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Abstract 

Emerging evidence suggests that males are more susceptible to severe infection by the SARS-
CoV-2 virus than females. A variety of mechanisms may underlie the observed gender-related 
disparities including differences in sex hormones. However, the precise mechanisms by which 
female sex hormones may provide protection against SARS-CoV-2 infectivity remains unknown. 
Here we report new insights into the molecular basis of the interactions between the SARS-CoV-
2 spike (S) protein and the human ACE2 receptor. We further observed that glycosylation of the 
ACE2 receptor enhances SARS-CoV-2 infectivity. Importantly estrogens can disrupt glycan-
glycan interactions and glycan-protein interactions between the human ACE2 and the SARS-
CoV2 thereby blocking its entry into cells. In a mouse model, estrogens reduced ACE2 
glycosylation and thereby alveolar uptake of the SARS-CoV-2 spike protein. These results shed 
light on a putative mechanism whereby female sex hormones may provide protection from 
developing severe infection and could inform the development of future therapies against COVID-
19.  

 

Introduction 

 
The novel coronavirus disease 2019 (COVID-19) global pandemic caused by infection with the 
severe acute respiratory syndrome coronavirus 2 (SARS-Cov2) virus has infected nearly 15 
million people worldwide resulting in nearly 600,000 deaths as July 21, 20201. Emerging data 
suggests that males are more susceptible to COVID-19 infection and are at higher risk of critical 
illness and death than females2-4. There has been consistent evidence of an increased case 
fatality rate (CFR) among males in nearly every country with available  sex-disaggregated data 
including Peru, France, Greece, Italy, Mexico, Pakistan, Philippines and Spain amounting to a 1.7 
times higher CFR than females5.  

Understanding the mechanisms underlying enhanced COVID-19 susceptibility and disease 
severity in males is key to developing new therapies and guiding vaccine development.  Changes 
in sex hormone concentration over an individual’s lifetime and associated risk of comorbid 
conditions, such as cardiovascular diseases, may also contribute to variability in disease 
susceptibility and severity6. It has been postulated that the male-biased sex divergence in COVID-
19 deaths could be, in part, explained by the strict relationship between sex hormones and the 
expression of the entry receptor for SARS-CoV2, the angiotensin converting enzyme 2 (ACE2) 
receptor3,7. Molecular studies have demonstrated that the male hormone testosterone regulates 
the expression of ACE2 and the transmembrane serine protease 2 (TMPRSS2) which is an 
androgen‐responsive serine protease that cleaves the SARS‐CoV‐2 spike (S) protein and 
facilitates viral entry via ACE2 binding8-10. Androgen-driven upregulation of ACE2 levels may 
therefore be associated with increased vulnerability to severe infections in male patients with 
COVID-19. Paradoxically, ACE2 plays an important role in lung protection during injury which is 
attenuated by the binding of SARS-CoV-211.  

The presence of a male-biased dependence in COVID-19 susceptibility may imply the presence 
of a protective factor against SARS-CoV-2 infectivity in women. In addition to the ability of sex 
hormones to modulate expression of proteins related to entry into host cells, both estrogens and 
androgens are also able to directly modulate immune cell function via receptor-mediated 
effects12,13. Additionally, sex chromosomes may mediate more favorable outcomes among women 
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compared to men affected with COVID-1914. X-linked genes associated with immune function 
tend to be expressed more often in females who generally have two X chromosomes compared 
to males15.  

Additional clues to the possible protective effects of estrogens have been suggested by 
differences in dietary patterns among countries with different CFRs16. Interestingly, countries with 
the lowest CFRs including Japan and Korea are the largest consumers of isoflavones-based 
foods, also known as phytoestrogens, that may also mediate favorable effects on ACE2 
expression and therefore COVID-19 risk17-19. The observation that females and those individuals 
consuming higher levels of isoflavones may be protected from COVID-19 infection and adverse 
consequences indicates a potential protective role of estrogens against SARS-CoV-2. 

Here, we examine the role of two estrogen molecules (17β-diol and S-equol) to modulate the 
ACE2-dependent membrane fusion protein and reduce cell entry of the SARS-CoV2 spike protein 
into lung cells. To the best of our knowledge, we report new findings regarding the importance of 
molecular interactions between hACE2 and the viral spike (S) protein. Furthermore, we provide 
insights into the molecular basis for our observations that estrogens impair SARS-CoV2 entry and 
highlight the potential for estrogens as an agent in patients with COVID-19. 

 

Results 

Glycosylation site-mapping of human ACE2 and SARS-CoV-2 spike interactions.  

