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Abstract1

Antibodies are critical components of adaptive immunity, binding with high affinity to pathogenic2

epitopes. Antibodies undergo rigorous selection to achieve this high affinity, yet some maintain an3

additional basal level of low affinity, broad reactivity to diverse epitopes, a phenomenon termed4

“polyreactivity”. While polyreactivity has been observed in antibodies isolated from various im-5

munological niches, the biophysical properties that allow for promiscuity in a protein selected for6

high affinity binding to a single target remain unclear. Using a database of nearly 1,500 polyreactive7

and non-polyreactive antibody sequences, we created a bioinformatic pipeline to isolate key deter-8

minants of polyreactivity. These determinants, which include an increase in inter-loop crosstalk9

and a propensity for an “inoffensive” binding surface, are sufficient to generate a classifier able to10

identify polyreactive antibodies with over 75% accuracy. The framework from which this classi-11

fier was built is generalizable, and represents a powerful, automated pipeline for future immune12

repertoire analysis.13
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Introduction14

Antibodies are immunogenic proteins expressed by B cells that play a major role in the adaptive15

immune response against non-self. Upon recognition of target epitopes, these antibodies undergo16

multiple rounds of somatic hypermutation and affinity maturation inside a germinal center, whereby17

the amino acid sequence of the epitope-binding surface is selected for optimal binding to the tar-18

get [1–3]. The longer this affinity maturation process extends, the higher the affinity and specificity19

of the antibodies towards their target antigen, primarily through mutagenesis of the six complemen-20

tarity determining region (CDR) loops of the antibody [1]. Using a combination of affinity matured21

CDR loops, these antibodies bind strongly to the target and aid in invader neutralization. While22

the process of affinity maturation and somatic hypermutation of antibodies results in high-affinity23

and incredibly specific binders to a particular epitope, some antibodies have been shown to display24

signs of reactivity towards diverse off-target epitopes. This broad but low-affinity binding has been25

termed “polyreactivity”.26

27

Antibody polyreactivity has been hypothesized to be beneficial in the early stages of antibody28

maturation, acting as a pool of diverse binders ready to recognize novel antigens and initiate the29

more stringent selection process [4]. To this end, a majority of B cell receptors and antibodies30

which have not undergone somatic hypermutation, including those on immature B cells and early31

“natural” antibodies, have been found to be polyreactive to some extent and are suggested to have32

an innate-like response to pathogens [5, 6]. While these mostly unmutated polyreactive antibodies33

remain at low frequency in antigen-experienced individuals, a distinct population of polyreactive34

antibodies that have undergone selection are still expressed by mature B cells that circulate in35

blood [7]. In fact, some studies have found the polyreactivity status of an antibody is mostly inde-36

pendent of the number of somatic hypermutations in the antibody sequence [8,9]. In line with this37

finding, only 5-10% of the repertoire of naive B cells circulating in the periphery are polyreactive,38

but this increases to 20-30% in the memory B cell compartment, showing a distinct capability of39

polyreactivity to survive selection [7, 10]. These results suggest that polyreactivity can persist, or40

perhaps even be selected for during the selection process within the germinal center.41

42

In a few notable cases, polyreactivity may in fact augment the efficacy of a given immune response.43

Polyreactive IgA antibodies have been shown to have an inherent reactivity to microbiota in the44

mouse gut, with a predicted role in host homeostasis [11]. These previously identified antibodies so45

far have no known primary ligands, yet play a key role in facilitating the gut immune response to46

the plethora of exogenous antigens encountered in the dynamic dietary and microbial environment47

of the gut. This implies the existence of antibodies whose primary function is to act as polyreac-48
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tive sentries in the gut, yet the downstream effects of polyreactive antibodies coating commensal49

bacteria is so far unclear. Similar polyreactive IgA and IgG mucosal antibodies were found in the50

gut of human immunodeficiency virus (HIV) infected patients, but these antibodies either had low51

affinity to the virus or lacked neutralization capabilities [12]. The benefit of singular antibody52

sequences with the ability to sample large portions of the commensal population may represent an53

improvement in efficiency of the homeostatic machinery of the gut.54

55

While the precise role of these primarily polyreactive gut antibodies is still a topic of debate,56

polyreactivity has been suggested to augment the immune response in other immunological niches.57

Broadly neutralizing antibodies (bnAbs), which bind robustly to conserved epitopes on the surface58

glycoproteins of influenza viruses or HIV are more likely to be polyreactive [13–15]. In one study of59

HIV binding antibodies, over half of all tested bnAbs were found to be polyreactive [16]. These bn-60

Abs have been the subject of intense study for their potential as the central components of an HIV61

treatment or as the byproduct of an immune response to a universal Influenza vaccine [15, 17–19].62

