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Abstract 17 

The activity in the default mode network (DMN) rapidly fluctuates in different conscious 18 

stages during wakefulness and sleep, indicating high complexity for the role of DMN in 19 

consciousness. Tracking the dynamics of these fluctuations is critical for deeply understanding 20 

the physiological mechanism of consciousness. Here, we propose a coactive micropattern 21 

(CAMP) method to extract the dynamic configuration of local field potentials (LFPs) in the 22 

rat DMN. Three spatially stable CAMPs were detected from DMN gamma activity (40-80 Hz) 23 

across wakefulness and sleep, consisting of a common low-activity level micropattern, an 24 

anterior high-activity level micropattern and a posterior high-activity level micropattern. 25 

Temporal structures of these CAMPs were specific to different conscious stages. A dynamic 26 

balance across CAMPs emerged during wakefulness and was disrupted in sleep stages, 27 

demonstrating that the balanced dynamic configuration of CAMPs played a vital role in 28 

supporting higher cognitive functions and primary consciousness. Furthermore, all these 29 

CAMPs displayed strong phasic relationships to the up-down states of the slow DMN activity 30 

during deep sleep. Our study reveals that the consciousness levels of different conscious stages 31 

are determined by the dynamic configurations of DMN activity, and provides a potential three-32 

state model for the consciousness during wakefulness and sleep. 33 

Keywords: default mode network; coactive micropattern; wakefulness and sleep; up-down 34 

states; dynamic configuration  35 
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1. Introduction 36 

Multimodal imaging studies of the human brain have discovered that several intrinsic 37 

connectivity networks (ICNs) co-exist during the resting state(Beckmann et al., 2005; Liu et 38 

al., 2017). Dynamic switching within these ICNs displays a hierarchical structure over time 39 

for the brain activity at rest and is significantly associated with the cognitive traits(Fox et al., 40 

2016; Vidaurre et al., 2017), suggesting that brain activity is appropriately understood in terms 41 

of the dynamic configuration among ICNs. These studies mainly consider each ICN as a whole 42 

during brain dynamics but ignore the intrinsic dynamics of individual ICN. Indeed, individual 43 

ICN also shows strong fluctuations in brain activity and different ICNs are believed to 44 

dominate distinct cognitive functions(Rosazza and Minati, 2011). For a specific brain function, 45 

further tracking the dynamic configuration of fluctuations in brain activity at single-ICN level 46 

might be critical to reveal the physiological mechanism underlying it. 47 

As a task-negative ICN, the default mode network (DMN) has been highlighted and 48 

progressively refined as the key neural correlate of consciousness(Fox et al., 2018; Gusnard 49 

et al., 2001; Raichle, 2015; Raichle et al., 2001). DMN connectivity between the frontal and 50 

posterior areas is reduced during the slow wave sleep (SWS) stage(Sämann et al., 2011), which 51 

displayed low level of consciousness. However, at sleep onset and throughout the rapid eye 52 

movement sleep (REM) stage with primary consciousness(Hobson, 2009), the DMN regions 53 

persisted in their couplings(Horovitz et al., 2008; Larson-Prior et al., 2009). These findings 54 

illustrate that DMN activity is functionally reorganized during sleep and might further reflect 55 

levels of consciousness. Additionally, fast and ever-changing dynamics of DMN activity have 56 

also been observed in various consciousness levels, and the temporal aspects of spontaneous 57 

DMN activity might be associated with conscious processes(Kapogiannis et al., 2014; Panda 58 
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et al., 2016). Therefore, the close association between DMN activity and consciousness 59 

represents an important topic to study for an understanding of the physiological mechanism of 60 

consciousness by revealing the dynamic configuration of fast DMN activity, which has not 61 

been completely elucidated.  62 

On the other hand, recent neurophysiological studies identified the up-down state as a 63 

biomarker of low-level consciousness, particularly in the deep sleep stage and anesthesia. The 64 

up-down state refers to the alternate epochs in which neurons in various brain regions increase 65 

and decrease their firing rates in a highly synchronized and stepwise manner at a rate of 66 

approximately 0.5–2 Hz(Amzica and Steriade, 1995; Petersen et al., 2003). Moreover, this up-67 

down state emerges in both neuron membrane potentials and local field potentials 68 

(LFPs)(Holcman and Tsodyks, 2006), and characterizes the dynamics of slow oscillations 69 

during deep sleep(Ji and Wilson, 2007; Lőrincz et al., 2015). However, researchers are still 70 

debating the existence of a physiological relationship between the up-down state and the DMN 71 

dynamics, another issue that deserves further exploration. 72 

In the present study, we developed and applied a new dynamic activity pattern method to 73 

address these challenges. The proposed method extracted the dynamic configuration of fast 74 

neural activity in different conscious stages based on the coactive phenomena in envelope 75 

activity from multi-channels physiological signals. The new method-the coactive micropattern 76 

analysis (CAMP)-decomposed the dynamics of neural activity into several instinct CAMPs 77 

and defined the configurations across time through the constitutions and transitions among 78 

these CAMPs. We then applied the CAMP analysis to the recorded LFPs from rat DMN during 79 

wakefulness and sleep. Our results demonstrated the reorganized dynamic configurations of 80 

CAMPs for the fast DMN activity in different conscious stages, implying that the dynamic 81 
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configurations of DMN micropatterns might provide underlying neural correlates for the 82 

consciousness levels observed during wakefulness and sleep. 83 

2. Material and Methods 84 

2.1. Dataset. Twenty-nine male Sprague-Dawley rats were used in our experiment. Firstly, 85 

fifteen electrodes, including seven epidural cortical electrodes and eight depth electrodes, were 86 

implanted into the brain of each rat under deep anesthesia (sodium pentobarbital, 60 mg/kg 87 

body weight, i.p.) at the coordinates proposed by Lu(Lu et al., 2012) (Fig. 1, Table 1). The 88 

reference electrode was placed in the cerebellum, and two electromyographic (EMG) 89 

electrodes were implanted bilaterally in the dorsal neck muscles. Here the cerebellum was 90 

chosen for the placement of the reference electrode, for that there was lower neural activity in 91 

the cerebellum and the cerebellum was not involved in many cognitive functions. Notably, 0.6 92 

ml of atropine sulfate (0.5 mg/ml, s.c.) was injected during electrode implantation to prevent 93 

excess secretions from the respiratory tract. Meanwhile, the body temperature of the rats was 94 

maintained at 37 degrees centigrade with a heating pad. Then, all electrodes were welded to 95 

connectors and fixed on the skull of the rat with dental acrylic. After the surgical procedure,  96 

