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Abstract

The default-mode network (DMN) has been primarily associated with internally-directed
and self-relevant cognition. This perspective is expanding to recognise its importance in
executive behaviours like switching. We investigated the effect different task-switching
manipulations have on DMN activation in two studies with novel fMRI paradigms. In the
first study, the paradigm manipulated visual discriminability, visuo-perceptual distance
and sequential predictability during switching. Increased posterior cingulate/precuneus
(PCC/PrCC) activity was evident during switching; critically, this was strongest when
the occurrence of the switch was predictable. In the second study, we sought to replicate
and further investigate this switch-related effect with a fully factorial design manipulating
sequential, spatial and visual-feature predictability. Whole-brain analysis again identified
a PCC/PrCC-centred cluster that was more active for sequentially predictable versus
unpredictable switches, but not for the other predictability dimensions. We propose
PCC/PrCC DMN subregions may play a prominent executive role in mapping the
sequential structure of complex tasks.

Introduction 1

One of the most consistently replicated findings in the neuroimaging literature is the pres- 2

ence of what is referred to as the default-mode network (DMN), comprising the posterior 3

cingulate cortex /precuneus (PCC/PrCC), ventromedial prefrontal cortex (vmPFC), 4

anteromedial prefrontal cortex (amPFC), inferior parietal lobule (iPL), temporoparietal 5

junction (TPJ), lateral temporal cortex (LTC), temporal pole (TempP), dorsomedial 6

prefrontal cortex (dmPFC), the hippocampal formation (HF) and parahippocampal 7

cortex (PHC) [2, 10]. Most commonly, the DMN is evident during resting-state func- 8

tional magnetic resonance imaging (rsfMRI) as a network comprising brain regions with 9

heightened inter-connectivity [48]. Early evidence from event-related functional MRI 10

(fMRI) studies strongly supported a “task negative” activation profile for the DMN, 11
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with the popular interpretation being that this reflected a role in internally generated 12

cognition and disengagement from external demands. More specifically, numerous ex- 13

periments reported deactivation of the DMN during task relative to rest, and the level 14

of deactivation has been observed to scale with the general cognitive difficulty of the 15

task [26,42, 43]. Further evidence has come from studies where higher DMN correlation 16

was observed during rest [22, 49]. Furthermore, DMN activity has been reported to 17

increase during tasks that require self-referential processes [2, 4, 13,57,64]. 18

The last few years have seen a diversification in perspectives on the functional role 19

of the DMN in cognition [11, 40]. For example, it has been reported that the DMN 20

reconfigures its internal functional connectivity state when a person is engaged in a 21

task [60–62], and modulates its activity according to experimental demands [37,38, 56]. 22

Furthermore, as a task becomes automated through practice (e.g. when applying 23

learned rules), there is a concomitant increase in event-related DMN activity [27, 28, 24

63]. Collectively, these findings indicate a more active role for the DMN during task 25

performance than was commonly believed, including in learning and executive function. 26

Most relevantly, a fundamental aspect of human cognitive behaviour is the ability to 27

switch attention between different tasks [18,44]. Switching is considered to be a amongst 28

the most cognitively taxing of tasks, being associated with substantially lengthened 29

behavioural response times (MONSELL). Therefore, it is particualrly notable that 30

activation of some, but not all, sub-regions of the DMN has been reported to increase 31

when switches are performed between perceptually distinct tasks [17,54]. Comparably, 32

heightened DMN activation has been observed during Instruction Based Learning (IBL), 33

when attention is initially oriented towards a new instruction [27] and the rule has to 34

be effortfully mapped into working memory. Notably, in both cases, DMN sub-regions 35

coactivate alongside task positive networks that they characteristically anti-correlate 36

with [11, 22, 23]. More recent evidence has suggested that the DMN and the multiple 37

demand cortex (MDC), which spans frontal and parietal regions that commonly are 38

activated during challenging cognitive tasks, serve complementary roles in tasks where 39

multi-step decision making takes place [66]. How this fractionation of the DMN and its 40

interaction with task-positive networks relates to the distinct executive sub-processes of 41

switching, remains to be determined. 42

Here, we examine switching-related brain activity at a fine grain using two novel IBL 43

tasks, which were deployed in separate studies. In the first study (N= 16), we sought to 44

explore the role of the DMN in switching by manipulating the reconfiguration demands 45

along three broad dimensions: (1) the visual-perceptual distance of the switches, (2) 46

the discriminability of the stimuli in the switched to rule set and (3) the predictability 47

of when switches would occur within the sequence of task events. In the second study 48

(N= 16), we examined the relationship between predictability of switching and DMN 49

activity in greater detail. Specifically, the original task was modified to produce a fully 50

factorial design with three predictability dimensions: (1) sequential, when the switch 51

events occur, (2) spatial, where the focus of attention will switch to, and (3) perceptual, 52

what visual dimension the focus of attention will switch to. We tested whether DMN 53

sub-regions were most active when switches were predictable in general for all three 54

dimensions, or whether that relationship was specific to the sequential domain. 55

Results 56

0.1 Behavioural results 57

In brief, the behavioural paradigms consisted of blocks that were designed to manipulate 58

different dimensions of switching demand. Each block started with an instruction slide 59

showing the stimulus-response mapping rules that participants needed to apply, followed 60
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by trials where participants needed to match centrally presented probes to the flankers 61

according to the current rule (Figure 1). Trials where a new rule was presented are 62

referred to as Switch trials, and trials where the same rule was applied are referred to as 63

Stay trials (more detailed explanation is provided in the Methods section). 64

0.1.1 Study 1 65

In study 1 we examined the cost of the switch conditions on performance accuracy 66

and reaction time by dividing the trials into Switch and Stay. We computed the 67

accuracy during each of the task blocks, which were designed to vary perceptual distance, 68

discriminability of the probes and sequential predictability of the switches (detailed 69

in Figure 1D). These values were compared using a repeated-measures ANOVA with 70

factors Block and Trial (Switch or Stay). As expected, the mean accuracy level was 71

significantly above chance (p ¡ 0.0001 t-test) (Figure 2A). There was a significant effect 72

of Block [F(8,270) = 2.9.954, p = 0.00349], but not Trial [F(1,270) = 1.117, p = 0.291]. 73

