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1 The hidden Markov model

We first describe how to model diploid genotype data y from a focal individual and a
reference panel of n phased haplotypes x1, . . . , xn at a set of L loci, assuming biallelic
markers. Thus, y P t0, 1, 2uL and xi P t0, 1uL. In Section 1.3, we describe how types of data
y relevant to applications using low-coverage sequencing data, like ancient DNA, can
be modeled by treating the unobserved diploid genotypes as latent variables and using
appropriate emission probabilities.

Throughout, we measure the distance between loci along haplotypes in genetic map
units (i.e. Morgans) r “ r1, . . . , rL´1, where rl denotes the distance between locus l`1 and
l. We assume that a genetic map is available, which is the typical case for humans and
model organisms. If no genetic map is available, the map distances can be approximated
using the average recombination rate, but we note that here we only tested scenarios
where a map is available.

1.1 State Space

The Hidden Markov model (HMM) can assume any of n`1 hidden states 0, . . . , n at every
marker l, where n is the number of haplotypes in the reference panel. As we outline below,
the 0-th state represents that the focal individual is not in a ROH at the respective marker,
and has emission probabilities according to Hardy-Weinberg proportions, while the states
1, . . . , n are the classical copying states (Fig. 1). In each of these copying states (denoted
here as the ROH states), we model the copying as in the original Li & Stephens model,
with one important modification: We assume that the genotype of the focal individual y
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Supplementary Figure 1: Detecting runs of homozygosity using a reference panel.
Panel A: Illustration of genotype data from a diploid individual. Sequencing reads map-
ping to a biallelic SNP produces counts of reads for each allele, from which in turn
pseudo-haplotype genotypes, i.e. single reads per site, are sampled (at random). Panel
B: Schematic of Method. A target individuals genotype data is modelled as being copied
from a reference panel (colored) and one additional non-ROH state, where copying prob-
abilities are given by Hardy-Weinberg proportions.

is homozygous for the allele of the reference haplotype that it copies from. The emission
probabilities are specific to the exact kind of data that is analyzed, and can include various
types of error models, which we discuss in more detail in Section 1.3.

In the Hardy-Weinberg state 0, the probabilities of observing a diploid genotype reflect
the probabilities of an underlying genotype in Hardy-Weinberg equilibrium, with prob-
abilities of the alleles according to the underlying allele frequency in the reference panel
at this locus. We note this state is identical to the non-ROH state used in a previously
developed HMM to call ROH (Narasimhan et al., 2016).

1.2 Infinitesimal Transition Rates

To define a hidden Markov model, one needs to specify the transition probabilities be-
tween the hidden states for each pair of successive loci l and l` 1. In our model, we do so
by using an infinitesimal rate matrixQ of dimension pn`1qˆpn`1q, from which the tran-
sition probability matrix AlÑl`1 can be obtained via exponentiation: AlÑl`1 “ exp pQ ¨ rlq,
where rl is the genetic distance between the respective loci.

Following Li & Stephens, the copying states i “ 1, . . . , n are symmetric in our model.
We can thus specify the infinitesimal rate matrix by three parameters: A single rate for
the transition from the non-copying into a copying state Q0j for all j ą 0, a single rate
for leaving a copying state Qj0 for all j ą 0 and a third rate for transitioning from one
copying state to another φROH “ Qjk for all j, k ą 0, j ‰ k. The diagonal entries of the rate
matrix Q are determined by the rate matrix condition Qii “ ´

ř

j‰iQij .
We point out that in the limit of infinite jumping rates within ROH (φROH Ñ 8), our

model converges to the full model of Narasimhan et al. (2016), as the probabilities of
being in one of the allelic states (the sum of probabilities of copying from all reference
haplotypes that have this allelic state) will then reflect its frequency, as in this limit jumps
occur between any two consecutive markers.
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1.3 Emission Probabilities

In our model, the emission probabilities that specify the probability of observing the data
at locus l given some hidden state i, eipylq depend on the type of data. We implemented
two emission models: diploid genotype data and pseudo-haploid genotype data, with all
three of them incorporating a model for genotype error. Throughout, we always disregard
markers with missing data by removing them both from the reference panel as well as the
target and adjusting the transition rates accordingly.

We implemented the emission model for diploid genotypes as follows. In the non-
ROH state (i=0), the Hardy-Weinberg emission probabilities for the genotypes are p1´plq2,
2plp1 ´ plq, and p2l , for observing homozygosity for the ancestral allele, heterozygosity,
and homozygosity for the derived allele, respectively, where pl is the frequency of the
derived allele in the reference panel at locus l. For the ROH-states (i “ 1, . . . , n), the
genotype probabilities are 1 to be homozygous for the allelic type of the source haplotype
in the reference panel, and 0 for the two other possible diploid genotypes. We extend
these genotype probabilities to model possibly erroneous genotypes by assuming that
with probability ε a genotype is flipped to one of the two other genotypes at random.
This simplified error model has the advantage of having only a single parameter while
broadly modeling a wide range of possible errors, including genotyping error in the ref-
erence as well as in the target, or new mutations that are private to the target individual.
We note that for ancient DNA data, where genotyping error rates (including errors due to
contamination) are typically on the order of 10´2´10´3 (Racimo et al., 2016), the genotyp-
ing error rate will be the main driver of ε, as for modern human populations the reference
panel is almost always separated no more than 105 generations from the target. The per
base-pair mutation rate is on the order of 10´8 per generation, which results in an upper
bound for the substitution rate of order 10´3.

The second emission model we implemented is for pseudo-haploid genotype data, a
common data type for human ancient DNA. For the copying states (i “ 1, . . . , n), the allele
on haplotype i is emitted with probability 1´ ε, and the alternative allele is emitted with
probability ε. For the non-ROH state (i=0), the emission probabilities model sampling
one read from an underlying genotype in Hardy-Weinberg equilibrium under the allele
frequencies in the reference panel: A derived pseudo-haploid marker is observed with
probability pl, and an ancestral marker with probability 1 ´ pl. To account for errors,
with probability ε the observed read actually reflects the opposite allelic state. As in the
case of diploid genotypes, this error rate ε models both the disagreement rate due to new
mutations occurring on the genealogical lineage between the reference haplotype and the
target, as well as the rate of genotyping errors.