 A-P M-L D-V 

PrL 4.2 ± 0.8 3 

OFC 3.7 ± 1.8 4.7 

CG 1.7 ± 0.7 2.6 

RSC -3.3 0 0 

HIP -4.3 ± 1.4 3 

PPC -4.5 ± 4  0 

V2 -5.2 ± 2.4 0 

TE -5.2 ± 8 5 

Table 1. Coordinates of the 15 electrodes (mm). A-P, M-L, and D-V indicate anterior-posterior, medial-97 

lateral, and dorsal-ventral directions, respectively. PrL, prelimbic cortex; OFC, orbital cortex; CG, 98 

cingulate cortex; RSC, retrosplenial cortex; HIP, hippocampus; PPC, posterior parietal cortex; V2, 99 

secondary visual cortex; TE, temporal association cortex. 100 
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 101 

Fig. 1. The placement of 15 intracranial electrodes.  102 

penicillin G was administered to prevent infection, and all rats were allowed at least 2 weeks 103 

for recovery before the recording session started. All experimental animal procedures were 104 

approved by the Institutional Animal Care and Use Committee of the University of Electronic 105 

Science and Technology of China. 106 

Prior to the recording sessions, the rats were habituated to the experimental environment 107 

and the recording cable for 2 days. During the recording session, all rats were placed in a glass 108 

box on a 12-h light/dark cycle (lights on at 8:00 am). Each recording electrode was connected 109 

to an acquisition system (Chengyi, RM62160, China). Electrophysiological signals (LFPs) and 110 

videos were synchronously and continuously acquired for 72 h. The amplified and filtered 111 

(0.16–100 Hz for LFPs, 8.3–500 Hz for electromyogram (EMG), and 50-Hz notch filter) 112 

signals were stored on a hard disk (Lenovo Company, USA), and the sample frequency was 113 
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set to 1,000 Hz. All experiments were performed in a noise-attenuated room, where the 114 

background noise was set to 32.2 ± 3.0 dB and the temperature was maintained at 25 ± 0.5 115 

degrees centigrade. The experimenter entered the noise-attenuated room to replace food and 116 

water and clean cages at 12:00 am daily. 117 

The dataset used in the current study was selected from the last 24 h of the total recording 118 

and was separated into three stages, including the resting (AWAKE), slow wave sleep (SWS) 119 

and rapid eye movement (REM) sleep stages. The rules for selecting each stage were based on 120 

LFP, EMG and videos, which have been summarized in our previous publications(Jing et al., 121 

2017). Briefly, the scoring of the awake and sleep stages were performed by several experts. 122 

We included 29 rats in the current study. For each rat, 30 segments in different stages were 123 

recorded, and each segment lasted 10 s (a total of 300 s of LFPs). 124 

2.2. The coactive micropattern (CAMP) algorithm. Using functional magnetic resonance 125 

imaging (fMRI) data, Liu and colleagues(Liu et al., 2013; Liu and Duyn, 2013) used the 126 

coactive pattern method, a point process approach, to identify a set of CAPs with relevant 127 

network features to resting state networks, including the default mode network (DMN). In the 128 

present study, we developed a coactive micropattern (CAMP) measurement and specifically 129 

employed it to analyze neurophysiological data. An overview and procedure of the CAMP 130 

method is shown in Fig. 2. This method was used to extract CAMPs based on the extreme 131 

values of envelope signals at a high temporal resolution and reveal the fast dynamics of 132 

multichannel LFPs. 133 

Several steps were involved in the CAMP method. First, the original data were bandpass 134 

filtered into specific frequency bands. In our study, we filtered the original LFPs into the 135 

gamma (40-80 Hz) frequency band for the neural correlation between DMN gamma oscillation  136 
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 137 

Fig. 2. Schematic of the CAMP procedure and three CAMPs of gamma activity in the DMN during 138 

wakefulness and sleep. (a) The original LFPs. (b) The envelope signals (blue lines) were extracted by 139 

applying the Hilbert transform to the bandpass-filtered signals (gray lines). (c) All the envelope signals 140 

were downsampled (blue lines), and the extreme values were detected as the active points for each 141 

channel (red dots). The dotted lines suggest the coactive points in which more than N (N=7 in the 142 

present study) active points were observed across DMN regions. (d) The coactive patterns were the 143 

maps of activity of all DMN regions at coactive points. (e) The k-means clustering algorithm was 144 

applied to all coactive patterns to detect the CAMPs. (f) A criterion was employed to remove several 145 

coactive points and increase the aggregation of the CAMPs. The final CAMPs and CAMP index 146 

detected in this step were subjected to further analyses. (g) Spatial structure of the common low-activity 147 

level micropattern (cDMN). (h) Spatial structure of the anterior high-activity level micropattern 148 

(aDMN). (i) Spatial structure of the posterior high-activity level micropattern (pDMN). 149 

 150 

with the cognitive functions. Second, the Hilbert transform was applied to the filtered data to 151 
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obtain the envelope signals (Fig. 2b). These envelope signals were normalized and 152 

downsampled (from 1,000 Hz to 100 Hz) to improve the signal-to-noise ratio (SNR) (Fig. 2c). 153 

The envelope signals were normalized by restricting the maximum value of the normalized 154 

envelope signal to 0.9 and the minimum value to 0.1. Third, the active points for each channel 155 

of envelope signals were then defined as the extreme points of the envelope signals, including 156 

local maximum and minimum values. Afterwards, the coactive patterns (CAPs) of the brain 157 

were introduced from normalized and down-sampled envelope signals for all states. The CAPs 158 

were the brain maps in which more than one brain region displayed active points at the same 159 

time point (Fig. 2d), and totally there were 1724646 CAPs that were extracted. Thus, we 160 

considered the number of brain regions with active points at the same time (parameter N) as 161 

one important parameter for extracting these coactive patterns.  162 

After extracting the CAPs from envelope signals, we employed the k-means clustering 163 

algorithm to all the CAPs based on their spatial similarity to decompose the CAMPs (Fig. 2e). 164 