There was no significant interaction effect [F(8,270) = 0.355, p = 0.943]. The significant 74

effect of Block was the result of differences in accuracy between blocks with different 75

levels of target discriminability and visual-perceptual distance of the switches (p ¡ 0.05, 76

paired t-test with Tukey correction). When mean reaction times were analysed using a 77

model of the same design, we observed a main effect of Trial [F(1,270) = 106.906, p ¡ 78

0.0001], such that Switch trials were significantly slower than Stay trials across all nine 79

blocks (Figure 2B). There was no main effect of Block [F(8,270) = 1.497, p = 0.158] and 80

no significant interaction [F(8,270) = 0.175, p = 0.994]. Therefore, the first paradigm 81

achieved the expected switch cost in reaction times, where switch trials were consistently 82

slower than stay trials, and participants were able to perform the requirements of the 83

task with accuracy that was above chance. 84

0.1.2 Study 2 85

The task design in Study 2 was similar to Study 1; however, the stimuli (Figure 10) and 86

the blocks (Figure 1E) were organised in a fully factorial design, capturing all possible 87

combinations of three predictability dimensions. We computed the accuracy during 88

each task block (Figure 1E) for Switch and Stay trials, and compared them using a 89

repeated measures ANOVA with factors for Trial (Switch or Stay) and Predictability 90

(Sequential, Perceptual or Spatial). Accuracy was again significantly above chance (p 91

¡ 0.0001 t-test) (Figure 2C). There was a significant main effect of Trial [F(1,240) = 92

83.072, p ¡ 0.001], whereby participants were less accurate in Switch trials relative to 93

Stay trials across all conditions (p ¡ 0.001 t-test with Tukey correction). There was 94

also a significant main effect of Spatial dimension [F(1,240) = 9.685, p = 0.00208], 95

but not the other two dimensions [Sequential F(1,240) = 1.508, p = 0.220; Perceptual 96

F(1,240) = 1.434, p = 0.232]. There were significant interactions between Trial and 97

Spatial, and Trial Type, Sequential and Perceptual factors. Assessment of reaction 98

times across the task blocks for switch and stay trials was performed with a 2x2x2x2 99

repeated-measures ANOVA for factors capturing Trial (Switch vs Stay) and each of the 100

three predictability dimensions. As intended, there was a significant main effect for the 101

type of trial [F(1,240) = 180.637, p ¡ 0.0001], with the responses for Switch trials being 102

slower than for Stay trials (p ¡ 0.0001) (Figure 2D). There were no significant main 103

effects for the predictability dimensions or the interactions between them. Therefore, 104

the task produced the expected effects on reaction times whilst maintaining a suitable 105

level of accuracy. 106
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Figure 1. Experimental protocol and cognitive paradigm. (A) For each study,
16 participants performed 3 runs in the fMRI scanner. Each run consisted of 9 (Study
1) or 8 (Study 2) blocks of the corresponding task, where each had 20 (Study 1) or 30
(Study 2) trials of which 5 (Study 1) or 7 (Study 2) were switch trials. (B - C) On each
trial, the participant was first presented with two flankers. They then performed a simple
binary-discrimination, where they matched centrally presented probe images to one of
the flanker stimuli according to the current rule. (B) Study 1. Three aspects of switching
were manipulated. (i) The similarity of pre to post switch flanker stimuli (switch distance,
SD). (ii) The similarity of the flankers to each other (switch resolution, DC) and (iii)
the regularity of when the switch would occur (sequential predictability, Sp). A warning
signal (two red rectangles and a red fixation cross) was presented at the start of the task
for 500ms, followed by a set of flanker images (4s). After rule presentation, the flankers
were replaced by a probe image. The participants had 1500ms to match the probe to
the most similar flanker image. (C) Study 2. Stimuli predictability was modulated
along three dimensions. (i) The frequency of occurrence of switch events (sequential
predictability, Se), (ii) the category of the incoming stimuli (perceptual predictability,
P) and (iii) the location of the new relevant flanker images (spatial predictability, Sp).
In study two, four pairs of flanker images were presented (4s), with the pair that was
currently relevant being indicated by the row that the red fixation cross was displayed
in. After rule presentation, the relevant flankers were removed and a probe image was
displayed where the fixation cross had been. Participants had 1500ms to match the
probe the location of the location where the most similar previously flanker had been.
In both studies there were two types of trials: Switch trials and non-switch / Stay trials.
During switch trials, a new set of flankers was shown to the participants preceded by a
warning signal (two red rectangles and a red fixation cross). During non-switch trials
a red fixation cross warned the appearance of a new target image (the non-relevant
flankers stayed on the screen in Study 2 (C)). The face stimuli are replaced here by
black squares to avoid potentially identifying information. (D - E) The combinations of
dimensional levels that were used to define the parameters of each task block in Study 1
(D) and Study 2 (E), with the corresponding colour schemes represented to the right.
The order of the blocks was randomised for every run and participant.
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Figure 2. Behavioural results. In Study 1, (A) there were no block or trial effects
in accuracy (p ≥ 0.05). (B) For all nine blocks, switch trials were slower than stay trials
(p ≤ 0.0001). In Study 2, (C) accuracy was lower for switch trials (p ≤ 0.001), and (D)
reaction times were slower for switch trials compared with stay trials (p ≤ 0.0001). The
coloured spheres in the figure legend refer to the dimensional combinations. Individual
participants are indicated by the dots within the plot (n = 16). The top and bottom
edges of the boxes represent the 25th and 75th percentiles, with the median being the
black line. Extension of the whiskers limits outliers. Significance is indicated by stars
(** p < 0.001; *** p < 0.0001), corrected for multiple comparisons with Tukey.