Recent studies20,21 have shown the ability of the SARS-CoV2 virus to utilize a highly glycosylated 
spike (S) protein to elude the host’s immune system and bind to its target membrane receptor, 
ACE2, thus enabling entry into human cells. Based on the structural complementarity and steric 
impediments between the S protein and human ACE2 (hACE2) protein membranes, we mapped 
the glycosylation sites of both models21-24 and performed molecular dynamics simulations (MDS) 
by 250 ns to stabilize the glycosylated SARS-CoV2 spike (S) and hACE2 complex (suppl. Table 
1., suppl. Figure 1 and Figure 1a). These analyses revealed that glycosylation of the ACE2 protein 
increases the affinity of the virus S protein to interact with the receptor via glycan-glycan 
interactions, glycan-protein interactions, hydrogen, and hydrophobic bonds (suppl. Table 2. and 
Figure 1b). Notably, glycan-glycan interactions occur between the ACE2 glycan at N322 and 
N546 and glycans found on the spike’s receptor binding domain (S-RBD) at N165 and N343 
(Figure 1c, left panel). Despite the close interaction between ACE2 and S-RBD glycans, their 
affinity to anchor with highly negatively charged molecules such as the ACE2 protein remains 
unalterable (Figure 1c right panel) suggesting that glycan and electrostatic-dependent surface 
tethering may represent a plausible mechanism for ACE-S-RBD binding and cell infection. The 
glycan-protein interactions occur between the ACE2 glycan at N53 and the residues of the S-RBD 
at N437, S438, N439, L441, V445, G446, V483, Q498, T500 and Q506 (Figure 1d). While ACE2 
residues at D38, Y41, W48 and G326 form hydrogen bonds with residues of the S-RBD at N440, 
D442, S443, N450 and E484 (Figure 1f). Multiple distinct clusters of hydrophobic residues at the 
ACE2 surface were also found to interact with the S-RBD protein (suppl. Figure 2). Importantly 
one key hydrophobic region on the ACE2 surface at T334 interacts with five residues of the S-
RBD (P479, G485, F486, G488 and Y489), (Figure 1g). Given the insights afforded by our in silico 
MDS experiments, we sought to explore the impact of ACE2 glycosylation on S-RBD cell entry 
using cultured human umbilical vein endothelial cells (HUVECs). A variety of saccharide 
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substrates were utilized for their ability to modulate glycosylation profiles in cells. The 
glycosylation pattern of the endogenous ACE2 was increased in nearly all treated cells (Figure 
1h). Notably co-incubation of HUVECs with 10ug of recombinant S-RBD (rS-RBD) protein 
revealed that glucose (25mM) pre-treatment was associated with the greatest degree of rS-RBD 
entry into the cells by ~8 fold compared with hypoglycemic media (HBSS or Optimen) cells (Figure 
1g). This model indicates that glycosylated residues surrounding the cavity at the top of the ACE2 
molecule could increase binding by the S-RBD. Given the possibility that occupancy at 
glycosylated residues or S-RBD binding sites by estrogens could modify the affinity of the SARS-
CoV2 virus and alter entry into the cell thereby reducing infectivity, we sought to further examine 
these interactions using a range of complementary experimental approaches (see Table S1).  

 

Estrogens bind to hACE2 and stimulate its stabilization and internalization.  

In an effort to explore the potential protective effects of female sex hormones against SARS-CoV-
2 infection, we examined the impact of estradiol (17β-diol) and a dietary-derived phytoestrogen 
(S-equol) on hACE2  structure and protein expression by a combination of in silico modeling, in 
vitro, and in vivo analysis. Specifically, in light of the importance of glycan-glycan interactions that 
mediate virus-ACE2 interactions, we sought to analyze the effect of estrogens on key molecular 
viral and receptor binding sites. In agreement with Yan et al.22, we identified three important 
regions on the ACE2 surface that are utilized for SARS-CoV-2 binding. The environment of these 
regions is composed of a high density of glycans, including a helix α1 from residues I21 to T52, a 
helix α2 from residues V59 to M82, and one loop from residues K353 to G354 (suppl. Figure 3 
and Figure 2a). We then homogenously solvated the glycosylated hACE2 structure with 26.6mM 
of 17β-diol or 26.5mM of S-equol followed by 100 ns of MDS. Remarkably we found that the 17β-
diol molecules interact with residues at F28, Y41, Q76, T78, Q81, M82 and the S-equol molecules 
interacts with residues at Q24, K26, T27, F28, K31, E35, L39, N64, D67, K68, A71, F72, E75, 
Q76 and L79 (Figure 2b, supp. Table #). Both estrogen molecules energetically stabilized the α1 
and α2 helices by physical interactions and thereby minimized the fluctuation of the ACE2 chains 
A and B (Figure 2c, supp 3#). Importantly , our calculation of free-energy landscape (FEL), 
demonstrated that the surface of chain B of ACE2 (S-RBD’s preferred interaction region) loses its 
interaction energy with the S-RBD protein from 10.2 kJ/mol to 8.58 kJ/mol (16%) for the 17β-diol 
system and to 9.18kJ/mol (10%) for the S-equol system (Figure 2d). In addition, binding of either 
estrogen molecules to the surrounding hydrophobic pocket of ACE2 at the residue T334 promotes 
a decrease in energy by ~12% which may have a negative impact on the attachment of the S-
RBD protein to the receptor (suppl. Figure 4). We also observed estrogen-glycan interactions 
particularly at the glycan-protein interactions between the ACE2 (N53) and the S-RBD (N432) 
(Figure. 3a). Indeed, glycans are highly polar structures due to their high content of hydroxyl 
groups which make them suitable for attachment to the ACE2 protein (mostly negatively charged) 
or the SARS-CoV-2 S-protein (polarly charged). The density functional theory (DFT) calculation 
shows an important decrease of the glycan’s molecular electrostatic potential (MEP) due to the 
interactions with either estrogen molecules. Therefore, estrogen-glycan interactions could 
decrease the adhesive effect of glycans that enhance S-RBD and ACE2 receptor interactions 
(suppl. Figure 5 and Figure. 3b).  These structural analyses suggest that estrogens could act as 
putative ACE2 ligands due to their ability to bind to highly energetic pockets at the top of the ACE2 
surface protein which may increase its conformational equilibria and potentially boost its 
internalization to the cytoplasm.  To support our in-silico analyses, we treated HUVECs with 17β-
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diol (3nM) or S-equol (10nM) overnight under normal physiologic conditions.  Immunofluorescent 
staining demonstrated that estrogen-treated cells have less ACE2 membrane cellular localization 
(Figure 3c).  Immunoblot analysis revealed that endogenous and dietary estrogens promote ACE2 
internalization and degradation through the endocytosis process as assessed by LC3b25 and 
LAMP126 protein activation in treated cells (Figure. 3d). To test the hypothesis that lower levels of 
estrogens are associated with increased levels of ACE2 protein in the respiratory tract, we 
administrated intratracheally either 17β-diol (0.3μM) or S-equol (1μM) to male mice. Histologic 
analysis of lung sections demonstrated that both forms of estrogens decrease ACE2 membrane 
expression levels in lung alveoli and also reduced the glycosylation of the ACE2 receptor (Figure 
3e & 3f) 