By clustering the CAPs into several distinct groups, we temporally divided the brain activity 165 

into multiple CAMPs. We repeated the k-means clustering with 𝑘 = 2,… , 10 and applied the 166 

contour coefficient estimation (i.e., the sum of the squared errors, SSE) to determine the 167 

optimal number of distinct groups and select the optimal number of CAMPs. The optimal 168 

number of CAMPs was 3 in our study, according to the elbow of the curve between the k 169 

values and SSE values (Supplementary Fig. 1b). 170 

Next, the CAMPs were fit back to the coactive patterns (CAPs), assigning each CAP to 171 

the CAMP class with the lowest squared Euclidean distance to the three CAMPs. The CAMP 172 

index was then obtained from the assignment, which showed the temporal sequence of CAMPs 173 

in the gamma activity of the DMN. Then, we carefully updated the CAMPs and CAMP index 174 
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according to the CAPs that belong to the same CAMP class using the following criterion: 175 

 , where   is the squared Euclidean distance between the  th coactive 176 

pattern with its assigned CAMP,   is the mean of all distance,   is the standard 177 

deviation of these distance, and  is the penalty parameter we determined. If the distance 178 

did not conform to this criterion, then we removed the assignment of the corresponding CAPs 179 

from any CAMP class (Fig. 2f). Afterwards, we applied the k-means clustering algorithm to 180 

all remaining original CAPs using the same k value detected previously and redefined the 181 

clusters. This step was iterated until all distances obeyed this criterion. Using this criterion, 182 

we precisely determined the final spatial structures of CAMPs and the CAMP index. Notably, 183 

if the CAP was not assigned to any CAMP, we removed it from the CAMP index. 261344 184 

CAPs were removed based on this criterion and there were 1463303 CAPs used in subsequent 185 

analysis. The final CAMP index only contained the assignments of all CAPs to their 186 

corresponding CAMPs.  187 

In the present study, we calculated the number of CAPs for different N values ranging 188 

from 2 to 15 (Supplementary Fig. 1a) and decomposed the CAMPs from these CAPs. Under 189 

different N values, the derived CAMPs exhibited similar spatial structures (Supplementary 190 

Fig. 2). Therefore, considering the complexity of the calculation and requirement for 191 

additional information about DMN dynamics, we finally set N to 7 in the current study. 192 

Additionally, we also altered the penalty parameter  from 1.5 to 3 (step size of 0.1) and 193 

described how the proportion of removed CAPs varied with different   values 194 

(Supplementary Fig 1c). By extracting the CAMPs with different  values, we observed 195 

similar spatial structures of these CAMPs, implying that the penalty parameter might not affect 196 

the CAMPs (Supplementary Fig. 3). Therefore, we finally set the value of this parameter to 2 197 

( )id d d− 
id i

d ( )d
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in the subsequent analysis.  198 

All our analyses of the CAMP algorithm were performed using our own custom MATLAB 199 

(release 2019a) scripts and the scripts for CAMP algorithm are available in the Mendeley 200 

website (https://data.mendeley.com/datasets/p522rj449p/draft?a=0ef3b254-520e-456e-b257-201 

c398ef632148). If a special description was not included, we extracted the CAMPs of all the 202 

CAPs from whole segments acquired from rats in all three conscious stages. For every segment, 203 

the CAMPs were obtained by averaging the CAPs belonging to their corresponding clusters 204 

in that segment. Meanwhile, the CAMP index of each segment was also acquired from the 205 

total CAMP index. 206 

2.3. Estimation of the CAMP features. In the present study, we employed five measurements 207 

to characterize the features of CAMPs and the CAMP index of each segment.  208 

The total occurrence represented the number of CAPs assigned to each CAMP, and the 209 

occurrence probability was the proportion of the total occurrence of the number of all CAPs. 210 

The total duration characterized the entire time required for each CAMP and the duration 211 

probability represented the proportion of that.  212 

    The duration of one CAP was defined as follows: the start time was the mid-point between 213 

the time point of this CAP and the preceding CAP, and the end time was the mid-point between 214 

the time point of this CAP and the next CAP.  215 

We first defined the event for each CAMP to determine the mean duration of each CAMP. 216 

An event for each CAMP was that the coactive pattern before or after it should be different 217 

from itself. Thus, in the CAMP index, if the neighboring CAPs belonged to the same CAMP, 218 

then they should be included in one event for that CAMP. Using this approach, we obtained a 219 

new CAMP index in which the neighboring coactive patterns did not belong to the same 220 
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CAMP. We separately estimated the numbers of events for all CAMPs, and the mean duration 221 

for each CAMP was calculated by dividing the total duration by the number of events for that 222 

CAMP.  223 

All values of these CAMP features were calculated for each segment (10 s). The values 224 

of these features were averaged based on the rat and conscious stage to which they belonged 225 

to calculate the values of CAMP features for each rat in different conscious stages. 226 

2.4. Transition probabilities (TPs) for pairs of CAMPs. The transition probabilities for pairs 227 

of CAMPs were the one-step and direct transitions among them. These TPs were separately 228 

estimated from the new CAMP index for each segment. Six types of direct transitions were 229 

identified in the new CAMP index. The TP for one direct transition was calculated by dividing 230 

the number of this transition by the total number of all direct transitions. 231 

2.5. Reliability test for the three CAMPs across the 29 rats and different conscious stages. 232 

We initially applied the CAMP analysis to the segments obtained from each rat in the AWAKE, 233 

SWS and REM sleep stages to assess the reliability of these CAMPs. Three different CAMPs 234 

were identified for each for each rat in each conscious stage (29*3*3 total CAMPs).  235 

The reliability of CAMPs across rats was determined by estimating the correlation 236 

coefficients of the CAMPs among pairs of rats in the same conscious stage using the Pearson 237 

correlation method. These correlation coefficients were then averaged to obtain the reliability 238 

of each CAMP in each conscious stage (3*3). For different conscious stages, we next averaged 239 

the correlations across CAMPs and obtained the reliabilities of all CAMPs for each stage. 240 