0.2 Imaging analysis 107

0.2.1 Posterior DMN areas recruited during switch events 108

0.2.2 Study 1 109

Whole-brain voxelwise analysis was conducted to identify clusters of voxels that were 110

active during task blocks relative to rest. 12 clusters were identified in Study 1 for 111

the contrast “Task block > Rest” (Figure 3A left). These were located in the inferior 112

and superior occipital cortices, bilateral frontal pole, superior parietal lobule, pre- and 113

post-central gyri and basal ganglia (peak activation coordinates can be found in Table 114

1). No DMN regions were observed as active in this contrast. 115

Conversely, a more widespread activation pattern was observed for task-switching 116

events (“Switch ¿ Rest” contrast, Figure 3A right, Table 2), with a large cluster spanning 117

the occipito-temporal cortex. Notably, the PCC/PrCC region of the DMN was active, 118

but other DMN sub-regions were not. Peak areas outside the DMN included areas of 119

what is often referred to as Multiple Demand Cortex (MDC), comprising the superior 120

and middle frontal gyri and basal ganglia in the left hemisphere, and the right frontal 121

pole, and the supracalcarine cortex and lateral occipital cortex. 122

0.2.3 Study 2 123

In Study 2 the contrast of “Task block ¿ Rest” produced similar results. Specifically, 124

we identified 9 clusters (Figure 3B left) within inferior and superior occipital cortices, 125
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left-lateralised frontal pole, and pre- and post-central gyri (peak activation coordinates 126

can be found in Table 3). As seen in Study 1, the contrast “Switch ¿ Rest” rendered a 127

broader activation pattern (Figure 3B right, Table 4). The bulk of the activation was 128

within the occipital and temporal regions, with voxels for the DMN bilaterally in the 129

PCC/PrCC. In this occasion other DMN areas also showed activity, specifically the 130

amPFC, PHC and iPL. Outside the DMN, peak activation was located in sub-regions of 131

the MDC, with bilateral clusters around the lateral orbitofrontal cortices (OFC), the 132

lingual gyri and superior lateral occipital cortices. Significant right lateralised activity 133

was also observed within the basal ganglia. 134

Figure 3. Whole-brain activation during switching task. Activation maps for
the contrasts “Task block ¿ Rest” and “Switch > Rest” for Study 1 (A) and Study 2
(B). Results from the voxelwise analysis were cluster corrected (z > 3.1, p < 0.05) and
overlaid in a MNI152 brain template. Peak activation coordinates can be found in Table
1, Table 2, Table 3 and Table 4.
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0.2.4 Preferential activation of the PCC/PrCC to temporally predictable 135

task switches 136

0.2.5 Study 1 137

Anatomically distinct regions of interest (ROIs) belonging to the DMN were identified 138

from the “Switch ¿ Rest” activation map. Mean parameter estimates were calculated 139

across all voxels separately for each ROI and each switch condition. These values were 140

examined at the group level using a one-way repeated measures ANOVA for the factor 141

Block. ROI coordinates are in Table 5. 142

A statistically robust main effect of Block was evident in the left hemisphere for 143

ROIs in the PCC and PrCC [Figure 4 [PCC F(8,135) = 3.377, p = 0.00146, PrCC 144

F(8,135) = 2.259, p = 0.0269], with no significant effects in the right hemisphere [PCC 145

F(8,135) = 1.844, p = 0.0741, PrCC F(8,135) = 1.315, p = 0.241]. Post hoc tests 146

showed significant block-wise differences between blocks 1 and 5 vs block 6 (p < 0.05, 147

paired t-test corrected with Tukey) and borderline-significant differences between blocks 148

3 and 6 (p = 0.0643), 4 and 5 (p = 0.0538) and 6 and 7 (p = 0.0626). These blocks 149

were characterised as having different predictability levels (illustrated by the coloured 150

figure legend in Figure 4), where odd blocks had highly predictable switches and even 151

blocks had sequentially unpredictable switches. These results suggest that the activation 152

pattern in both locations was influenced by the level of switch predictability, being 153

higher for more predictable switches. 154

Figure 4. Posterior cingulate/precuneus cortex activation during the
switching-task in Study 1. Peak voxel parameter estimates during switch events
across the nine task blocks in the posterior cingulate cortex (PCC) and precuneus (PrCC)
relative to rest. The coloured spheres in the figure legend refer to the dimensional com-
binations. Individual participants are indicated by the dots within the plot (n = 16).
The top and bottom edges of the boxes represent the 25th and 75th percentiles, with
the median being the black line. Extension of the whiskers limits outliers. Significance
is indicated by stars (* p < 0.05; ** p < 0.001; *** p < 0.0001), corrected for multiple
comparisons with Tukey. The ROIs are overlaid in a MNI152 brain template an and the
coordinates can be found in Table 6.
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0.2.6 Study 2 155

In Study 2, we again defined ROIs that belonged to the DMN from the “Switch > 156

Rest” activation map. We extracted mean parameter estimates for each switch condition 157

for each ROI (Table 6 and examined the differences at the group level using a full 158

factorial 2x2x2 repeated measures ANOVA with the 3 predictability dimensions as 159

factors (Sequential, Perceptual and Spatial). 160

Confirming the findings from Study 1, there was a significant main effect of Sequential 161

predictability for a bilateral PCC/PrCC set of ROIs [Figure 5, left PCC F(1,120) = 162

11.282, p = 0.00105, right PCC F(1,120) = 9.246, p = 0.0029; left PrCC F(1,120) 163

= 19.656, p < 0.0001, right PrCC F(1,120) = 10.333, p = 0.00168]. Paired t-tests 164

confirmed higher activation for sequentially predictable switches relative to sequentially 165

unpredictable ones (all p < 0.0001 Tukey corrected). The main effects and interactions 166

for the other predictability dimensions were non significant. 167

Figure 5. Posterior cingulate/precuneus cortex activation during the
switching-task in Study 2. Peak voxel parameter estimates during switch events
across the eight task blocks in the posterior cingulate cortex (PCC) and precuneus (PrCC)
relative to rest. The coloured spheres in the figure legend refer to the dimensional com-
binations. Individual participants are indicated by the dots within the plot (n = 16).
The top and bottom edges of the boxes represent the 25th and 75th percentiles, with
the median being the black line. Extension of the whiskers limits outliers. Significance
is indicated by stars (*** p < 0.0001), corrected for multiple comparisons with Tukey.
The ROIs are overlaid in a MNI152 brain template and the coordinates can be found in
Table 6.