 

Estrogens interfere with SARS-CoV-2 receptor binding and block entry into the cell.  

To determine if the decline of conformational Gibbs free energy and gain in stabilization of ACE2 
due to estrogen binding could affect the ability of the S protein to interact with the ACE2 receptor 
and thereby its entry into cells, we performed a refinement step of ACE2-free or ACE2-estrogen 
models with 100 ns of MDS followed by molecular docking with the SARS-CoV-2 S protein. From 
241 structures obtained, 57 with top scores were chosen for further analysis (suppl. Table 4). The 
ACE2-17β-diol model promoted the shift of S-RBDs from the binding surface toward the lateral 
side of the ACE2 protein decreasing the number of contact residues. Notably S-RBDs completely 
lose contact with key ACE2-glycosylated residues at N53, N103, N432 and N690. We also 
observed that the contact between the S-RBD and the helix α1 and α2 of ACE2 moved toward 
the N-terminal of the helix and thus affected the ability to bind the receptor. In the same manner, 
the ACE2-S-equol model demonstrated that S-equol blocks the contact between the S-RBDs and 
the receptor’s surface, notably promoting novel interactions at the C-terminal of the helix α2 
causing nonspecific contacts with the receptor at residues Q429-I436 and P590-N601. 
Interestingly, we found that the 17β-diol interacts with 66 residues on the surface of the receptor 
and notably forms a cluster on glycans at N546 (chain A) and N322 (chain B). On the other hand, 
the S-equol molecules tend to interact more widely accounting for a total of 145 interactions, 
including on 63 residues on the chain A and 82 residues on the chain B.  (For better visualization, 
only the 5 top scored S-RDBs structures are shown in Figure 4a). The nonspecific binding by the 
S-RBDs could be explained by the susceptibility of ACE2 to interact with polar molecules and 
especially to electrophilic attacks. The fact that the 17β-diol or S-equol contain few polar groups 
but are deficient in negative charge renders them more susceptible to attack the surface of hACE2 
thereby blocking S-RBD from binding correctly. In addition, we computed the binding score of 
these models using the atomic energy contact function and in agreement with our previous 
docking results observed that both estrogen molecules significantly reduced the atomic energy 
contact between virus and receptor. Remarkably, the 17β-diol reduced the atomic contact by 80% 
and the S-equol by 65% indicating that the entry of the virus may be affected by the presence of 
either estrogen molecules (Figure 4b). To validate our in-silico prediction, we pre-treated HUVECs 
with either estrogen molecules followed by incubation with 10μg of rS-RBD protein overnight. 
Importantly either low or high concentration of 17β-diol (low=1nM) & high=5nM) or S-equol 
(low=5nM & high=20nM) blocked more than 90% of the rS-RBD protein entry into the cell as 
assessed by immunofluorescence and colocalization with LAMP1, a lysosome marker (Figure 
4c). In addition, immunoblot demonstrated a decrease of rS-RBD levels in the cytoplasm of 
HUVECs for both estrogen-based treatments (Figure 4d). Together these results suggest a 
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potential molecular mechanism by which estrogens may provide protection against severe 
infection in COVID19 among women and individuals with phytoestrogen intake. 

 

Estrogens blocks SARS-CoV-2 infection of the respiratory tract in vivo. 