One hypothesized mechanism for the capability of polyreactive antibodies to confer this broad neu-63

tralization in the face of a changing viral epitope is heteroligation, the ability of a single antibody64

to bind the primary target with one binding domain and use the other binding domain to bind65

in a polyreactive manner [8]. This heteroligation allows the antibody to take advantage of the66

significant avidity increase afforded by bivalent binding, despite the low envelope protein density of67

HIV or a geometry which does not readily lend itself to bivalent binding on the surface of influenza68

viruses [20].69

70

Although polyreactivity may play a positive role in natural immune responses, oftentimes this same71

property is considered undesirable from the point of view of generating therapeutic antibodies with72

high specificity. Antibody-based treatments, which generally take the form of an intravenous trans-73

fusion, are sensitive to the accelerated systemic clearance of polyreactive antibodies [21–24]. In gen-74

eral, much work has focused on attempting to answer the question of optimizing “developability”75

of a given antibody. These efforts have been dedicated to determining the most critical components76

of developability through a large array of experimental assays, in silico structural prediction-based77

methods, sequence-based analysis and their correlations with clearance, sequence-based SASA pre-78

dictions, and sequence-based aggregation propensity predictors [25–29]. In many of these studies79

polyreactivity or non-specificity in general was seen to be a negative indicator of the developability80

of a drug, suggesting that therapeutic antibodies should strive towards a drug-like specificity [30].81

82

In line with this goal of understanding the predominant factors involved in the specificity of thera-83

peutic antibodies, many researchers have worked to identify the biophysical underpinnings of polyre-84
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activity in natural immune responses. The most popular hypotheses for the primary biophysical85

predictors of polyreactivity have included CDR3 length [9], CDR3 flexibility [16], net hydropho-86

bicity [31] and net charge [32]. More observational studies have found an increased prevalence of87

arginine and tyrosine in polyreactive antibodies [23, 33]. While these previous studies represent88

substantial advances in the study of polyreactivity, they have often been limited in scope, focusing89

on a singular antibody source and primarily focused on CDR3H. Comparing across these individual90

antibody sources highlights discrepancies between the proposed predictors of polyreactivity. The91

aforementioned properties determined to be key to polyreactivity in previous studies were found to92

be statistically insignificant in studies of HIV-binding and mouse gut polyreactive antibodies [8,11].93

94

Clearly, a computational framework that would enable us to predict the polyreactivity of a given95

antibody a priori, whether evaluating the efficacy of a natural immune response or the potential96

fate of a therapeutic antibody, would be tremendously useful. Such a framework, for example,97

could be used to assist in the isolation of broadly neutralizing anti-viral antibodies, or speed up98

the process of therapeutic antibody screening. To achieve this goal, a thorough understanding99

of the molecular features behind polyreactive binding interactions is critical. Experimental ap-100

proaches utilizing next-generation sequencing and ELISA allow for the identification of hundreds101

of polyreactive antibody sequences. However, the systematic characterization of these antibodies is102

difficult. More detailed biochemical studies of polyreactive antibodies via protein crystallography,103

quantitative binding experiments, and mutagenesis provide exceptional insight but are inherently104

low throughput. Structural modeling of these polyreactive antibodies represent a high throughput105

approach, but models of flexible loops are relatively unreliable, and are unlikely to capture nuances106

in side-chain placement [34]. A bioinformatics-based approach, centered around high through-107

put analysis that minimizes structural assumptions while maintaining positional context of amino108

acid sequences would provide a thorough, unbiased analysis of existing data and create a powerful109

pipeline for future studies.110

111

In this study, we show that, using just the amino acid sequences of antibodies from a database112

of nearly 1,500 polyreactive and non-polyreactive sequences, unifying biophysical properties that113

distinguish polyreactive antibodies from non-polyreactive antibodies can be identified. We find114

that, while charge and hydrophobicity are in fact important determinants of polyreactivity, the115

characteristic feature of polyreactive antibodies appears to be a shift towards neutrality of the116

binding interface. In addition, loop crosstalk is more prevalent in the heavy chain of polyreactive117

antibodies than non-polyreactive antibodies. From these properties, a machine learning-based118

classification software was developed with the capability to determine the polyreactivity status of119

a given sequence. This software is generalizable and can be re-trained on any binary classification120
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problem and identify the key differences between two distinct populations of antibodies, T cell121

receptors, or MHC-like molecules at the amino acid level. As a test case, the same analysis was122

applied to a dataset of therapeutic antibodies, demonstrating the overall flexibility of the software123

generated in this study.124

Results125

Database126

Our aggregate database of nearly 1,500 antibody sequences is compiled from our own previously127