For the analysis of the reliability of CAMPs across different conscious stages, we first 241 

estimated the correlation coefficients of CAMPs among pairs of conscious stages for each rat 242 

(29*3*3). Then, the whole correlation coefficient was averaged and the reliability of CAMPs 243 
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across stages was obtained (3*3). 244 

2.6. Randomization test for the CAMP index. The randomization tests were applied to the 245 

new CAMP indices in the AWAKE, SWS and REM sleep stages(Lehmann et al., 2005). The 246 

null hypothesis was that if the transition from a preceding CAMP to the next CAMP occurred 247 

randomly, then the observed TPs would depend on the occurrence probability of CAMPs. 248 

During the test, we considered the expected TP from CAMP X to CAMP Y to be 249 

                        (1)                        250 

where  is the occurrence probability for CAMP . The difference between the 251 

expected TP and the observed TP was then assessed by calculating the chi-square distance 252 

                      (2) 253 

where the sum was calculated for all 6 pairs of CAMPs for which . The randomization 254 

test (permutation test) was then performed to statistically analyze the significance of this 255 

distance between the observed TP and expected TP. The permutation test was performed by 256 

shuffling the order of coactive patterns. The number of randomizations in the permutation test 257 

was set to 10,000 in our study, and the probability was determined by the rank of the observed 258 

difference among the randomly obtained differences. 259 

2.7. Phasic relationships between CAMPs and up-down states in the slow oscillations of 260 

the DMN during deep sleep. We first averaged the DMN activity to obtain the activity of 261 

anterior DMN and posterior DMN in the SWS stage and to assess the phasic relationship 262 

between CAMPs and up-down states. The average activity was then bandpass-filtered at 0.5-263 

2 Hz and downsampled from 1,000 Hz to 100 Hz, which coincided with the CAMP algorithm. 264 

Using this approach, we finally obtained the downsampled slow oscillations in the anterior 265 

DMN and posterior DMN regions. Then, the Hilbert transform was applied to these slow 266 

( )* / 1X Y X Y XP P P P→ = − ，

( )X YP P ( )X Y

( )
2

* *

,

/X Y X Y X Y

X Y

P P P→ → →− ，

X Y
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oscillations to obtain the instantaneous phase for both slow activity in the anterior DMN and 267 

posterior DMN activity. By combining the acquired instantaneous phase and timing of each 268 

CAMP, we obtained the instantaneous phases of all CAMPs in the slow activity of the anterior 269 

DMN and posterior DMN, and the distributions of phases for the cDMN, aDMN and pDMN 270 

in the SWS stage. Finally, we employed the Rayleigh test to analyze the non-uniformity of 271 

these distributions of phases for the three CAMPs. 272 

2.8. Statistical analysis. The statistical comparisons of the CAMP features and the TPs among 273 

CAMPs across the three stages were performed using the methods described below. First, an 274 

ANOVA was performed among all three stages, and then Student’s t test was performed as the 275 

post hoc test to determine the significance of differences between pairs of stages. In addition, 276 

the p values derived from Student’s t tests were corrected with the false discovery rate (FDR) 277 

correction.  278 

3. Results 279 

3.1. Three CAMPs of gamma activity in the DMN during wakefulness and sleep. The 280 

CAMP analysis procedure developed in the present study is schematically illustrated in Fig. 2 281 

and section 2.2. The concatenated gamma activity in the DMN of all rats and all stages during 282 

wakefulness and sleep was decomposed into three distinct CAMPs, including a common low-283 

activity level micropattern (cDMN), an anterior high-activity level micropattern (aDMN) and 284 

a posterior high-activity level micropattern (pDMN). In the cDMN, all DMN regions showed 285 

similar and low levels of activity (mean normalized activity: 0.2577 ± 0.0041, Fig. 2g), 286 

indicating a potential cooperation of these regions in this type of CAMP. However, two 287 

different levels of activity were observed in both the aDMN and pDMN. The aDMN exhibited 288 

relatively higher levels of activity in the anterior DMN regions (i.e., the prelimbic cortex (PrL),  289 
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 cDMN aDMN pDMN Mean Reliability 

AWAKE 0.5806 0.8043 0.8504 0.7451 

SWS 0.7588 0.6472 0.8544 0.7535 

REM 0.4257 0.6951 0.8843 0.6684 

Table 2. The reliabilities (correlation coefficients) of CAMPs in the three stages across rats. 290 

 AWAKE vs. SWS AWAKE vs. REM SWS vs. REM Mean Reliability 

cDMN 0.7214 0.6352 0.5122 0.6229 

aDMN 0.7910 0.8650 0.7087 0.7882 

pDMN 0.8406 0.9091 0.8302 0.8600 

Table 3. The reliabilities (correlation coefficients) of CAMPs across the three conscious stages. 291 

 292 

the orbitofrontal cortex (OFC) and the cingulate gyrus (CG), mean normalized activity: 0.3868 293 

± 0.0018) and lower activity in the posterior DMN structures (i.e., the hippocampus (HIP), the 294 

posterior parietal cortex (PPC), the visual cortex area (V2) and the retrosplenial cortex (RSC), 295 

mean normalized activity: 0.3050 ± 0.0060, Fig. 2h). In the pDMN, the posterior DMN 296 

structures displayed higher levels of activity (mean normalized activity: 0.3793 ± 0.0145), 297 

while the anterior DMN regions showed relatively lower levels of activity (mean normalized 298 

activity: 0.3073 ± 0.0021, Fig. 2i). Accordingly, both the aDMN and pDMN were considered 299 

the high-activity micropatterns in DMN dynamics.  300 

We separately decomposed the CAMPs for each rat in every conscious stage and tested 301 

their reliability across all 29 rats and different conscious stages by calculating the Pearson 302 

correlation coefficient to assess the spatial stability of these detected CAMPs. All three 303 