Next, we sought to test the ability of estrogens to block key interactions between ACE2 and the 
SARS-CoV-2 S protein and thereby infection of the respiratory tract. Male wild-type mice were 
treated with 17β-diol (0.3μM) or S-equol (1μM) via intratracheal instillation for 24hrs before tissue 
collection. ELISA-based binding assay showed a significant decrease of ACE2 affinity to SARS-
CoV-2 S protein in lungs from mice treated with either estrogen molecules compared with the 
control group (Figure 5a). We then evaluated in vivo whether intratracheal estrogen treatment 
would reduce internalization of the S protein in male mice. We observed that intratracheal 
instillation of both estrogen molecules 24hrs before intratracheal instillation of rS-RBD (20μg, 
overnight treatment)  increased signal for the rS-RBD on the surface of lung cells which likely 
results from reduced binding to Ace2 in estrogen-treated mice compared to the untreated group. 
In contrast control (DMSO-treated) lungs showed normal Ace2 membrane localization and 
cytoplasmic r-S-RBD signal indicating the unperturbed intake of the rS-RBD protein. The 
observed increase in extracellular rS-RBD in alveolar cells from lungs of estrogen-treated mice 
suggests estrogen-mediated reduction in internalization of the S-protein. Indeed, we observed 
that pretreatment with estrogen resulted in rS-RBD protein accumulation on the surface of the 
alveolar cells (Figure 5b) rather than being internalized into the cytoplasm which would thereby 
support viral replication and disease progression. Our data show that estrogens may interfere 
with SARS-Cov-2 infection in the respiratory tract through direct interaction with the Ace2 receptor 
in vivo.  
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Discussion 

Increased susceptibility and risk of adverse clinical outcomes among males affected by COVID-
19 has been reported in multiple epidemiological studies5-8. Androgens can effectively upregulate 
viral target proteins that may increase viral entry and pathogenicity in patients following exposure 
to the SARS-CoV2 virus and sex-related hormones can modulate immune respose. A detailed 
understanding of the molecular and cellular mechanisms modulated by estrogen that contribute 
to viral pathogenicity is therefore critical to the development of new therapies to combat the 
COVID-19 pandemic. Beside the epidemiologic evidence suggesting that females are protected 
from severe infection, a recent study has demonstrated that the female reproductive tract, 
expresses very low levels of the ACE2 receptor and almost undetectable TMPRSS2, suggesting 
that the virus is unlikely to infect the female reproductive tract, where female sex hormones are 
produced27,28. In the current study, we utilized in silico, in vitro, and in vivo studies to characterize 
important glycosylation-mediated interactions between the SARS-CoV2 virus spike (S) protein 
and the human ACE2 receptor that can be modulated by endogenous or dietary estrogens in a 
manner that may be protective against the SARS-CoV2 entry into human cells.  

Previous studies have highlighted the critical role of glycosylation in viral pathobiology, host 
immune system evasion, and infectivity in a range of human viral illnesses29. In many of these 
viruses, the viral envelope and secreted proteins are extensively glycosylated which is necessary 
for structural integrity and functionality of these proteins. Viral proteins may be glycosylated by 
the host cell as viruses are able to hijack cellular glycosylation processes. However little data 
exists on the impact of glycosylation of host proteins necessary for viral entry, such as ACE2, on 
viral infectivity. Using a novel molecular simulation approach, we demonstrated that ACE2 
glycosylation augments binding of the viral S protein by supporting multiple types of interactions 
including glycan-glycan and glycan-protein interactions, thereby facilitating the stability and 
affinity of viral binding to the target host receptor. We extend these in silico observations by also 
demonstrating that entry of the S-RBD can be augmented in vitro by exposure of cultured 
HUVECs to a hyperglycemic environment that increases ACE2 glycosylation. These observations 
provide insights into the enhanced susceptibility of diabetic patients to severe infections and death 
in COVID-1930-32.  

Based on these findings that ACE2 glycosylation enhances interaction with the viral S protein in 
silico, we explored whether the predominant endogenous form of estrogen, 17β-diol, may provide 
a protective effect as assessed using in silico modeling of viral S protein-ACE2 interaction and in 
vitro and in vivo models of viral infectivity. In addition, we used an identical approach to 
understand the potential protective mechanisms of dietary phytoestrogens on SARS-CoV2 
infectivity observed in populations with low CFRs where consumption of these foods is high.  We 
found that both endogenous and dietary estrogens compete with the S-RBD protein to bind 
specific sites on hACE2 that are used by the virus to bind the receptor. Indeed, estrogens were 
found to bind at almost all sites including ACE2 glycans causing a reduction of energy on the 
surface of the receptor rendering the receptor less susceptible to interact with other molecules via 
reduced cell surface expression including the viral S protein interactions. Our findings that 
estrogens interfere with S protein and ACE2 interactions in silico that is associated with reduced 
S protein uptake in an in vitro model of SARS-CoV-2 infectivity in cultured human endothelial cells 
are consistent with prior studies demonstrating that estrogens have antiviral properties against 
HIV, Ebola and hepatitis viruses33.  Additionally, recent evidence indicates that decreased levels 
of estrogens in post-menopausal women are an independent risk factor for disease severity in 
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female COVID-19 patients34. The findings of the current study thus represent novel findings in our 
understanding of the molecular mechanisms underlying reduced susceptibility to SARS-CoV-2 
among females or individuals with depressed estrogen levels and in countries where dietary 
estrogens are high.  