These effects were not changed by placing ROIs in the alternative peak coordinates 168

defined from the “Switch > Rest” contrast in Study 2, with main effects found solely 169

for the Sequential predictability factor [Figure 6, left PCC - 2 F(1,120) = 8.793, p = 170

0.00365, right PCC - 2 F(1,120) = 21.186, p < 0.0001; left PrCC - 2 F(1,120) = 10.641, 171

p = 0.00144, right PrCC - 2 F(1,120) = 7.571, p = 0.00685]. Post hoc tests showed 172

higher activation related to sequentially predictable switches than unpredictable switches 173

(all p < 0.0001, pair t-test Tukey corrected). Thus, all predictability effects related to 174

the sequential manipulation. 175

To investigate in more detail whether this activation pattern was present in other 176
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Figure 6. Activation during switch events of a second set of posterior cin-
gulate/precuneus cortex ROIs in Study 2. Activation during switch events of a
second set of posterior cingulate/precuneus cortex ROIs in Study 2. Peak voxel parame-
ter estimates during switch events across the eight task blocks in the posterior cingulate
cortex (PCC) and precuneus (PrCC) relative to rest. The coloured spheres in the figure
legend refer to the dimensional combinations. Individual participants are indicated by
the dots within the plot (n = 16). The top and bottom edges of the boxes represent
the 25th and 75th percentiles, with the median being the black line. Extension of the
whiskers limits outliers. Significance is indicated by stars (*** p < 0.0001), corrected for
multiple comparisons with Tukey. The ROIs are overlaid in a MNI152 brain template
and the coordinates can be found in Table 6.

DMN areas, bilateral ROIs, identified from the “Switch > Rest” contrast of Study 2, in 177

the amPFC, iPL and PHC were examined (Figure 7). No significant main effects were 178

found for the amPFC and the iPL. For the PHC, there was a main effect of Sequential 179

predictability [left hemisphere F(1,120) = 5.418, p = 0.0216; right hemisphere F(1,120) 180

= 4.598, p = 0.034]. As with the PCC/PrCC ROIs, t-tests showed lower activity when 181

switches followed an unpredictable temporal sequence relative to when the sequence was 182

highly predictable (left PCH p = 0.0216, right PCH p = 0.0341 corrected with Tukey). 183

Thus, the manipulation of the sequential structure of the switch events did not only 184

affect the activation of the PCC/PrCC, but also another posterior region of the DMN. 185

0.2.7 Sequential predictability, but not perceptual and spatial predictabil- 186

ity, modulate posterior DMN acitivity 187

To support our observations regarding the selective sensitivity of the posterior DMN 188

to sequentially predictable switches we performed an additional analysis in Study 2. 189

A group-level model was constructed to anatomically segregate the effects of each 190

predictability dimension during switch events (whole-brain analysis, cluster activation 191

threshold of z > 3.1 and significance of p < 0.05, Gaussian-Random Field corrected). For 192

the sequentially predictable switches, two significant activation clusters were identified 193

for the contrast “Sequentially predictable > Unpredictable”. The peak activation areas 194

were localised to the right PCC and left PrCC (Figure 8A), in accordance with the 195

results from ROI analysis. In contrast, neither the perceptual predictability nor the 196
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Figure 7. DMN activation during the switching-task in Study 2. Peak voxel
parameter estimates during switch events across the eight task blocks in the anteromedial
prefrontal cortex (amPFC), inferior parietal lobule (iPL) and parahippocampal cortex
(PHC) relative to rest. The coloured spheres in the figure legend refer to the dimensional
combinations. Individual participants are indicated by the dots within the plot (n = 16).
The top and bottom edges of the boxes represent the 25th and 75th percentiles, with
the median being the black line. Extension of the whiskers limits outliers. Significance
is indicated by stars (* p < 0.05), corrected for multiple comparisons with Tukey. The
ROIs are overlaid in a MNI152 brain template and the coordinates can be found in Table
6.

spatial predictability (Figure 8B) of the switches showed any significant clusters of brain 197

activation at the corrected threshold. 198

To further investigate if there were sub-threshold effects of perceptual and spatial 199

predictability, we performed ROI analysis utilising four active clusters (voxel-activation 200

threshold of z > 3.1) identified in the “Sequentially predictable > Unpredictable” contrast 201

as masks. No significant differences in activation were detected for the contrasts 202

“Perceptually predictable > Unpredictable” and “Spatially predictable > Unpredictable” 203

in any of the four clusters (Figure 9). 204

10/26

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.29.223180doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.29.223180
http://creativecommons.org/licenses/by-nc/4.0/


Figure 8. Brain activation during the switching task. Activation maps for the
contrasts (A) “Sequentially predictable > Unpredictable”, (B) “Perceptually predictable
> Unpredictable” and “Spatially predictable > Unpredictable”. Results from the
voxelwise analysis were cluster corrected (z > 3.1, p < 0.05) and overlaid in a MNI152
brain template. Peak activation coordinates can be found in Table 7.