We note that extensions for more complex error models that include position and
context-specific effects or leverage base quality scores from the sequencing, and models
for other kind of data could be incorporated by adjusting the emission probabilities link-
ing the unobserved diploid genotypes to the data. Importantly, such extensions can be
naturally modelled using a genotype likelihood framework that describes the likelihood
of the observed data under each of the three possible latent diploid genotype states.

We implemented a third emission model for read count data based on genotype like-
lihoods. Here, the data for a specific locus consists of n reads, with k of them mapping
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to the derived allele and n ´ k to the reference allele. Given the underlying genotype,
modelled probabilistically as in the diploid genotype case described above, we add a
second layer that describes the sampling of the n reads. We use a binomial likelihood
model, where the probability of observing k out n marker to be derived is binomial with
probability p “ 0, p “ 0.5, and p “ 1 given the heterozygous ancestral, homozygous,
and heterozygous derived genotype, respectively. We add two levels of error: One at
the read level, where each read is flipped to the opposite allele with probability ε, which
can be absorbed into the binomial probabilities. We add an additional level of error at
the genotype level, corresponding to the error model of erroneous diploid genotypes de-
scribed above, where a diploid genotype is flipped to one of the other two possibilities
with probability εref . This is to account for rare errors in the reference panel that would in-
duce mismatches between the target individual’s genotype. Applying the Binomial read
count model to real data would require extensive testing of this likelihood model, which
we leave for future work, as the assumption of ancient DNA data being modelled well by
a Binomial likelihood of read counts is likely often violated. Importantly, potential biases
could depend on the type of data (e.g. whole genome sequencing or 1240K enrichment
data), which could introduce unwanted batch effects in ROH analysis.

1.4 Posterior Decoding

We use standard Hidden Markov model algorithms to calculate the posterior probability
P pπl “ i|yq of the hidden state i at locus l observing the data y1, . . . yL (Durbin et al., 1998).
Specifically, we compute the forward probabilities,

fiplq :“ P py1, . . . , yl, πl “ iq “ eipylq
ÿ

k

fkpl ´ 1qAki, (1)

as well as the backward probabilities,

bkplq :“ P pyl`1, . . . , yL|πl “ kq “
ÿ

i

Akieipxl`1qbipl ` 1q, (2)

using dynamic programming, where A denotes the transition matrix Al´1Ñl. Together,
these are combined to obtain the posterior:

P pπl “ i|yq “
fiplqbiplq

P pyq
, (3)

where P pyq denotes the full probability of the data, which can be computed as P pyq “
ř

k fkpLq.
To complete the posterior decoding and thereby call ROH segments, we use posterior

thresholding. We return consecutive regions where the posterior probability of the non-
ROH state remains below the threshold 1 ´ T , or equivalently the sum of the posteriors
of the copy states is above T . In Section 1.8 we describe the procedure for how we set the
default value of T for our implementation of the method.
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1.5 Computational Speedup

The run-time (and memory requirement) of the algorithm for the posterior decoding of
the HMM scales linearly with the number of loci L that are analyzed. In the naive im-
plementation, the scaling with the number of hidden states K (the number of reference
haplotypes plus one here) is quadratic, since the full transition matrix has to be computed
and each entry employed in Equation (1) and (2). Thus, the run-time of the naive imple-
mentation is OpLK2q.

However, as is standard for these models, we can reduce this run-time to linear in the
number of hidden states, to OpLKq, by using the symmetry of the copying states: For
hidden state i ą 0, the sum in Equation (1) can be split up into three parts (we suppress
dependencies on l ´ 1 here):

ÿ

k

fkAki “ f0A0i
loomoon

I

`
ÿ

ką0

fkA12

looomooon

II

` fipAii ´ A12q
loooooomoooooon

III

, (4)

where we used that Aki “ A12 for all k, i ą 0, which follows from the symmetry of the
transition rate matrix Q. Similarly, for k=0 we get:

ÿ

k

fkAk0 “ f0A00
loomoon

I

`
ÿ

ką0

fkA10

looomooon

II

, (5)

because Ak0 “ A10 for all k ą 0.
The quadratic dependence of the run-time on the number of states is caused by the

sum in II in Equation (4), and similarly in Equation (5). However, when updating the
forward probabilities fiplq for all states i, we only need to pre-compute

ř

ką0 fk once for
every locus. Doing so achieves the reduction to linear run-time. The backward algorithm
can be modified analogously, with first splitting the sum in Equation (2) and then pre-
computing

ř

ią0Akieibi only once when updating bkplq for all states k.

1.6 Efficient computation of the transition matrices

In the naive implementation of our algorithm, the infinitesimal rate matrix Q has to be
exponentiated at every locus l, which would be computationally costly (depending on
the implementation scaling quadratic or worse with number of states). However, due to
the speed-up described in Section 1.5, we only require a small subset of the entries of the
full transition matrix, namely A00, A11, A12, A01 and A10. We note that a truly symmetric
model (such as the original Li & Stephens copying model) could be reduced even further
into a single transition rate (the probability of staying in a copy state, Price et al., 2009).
However, due to the additional non-ROH state here, one has to keep track of at least three
rates, and these can be efficiently pre-compute as follows.

Using the symmetry of the copying states 1, . . . , n, we can collapse these states into
state 1 and a single surrogate state for 2, . . . , n. We then only need to consider the states
0,1, and the surrogate state, thus arriving at a 3 ˆ 3 transition rate matrix Q̃, where
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Q̃ij “ Qij for i ď 2, j ă 2 and Q̃i2 “
ř

ją1Qij “ pn ´ 1qQi2 for i ă 2. Importantly, by
exponentiation of Q̃ the three relevant entries of A can be recovered by first computing
Ã “ exp pQ̃q and then using Aij “ Ãij for i, j ă 2 and A12 “ Ã12{pn´ 1q.