We then examined the ability of estrogen molecules to interfere with S protein uptake into 
pulmonary epithelial cells using an in vivo model of SARS-CoV2 infectivity.  In agreement with 
our cellular experiments, lungs from mice treated with dietary or endogenous estrogens 
demonstrated a dramatic reduction in the uptake of S-RBD. In addition, we observed a remarkable 
reduction of ACE2 binding possibly due to the low protein levels of ACE2 in those lungs possibly 
in response to estrogen-mediated degradation. In conclusion we provide a molecular basis that 
helps elucidate the potential protective effect of estrogens in women infected by the SARS-CoV-
2 virus which could inform the development of future therapeutic measures to protect against 
SARS-CoV-2 infection including the design of suitable blocking antibodies, estrogen-related 
treatments, and vaccine development.  
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Methods 

immunofluorescence microscopy 

For immunefluorescence, HUVEC cells were cultured into 8-well Lab-TekTM II Chamber Slides 
(NuncTM) and were then treated with either 17β-diol at 3nM or S-equol at 10nM. Cells were 
rinsed twice with ice-cold PBS, fixed with 4% paraformaldehyde in PBS (PFA, Boston 
Bioproducts) for 10 min at rt, and were permeabilized with 0.1% Triton-X (Sigma–Aldrich) for 3 
min. The slides were blocked with 10% Donkey-serum, and 0.3 M glycine in PBS-Tween 20 
(0.1%) for 1 h at rt. Subsequently, the antibodies anti-ACE2 (1:100), S-RBD-His-tag (1:50), anti-
LAMP1 (1:50) and anti-LC3b (1:50) were added and slides were incubated overnight at 4°C. The 
slides were then washed 3 times for 5 min each with PBS-T and were incubated with secondary 
antibodies at 1:400 dilution for 1hr at room temperature. Following immunostaining, slides were 
mounted with diamond mounting medium containing DAPI (Thermo Fisher). Slides were then 
visualized with the Leica TCS SP8 confocal microscopy station and the pictures were digitized 
with the Leica Application Suite X software.  

 

Protein Extraction and Immunoblot 

HUVEC cells were rinsed twice with ice-cold PBS and proteins were extracted with M-PER for 
whole cell lysis, respectively (Thermo Fisher). These lysis buffers contained Halt protease, 
phosphatase inhibitors and EDTA (Thermo Fisher). The protein concentration was determined 
by the colorimetric bicinchoninic acid assay (BCA assay, Thermo Fisher). Equal amounts of total 
protein from cell lysates were separated by SDS-PAGE (25μg or 40μg for ACE2, LAMP1, LC3b 
and rS-RBD-His-tag, respectively). Proteins from the gel were then electro-transferred onto 0.45 
μm nitrocellulose and 0.2 μm PVDF membranes. The membranes were then blocked for 1 h at 
room temperature, with either 5% non-fat powdered milk dissolved in TBS-T or 5% bovine serum 
albumin in TBS-T, for the nitrocellulose and PVDF membranes, respectively. Following blocking, 
membranes were incubated overnight at 4°C with the primary antibodies anti-ACE2 (1:1000), 
anti-LAMP1 (1:2000), anti-LC3b (1:1000) and anti-His-tag (1:1000). The Odyssey infrared 
western system was used to detect target proteins. Band intensity was quantified using ImageJ 
software. 

 

Animal treatment 

All experiments involving mice were approved by the Partners Subcommittee on Research 
Animal Care. Personnel from the laboratory carried out all experimental protocols under strict 
guidelines to insure careful and consistent handling of the mice. 

Mouse model of SARS-CoV-2 S protein entry. 9 weeks old male C57BL/6 were purchased from 
The Jackson Laboratories, USA. To induce the recombinant S-RBD protein. Briefly, mice were 
anesthetized with sevoflurane inhalation (Abbott) and placed in dorsal recumbency. 
Transtracheal insertion of a 24-G animal feeding needle was used to instillate estrogen 
molecules, rS-RBD or vehicle (DMSO), in a volume of 80 µl. Mice were sacrificed 24 hrs after 
instillation of rS-RBS and lungs were removed for further analysis.  

Histology. Lungs were then fixed in formalin (10%) for 24 hours before transfer to 70% ethanol 
for photography prior to paraffinization and sectioning (7 μM) paraffin embedding. Slides were 
produced for tissue staining) for quantitative analysis.  

 

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.29.227249doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.29.227249


In vitro treatment 

Saccharides treatment: Hypoglycemic media was composed by HBSS buffer or Optiment media. 
Normal media contained complete endothelial cell growth media. For hyperglycemic media, 
Optiment was supplemented with D-glucose at 25mM, D-galactose at 50mM, D-ribose at 250μM, 
D-mannose at 300μM, or D-fructose at 20μM. HUVECs at 60%–70% confluence were 
supplemented with hypoglycemic, normal or hyperglycemic media 24 hours before incubation 
with 10μg of recombinant S-RBD-His-tag overnight. 