Discussion 205

We observed a pronounced sensitivity of the posterior DMN to task-switching events, 206

particularly those that follow a sequentially-predictable pattern. This increase in switch- 207

related activation was not present in response to spatially predictable events or those that 208

involved switching to predictable visual dimensions, but it was reproducible across two 209

different tasks. Importantly, this anatomically focused activation was not a characteristic 210

of switching in general, which recruited a much broader distributed set of brain regions. 211

The preferential activation of a PCC/PrCC cluster with sequentially predictable 212

switches highlights the complexity of cognitive control processes, and has implications for 213

our understanding of the functional role of DMN sub-regions in cognition [11,40]. Imaging 214

studies have reported the involvement of the PCC/PrCC when temporal regularities occur 215

during experimental tasks [1, 12] and in instances when actions become repetitive [63]. 216

Our results compliment those and provide an additional facet by showing transient 217

heightened activation was stronger when changes in task rules followed a predictable 218

sequence of events. One possible interpretation is that the PCC/PrCC may code a 219

broader task-representation that does not only include the current set of task rules, 220

but also when this task-set is going to change across time. This would fit with [5]’s 221

account of the proactive brain which states that the brain is able to associate memory 222

representations with the current surrounding and anticipate context-specific aspects of 223

the environment based on predictions that are drawn from these associations. 224

It could alternatively be argued that the results observed in these two studies were 225

solely caused by the requirement to retrieve information from memory, as reported in 226

previous studies [36,45,51,56]. It is not clear though why predictable switches would 227

involve greater memory retrieval than unpredictable switches. Furthermore, even if this 228

were the case, we would still expect to see significant DMN activation when contrasting 229

the whole task block relative to rest, because both trial types (switch and stay) required 230

the processing of memorised information. The lack of such activation pattern suggests the 231
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Figure 9. Mean ROI activation across the three predictability dimensions.
The group activation map from the contrast “Sequentially predictable > Unpredictable”
was used to create brain masks for each of the active ROIs (z > 3.1, >10 voxels). The
resulting masks are overlaid in a MNI152 brain template. Peak activation coordinates
can be found in Table 8. Mean peak voxel parameter estimates from the four clusters
for the contrasts “Sequentially predictable > Unpredictable”, “Perceptually predictable
> Unpredictable” and “Spatially predictable > Unpredictable” (cluster corrected at
z > 3.1, p < 0.05). Individual participants are indicated by the coloured dots within
the plot (n = 16). The top and bottom edges of the boxes represent the 25th and
75th percentiles, with the median being the bold line. Extension of the whiskers limits
outliers. Significance after Bonferroni correction is indicated by stars (* p < 0.05; *** p
< 0.0001).

effect was due to the switch in rules. Although this had a memory component, it was the 232

presence of a task switch that was linked with the signal elevation. Indeed, there is recent 233

evidence implicating the DMN in task-switching [17,54]. More specifically, those two 234

studies demonstrated a fractionation in DMN when large perceptual switches occurred in 235

the task, with the activation of the PCC/PrCC, PHC, vmPFC and amPFC co-occurring 236

with that sub-regions of the multiple-demand network. Network re-configuration has also 237

been observed in IBL, where presentation of new rules results in global signal elevation 238

across distributed brain regions including the DMN [27, 55], and during a multi-step 239
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task with the initiation of a new episode [66]. This may be indicative of an increase in 240

resource-allocation in response to increase cognitive demands. 241

Regarding the posterior DMN, the relevance of the PCC/PrCC in detecting rule 242

switches accords with results from animal studies of cognitive-set shifting [47]. Single- 243

neuron recordings from these regions in rhesus macaques have shown suppression of 244

activity when they had to switch tasks guided by an explicit signal [31], as well as when 245

the animals were engaged on a task [30]. Conversely, when the animals had to perform 246

a dynamic foraging task without exogenous cues, increases in neuronal firing predicted 247

behavioural shifts [46]. Internally guided and predictable switches may be considered 248

analogous, as both afford the opportunity to internally prepare for the switch occurring 249

at a particular point in time. Thus, the results from guided switch condition could 250

be explained by the lack of requirement to conduct internal evaluation, whereas the 251

formation of an internal model to guide or predict task switches may be evident as 252

increased neuronal firing [47]. 253

Taking a more holistic view, theoretical models of the DMN have argued that this 254

distributed network is composed of functionally dissociable anatomical regions [2,3,19,67]. 255

In concert, they are particularly well positioned to monitor and predict environmental 256

changes. There, the PCC/PrCC has been highlighted as sub-serving a change-detection 257

role in an internally-driven manner [5, 20, 47, 58]. The current empirical results are 258

compatible with that perspective, insofar as the participants monitor, learn and predict 259

the sequential structure of switch events. 260

Complementing the views discussed so far, episodic memory research has revealed 261

the role of the hippocampus and the entorhinal cortex in temporal sequence learning 262

(for a comprehensive review see [8]), with the entorhinal cortex encoding the temporal 263

structure of an episode [7]. The HF and the PHC are considered part of the DMN, with 264

distinct connectivity profiles at different stages of memory formation [32]. The PHC has 265

been shown to mediate the connectivity between the PCC and the hippocampus [65]. 266

Event boundaries are crucial variables for sequential memory formation and recall [21,25]. 267

The switch trials of our two tasks can be considered event boundaries, in the way they 268

separate the tasks into different sections, and we found some sequential-predictability 269

effects in the activation of the PHC. Future work could expand on this by investigating 270

whether functional connectivity between the hippocampus, the entorhinal cortex, the 271

PHC and the PCC/PrCC is modulated by sequential task-switches. 272

Additionally, the widespread activation observed in our two studies demonstrates the 273

flexible nature of network membership. We have observed activation in some DMN sub- 274

regions but not others during switching, and this coincides with activation of structures 275

with which the DMN often anti-correlates. Can the label ‘DMN’ be used in these 276

circumstances? It seems more accurate to state that the nodes from which the DMN is 277

comprised can also be members of other functional networks. For the PCC/PrCC this 278

includes a transient conjunction with frontoparietal networks during switching. 279