To efficiently incorporate variable recombination distances between loci, we first di-
agonalize the common collapsed rate matrix: Q̃ “ P´1D̃P . For each locus l, we can then
exponentiate using exppQ̃ ¨ rq “ P´1 exppD̃ ¨ rlqP , which only requires exponentiation of a
diagonal matrix, and recover the corresponding entries of Ã and consequentlyA required
for calculating the full posterior. In Section 1.8 we describe the procedure for how we set
the default rates of Q for our implementation.

1.7 Simulating genetic data with ROH

To test the performance of our method, we simulated genetic data with known ROH. We
use this data below to carry out experiments where we down-sample to lower coverage
and add genotyping errors to 1) help determining robust HMM parameters (Section 1.8)
and to 2) test the performance (Section 1.8). First, we describe the method we used to
generate these simulated datasets with known ROH.

We used a copying approach inspired by Ralph and Coop (2013) to generate ground-
truth ROH block sharing data for testing methods. A synthetic mosaic individual without
long ROH ą1 cM is first generated by concatenating stretches of diploid genotypes in
0.25 cM tracts from randomly chosen individuals of the reference set. The intuition is
that the probability of long ROH blocks (ą1 cM) arising inadvertently is very low (as
multiple ROH blocks would have to be concatenated), while still mostly retaining local
LD structure typical for diploid human individuals. In our simulations, we used the
positions of a widely used set of 1.24 million SNPs widely used for human ancient DNA
studies (1240K capture technology for Fu et al., 2015), and we focused on chromosome 3,
a human chromosome with a typical density of these sites per map unit (Morgan).

We then copied in five ROH blocks of a given length uniformly at random, enforcing
that ROH blocks do not overlap by placing them at random in 5 evenly split up sectors of
the chromosome. The copied-in stretch originates from one haplotype of the source pop-
ulation (chosen uniformly), and both alleles of the synthetic individual are set to the allele
of the copied-in stretch. The source population for the simulations is then excluded from
the reference panel. These synthetic mosaic individuals, with known diploid genotypes,
serve as test cases for the method. These data were down-sampled and error added to it
to simulate data of varying quality (Fig. 2C,D).

1.8 Parameter Choice

The model has several parameters that have to be set when analyzing data. Here we
describe how we set the parameters we used throughout our empirical analysis and our
simulation experiments. We set the infinitesimal transition rates based on the typical
tracts we are interested to find. Our target use case here is to detect ROH blocks that
are of length 5 cM that occur once every 100 cM. Accordingly, we chose the infinitesimal
rate parameters (per Morgan) as 1 (jump from non-ROH into ROH) and 20 (jump from
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Supplementary Figure 2: Detecting simulated ROH. Panel A: We applied our method to
simulated data with known ROH copied. We copied in ROH of either 4, 6, 8, and 10 cM
length (5 of every length class into each of 100 simulated chromosomes, 1.7), and depict
histograms of inferred ROH lengths (in color) as well as false positives (in gray). Panel
B: Same as panel A, but a simulation with erroneous and missing data typical for lower
quality ancient DNA data.

a ROH state into non-ROH). We fixed the transition rate between ROH states (i.e. the
haplotype copying model switch rate) to 300 per Morgan, corresponding to an average
copy tract length of ca. 0.3 cM. This value was chosen based on performance of ROH
calling in pilot simulations and a likelihood profile of a Li & Stephens model of Tuscany
haplotypes from all non-Tuscany Europeans in the 1000 Genomes dataset. We fix this set
of parameters throughout our analysis.

1.9 Choice of Posterior Threshold

To determine a robust posterior threshold, we ran simulation experiments with data typ-
ical for our use case, which is analysis of 1240K pseudo-haploid data with the full 1000
Genomes dataset set as a reference panel. As test cases, we simulated mosaics of chro-
mosome 3 with pseudo-haploid data, i.e. one allele chosen at random, and then down-
sampled (at random) to 50% of all 1240K SNPs covered (and the rest set as missing data).
We then flipped the allele with probability 0.01 to the other allele to simulate data with
low quality. This is a representative use case for our method: As described below (Sec-
tion 1.11) we apply our method to individuals in real datasets with more than 400,000
SNPs covered, for which estimated error rates are below 5% . We point out that error
rates cover both sequencing error and contamination, and that not all contamination re-
sults in erroneous reads. The reason for choosing the cutoff based on low quality data is
that we want the cutoff to be robust in these cases. We tradeoff maximum specificity for
high quality data (where more aggressive cutoff settings would be possible) to allow our
method being applicable to a wide range of use cases with default parameters.

Using the TSI (Tuscany, Italy) samples from the 1000 Genomes dataset, we simulated
100 replicates of mosaics of chromosome 3 for two scenarios: 1) with 4 cM ROH blocks
copied in (to determine power and bias of inferred ROH length) 2) no blocks copied in as
well (to assess false positives). We then ran the method using the 1000 Genomes dataset
and only TSI individuals removed as reference panel, tested various posterior cutoffs, and
monitored false positive rate, power, length bias, and standard deviation of the longest
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block overlapping the true ROH blocks, with blocks of length 4 cM as the test case. When
analyzing 100 replicates with various posterior cutoffs, we found that a cutoff of 0.998
lead to a good performance in terms of the magnitude of bias for ROH, as well as standard
deviation of inferred length of ROH (Table 1). As our overall goal is to call ROH with little
bias and also with little variation in length, we chose this value of 0.998 as posterior cutoff
in our implementation.

Posterior Cutoff Rep. STD 4cM FP ROHą1cM FP ROHą2cM Avg. Bias 4 cM [cM] Frac. 80% of 4 cM called

0.996 100 0.61 5.39 0.47 0.06 0.958
0.997 100 0.59 4.70 0.35 0.02 0.950
0.998 100 0.57 3.78 0.21 -0.03 0.930
0.999 100 0.60 2.34 0.11 -0.15 0.892

Supplementary Table 1: Varying the posterior cutoff on various performance metrics.
We varied the posterior cutoff used for calling ROH, calculated several summary statistics
when calling ROH for mosaic individuals (TSI). For each line, 100 replicates for chromo-
some 3 with five 4 cM ROH copied or no ROH copied in were simulated to calculate the
performance statistics. False positive rates (FP) are calculated as the average number of
falsely inferred blocks per replicate chromosome.