CAMPs exhibited high stability with large correlation coefficients among different rats during 304 

wakefulness and sleep (mean correlation coefficients: r = 0.7451, r = 0.7535, r = 0.6684 for 305 

the AWAKE stage, SWS stage and REM sleep stage, respectively; Table 2). Besides, the spatial 306 

structures of these CAMPs were also similar in distinct conscious stages (mean correlation 307 

coefficients: r = 0.6229, r = 0.7882, r = 0.8600 for AWAKE stage, SWS stage and REM sleep  308 
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 309 

Fig. 3. Comparisons of the temporal features and activity levels of each CAMP during wakefulness 310 

and sleep. (a) Comparisons of the total occurrence of each CAMP in different conscious stages. The 311 

dots represent the values obtained from 29 rats, and the black stars indicate significant differences with 312 

a corrected p<0.001. (b) Comparisons of the total duration. (c) Comparisons of the mean duration. (d) 313 

Comparisons of the mean DMN activity during wakefulness and sleep for different CAMPs. (e-j) 314 

Comparisons of activity in DMN nodes for different CAMPs across different conscious stages: (e and 315 

h) cDMN, (f and i) aDMN, and (g and j) pDMN. Gray dots indicate decreased normalized activity and 316 

black dots indicate increased normalized activity. The size of the dot reflects the value of the difference, 317 

and the red stars indicate significance differences with a corrected p<0.001.  318 

 319 

stage, respectively; Table 3). These findings demonstrated high reliability and robustness of 320 

these CAMPs.  321 

3.2. The temporal features and activity levels of each CAMP during wakefulness and 322 

sleep. We computed several temporal measurements to characterize the features and dynamics 323 
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of these CAMPS during wakefulness and sleep, including the total occurrence (occurrence 324 

probability), the total duration (duration probability) and the mean duration. All these features  325 

represented the temporal properties of these CAMPs in different conscious stages. Based on 326 

the comparisons, all features of the low-activity micropattern cDMN displayed the largest 327 

values in the SWS stage and the smallest values in the REM sleep stage, and the two high-328 

activity micropatterns (i.e., the aDMN and pDMN) exhibited the largest values for all features 329 

in the REM sleep stage and the smallest values in the SWS stage (Fig. 3a-3c). These opposite 330 

alterations in features between low-activity micropatterns and high-activity micropatterns 331 

above-mentioned comparisons were also highly significant, implying that the alterations in the 332 

suggested that these two types of CAMPs observed in DMN dynamics might represent 333 

different physiological characteristics of consciousness during wakefulness and sleep. The 334 

CAMP features in different conscious stages were remarkable and would help improve our 335 

knowledge of the changes in consciousness during wakefulness and sleep. 336 

However, all of these CAMPs displayed different activities in DMN regions during 337 

wakefulness and sleep. In particular, all DMN regions exhibited reduced activity during SWS 338 

stages in all CAMPs (Fig. 3e-3g). Moreover, the regions with significantly reduced activity in 339 

the aDMN were the posterior DMN structures, and the regions with significantly reduced  340 

activity in the pDMN were the anterior DMN regions, which all showed relatively lower 341 

activity in the AWAKE stage. The significant decrease in the activity of regions with a lower 342 

level activity indicated a preservation of the major activity in high-activity micropatterns in 343 

deep sleep (Fig. 3f-3g, red stars). However, all CAMPs displayed increased activity in most 344 

DMN regions during the REM sleep stage. The activity in the HIP, OFC and RSC regions was 345 

significantly increased during the REM sleep stage in all CAMPs, implying the importance of  346 
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 347 

Fig. 4. Characteristics of CAMPs and the transitions among them in different stages of consciousness 348 

during wakefulness and sleep. (a) Comparisons of the occurrence probability for all CAMPs in the 349 

three stages. The black dots indicate the values of the occurrence probability obtained from 29 rats in 350 

different CAMPs and stages. The black stars indicate significant differences with a corrected p<0.001. 351 

(b) Comparisons of the duration probability. (c) Comparisons of the mean duration. (d-f) The transition 352 

structures among CAMPs for the AWAKE (d), SWS (e) and REM sleep stages (f). All the numbers 353 

indicate the mean TPs calculated for the 29 rats and the standard deviation. The numbers in blue 354 
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indicate a significantly lower transition probability than observed in the AWAKE stage, and the 355 

numbers in red indicate a significantly higher transition probability. The significance level is a 356 

corrected p<0.001. 357 

 358 

these DMN regions for REM sleep (Fig. 3h-3j, red stars). In addition, the mean activity level 359 

of each CAMP exhibited a similar variation trend across different conscious stages. The lowest 360 

mean activity of CAMPs was observed in the SWS stage, while the highest mean activity was 361 

observed in the REM sleep stage (Fig. 3d). 362 

3.3. The constitutions and transitions of CAMPs during wakefulness and sleep. The 363 

configurations of these CAMPs involved in DMN dynamics in different conscious stages were  364 

also distinct (Fig. 4a-4c). All CAMPs presented similar features in the AWAKE stage 365 

(occurrence probability: 32.12%, 34.12% and 33.75%; duration probability: 31.68%, 34.15% 366 

and 34.17%; and mean duration: 29.79 ms, 24.41 ms and 24.37 ms for the cDMN, aDMN and 367 

pDMN, respectively. No significant differences in all features were observed.), indicating that 368 

their roles were equivalent and a dynamic balance in DMN activity might exist among CAMPs 369 

at wakeful rest. However, the cDMN became the dominant activity pattern of DMN dynamics 370 

in the SWS stage, as indicated by its largest occurrence probability (62.66%, 17.56% and 19.78% 371 

for the cDMN, aDMN and pDMN, respectively), duration probability (61.47%, 18.02% and 372 

20.51% for the cDMN, aDMN and pDMN, respectively) and mean duration (55.58 ms, 21.89 373 

ms and 22.78 ms for the cDMN, aDMN and pDMN, respectively) among all CAMPs. The 374 

predominant constituent of the low-activity micropattern suggested that all the DMN regions 375 

might be in a state of low activity and that the DMN activity preferred a silent pattern in deep 376 

sleep. Unlike the SWS stage, the two high-activity micropatterns were the main CAMPs 377 

observed in the REM sleep stage, as indicated by the remarkably larger values for all features 378 
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of the aDMN and pDMN than the cDMN (occurrence probability: 19.42%, 42.05% and 379 