If that is the case, then functional networks are highly flexible in their topology 280

and membership, where demands imposed by the task at hand modulate the functional 281

architecture of the brain away from the steady state dynamics of the resting state 282

architecture in order to support particular processes. This accords with the notion of a 283

many-to-many functional mapping between cognitive processes and functional regions of 284

the brain [39,55]. 285

A caveat when comparing our results to studies of switching is that the two tasks used 286

here did not use classic task-switching designs. Instead, they built on more contemporary 287

instruction-based learning paradigms [14–16, 27, 28, 50]. These differ insofar as the 288

switching of rules is driven by the presentation of an instruction slide with explicit 289

pictorial depiction of the rules, i.e., as opposed to some cue to switch between alternative 290

mappings that are coded within working memory. This type of design is analogous in 291
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several key ways. The task program must be updated in response to the instruction 292

cue, and the reduction in RT on trials after new rules were presented relative to when 293

rules remained the same is a characteristic feature of switching. It is notable though 294

that the sequentially predictable and unpredictable switches did not differ with respect 295

to the behavioural switch costs; this is useful because it mitigates the possibility that 296

activation differences between those conditions relate in a trivial way to general difficulty 297

or stimulus processing time. A further possible caveat of our study could be the simple 298

experimental design that makes inferences to real-world situations challenging. However, 299

the simple design allowed disentangling the effects of different task dimensions, and 300

it is a necessary first step to better understand the role of the DMN and its different 301

sub-components in task switching. A straightforward next step is to test whether our 302

results hold in a naturalistic switching task (e.g. movie viewing or virtual reality) where 303

real-world relevance could be more directly inferred. Indeed, the ability to learn and 304

predict the sequential structure of events likely has substantial importance in our complex 305

daily lives. Future work may examine whether disruption of the network dynamics 306

associated with sequential predictability is evident in clinical populations who are prone 307

to executive deficits. 308

In summary, we have provided evidence for the engagement of the DMN in two 309

task-switching experiments where the implicit sequential structure of switch events was 310

accompanied by the heightened activity of a PCC/PrCC cluster. These results accord 311

with recent accounts of the DMN playing a pivotal role in executive function by utilising 312

internal event representations. 313

Materials and Methods 314

0.3 Participants 315

For the first part of the study we recruited 16 healthy volunteers (12 females, mean 316

age 24.13 ± 4.30 standard deviation, 1 left handed). 9 of those participants also took 317

part in the second study, which had an additional 7 volunteers to bring the total to 318

16 participants (10 females, mean age 24.47 ± 4.63 standard deviation, 1 left-handed). 319

Participants reported no history of neurological or psychiatric conditions and had normal 320

or corrected vision. The Hammersmith and Queen Charlotte’s Research Ethics committee 321

approved the studies, which conform with the Declaration of Helsinki. All participants 322

gave their written consent after being informed about the nature of the study. 323

0.4 Task switching paradigm 324

The two switching tasks were programmed in [41] using Psychophysics Toolbox extension 325

[9], based on a previously-reported simple instruction-based learning paradigm [27,28]. In 326

short, participants had to perform a binary-discrimination exercise where they matched 327

a target image to one of the previously presented flanker stimuli (rules). The tasks 328

included two types of trials: switch trials and non-switch or stay trials. During switch 329

trials, the flankers to which the participants were discriminating the targets from changed 330

i.e. there was a switch in the task rules. These events were indicated by the presentation 331

of the warning red rectangles and fixation cross in a new location, followed by a new set 332

of flankers. During non-switch trials, the task rules, i.e. the relevant flankers, remained 333

unchanged and only a red fixation cross (500ms) preceded the appearance of a new 334

target image. 335

The task started with a rest period (16s) indicated by the presence of a black fixation 336

cross centred in the middle of a white screen. Next, two red rectangles and a red fixation 337

cross were drawn to the screen for 500ms, which indicated the participants the location 338
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of the coming relevant stimuli. After this, either one (Study 1) or four (Study 2) sets 339

of flanker images were presented for 4s. In Study 2, the red fixation cross remained 340

presented in the screen to direct the participants to the relevant set of flankers. After 341

four seconds, the flankers of interest (i.e. the two images and the fixation cross) were 342

replaced by a target image centred were the fixation cross was. The participants were 343

asked to select to which flanker the target was most similar to as fast as possible. 1500ms 344

were given to the participants to respond with a left or right button press. 345

0.5 Task parameters and experiment space 346

The set of stimuli, created by [29], had four categories of images: male faces, abstract 347

lines, abstract figures and rooms. Stimuli of varying degree of similarity were created by 348

morphing within a category (example in Figure 10). For the task in Study 2, the target 349

images were of 1o of similarity to one of the flanker stimuli. 350

Figure 10. Stimuli set. Four categories of stimuli were used for the switching task:
male faces, abstract lines, abstract figures and rooms. The original images were morphed
with each other to create stimuli at various degrees of similarity. Faces are not displayed
here to avoid potentially identifying information.

0.5.1 Study 1 351

The complexity of the task was modified in 3 dimensions: switch distance, task discrimi- 352

nation and sequential predictability. The first dimension represented the similarity of 353

the flankers between switch trials (switch distance) and it had three levels: switches 354

of 1o similarity, switches of 3o similarity and category switch. The second dimension 355

represented the similarity of the target to the flankers (discrimination) and it had 3 356

levels: same item, item at 1o similarity and item at 3o similarity. The third dimension 357

represented the sequential predictability of switch trials (switch predictability) and it 358

had 2 levels: switches at a regular point in the sequence, and switches at pseudo-random 359

points in the sequence. The total number of switches remained the same for each 360

sequence. Thus, a 3x3x2 experiment space was created. 361

From the experiment space, nine dimensional combinations were defined (Figure 1D), 362

which were used as task parameters during the experiment. It should be noted that 363
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there were too many conditions to sample all of them using a traditional offline fMRI 364

study design; instead, the selected combinations allowed the relevant dimensions to be 365

examined in this initial study. Nonetheless, the sampling was sufficient to determine 366

which dimensions appeared to have an effect on the activation of DMN regions. 367