For applications on 1240K pseudo-haploid SNPs with at least 400,000 autosomal SNPs
covered and using the 1000 Genomes data as the reference panel, this set of parameters
can be readily applied, and we provide these parameters as the default settings in our
software package that implements the method. For users who wish to apply our method
to another set of SNPs, a different reference panel, or non-human data, we strongly rec-
ommend to repeat a similar strategy to find a suitable threshold in the respective scenario.

1.10 Merging of Gaps between ROH

Motivated by the observation that the vast majority of false positive ROH are shorter
than 2 cM (Fig. 2), we only record ROH blocks ą2 cM. We observed that long ROH are
sometimes broken up by spurious gaps (Fig. 3 and manual inspection of blocks where the
length was substantially underestimated), as similarly seen in methods that call long IBD
blocks between individuals (Browning and Browning, 2015). Such gaps may arise due
to genotyping error, structural variation or very low SNP density. Following a standard
procedure of IBD block calling (Ralph and Coop, 2013) and of genomic feature annotation
with HMMs (Durbin et al., 1998), we decided to merge gaps, as experiments with lower-
ing the posterior threshold or with decreasing the jump rate introduced a large surplus
of additional false positives. To ensure that we do not merge two false positives (the false
positive rateą2 cM is non-zero), we additionally require at least one of the merged blocks
to be longer than 4 cM, and the gaps to be less than 0.5 cM in length. Fig. 3 shows that
this procedure improves the performance substantially.
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Supplementary Figure 3: Improving power for long ROH blocks by merging gaps be-
tween ROH stretches We depict the effect of merging ROH gaps for the “worst case”
simulation scenario where we expect our method to have the least power to detect unin-
terrupted segments of ROH. Merging gaps ă0.5 cM for between blocks where the longer
block ą4 cM markedly improves performance for long ROH blocks (ą8 cM), without
changing the distribution of shorter ROH blocks (4 cM).
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1.11 Performance on simulated data

To test its performance, we applied our implementation of the method with default pa-
rameters chosen as described in Section 1.8 to mosaic individuals with copied in ROH
blocks as detailed in Section 1.7. When applying the method to pseudo-haploid data
down-sampled to varying degree, we found that it has high power (ą95%) to detect ROH
blocks ą4 cM while having simultaneously a low false positive rate (Fig. 4A) down to ca.
0.3ˆ covered 1240K sites. Moreover, we find that, when first applying random genotype
errors, the method can tolerate genotype error rates up to 5% (Fig. 4B).

A B

Supplementary Figure 4: Performance of the method to detect ROH within mosaic in-
dividuals We analyzed 100 individual chromosomes 3 which have been copied together
as mosaics from 0.25 cM stretches from TSI individuals (Tuscany) of the 1000 genomes
dataset (Section 1.7) on the 1240K sites. For each site, we then sampled one read from the
diploid genotype at random, creating pseudo-haploid data. We further down-sampled
to varying degrees (0.1-1.0ˆ, Panel A), or introduced random genotype genotype errors
at different rates (0.001-0.1) and applied the method with a copying error rate set to 1%
(Panel B), using the 1000 genome data with the TSI haplotypes removed as reference panel
(4794 haplotypes).
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1.12 Reference panels with varying genetic distance

To test the impact of different coalescence time distributions to the reference panel, we
tested the method on simulated mosaic individuals from various global populations when
using a reference panel consisting of European haplotypes. We note that under a simple
model of a clean population split, the divergence time between the target and the refer-
ence population introduces a minimum boundary for coalescence times of the reference
haplotype with the reference panel, similar to a temporal separation of an ancient target
from the reference panel.

We tested how well the method works when using a European reference panel (with
TSI removed, 792 out of 1,006 haplotypes remaining) for mosaic individuals generated
from several target populations of the 1000 Genomes dataset. We tested four target pop-
ulations, chosen to cover a wide range of population genetic distances. We tested with
pseudo-haploid data on 1240K SNPs, picking one allele at random at each 1240K site
(Tab. 2 and Fig. 5).

With divergence occurring tens of thousands of years ago, such as target for CHB
(Han Chinese) with European reference haplotypes, 95.0% of copied-in blocks are identi-
fied with at least 80% overlap with the true ROH block. However, this behavior does not
continue across all pairs of populations, we observe little power to infer ROH in mosaic
individuals constructed from YRI haplotypes when using European haplotypes as refer-
ence. In this case, while some ROH blocks are still identified, only less than 10% of copied
in ROH blocks are inferred with at least with 80% overlap.

Target Panel Power at 80% overlap [4cM] Bias in Length [4cM] Standard Deviation Length [4cM]

TSI EUR* 0.986 0.151 0.46
CHB EUR* 0.950 0.138 0.54
CLM EUR* 0.882 -0.10 0.69
YRI EUR* 0.096 -2.01 0.90

Supplementary Table 2: Effect of varying distance from reference panel to target. We
tested the performance with mosaic individuals from Tuscany, Italy (TSI); Han Chinese
from Beijing (CHB); Colombians from Medellin (CLM) and Yoruba from Ibadan (YRI),
and tested the power to call ROH blocks of length 4 cM. As before, we define a successful
inference when at least 80% of the original ROH block are inferred to be within a single
inferred ROH. EUR*: European reference haplotypes with TSI (Tuscany) removed.
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Supplementary Figure 5: Effect of varying distance from reference panel to target. We
tested the performance using European reference haplotypes (without TSI haplotypes)
for target individuals that were simulated as mosaics of haplotypes from Tuscany, Italy
(TSI); Han Chinese from Beijing (CHB); Colombians from Medellin (CLM) and Yoruba
from Ibadan (YRI).
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1.13 Performance on down-sampled Ust Ishim man

High-coverage ancient DNA data provides a useful test case to assess ROH inference.
Here we analyzed a Western Siberian individual radio carbon dated to about 45,000 years
before present, called “Ust Ishim man”. His complete genome has been sequenced to
remarkable depth (ca. 40ˆ) from a femur bone (Fu et al., 2014), allowing for robust diploid
genotype calls.