38.53%; duration probability: 19.33%, 41.84% and 38.83%; and mean duration: 21.88 ms, 380 

26.92 ms and 26.01 ms for the cDMN, aDMN and pDMN, respectively). The greater 381 

percentage of high-activity micropatterns during REM sleep suggested a reactivation of DMN 382 

activity in this consciousness stage. In addition, in the comparison between the two high-383 

activity micropatterns, the aDMN displayed significantly larger values for the three features, 384 

implying a more important role of the aDMN in REM sleep. 385 

Meanwhile, the temporal concatenations of these CAMPs (i.e., the CAMP indices) in 386 

different consciousness stages also showed specific changes. We first performed a 387 

randomization test to examine the transition structures of these CAMP indices in different 388 

stages. The transitions among CAMPs occurred randomly in the AWAKE stage (p = 0.8157), 389 

indicating that the transition probabilities (TPs) of pairs of CAMPs in the resting state were 390 

proportional to their occurrences. However, these transitions did not occur randomly in the 391 

SWS (p<0.0001) or REM sleep stages (p<0.0001), which suggested the stabilization of the 392 

structures of the CAMP indices during the sleep cycle. These stabilizations further implied the 393 

existence of several preferred transitions among CAMPs in the SWS and REM sleep stages. 394 

Next, we compared the transition probabilities (TPs) for pairs of CAMPs between the two 395 

sleep stages and the AWAKE stage. The TPs of different pairs of CAMPs in the AWAKE stages 396 

were similar (no significant differences among all TPs, Fig. 4d), suggesting the presence of 397 

balanced state transitions among all CAMPs at rest. However, the TPs within the two high-398 

activity micropatterns showed significant reductions in the SWS stage, while the TPs between 399 

high-activity micropatterns and the low-activity micropattern increased significantly (Fig. 4e). 400 

These changes in TPs emphasized the functional role of inhibitory activity in DMN regions in  401 
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 402 

Fig. 5. Phase locking relationship between each CAMP with slow oscillations in the SWS stage. (a-c) 403 

The phase locking relationships between the cDMN (a), aDMN (b) and pDMN (c) with the slow 404 

oscillations in anterior DMN regions. (d-f) The phase locking relationships between the cDMN (d), 405 

aDMN (e) and pDMN (f) with the slow oscillations in posterior DMN regions. The red lines showed 406 

the significant directionality with Rayleigh test p<0.001. 407 

 408 

deep sleep. On the other hand, the TPs in the REM sleep stage displayed different alterations 409 

than in the SWS stage, including significantly increased TPs within high-activity 410 

micropatterns and a remarkable decrease in TPs between high-activity micropatterns and the 411 

low-activity micropattern (Fig. 4f). The increased transitions within the two high-activity 412 

micropatterns revealed increased activation of DMN regions during REM sleep. Based on 413 

these findings, the CAMP indices and the functional roles of these CAMPs were specific for 414 

different conscious stages. The alterations in DMN activity during wakefulness and sleep 415 

might be attributed to the specific temporal combinations of the CAMPs constituting the 416 

activity in different conscious stages rather than the spatial structures of CAMPs themselves, 417 
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which were rather stable across different stages. 418 

3.4. Strong phasic relationships between CAMPs with the up-down states in the SWS  419 

stage. Up-down states are considered the predominant pattern of slow oscillations (0.5-2 Hz) 420 

during the SWS stage. By estimating the phase distribution of each CAMP in the anterior and 421 

posterior DMN slow activity with the Hilbert transform, we observed that these CAMPs 422 

displayed strong phasic relationships with the up-down states in the SWS stage. The cDMN 423 

preferred the down state of anterior DMN activity (Fig. 5a, significant directionality: 1.97π, 424 

red line) and the up state of posterior DMN activity (Fig. 5d, significant directionality: 1.16π, 425 

red line). Additionally, both the aDMN and pDMN were phase locked to the up state of anterior 426 

DMN activity (Fig. 5b, significant directionality: 1.21π for aDMN. Fig. 5c, significant 427 

directionality: 1.18π for pDMN) and the down state of posterior DMN activity (Fig. 5e, 428 

significant directionality: 0.23π for aDMN. Fig. 5f, significant directionality: 0.18 π for 429 

pDMN) , implying that these two high-activity micropatterns might belong to the same activity 430 

pattern of slow oscillations of the DMN in deep sleep. Furthermore, the difference of 431 

significant directionality of all CAMPs suggested that the slow oscillations in anterior and 432 

posterior DMN regions tended to have a phasic shift about π during deep sleep. Accordingly, 433 

our proposed CAMPs could also reflect the up-down states of DMN slow activity in the SWS 434 

stage and there existed a close physiological association between the up-down states with 435 

DMN dynamics. 436 

4. Discussion 437 

In the present study, we developed a CAMP algorithm and applied it to reveal the 438 

dynamics of gamma activity in rat DMN during wakefulness and sleep. Our results indicated 439 

that the fast dynamics of gamma activity in the DMN were decomposed into three different 440 
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CAMPs (i.e., micropatterns) in different conscious stages, including the cDMN, aDMN and 441 

pDMN. These CAMPs showed stable spatial structures across wakefulness and sleep, while 442 

their dynamic configurations were specific to different conscious stages. In addition, all these 443 

CAMPs were strongly phase locked to the up-down states in the SWS stage, suggesting the 444 

temporal sequence of the neural relationship between up-down states and DMN dynamics. 445 

Our findings described the distinct dynamic configurations of gamma activity in the DMN 446 

during wakefulness and sleep, and proposed a three-state model to reveal the fundamental 447 

neural mechanism by which DMN dynamics mediate consciousness. 448 

4.1. Physiological significance of three CAMPs. Previous studies have reported a strong 449 

correlation between electrophysiological gamma activity and blood oxygen level-dependent 450 

(BOLD) signals(Logothetis, 2002; Logothetis et al., 2001; Magri et al., 2012; Scheering et al., 451 

2016). Besides, DMN regions also show deactivation in the gamma frequency during the 452 

performance of external tasks in several EEG studies(Karim Jerbi*† et al., 2010; Ossandon et 453 

al., 2011), indicating the importance of gamma oscillation in DMN activity. Hence, we 454 

specifically focused on the fast dynamics of gamma activity in the DMN in the current study. 455 