0.5.2 Study 2 368

The parameters of the cognitive paradigm were modified within the predictability 369

dimension along three components: sequential, spatial and perceptual predictability of 370

switch events. The sequential aspect referred to the frequency at which switch events 371

occurred; the spatial component was linked to the location of the new relevant stimuli; 372

and the perceptual aspect alluded to the nature of the incoming relevant stimuli i.e. the 373

category of the rules (faces, abstract lines, abstract lines or rooms). The dimensions 374

were chosen based on the nature of the cognitive task and limited to a number that 375

allowed the experiment space to be sampled in a single session. 376

A 2x2x2 experiment space was constructed by assigning to each sub-dimension two levels 377

of complexity. The switch events in the first level were characterised by having a highly 378

predictable sequence: sequentially there was a change in rules every four trials, with every 379

switch the location of the stimuli shifted one position downwards, and perceptually the 380

stimuli changed from faces to abstract lines to rooms to abstract figures. On the other 381

hand, the switches in the second level followed a pseudo-random sequence: sequentially a 382

switch could occur at any trial within a grouping of four trials (keeping the total number 383

of switches constant), spatially the relevant stimuli could switch one position upwards or 384

downwards (maintaining the frequency of direction a maximum of two switches) and 385

perceptually the category of the stimuli was randomly chosen (ensuring it did not follow 386

the predictable sequence and it was distinct from the preceding rule). 387

The size of the experiment space allowed for a full-factorial experiment to be conducted, 388

where every possible combination of dimensions was sampled (Figure 1E). For example, 389

in a block the task could have sequential complexity of level 1, spatial complexity of 390

level 2 and perceptual complexity of level 1. 391

0.6 Experimental procedure 392

The participants were subjected to three back-to-back fMRI runs. Within each run, the 393

participants performed 9 blocks of 20 trials of the switching task (Study 1) or 8 blocks 394

of 30 trials of the switching task (Study 2), with 16 seconds of rest in between. The 395

parameters of each block corresponded to one of the previously defined combinations 396

(Figure 1D-E), and the order of each block was randomised across runs and participants. 397

Participants were trained in the task by performing one practice block outside the 398

scanner before the experimental procedure. In the scanner, the task was projected onto 399

a screen that the participants could see through mirrors placed on the head coil and the 400

responses were recorded using a pair of response grips (ResponseGrip, NordicNeuroLab 401

AS, Bergen, Norway). 402

0.7 fMRI acquisition 403

MRI data were acquired in a 3T Siemens Verio (Siemens, Erlangen, Germany) using a 404

32-channel head coil. T1-weighted structural images were acquired using an MP-RAGE 405

sequence, isotropic voxel of 1mm3, repetition time (TR) of 2300ms, echo time (TE) 406

of 2.8ms, inversion time of 900ms, flip angle (FA) of 90◦, field of view of 256x256mm, 407

256x256mmmatrix, 160 slices and GRAPPA acceleration factor of 2. For the fMRI images, 408

a T2◦-weighted echo-planar imaging (EPI) sequence was acquired using an isotropic 409
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voxel of 3mm3, TR of 2s, a TE of 30ms, FA of 80◦, field of view of 192x192x105mm, 410

64x64 matrix, 35 slices and GRAPPA acceleration factor of 2. 411

0.8 fMRI pre-processing 412

The fMRI Expert Analysis Tool (FEAT, Version 6.00) from the FMRIB’s Software 413

Library [FSL [34, 53]] was employed for the pre-processing and analysis of the fMRI 414

data. FMRIB’s Linear Image Registration Tool [FLIRT [34,35]] was used to register the 415

extracted brain tissue [BET [52]] to the Montreal Neurological Institute (MNI) standard 416

atlas. Motion-correction of the images was performed with MCFLIRT [33], and spatially 417

smoothed with a 5mm Gaussian kernel filter. A temporal high-pass filter with a cut-off 418

of 100s (Gaussian-weighted least-squares straight line fitting) was applied to remove 419

low frequency artefacts. The EPI sequences were registered to the MNI space using 420

the T1-weighted images as intermediate by first carrying boundary-based registration 421

[BBR [24]] to the main structural image followed by affine registration to the standard 422

brain space [34,35]. 423

0.9 fMRI task analysis 424

0.9.1 Whole-brain analysis 425

FEAT was used to analyse the pre-processed fMRI data. General linear models (GLM) 426

were constructed with regressors corresponding to task blocks (all trials included in 427

a block) and switch trials (only trials where new rules were presented) for each of 428

the conditions tested (the 9 and 8 combinations of dimensions). Thus, 18 (Study 1) 429

and 16 (Study 2) regressors of interest were fitted into each subject-level GLM. The 430

task regressors were modelled by convolving a double-gamma haemodynamic response 431

function (HRF) with a boxcar kernel. Movement-related noise was accounted for by 432

adding six motion regressors to the design matrix. The following contrasts of interest 433

were generated: all task blocks (“Task blocks > Rest”) and all switch events (“Switch > 434

Rest”). A second-level analysis using a fixed effects model was performed to estimate 435

each subject’s mean response across the three runs. This was done by forcing the random 436

effects variance to zero in FLAME [FMRIB’s Local Analysis of Mixed Effects [6, 68]] for 437

each subject-level contrast. The resulting contrast values and variances were fed into a 438

third-level analysis to combine data from all participants for the relevant contrasts using 439

FLAME 1, the FMRIB local analysis of mixed effects [6, 68]. A Gaussian random-field 440

based cluster inference (threshold of z > 3.1 and cluster-correction significance threshold 441

of p < 0.05) was applied to threshold the final Z statistical images. 442

0.9.2 Region of interest analysis 443

Voxel-wise group-level analysis were performed for the DMN to explore the patterns of 444

activation across the different switching conditions. The “Switch > Rest” contrast was 445

investigated to identify regions of the DMN that displayed significant activation. Regions 446

of interest (ROIs) were created (5mm radius spheres) placed at the peak activation 447

coordinates of each node (“fslmaths” command, binarized). Peak activation of regions 448

not belonging to the DMN but surviving cluster correction were also employed to define 449

ROIs. For each of the eight switch trial regressors, the mean activation within each ROI 450

was extracted (“fslmeants” command) and compared using a repeated-measured analysis 451

of variance (ANOVA). 452
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0.9.3 Predictability dimension modelling 453