Estrogen treatment: HUVECs at 60%–70% confluence were supplemented with opti-MEM 24 
hours before treatment with complete growing media containing 17β-diol at a concentration of 
3nM or S-equol at a concentration of 10nM for 24 hrs. Fresh media containing rS-RBD  (10μg) 
was supplied the next day. Prior to cellular collection, cells were washed with sterile PBS, protein 
extraction were performed as described above. 

 

rS-RBD-ACE2 binding assay 

500μg of total protein extracts from mouse lungs were cleaned up with IgA/IgG agarose beads 
for 1hr at 4C on a rotator followed by resuspension in assay diluent at 1x. Then 100μL of each 
lysate containing 0, 5, 10, 15, 20, 25 or 30μg of total protein were placed into corresponding well 
of a COVID19 S-protein microplate (Cat#: CoV-SACE2, Ray Biotech,inc.) for overnight incubation 
at 4C on a rotator. Then supernatant was removed, and wells were washed x 5 followed by 
incubation with 1x HRP-conjugated secondary antibody solution for 1hr at room temperature. 
Then 100μL of TMB one-step substrate reagent was added to each well for 30 min at room 
temperature. Before read 50μL of stop solution was added and microplate was read at 450nm. 

 

Statistics 
Results are given as mean ± SD Student’s t test (2-tailed) was applied to determine the statistical 
significance of difference between control and treated groups (*P < 0.05, **P < 0.01 and ***P < 
0.001). For all experiments, at least 3 experimental replicates were performed. Violin plot graphs 
show mean ± SD. Data were analyzed, and graphs were prepared with Prism 6.0 (GraphPad 
Software). P values of less than 0.05 were considered statistically significant. 

 

Model building and glycosylation process.  

The crystalline structures used in this work were PDB ID:6VXX23 for spike protein (SP, trimeric 
form) of virus SARS-CoV-2 and PDBID:6M1722 (of RBD/ACE2-B0AT complex) for ACE2 protein 
(dimeric form), both obtained in the RCSB Protein Data Bank. The missing residues for SP located 
on N and C terminal domains (M-18 to P26 and F1148 to H1262, respectively) were not 
considered in the molecular simulations. Therefore, each one SP chain was made up of 1121 
residues (A27 to S1147). In our SP model, another disulfide bond was recognized between 
missing residues C499 and C507 and was considered in MD simulations. For ACE2, 29 residues 
on N-terminal domain were excluded (M-8 to T20) and on C-terminal domain only extramembrane 
residues were considered (to I21 to G732). ACE2 structure contain two zinc ions in peptidase 
domain which were considered in this work. The remaining missing residues of both proteins were 
added using SwissModel server34 (S-T1).  

The ACE2 and SP structures are considered glycoproteins and the glycan-linked residues have 
already been reported21-24. The OPLSAA based DoGlycans software was used for building all 
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models35 (S-T1). For SP, there are 22 N-glycosylation residues on its surface, but N17, N1158, 
N1173 and N1194 sites were excluded due to residues considered in our SP model. O-
glycosylation sites was not included too. In ACE2, all N-glycosylation sites were considered. The 
glycosylation process was carried out using the glycan GlcNAc2Man3 model, a glycoside 
sequence composed of 2 N-acetyl glucosamines and 3 mannoses (S-F1b). This glycan type is 
the most common core sugar sequence on the N-glycans36,37 

Estrogen solvated systems.  

The systems were constructed with the average structure of glycosylated ACE2, obtained in last 
50 ns of MDS trajectories. 17β-diol and S-equol structures were quantum optimized and their 
force fields were constructed using LigParGen server38-40. The previous simulation box of ACE2 
was augmented 0.4 nm in all directions and with the protein centered in box, was solvated two 
times using gmx solvate module. The first solvation was made homogeneous way with 60 17β-
diol and S-equol molecules (26.6 and 26.5 mM solutions, respectively). In second solvation, 
explicit water molecules were added to fill the simulation box. In the solvation process, we made 
sure that the estrogen molecules were not close to the protein at the start of the MD simulations. 

 

Simulations details.  

All quantum simulations were performed using density functional theory (DFT)41 at B3LYP/ TZVP 
level42,43. The self-consistent reaction field (SCRF) theory was used for describing the solvent 
effects on the molecules in water solutions. The calculations were performed in the electronic 
structure program Gaussian 1644 and results were visualized in GaussView v.645. The molecular 
structures of 17β-diol and S-equol were optimized and it was ensured that they were at a global 
minimum through frequency analysis. These optimized structures were used in the molecular 
dynamic simulations. In MEPs analysis, single point calculations were carried out and total 
electron densities was mapped on molecular electrostatic potential surface. 