Importantly, high-coverage data allows one to call ROH with high reliability by simply
identifying stretches that lack sites where many reads indicate heterozygosity (Fig. 6).
Moreover, as “Ust Ishim man” is the oldest anatomically modern human sequenced to
high coverage to date, it provides us an opportunity to examine an extreme case in terms
of how much temporal distance from the reference panel our method can tolerate.

We analyzed read count data for the 1240K SNPs from Ust Ishim man (40ˆ read depth
on the target) - using the post-processed publicly available data from Marcus et al. (2020).
We then down-sampled these reads to lower coverage (0.2-40ˆ) at random. Furthermore,
we created pseudo-haploid data for all SNPs covered (1,115,315 of the 1240K variants
were covered) by choosing one read at random per site, and then created artificial data
down-sampled to subsets (0.3-1.0ˆ smaller) of the 1240K sites. We analyzed both read-
count data and pseudo-haploid data and summed up all ROH blocks longer than a given
threshold.

Our results show that we can consistently infer ROH blocks ą4 cM when down-
sampling to low coverage (0.5ˆ mean depth) of the 1240K markers (Fig. 6). Importantly,
even for pseudo-haploid data, which effectively only uses LD information as signal, in-
ference seems to work reliably with as low as 0.3ˆ coverage, with little observable bias
for blocks ą8 cM and a small false positive rate for blocks ą4 cM (Fig. 6). We hypothesize
that this is at least in part caused by the extension of a large number of shorter ROH that
then get pushed beyond the 4 cM detection threshold.
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Supplementary Figure 6: Properties of inferred ROH when downsampling from high
coverage data on the Ust Ishim man. Left: We down-sampled pseudohaploid data of
Ust Ishim man to random subsets of 1240K SNPs to nine target coverages, and inferred
ROH for each of 100 replicates. We depict mean and standard deviation of the inferred
ROH in four length bins (4-8, 8-12, 12-20, and ą20 cM). Right: Posterior and inferred
ROH for a region of Chromosome 3, when using the full diploid genotype data (top) and
pseudo-haploid data down-sampled to 0.5ˆ coverage (bottom). We depict inferred ROH
greater than 1 cM before gaps are merged as blue lines above the posterior. For the diploid
genotype data, we indicate heterozygous genotypes (blue dots above the posterior) and
homozygous genotypes (blue dots below the posterior). Long gaps of heterozygosity
align well with the inferred ROH segments (blue lines).
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1.14 Performance on present-day populations

We applied our method to the Human Origins dataset of 1,941 present-day humans origi-
nating from 162 global populations genotyped at autosomal SNPs (Lazaridis et al., 2014).
These SNPs constitute a subset of the 1240K enrichment targets («0.6 of «1.24 million
SNPs). Because this dataset provides diploid genotype calls, we ran our method with the
diploid mode and called ROH ą4 cM in all 1,941 individuals, using 5,008 global haplo-
types from the 1000 Genomes reference panel. We manually checked several called ROH,
and confirmed that ROH calls correctly identify regions with almost no heterozygous
markers.

To test the pseudo-haploid mode of our method on a global panel of variation, we used
all HO individuals with at least one ROH longer than 12 cM identified (599 individuals)
as a test set. In addition to the high quality diploid ROH calls, we ran the pseudo-haploid
mode on these individuals, choosing one allele at random for each diploid genotype call
(ca. 550,000 SNPs per individual, ranging from individuals with 537,000 to 556,000 called
gentoypes). Our tests confirmed that the ROH calls from the haploid and the diploid data
closely agree for the majority of individuals (Fig. S7), with a correlation between datasets
of r = 0.984 when comparing ROH ą8 cM (Fig. 7). A notable exception are certain Sub
Saharan populations, in particular South and East African hunter gatherers, for which a
substantial fraction of long ROH are not identified in the haploid data (Tab. 7).

When investigating these African Hunter gatherers, we noticed that the typical pat-
tern in the inference from pseudo-haploid data is many gaps dispersed throughout ROH
identified in the diploid data (e.g. Fig. 8). This pattern mirrors the one we observed when
analyzing mosaic targets created from Yoruba haplotypes using an European only ref-
erence panel (Section 1.7), pointing toward some haplotype segments not captured well
by the reference panel. Indeed, it has been observed previously that hunter gatherer
populations in Sub Saharan Africa possess deeply diverged ancestry (Schlebusch et al.,
2012), which together with the fact that the African reference haplotypes from the the
1000 Genomes data only include a single population from Central, Southern and Eastern
Africa (i.e. the Luhya), yields a plausible explanation for the limited power of a method
based on copying of long haplotypes.

After removing Sub Saharan African populations from Central, South and Eastern
Africa, the correlation increases to r= 0.997, and the average difference between the sum
of ROHą 8 cM inferred from pseudo-haploid and diploid genotype data is´0.53 cM (the
mean of the sum of ROH inferred from diploid data is 98.03 cM). Upon inspecting specific
length categories, ROH calls from all length classes are highly correlated, ranging from r
= 0.925 for ROH 4-8 cM to r = 0.988 for ROH longer than 20 cM (Fig. 9). No population
other the Sub Saharan African exhibits a substantial bias, which provides evidence that
the reference panel is suitable for all other groups in the HO panel.
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Supplementary Figure 7 & Supplementary Table 3: Comparison of diploid and
pseudo-haploid ROH calls for HO individuals. Left: Comparison of ROH calls
ą8 cM for pseudo-haploid and diploid data for each HO individual with at least one
ROHą12 cM (599 individuals). The scatter plot compares the total sum of all ROH blocks
ą8 cM. Right: Table summarizing individuals where more than 50% of sum ROH ą8 cM
are not called with pseudo-haploid data. These individuals correspond to the individuals
that deviate substantially downwards from the diagonal line.
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Supplementary Figure 8: Comparison of diploid and pseudo-haploid ROH calls for a
present-day Southern African Hunter gatherer individual. We compare the ROH calls
from pseudo-haploid data (top) and diploid genotype data (bottom) from a HO African
hunter gatherer in the HO origin dataset (Khomani 7). We show chromosome 8, as this
individual has two long ROH on this chromosome that can be identified with high con-
fidence in diploid genotype calls (blue dots above posterior depict heterozygous sites).
The diploid mode correctly identifies these regions, whereas the pseudo-haploid mode
breaks them up.
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Supplementary Figure 9: Comparison of diploid and pseudo-haploid ROH calls for
HO individuals without Sub Saharan populations. As in Fig. 7 we compare ROH calls
for HO populations, with ROH calls from diploid genotype data (x-axis) compared to
ROH calls from pseudo-haploid data (y-axis). Here we have removed the Sub Saharan
populations from the panel, and show comparison for three length classes: 4-8 cM (left),
8-20 cM (middle) and ą20 cM (right).
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2 Comparison to existing Methods

