column ‘Layer type’.
851
852 S4 Table: Layer properties of 2conv2norm network. The column named ‘Size’ provides the 
853 convolutional kernel size, the max-pooling window size, the relative dropout size and the 
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854 dense layer size depending on information given in column ‘Layer type’.
855
856 S5 Table: AUROC values for tissue-specific regulatory sequence prediction on 
857 validation sets. Models were trained on DHS sequences (positive) with corresponding sets 
858 of negative sequences and tested on a set of tissue-specific chromosome 21 test set. For 
859 each classifier two different negative training sets are compared; sequences were either 
860 chosen from genomic background (tGC=0.1) or generated by shuffling positive sequences and 
861 preserving k-mer counts (k=7). AUROC value was calculated to compare model performance
862
863 S6 Table: AUPRC values for tissue-specific regulatory sequence prediction on 
864 validation sets. Models were trained on DHS sequences (positive) with corresponding sets 
865 of negative sequences and tested on a set of tissue-specific chromosome 21 test set. For 
866 each classifier two different negative training sets are compared; sequences were either 
867 chosen from genomic background (tGC=0.1) or generated by shuffling positive sequences and 
868 preserving k-mer counts (k=7). AUPRC value was calculated to compare model performance. 
869
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