To address the structural interactions, we performed molecular dynamics simulations using 
GROMACS (v.2019.4)46 with the OPLS/AA force field parameters47. The protein complexes were 
solvated with TIP4P explicit water model48. In addition to Na+ counterions used to neutralize the 
total charge in the simulation box, we used a 150 mM NaCl concentration to mimic physiological 
conditions. All molecular systems were built in a triclinic simulation box considering periodic 
boundary conditions (PBC) in all directions (x, y and z). Minimum distance of the surface atoms 
of proteins to the edge of periodic box was 1.5 nm for ACE2 receptor and SARS-CoV-19 spike 
protein, and 2.3 nm for ACE2-Estrogen solvated systems. The equations of motions were 
integrated with the Leap-Frog integrator49 using a time step of 1 fs. Temperature in the simulations 
was maintained at 309.65 K using modified Berendsen thermostat (V-rescale algorithm)50 with 
𝜏்  =  0.1 ps coupling constant with protein and water-ions coupled separately. Pressure was 
maintained at 1bar using the Parrinello-Rahman barostat51 with a compressibility of 4.5x10−5 bar-

1 and a coupling constant of 𝜏௉  =  2.0 ps.   All simulations were carried out with a short-range 
non-bonded cut-off of 1.1 nm and the particle mesh Ewald (PME) method52 was used for 
computing long-range electrostatic interactions with a tolerance of 1x105 for contribution in real 
space. The Verlet neighbor searching cut-off scheme was applied with a neighbor-list update 
frequency of 10 steps (20 fs). Bonds involving hydrogen atoms are constrained using the Linear 
constraint solver (LINCS) algorithm53.  
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Simulations were first energy minimized using the steepest descent algorithm for a maximum of 
100,000 steps. The equilibration was conducted by two steps. The equilibration was conducted 
by two steps. The first step, a 1 ns of dynamics in the NVT (isothermal-isochoric) ensemble and 
second step, was continued for another 2 ns in the NPT (isothermal-isobaric) ensemble. 
Production runs were performed in the NPT ensemble for 300 ns for ACE2 and SARS-CoV-19 
spike protein and 150 ns for ACE2-Estrogen solvated systems. 

 

Structure and data analysis.  

The structural interactions were obtained carried out a rigid-rigid body docking analysis using 
PatchDock54 server in order to obtain the contact residues between S-RBD and ACE2 systems.  
The PatchDock algorithm discard all unacceptable complex and results are assorted by geometry 
shape complementarity score. In addition, PatchDock do calculate the effective atomic contact 
energies according to Zhang et al.55 The molecular docking was done take to ACE2 protein as 
receptor molecule and Spike protein as ligand molecule. Clustering RMSD value and complex 
type they were selected according to the recommended parameters for protein-protein 
interactions (4.0Ǻ and default mode). For ACE2-estrogen systems, the docking was performed in 
the presence of the estrogen molecules bound to the ACE2 structure, 40 17β-diol molecules and 
47 S-equol molecules, respectively.  From total results obtained in molecular docking, those 
structures that had steric impediments (intermembranal clashes) were discarded. The steric 
impediments were calculated based in SARS-CoV-2 virus size56,57, whose diameter varies about 
60 to 140 nm and its spike protein is about 9 to 12 nm length (100 and 10 nm on average, 
respectively). Molecular interactions were analyzed with LigPlot software58 and the pdb files 
required was constructed with fortran based own computer programs and the statistical data 
results. 

Statistical results, RMSD, RMSF, RG, SASA, hydrogen bonds, free energies, matches, 
structures, movies, b-factor maps, were obtained using Gromacs modules and their different tool 
options. The analysis of structure properties was performed using MD trajectories on the last 50 
ns of each simulations and visualization of the MD simulations was created using Visual Molecular 
Dynamics (VMD) software59 and the graphs were plotted by the XMGrace software60. 

Each molecular conformation during an MD simulation has an associated energy and this can be 
observed using FEL maps. These maps are usually represented by two variables related to 
atomic position and one energetic variable, typically the Gibbs free energy. This free energy can 
be estimated from probability distributions of the system with respect to the chosen variables that 
are then converted to a free‐energy value by Bolzmann inverting multi-dimensional histograms. 
When represented in three dimensions, the FEL maps show the energy range of all possible 
conformations were obtained during a simulation. In this work, we considered two substructures 
of ACE2 protein for FEL map analysis, the Alpha1-2 region (I21 to Y83) and loops regions l2-3 
and l3-4 (D303 to R357). The FEL maps were plotted using gmx sham module while the RMSD 
and radius of gyration were considered as atomic position variables respect to its average 
structure and figures were constructed using Wolfram Mathematica 12.161. 
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Figure legends. 

Figure 1. Molecular bases of glycosylated hACE2 and SARS-CoV-2 Spike protein complex. 
(a) 3D membrane surface representation of glycosylated ACE2 in complex with the SARS-CoV-
2 Spike protein. (b) Close up of the interacting environment between ACE2 and the S-RBD trimer.  
(c) The left panel demonstrate glycan-glycan interactions between ACE2 (dark purple surface) 
and S-RBDc (light purple surface). The right panel shows that glycan-glycan contacts do not affect 
their molecular electrostatic potentials (MEPs) properties. The energy scale ranging from -0.075 
μa (red) to 0.075 μa (blue). (d) ACE2 glycan at N53 forms glycan-protein contact with residues 
on the S-RBDa and S-RBDc proteins.  (e) The ACE2 glycosylation induce the formation of 
hydrogen bonds that engages the helix  α1 in the binding with multiple residues on the S-RBDc. 
(f) Hydrophobic interactions occur between ACE2 at T334 and multiple residues on the S-RBDc. 
(g) Immunoblot showing expression of glycosylated and non-glycosylated human ACE2 in 
HUVECs treated with difference saccharides. Glucose-treated cells exhibited the greatest 
internalization of the recombinant S-RBD. Quantification of protein levels of three replicate 
experiments is shown. Student’s T-test, 2 tails. Bar graphs are presented as mean with error bars 
(±SD).  