Two programs are currently widely used to identify ROH from high quality present-day
data (Ceballos et al., 2018). The software PLINK scans for windows of genotypes that lack
heterozygous markers (Purcell et al., 2007). This simple but robust method uses diploid
genotype calls. The second common method, bcftools/ROH (Narasimhan et al., 2016)
uses a HMM with two hidden states, the non-ROH state emitting homozygotes and het-
erozygotes, and the ROH state emitting only homozygotes, with Hardy-Weinberg pro-
portions according to the population allele frequency at each site. It can take genotype
likelihood data as input, and therefore can in principle also operate on data where cover-
age is too low for accurate diploid genotype calls.

We compared the performance of these methods to our method on simulated data for
the 1240K array with ROH blocks spiked in, generated using the procedure detailed in
Section 1.7. We applied all three methods in two scenarios. First, we applied all three
methods to diploid genotype data, typical for SNP array data from present-day individu-
als. We find that all three methods have excellent power and little bias when using diploid
data (Supp. Table 4 and Supp. Fig. 10). However, we note that for some long ROH, PLINK
(when using default settings) can break up long ROH, which we did not observe when
using bcftools/ROH or hapROH.

The second scenario (see Supp. Fig. 11) is designed to test performance on typical
ancient data for which diploid genotype calls are not possible. We created down-sampled
mosaic individuals and compared the performance of our method to bcftools/ROH. In
this comparison we did not include PLINK, as it can only operate on diploid genotype
data and it has been previously shown to perform very poorly for down-sampled data,
where the maximum likelihood genotype is used (Renaud et al., 2019).

To be able to apply bcftools in this scenario, we calculated genotype likelihoods
from read count data: We assume that the probability of observing k derived out of a
total of n reads for a singular SNP site given genotypes G=00, 01, or 11 is given by a
binomial likelihood:

PrpRC|Gq “ Prpk, n|Gq “
ˆ

k

n

˙

pkp1´ pqn´k (6)

where p denotes the probability to observe a derived read (p “ 0, 0.5, and 1.0 for geno-
types 00,01, and 11, respectively). In these likelihood, we included a read error of 0.001
(similar to the default setting of our method) by modifying the read count probabilities to
p “ 0.001, 0.5, 0.999. These likelihoods were normalized and encoded in SHRED-scale in
the PL field in custom output .vcfs, as required for the input of bcftools/ROH.

We also tested the performance on read count data. To this end, we generated total
reads per site according to a Poisson model. To mimic realistic read count distributions,
which can be highly heterogeneous for 1240K data, we first calculated the ratio of total
read depth per site and genome-wide read depth from a subset of 1240K data (Marcus
et al., 2020) per site (calling these ratios λi). We then sampled at each SNP from a Pois-
son distribution with mean weighted by λi times the genome-wide coverage we wish
to simulate. We then sample derived reads according to a binomial model with p “0,
0.5, or 1.0, depending on the underlying diploid genotype. In this simulation scenario
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(which we term “λ read count”), the likelihood from Eq. (6) provides the exact likeli-
hood, therefore we compare the performance of our method and bcftools/ROH under
ideal conditions. We find that using default settings, hapROH works to much lower cov-
erage than bcftools, in particular for ROH a few cM in length (Fig. 11). We note that
the performance of bcftools can be improved by fine-tuning the transition parameters
(which is currently implemented only in a experimental setting), however throughout all
tested parameter ranges we could not find a setting where performance was comparably
to hapROH, indicating that using linkage information provides a crucial advantage. We
note that the read count model of hapROH is experimental (see above). We chose this data
type for comparison, as one cannot apply bcftools to pseudo-haploid data, since no
genotype likelihoods can be calculated for only a single read per site.

Method Power [4cM] Bias [4cM] SD [4cM] FP Rate ą1cM FP Rate ą 2cM

hapROH 0.994 -0.0022 0.160 0.00 0.00
bcftools/ROH 1.000 0.0844 0.155 0.17 0.00
PLINK 0.986 0.1000 0.229 0.15 0.00

Supplementary Table 4: Comparison of the three methods on diploid genotype data
(1240K SNPS) We show performance metrics on 100 simulated Mosaic Individuals with
five stretches of 4 cM, non-overlapping positions. Power is defined as ability to detect at
least 80% overlap. False positive rate is calculated for 100 Chromosomes, with no ROH
copied in (rate is per chromosome).
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Supplementary Figure 10: Comparison of the three methods to call ROH on diploid
genotype data (1240K SNPS). We show performance metrics on 100 simulated Mosaic
Individuals with five stretches of 2, 4, 6, 8, or 10 cM ROH copied in. Power is defined as
probability to detect an ROH that overlaps at least 80% of the simulated ROH.
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Supplementary Figure 11: Comparison of bcftools and our method (hapROH) on low
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3 Expected ROH for close relatives and small population
sizes

Here, we calculate the expected number of ROH and the expected sum of lengths for all
ROH falling into given length bins, using density functions fpxq, i.e. the values have to be
integrated