The gamma activity in the rat DMN was decomposed into three stable CAMPs during 456 

wakefulness and sleep that exhibited distinct spatial structures. The differences in these 457 

CAMPs provided direct electrophysiological evidence that the DMN regions might not be 458 

activated simultaneously. Moreover, all these CAMPs lasted for approximately forty 459 

milliseconds, and different CAMPs had distinct periods. These phenomena exhibited 460 

differences in the activation times of anterior and posterior DMN structures in the fast 461 

dynamics and further illustrated the diversity in the latencies for both the excitation and 462 

inhibition of DMN regions(Brett L. Foster, Mohammad Dastjerdi, 2012; Foster et al., 2015). 463 
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Indeed, functional and neuroanatomical studies have separated the structure of the DMN 464 

into a parietal subnetwork and a prefrontal subnetwork in both human and animal brains(Cui 465 

et al., 2018; Hagmann et al., 2008; Lu et al., 2012; Wu et al., 2017). In the present study, we 466 

not only reinforced this finding from the aspect of fast DMN dynamics but also provided a 467 

possible dynamic substrate for this separation of the DMN structure. As a key component of 468 

the DMN, the prefrontal cortex has historically been posited to integrate interoceptive and 469 

exteroceptive information from multisensory stimuli for processing information about the 470 

internal and external milieu of the body(Ongur and Price, 2000). Accordingly, we speculated 471 

that the high-activity micropattern aDMN might be a type of DMN pattern that makes 472 

inferences and guides actions in a timely and environmentally relevant manner. 473 

Meanwhile, the retrosplenial cortex (RSC) located in the parietal DMN, another key area 474 

in the DMN, has extensive connections and is topographically organized with the hippocampal 475 

formation. The projections between the RSC and hippocampal formation provide an important 476 

pathway regulating learning, memory and emotional behavior(Wyss and Vangroen, 1992). 477 

Furthermore, the hippocampal formation is a limbic structure that forms direct or indirect 478 

connections to the other DMN regions. Therefore, the high-activity micropattern pDMN 479 

detected in the present study might be a type of DMN activity pattern associated with memory 480 

and emotional behavior. Additionally, both the aDMN and pDMN were strongly phase locked 481 

to the up state of anterior DMN activity and the down state of posterior DMN activity during 482 

the SWS stage, indicating that they may reflect similar performance for the up-down states of 483 

slow oscillations during DMN dynamics. Moreover, these two high-activity micropatterns 484 

together accounted for more than 70% of the time in the resting state, which helps to explain 485 

why the brain requires a high basal cerebral blood flow and metabolism for spontaneous 486 
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activity(Raichle and Mintun, 2006). 487 

In addition, we observed a low-activity micropattern (i.e., cDMN) in DMN dynamics that 488 

was widely distributed in all conscious stages during wakefulness and sleep. In the cDMN, all 489 

DMN regions displayed relatively lower levels of activity, implicating that cDMN could be 490 

viewed as the silent state for DMN activity in which all the DMN regions preferred relaxations 491 

and prepared for the next excitation. However, the cDMN was the only one micropattern 492 

during DMN dynamics in which all DMN regions operated in the same manner. Thus, the 493 

appearance of the cDMN suggested that there might be a working mode for DMN with low 494 

energy, which desired future work to study.  495 

4.2. The balance of dynamic DMN configurations supports consciousness during 496 

wakefulness. Based on accumulating evidence, DMN activity is tightly correlated with 497 

consciousness levels in health and disease(Buckner et al., 2008; Kapogiannis et al., 2014; 498 

Panda et al., 2016; Vanhaudenhuyse et al., 2010). In the AWAKE stage, all the CAMPs showed 499 

similar features and the dynamic transitions among them were not statistically different. These 500 

similarities illustrated a balanced dynamic configuration among these CAMPs during fast 501 

gamma activity in the DMN at rest. The DMN is a key network involved in integrating high-502 

order information from multiple sensory modalities based on numerous projections from 503 

variable somatic cortex and core limbic structures (HIP and amygdala) to the DMN 504 

regions(Heidbreder and Groenewegen, 2003; Reep et al., 1994). These projections provide the 505 

anatomical substrate for the correlation of DMN activity to consciousness levels. Accordingly, 506 

the identified balance of DMN dynamics might be a competitive product between the 507 

integration and differentiation of CAMPs in maintaining consciousness during wakefulness 508 

(Cavanna et al., 2018; Tononi, 2004; Tononi et al., 2016). Furthermore, this balance of 509 
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dynamic configurations also indicated that the DMN might function in multistable regimes 510 

and revealed the potential neural mechanism by which DMN activity supports cognitive 511 

functions in the resting state(Andrews-Hanna, 2012; Buckner et al., 2008). 512 

4.3. Functional reorganization of the dynamic configurations of the DMN during sleep. 513 

Compared to the resting state, the SWS stage was always accompanied by reduced brain 514 

activity, while the commensurate brain activity has been reported in the REM sleep 515 

stage(Hobson, 2009; Horovitz et al., 2008). Consistent alterations in the average brain activity 516 

associated with CAMPs during DMN dynamics were also observed in our study, suggesting 517 

that the activity of CAMPs might also reveal the changes in consciousness during wakefulness 518 

and sleep. However, the reduced activity of all CAMPs might not be the main explanation for 519 

the decrease in DMN activity observed during deep sleep, due to the stable spatial structures 520 

of these CAMPs during wakefulness and sleep. This decrease in activity might result from the 521 

increased occurrence probability of the cDMN and the decreased probabilities of the other two 522 

high-activity micropatterns. These inversely changed occurrence probabilities in different 523 

CAMPs revealed the neural mechanism of reduced activity, that the DMN regions preferred 524 

the silent state in deep sleep(Bazhenov et al., 2002; Diekelmann and Born, 2010). 525 

The balance of dynamic configurations of the DMN was also disrupted during sleep, 526 

indicating the functional reorganization of DMN dynamics. The functional reorganization 527 

subsequently led to a loss of consciousness in different sleep stages(Tononi, 2004; Tononi et 528 

al., 2016). In the REM sleep stage, the dynamic transitions between aDMN and pDMN 529 

increased, indicating more communication between anterior and posterior DMN regions. 530 