 

 

Figure 2.  Estrogen effects on ACE2 structural energy. (a) 3D representation of the human 
ACE2 glycosylated residues and key regions used by the SARS-CoV-2 S protein to mediate entry 
into cells. S-RBD-binding sites are colored in dark blue and glycans in purple. (b) 3D molecular 
interactions between ACE2 and 17β-diol (magenta) or S-equol (organ) molecules obtained with 
100 ns of molecular dynamics simulations (MDS). (c) A plain representation of solvated ACE2-
helix α1 and α2 substructures by estrogen molecules. (d) FEL maps represent the conformational 
energy of helix α1 and α2 substructures with estrogen molecules during MDS (last 20 ns of MDS). 
Energy scale ranging from 12 kJ/mol (red) to 0 kJ/mol (blue).  

 

Figure 3.  Estrogens bind to ACE2 glycans to promote its internalization. (a) Glycan-
estrogen interactions stabilize ACE2 structure through high-energy contacts involving ACE2 
glycan-residues at E57, N53, K341 and V339 (red color). (b) MEP maps show the electrostatic 
impact of estrogen molecules on the surface of ACE2 glycans. Energy scale ranging from -0.075 
μa (red) to 0.075 μa (blue). (c) Immunofluorescence staining of human ACE2 (magenta) and the 
lysosome marker LAMP1 (green), shows loss of ACE2 membrane levels in HUVECs treated with 
17β-diol or S-equol compared with control cells (DMSO). (d) Immunoblot of lysates isolated from 
HUVECs showing decreased levels of total ACE2 protein with estrogen treatment. Reduced 
ACE2 protein levels were associated with increased endocytosis activity as evidenced by 
immunoblot for LC3b and LAMP1. (e) Histologic analysis of mouse lungs after 48hrs of 
intratracheal installation with 17β-diol or S-equol shows loss of Ace2 expression (red) on the 
membrane of alveolar cells. Estrogen-treated lungs showed greater Ace2-Lamp1 colocalization 
(white arrows) indicating internalization of the receptor. (f) Immunoblot showing decreased levels 
of total and glycosylated Ace2 proteins in estrogen-treated lungs from male mice compared to 
control lungd. Quantification of protein levels of three replicate experiments is shown. Student’s 
T-test, 2 tails. Bar graphs are presented as mean with error bars (±SD).  
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Figure 4. Estrogen impact on ACE2 and S-RBD interactions. (a) Top view of the 3D ACE2 
surface interacting with 5 top scored S-RBDs (top 1-blue, 2-red, 3-orange, 4-purple and top 5-
yellow). S-RBDs were scored based on shape complementarity principles. (b) Heatmap of atomic 
contact energy between ACE2 and 57 S-RBDs, shows spontaneous energy structures from most 
favorable (green) to less favorable S-RBD structures (red). Energy scale ranging from 500 
Kcal/mol to -500 Kcal/mol. (c) Immunofluorescence analysis of S-RBD entry into HUVECs pre-
treated with 17β-diol or S-equol followed by treatment with 10μg/mL of recombinant S-RBD (red) 
demonstrate that estrogen-treated cells had reduced entry of S-RBD into cells in conjunction with 
a reduction in ACE2 internalization as showed by colocalization with LAMP1 (green). (d) 
Immunoblot of isolated proteins from cultured HUVECs shows a 90% reduction of S-RBD entry 
into cells in estrogen-treated cells. Quantification of protein levels of three replicate experiments 
is shown. Student’s T-test, 2 tails. Bar graphs are presented as mean with error bars (±SD).  

 

 

Figure 5. Estrogens blocks SARS-CoV-2 S protein uptake in the respiratory tract in vivo. 
(a) ELISA-based binding assay using lung protein lysates shows reduced SARS-CoV-2 S protein 
affinity for the Ace2 receptor after treatment with either 17β-diol or S-equol. (b) 
Immunofluorescence analysis of wild-type mouse lung treated with 17β-diol (0.3μM) or S-equol 
(1μM) compared with control lung (DMSO) demonstrates rS-RBD protein accumulation on the 
surface of the alveolar cells rather than being internalized intracellularly where viral replication 
may occur. Treatment with either estrogen also reduced Ace2 prtoein expression (quantification 
in lower right panel). Lamp1 (orange), Ace2 (green) and rS-RBD (red). Quantification levels of 
three replicate experiments is shown. Student’s T-test, 2 tails. Bar graphs are presented as mean 
with error bars (±SD).  
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