şl2
l1
fpxqdx to give expectations within bins rl1, l2s. Denoting fpxq as the density

of the expected number of blocks of length x, the integral
şl2
l1
fpxqx dx yields the expected

sum of lengths of the blocks within the length bin rl1, l2s.
Throughout, we measure block lengths in Morgans. The first key ingredient in the

derivations is the expected number bpx|tq of blocks of length x caused by recombination
t generations ago on a chromosome of length G Morgans. Assuming that recombination
events are distributed according to a Poisson process with rate t, which is a good approx-
imation for all but very close relatives (e.g. 1st and 2nd degree relatives, Caballero et al.
(2019)), one gets:

bpx|tq dx “ pG´ xqp2tq2 expp´2txq dx
loooooooooooooooomoooooooooooooooon

piq

` 2p2tq expp´2txq dx
loooooooooomoooooooooon

piiq

,

where piq describes blocks in the interior of a chromosome and piiq from blocks delimited
by one of the two chromosome boundaries. One straightforward way to derive this for-
mula is by partitioning over all possible start sites for blocks of length x. We note that we
ignored blocks extending over the whole chromosome, as in this work we are interested
in shorter ROH. Combined with ψptq, the probability of coalescence t generations ago,
one can then express the expected number of ROH as:

fpxq dx “

ż 8

0

bpx|tqdx ψptq dt. (7)

A detailed discussion of these formulas can be found in Ringbauer et al. (2017).
Here, we are interested in two scenarios. First, for the offspring of full n-th cousins,

where the offspring is separated by m “ 2n`4 meiosis, and four haplotypes are potential
common ancestors:

ψnptq “
4

2m
δpm´ tq,

where δptq denotes the delta distribution. Substituting ψnptq into Eq. 7, we arrive at:

fnpxqdx “
4

2m
`

pG´ xqm2 expp´xmq ` 2m expp´xmq
˘

dx. (8)

Second, for constant (diploid) panmictic populations with N haploids (often denoted
as twice the effective number of diploid individuals N “ 2Ne):

ψNptq “ exp

ˆ

´
t

N

˙

1

N
.

Applying the integral Eq. 7, we arrive at:

fNpxqdx “

ˆ

8pG´ xq

N

1

p2x` 1
N
q3
`

4

N

1

p2x` 1
N
q2

˙

dx.
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This formula further simplifies to

fNpxqdx “
4N p1` 2NGq

p1` 2Nxq3
dx, (9)

which has previously been reported in paragraph 3.1. of Carmi et al. (2014).
As outlined above, the density functions in Eq. (8) and Eq. (9) can be integrated over

the interval rl1, l2s to give the expected number of ROH or the expected sum of the length
of all ROH falling within this interval. Here we used numerical approximations with a
large number of bins (1000), which are sufficiently accurate for all practical purposes, but
we note that these integrals can also be solved analytically.
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Supplementary Figure 12: Density of expected sum of ROH per individual We calcu-
lated the density of the sum of ROH per length bin for parents being full cousins of degree
1, 2, 3 and effective population sizes 200, 1000, 5000 by multiplying the expected number
of ROH blocks fpxq from Eq. (8) and Eq. (9) with the length x. Integrating

şl2
l1
fpxqx dx

would yield the expected sum of block lengths within the length bin rl1, l2s. Left: Ex-
pected densities. The vertical line depicts the detection cut-off we applied in our analysis
of the ancient data. Right: Integral of expected densities over bins used in the empirical
analysis (4-8, 8-12, 12-20, ą20 cM).

We calculated the density of the expected sum of ROH blocks (Supp. Fig. 12). Our
results show that offspring of parents that are close relatives, and thus have short circles
in their pedigree, has most of its sum of ROH in the upper length category (20-300 cM).
In contrast, loops resulting from low population sizes create bottom heavy distributions,
where a substantial amount of the sum of ROH ą4 cM is concentrated in ROH near the
detection threshold.

For the case of a constant population size, one can use the integrand of Eq. (7) to par-
tition the full expected sum of ROH (density) into contributions from each time point,
where the integrand can be interpreted as a density of expectations per time interval. Fig-
ure 13 depicts this density for the case 2N “ 500. We observe that due to the exponential
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clock provided by recombination (the expp´2txq term), most of the total ROH of inter-
mediate length classes (depicted for 4, 8, 12, and 20 cM) originate from recent timescales.
For short blocks of length 4 cM, there is a substantial contribution from up to 100 genera-
tions ago (with less than 1% expected contribution from beyond that), whereas for longer
blocks 12 cM substantial contributions from only up to 20 generations ago arise. Also note
that blocks from certain generations are more likely to result in the required length, there-
fore initially the density goes up when going back in time. All these qualitative patterns
will in fact hold for all but extreme scenarios of demography (producing exponentially
growing coalescent rates back in time) that would counteract the exponential recombina-
tion clock, analogously to IBD blocks between individuals (Ringbauer et al., 2017).
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Supplementary Figure 13: Timescales of ROH sharing for constant population size.
The density of expected ROH blocks with respect to time for a constant panmictic popu-
lation of size 2N “ 500, depicted for block lengths 4, 8, 12, and 20 cM. We show the cumu-
lative sum of these expectations (dotted curves, y axis labels right axis) when summed
over time and also the analytical integral over all times from Eq. (9) (horizontal lines).
Calculations were done with chromosome lengths of the human autosomes, and then
summing the contribution from each chromosome.

To validate the analytical formulas, we simulated ROH in panmictic populations of
sizes 2N “ 500, 1, 000, 2, 000, and 4, 000, using the software msprime (Kelleher et al.,
2016). We simulate ROH on all autosomes, each chromosome in a separate run. For
chromosome lengths, we used the map difference between the first and last 1240K SNP
on each autosome, both in analytical formulas and the simulations. We defined ROH
as regions delimited by two recombination events in the full ARG when simulating two
haplotypes. When binning the ROH values into length bins as used in the main paper
(4-8, 8-12, 12-20, and ą20 cM), the average values over replicate individuals within this
bins agree closely with the average of the simulated values (Fig. 14).