published and new data, published studies by the Mouquet and Nussenzweig labs, and the thera-128

peutic antibody database TheraSabDab (Table 1) [8, 11, 12, 14, 16]. Using an ELISA-based assay,129

the reactivity of each antibody is tested against a panel of 4-7 biochemically diverse target anti-130

gens: DNA, Insulin, lipopolysaccharide (LPS), flagellin, albumin, cardiolipin, and keyhole limpet131

hemocyanin (KLH). This panel has become increasingly prevalent in the literature for experimen-132

tal measures of polyreactivity in antibodies [8, 9, 11, 12, 14–16, 25, 35, 36]. The ligands represent a133

diverse sampling of biophysical and biochemical properties; for example, enrichment in negative134

charge (DNA, insulin, LPS, albumin), amphipathic in nature (LPS, cardiolipin), exceptionally po-135

lar (KLH), or large in size (KLH, flagellin). From this panel, a general rating of “polyreactive” or136

“non-polyreactive” is given to 529 and 524 antibodies, respectively. For the purposes of this study,137

antibodies are determined to be polyreactive if the authors of the original studies determined a138

particular clone binds to two or more ligands in the panel. Those that bind to one or none of139

the ligands in the panel are deemed non-polyreactive. The nearly 500 therapeutic antibodies are140

treated separately, as many of these sequences either are not measured for polyreactivity or use a141

different metric as a measure of polyreactivity. The results presented below utilize this dataset of142

1053 non-therapeutic antibody sequences, unless otherwise noted.143

Dataset Polyreactive Non-Polyreactive Total

Mouse IgA 205 240 445

HIV Reactive 172 124 296

Influenza Reactive 152 160 312

Therapeutics - - 434

529 524 1487

Table 1: A quantification of the antibodies used in this study.
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A Surface-Level Analysis of Polyreactive Antibody Sequences144

As a first pass at the given dataset, we focus on the most simplistic of the possible explanations145

for differences between polyreactive and non-polyreactive antibodies, specifically the J- and V-gene146

usage of each group. Figure 1A and 1B, rendered with code adapted from the Dash et. al. derived147

program TCRdist [37], represents each antibody V-gene as a line connecting a single heavy and148

light chain gene for the human-derived antibodies (685 sequences).149
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Figure 1: A comparative genetic analysis of human-derived polyreactive and non-polyreactive anti-

body sequences uncovers population level differences. Gene usage diagrams comparing (A) human polyreac-

tive and (B) non-polyreactive sequences show a qualitative difference in the VH gene usage. Shared colors indicate

identical genes, grey indicates genes that are not seen in the other population at a level over 2%. Unlabeled genes

are colored randomly to highlight genetic variation in the populations. (C) Sequence alignment of the most prevalent

genes in the polyreactive and non-polyreactive populations compared to a reference gene common to each population.

Hydrophobic amino acids are colored white, hydrophilic amino acids are colored grey, and positively or negatively

charged amino acids are colored blue or red, respectively. (D) Percentage and raw count of observed gene usage for

the polyreactive and non-polyreactive sequences.
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Direct comparisons between mouse and human derived antibodies is difficult at the gene usage150

level. A similar analysis highlighting differences between mouse polyreactive and non-polyreactive151

antibodies can be found in the supplement (Figure S1).152

153

Genes are identified from nucleotide sequences using NCBI’s IgBLAST command line tool [38].154

Heavy and light chain genes that are shared between polyreactive and non-polyreactive sequences155

are colored for the top labelled instances. Genes which are labelled but not found above a 2%156

threshold in the opposite population are colored grey, while those that do not have a visible name157

are colored randomly to highlight variation in gene usage. From this comparison, it is clear that158

the variable gene usage is skewed between polyreactive and non-polyreactive sequences, with an159

enrichment of VH1-69, VH1-46, and VH4-59 in the polyreactive population. In contrast, no quali-160

tative differences in the J-gene usage are readily discernible between these two groups (Figure S2).161

162

While the full alignment of these most used heavy chain variable genes shows a high degree of163

sequence similarity (Figure S3), Figure 1C highlights the regions of highest dissimilarity between164

the biophysical properties of amino acids in prevalent genes within each population. VH3-23, the165

most prevalent gene in the non-polyreactive human dataset and the second most prevalent gene in166

the polyreactive human dataset, can be used as a reference for comparisons between genes enriched167

in each individual population. This reference gene shares a high degree of sequence similarity with168

the second and third most frequently occurring genes in the non-polyreactive dataset, VH3-7 and169