These communications between anterior and posterior DMN regions might be crucial to 531 

primary consciousness, which has been postulated to be preserved in the REM sleep 532 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 30, 2020. ; https://doi.org/10.1101/2020.07.29.226647doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.29.226647


 27 

stage(Hobson, 2009). Moreover, these communications displayed a combination of both the 533 

top-down and bottom-up mechanisms in the DMN. These two mechanisms are important for 534 

information processing in the brain(Buschman and Miller, 2007; Theeuwes, 2010), and an 535 

enhancement of these mechanisms might help us elucidate the underlying neurophysiological 536 

basis for the preservation of primary consciousness during REM sleep.   537 

In the SWS stage, the dynamic transitions among CAMPs displayed different changes. 538 

The dynamic transitions between the low-activity micropattern and two high-activity 539 

micropatterns increased significantly. Additionally, a strong phasic relationship was observed 540 

between CAMPs and the up-down states during slow oscillations of the anterior and posterior 541 

DMN, and these two types of CAMPs corresponded to different up-down states. Accordingly, 542 

the dynamic transitions between the low-activity micropattern and two high-activity 543 

micropatterns were deemed to be the transitions within up-down states in the DMN. The 544 

dominant transitions of up-down states in deep sleep further provided the physiological 545 

importance for these increased dynamic transitions. However, the dynamic transitions within 546 

the two high-activity micropatterns decreased in the SWS stage. These reductions supported 547 

our hypothesis that communications between anterior and posterior DMN regions are 548 

important for primary consciousness, since both higher cognitive functions and primary 549 

consciousness are lost during deep sleep (Hobson and Pace-Schott, 2002). The loss of higher 550 

cognitive functions might not be caused by the change in a single type of dynamic transitions 551 

within pairs of CAMPs. We speculated that the balance of dynamic configurations of the DMN 552 

is the underlying neural mechanism supporting higher cognitive functions, which emerged in 553 

wakefulness and were deactivated during sleep. The coordination and cooperation of all 554 

CAMPs played a core role in the ability of the DMN to perform higher cognitive functions. 555 
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 556 

Fig. 6. The three-state model of the consciousness levels during wakefulness and sleep. The AWAKE 557 

stage requires the cooperation of all three CAMPs, while the SWS stage requires communications 558 

between the low-activity micropattern (cDMN) and the high-activity micropatterns (aDMN or pDMN). 559 

The REM sleep stage requires interactions within the two high-activity micropatterns.  560 

 561 

Based on these findings, here, we propose a three-state model to describe the relationship 562 

between DMN micropatterns and the underlying consciousness levels observed during 563 

wakefulness and sleep. As shown in Fig. 6, the three CAMPs involved in DMN dynamics are 564 

the basis of this model and their interactions refer to the underlying mechanism regulating the 565 

consciousness level observed in distinct stages. Equal communications among the three 566 

CAMPs support conscious awareness in the AWAKE stage. The communications between the  567 

low-activity micropattern (i.e., cDMN) and each of the high-activity micropatterns (i.e., 568 

aDMN or pDMN) are important for the SWS stage characterized by a low level of 569 

consciousness. However, during the REM sleep with primary consciousness, communications 570 

within high-activity micropatterns are the predominant. 571 

According to the proposed three-state model, we conjecture that preservation of conscious 572 

awareness not only requires the information processing between anterior and posterior DMN 573 
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regions, but also need all DMN regions silent and relaxed during this process. Information 574 

processing within anterior and posterior DMN regions is mediated by up-down and bottom-575 

up mechanisms and is vital for supporting conscious awareness and primary consciousness. A 576 

lack of this process could lead to the loss of consciousness in the SWS stage, and this process 577 

alone would result in the consciousness level of REM sleep stage that exists as primary 578 

consciousness. This phenomenon highlights the importance of the silent pattern for all DMN 579 

regions during the resting state with conscious awareness. However, the roles of the silent 580 

pattern in DMN regions and the communications within anterior and posterior DMN regions 581 

are unable to be validated by performing some other neurostimulation experiments using the 582 

currently available neuroimaging methods. Future studies could validate our model and apply 583 

it to the human brain through the application of other neuroimaging measures.  584 

4.4. Methodological Perspectives. Consistent with the promising microstate analysis of 585 

EEG/LFP signals(Michel and Koenig, 2018), the CAMP analysis reported in the present study 586 

also assumes that brain activity consists of several distinct instantaneous patterns. The 587 

difference is that the CAMP method focuses on the nature of brain activity in different regions 588 

and extracts micropatterns from envelope signals. Envelope signals imply temporal alterations 589 

in brain power, and their decomposition directly reveals brain rhythm dynamics. In addition, 590 

the coactive patterns analyzed in the CAMP method were chosen based on the distribution of 591 

extreme values in the envelope signals of brain regions, which differs from the method used 592 

in a microstate analysis. Local extreme values in envelope signals represent the instantaneous 593 

higher/lower activity of brain regions followed by contrasting changes in activity. Therefore, 594 

the derived coactive patterns were considered as the activity patterns leading to an inversion 595 

of activity among regions in specific brain networks. Therefore, we postulate that this 596 
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proposed CAMP method will help researchers extract coactive micropatterns in specific brain 597 

networks and reveal additional underlying information about fast brain dynamics. 598 

5. Conclusion  599 

In the current work, we developed a CAMP algorithm to reveal the dynamics of gamma 600 

activity in rat DMN during wakefulness and sleep. The fast dynamics of gamma activity in the 601 

DMN could be decomposed into three different CAMPs, which showed stable spatial 602 

structures across three conscious stages. However, the dynamic configurations of them are 603 

specific to different conscious stages. Besides, we also indicated temporal sequence of the 604 

neural relationship between up-down states and these CAMPs during deep sleep. Taken 605 

together, our results provided functional descriptions for the dynamics of gamma activity in 606 

rat DMN during different conscious stage, and proposed a three-state model to reveal the 607 

fundamental neural associations between DMN activity with consciousness levels. 608 
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