In order to disambiguate the brain activation in response to each predictability dimension 454

in Study 2, a second higher-order model was constructed using the second-level switch 455

trial contrasts. A regressor was defined for each of the three predictability dimensions, 456

and a nuisance regressor was added to model the task effect. Contrasts were created 457

for each regressor of interest (“Sequentially predictable > Unpredictable”, “Perceptu- 458

ally predictable > Unpredictable” and “Spatially predictable > Unpredictable”. The 459

higher-order analysis was performed using FLAME 1 [6,68]. The resulting Z statistical 460

images were thresholded using Gaussian random-field cluster inference (initial voxel-level 461

threshold of z > 3.1 and cluster-correction at p < 0.05). 462

0.9.4 ROI analysis of predictability dimensions 463

To explore whether there were sub-threshold activity patterns, active clusters identified 464

from the whole-brain analysis were used to define ROIs. Active clusters were identified 465

from the group activation maps from the predictability dimension contrasts using the 466

FSL command “cluster” (voxel threshold of z > 3.1, uncorrected). Brain masks were 467

created for clusters containing more than 10 voxels using the FSL command “fslmaths”. 468

The binarised masks were employed in the group-level dimension model, with the same 469

predictors and contrasts (“Sequentially predictable > Unpredictable”, “Perceptually 470

predictable > Unpredictable” and “Spatially predictable > Unpredictable”). The higher- 471

order analysis was performed using FLAME 1 [6,68]. The resulting Z statistical images 472

were thresholded using Gaussian random-field cluster inference with cluster-correction at 473

p < 0.05 at a voxel-level thresholds of z > 3.1. The mean activation within each cluster 474

was extracted (“featquery” command) and compared using a t-test against zero with 475

correction for multiple comparisons with Bonferroni. 476

0.10 Statistical analysis 477

Data analyses were performed using [41] and [59]. Mean accuracy, defined as the 478

percentage of correct responses, and mean reaction times for switch and stay trials were 479

computed and analysed using ANOVA. Significance was set at p < 0.05 and post hoc 480

tests were performed with Tukey correction to correct for multiple comparisons unless 481

otherwise stated. 482
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Tables 483

Table 1. Results from the cluster-based activation analysis for ”Block > Rest contrast”
in Study 1. The coordinates indicate the location of the peak activation voxel within a
cluster.

Custer index Voxels P z-max x y z
12 3942 1.75E-27 6.2 38 -82 -2
11 3628 5.63E-26 6.62 -20 -102 10
10 1598 8.27E-15 5.35 44 36 30
9 1387 2E-13 5.7 48 -28 56
8 851 1.53E-09 4.83 -44 -42 58
7 600 1.79E-07 5.28 -4 8 52
6 577 2.98E-07 4.73 -42 8 34
5 302 0.000164 4.22 -22 0 14
4 251 0.000632 5.42 46 52 -10
3 227 0.00123 4.55 32 26 0
2 117 0.0376 3.91 -46 50 -6
1 110 0.0479 4.02 16 -16 12

Table 2. Results from the cluster-based activation analysis for ”Switch > Rest contrast”
in Study 1. The coordinates indicate the location in MNI space of the peak activation
voxel within a cluster.

Custer index Voxels P z-max x y z
4 42761 0 5.81 20 -64 -2
3 1400 4.25E-13 4.35 28 36 -12
2 157 0.0128 3.87 6 18 -2
1 120 4.18E-02 4.04 -30 36 -14

Table 3. Results from the cluster-based activation analysis for ”Block > Rest contrast”
in Study 2. The coordinates indicate the location in MNI space of the peak activation
voxel within a cluster.

Custer index Voxels P z-max x y z
9 4129 3.48E-26 6.01 42 -84 -4
8 3888 3.9E-25 5.67 -42 -70 -20
7 1487 5.39E-13 4.5 -26 -68 54
6 1468 7.03E-13 4.87 48 -34 50
5 503 4.89E-06 4.87 46 4 26
4 407 3.57E-05 4.32 -48 6 34
3 309 3.23E-04 3.98 -44 50 -2
2 181 0.0085 3.89 -4 16 48
1 138 0.0298 3.86 -62 -20 20
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Table 4. Results from the cluster-based activation analysis for ”Switch > Rest contrast”
in Study 2. The coordinates indicate the location in MNI space of the peak activation
voxel within a cluster.

Custer index Voxels P z-max x y z
4 42761 0 5.81 20 -64 -2
3 1400 4.25E-13 4.35 28 36 -12
2 157 0.0128 3.87 6 18 -2
1 120 4.18E-02 4.04 -30 36 -14

Table 5. Regions of interest of Study 1 belonging to the DMN. Coordinates are in MNI
space.

ROI Hemisphere x y z
PCC - 1 L -12 -45 0.8
PCC - 1 R 12 -45 0.8
PCC - 2 L -6 -54 8
PCC - 2 R 6 -54 8
PrCC - 1 L -20 -60 8
PrCC - 1 R 20 -60 8
PrCC - 2 L -14 -60 8
PrCC - 2 R 14 -60 8

Table 6. Regions of interest of Study 2 belonging to the DMN. Coordinates are in MNI
space.

ROI Hemisphere x y z
PCC - 1 L -10 -54 5
PCC - 1 R 10 -54 5
PCC - 2 L -20 -50 -4
PCC - 2 R 20 -50 -4
PrCC - 1 L -14 -70 22
PrCC - 1 R 14 -70 22
PrCC - 2 L -20 -57 8
PrCC - 2 R 20 -57 8
amPFC L -6 44 -10
amPFC R 6 44 -10
iPL L -32 -78 16
iPL R 32 -78 16
PHC L -28 -40 -12
PHC R 28 -40 -12

Table 7. Results from the cluster-based dimension activation analysis. The coordinates
indicate the location in MNI space of the peak activation voxel within a cluster.

Custer index Voxels P z-max x y z
2 202 0.000194 3.97 20 -50 -4
1 160 0.00738 3.76 -14 -70 22
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Table 8. Active clusters from the ”Sequentially predictable ¿ Unpredictable” contrast.
Clusters were formed with a voxel activation threshold of z > 3.1, and clusters containing
> 10 voxels selected. The coordinates indicate the location in MNI space of the peak
activation voxel within a cluster.

Custer index Voxels z-max x y z
4 202 3.97 20 -50 -4
3 160 3.76 -14 -70 22
2 90 3.82 16 -66 18
1 81 3.84 -20 -64 -8
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