Similarly, we simulated the offspring of cousins of various degrees, which are de-
scribed in detail in Section 4. Again, the simulated values (when averaged over a large
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Supplementary Figure 14: Simulated ROH for four population sizes. We visualize the
simulated ROH distribution on all autosomes for 2Ne “ 500, 1, 000, 2, 000, 4, 000. Each bar
represents ROH of one simulated individual (40 independent replicates per population
size). The panel denoted “Average” gives the empirical average for each of these groups,
and the panel denoted “Small Pop. Size” gives the analytical average calculated from
formula, Equation (9).

number of replicates) and analytical values are in close agreement (Fig. 15), validating the
formulas derived here.
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4 Simulations of individual ROH using a detailed recom-
bination model

To gain insight into the length distribution of ROH blocks for a given degree of parental
relatedness, one can calculate expected numbers of blocks falling into certain length classes
(see Section 3). However, these calculations do not yield insight into the variance of the
distribution, and also rely on the assumption that recombination can be modelled as a
Poisson process (when genomic distances are measured in Morgan) and do not incorpo-
rate the biological process of recombination interference (i.e. recombination events are
less clustered than expected) as well as sex-specific recombination maps. For distant rela-
tives beyond second degree these model violations have only minimal impact (Caballero
et al., 2019), but this leaves the possibility that this process can significantly influence
ROH patterns when an individual’s parents are close relatives.

For these reasons, we utilized a recently developed method to simulate shared blocks
of genome between close relatives (Caballero et al., 2019) to gain insight into the length
distribution of ROH blocks. Importantly, this simulation engine can incorporate both
sex-specific recombination maps as well as recombination interference.

We simulated 1000 full individuals each, using the sex-specific genomic map of Bhérer
et al. (2017), and simulating all autosomes. We then cluster individual ROH into bins of
various lengths, as done in the empirical analysis. Our simulations demonstrated that
ROH sharing among 1st cousin offspring of otherwise outbred individuals ranges from
ca. 50-500 cM for 1000 simulated first-cousin-offspring, with a mean expected value of
1/16th of the autosomal genome, 225 cM. Our results also show that the rate of ROH
longer than 20 cM drops quickly with the increasing degree of parental relatedness (Supp.
Fig. 15). When simulating 1000 replicates for each parental relatedness scenario, for off-
spring of parents who are (full) first cousins, 97.7% have at least one ROH longer than
20 cM (95% binomial CI: 96.6-98.5%), for second cousins, this fraction drops to 57.1%
(53.9-60.2%), and for offspring of fifth cousin it is only 0.2% (0.02-0.72%) (Supp. Table 5).

Based on these simulations, we mark individuals as begin potential offspring of very
closely related parents if the sum of ROH ą20 cM exceeds 50 cM. Ca. 88% of all first
cousins offspring and 20% of all second cousin offspring pass this threshold. However
less than 1% of third and less than 0.1% of offspring of parents fourth or further, fall
above the threshold. Even if power to detect long ROH in this length class would be only
50% (a value far below the power estimates from our simulation and down-sampling
experiments), one would still expect to detect ca. 60% of all first cousins in the dataset
(Supp. Fig. 16).
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Parents being... Replicates 4-8 cM 8-12 cM 12-20 cM ą20 cM

1st cousin 1000 913 848 939 977
2nd cousin 1000 625 476 557 571
3rd cousin 1000 289 172 227 142
4th cousin 1000 107 68 65 23
5th cousin 1000 23 12 20 2

Parents being sum(ROH ą20 cM) ą50 sum(ROH ą20 cM) ą100

1st cousin 883 602
2nd cousin 201 27
3rd cousin 8 0
4th cousin 0 0
5th cousin 1 0

Supplementary Table 5: Number of simulated individuals with ROH within a given
length class. We simulated 1000 individuals for each class of parental relatedness. The
upper table gives the number of individuals which have at least one ROH in a given
length class on any of their autosomes (each ROH length class is one column), the lower
table the number of individuals with at least a certain amount of ROH longer than ą 20
(when summing over all such blocks).
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Supplementary Figure 15: Simulated ROH in offspring of cousins of various degrees
of relatedness. We used the software pedsim to simulate ROH given various degrees of
parental relatedness on all autosomes. The software modelled both recombination inter-
ference and sex-specific genetic maps. Each bar visualizes one individual and we color-
code the sum of ROH in distinct length classes. For each parental degree of relatedness
(1st to 5th full cousins, i.e. relatedness via both a male and female shared ancestor) we
show 40 replicates. The panel denoted ”Average” shows the empirical average for each
ROH length bin. The panel denoted ”Expectation” shows the corresponding expectation
calculated from formula Eq. (8).
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50 and 100 cM, which are used as threshold in the main manuscript.
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5 Properties of ancient data set

As outlined in the methods, the bulk of our global ancient DNA dataset originates from
a curated dataset of published ancient DNA (released on March 1, 2020, v42), available
via https://reich.hms.harvard.edu. This release provides ancient DNA data in
pseudo-haploid format with genotypes for the 1240K SNP set. It also contains individuals
with whole genome sequenced data available, which had been down-sampled to this set
of over a million SNPs. Here, we visualize three key statistics of this data set, as reported
in the meta-file: 1) Age Distribution 2) Average Coverage and 3) Estimated autosomal
contamination, available for males based on hemizygous X chromosomes (Fig. 17).
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Supplementary Figure 17: Data Details of ancient Individuals. We depict key proper-
ties of publicly available ancient individuals downloaded from https://reich.hms.
harvard.edu (v42). For each ancient individual we kept the record with the highest
coverage (several have been genotyped multiple times). We depict histogram to visualize
distribution of reported data properties of ancient individuals. Panel A: Age of each in-
dividual (mean of radio carbon dates where available, mean of context dates otherwise).
Panel B: Mean Coverage on autosomal SNPs (1240K polymorphisms). Panel C: Mean re-
ported error estimates (X contamination estimates ANGSD, MOM point estimator, which
can be negative due to estimation uncertainty).
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