VH3-9, save for a lysine and glutamic acid pair in framework 2 of VH3-7. The genes enriched in the170

polyreactive dataset, however, are quite different from this reference. All three of the polyreactive171

enriched genes have charged residues where the non-polyreactive enriched genes have hydrophilic172

residues (or vice versa) at IMGT positions 1, 13, and 88. These initial results hint at some system-173

atic differences between the polyreactive and non-polyreactive antibody populations.174

175

Figure 1D quantifies the extent of the difference in gene usage in each population by comparing176

these most prominent genes from our accumulated dataset of HIV- and influenza virus-reactive177

antibodies. While the two most common genes in the polyreactive dataset account for 27% of178

the human polyreactive antibodies in this study, the top three most common genes in the non-179

polyreactive dataset account for just over 17% of the total population. In addition to being the180

most prevalent gene in the polyreactive dataset, VH1-69*01 has also been found historically to be181

more prevalent in broadly neutralizing antibodies against influenza viruses, in line with the previ-182

ously mentioned overlap between bnAbs and polyreactivity [15,36].183

184

Overall, there is a noticeable difference between the gene usage frequency of polyreactive and non-185
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polyreactive antibodies, but the overlap in the usage of the two populations suggests that gene186

usage alone is not sufficient to distinguish the two groups. While there exist qualitative differences187

between framework sequences enriched in the polyreactive dataset compared to the non-polyreactive188

population, a look at the amino acid usage of the CDR loops of each group shows no significant189

differences (Figure S4). This implies that the positional context of a given amino acid is critical to190

tease out differences in antibody binding properties.191

A Position Sensitive Matrix Representation of Sequences Provides Further In-192

sights into Polyreactivity193

To identify deeper trends in the biophysical properties of polyreactive antibodies, we utilize a new194

methodology to analyze and represent a range of different properties inherent to these sequences.195

While the framework regions of antibodies are highly conserved, the CDR loops vary significantly in196

length and show very low conservation between populations. This makes alignment of CDR loops197

difficult without creating subgroups for loops of identical length. To overcome this, the sequence198

data is re-organized into a matrix representation (Figure 2A). Each sequence is aligned by the199

center of each CDR loop, with spaces between the loops set to zero and each amino acid encoded200

as a number from 1 to 21. While this alignment method excludes the framework regions of the201

antibodies and slightly averages out some of the properties at the edge of the CDR loops, we reason202

that most of these differences are evident in the gene usage analysis of the previous section. From203

this simple alignment, no obvious patterns emerge separating polyreactive and non-polyreactive an-204

tibodies, however we can clearly see that mouse gut-derived IgA antibodies have generally shorter205

CDR3H loops, and more conserved CDR3L sequences when compared to the human-derived anti-206

body sequences. All subsequent analysis is derived from this matrix representation of the sequences.207

208

With this new positionally sensitive and quantitative alignment method, we are able to further209

dissect the differences in amino acid sequences presented in Figure 1. Figure 2B uses this posi-210

tional sequence encoding to determine the amino acid frequency difference between polyreactive and211

non-polyreactive sequences. For example, phenylalanine is found at position 93 in roughly 40% of212

polyreactive sequences and nearly 60% of non-polyreactive sequences. Therefore position 93, amino213

acid F has an intensity of -0.2 in Figure 2B. From this panel it is evident that most of the major214

differences are in the germline encoded regions CDR1H and CDR2H, in line with the observations215

from Figure 1 that suggest polyreactive antibodies have a distinct gene usage when compared to216

non-polyreactive antibodies. Figure 2C further expands on these differences, showing the largest217

changes in amino acid frequencies between the two populations. We can see that there is a slight218

decrease of phenylalanine frequency in CDR1H of polyreactive antibodies, in favor of isoleucine.219

Additionally, there is a general shift towards hydrophobicity in CDR2H, as the hydrophilic residue220
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serine at matrix positions 78 and 82 is less prevalent in polyreactive antibodies, instead replaced221

by the more hydrophobic residues isoleucine and glycine.222

223
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Figure 2: A new representation of CDR loop sequences improves the position-sensitivity of quanti-

tative antibody analysis. (A) Matrix representation of the amino acid sequences used in this study provides a

framework for further analysis. Each amino acid is encoded as a number from 1 to 21, represented by a distinct color

in the matrix. A 0-value is used as a buffer between loops and is represented by the dark blue regions. The red line

separates polyreactive and non-polyreactive sequences. (B) Amino acid frequency difference between polyreactive

and non-polyreactive sequences for all six CDR loops. Residues more common in polyreactive sequences are shown

in green, while those more common in non-polyreactive sequences are shown in pink. Loop positions correspond to

the numerical position within the matrix of panel A. (C) An in-depth representation highlighting the amino acid

frequencies used to create panel B. Only frequency changes greater than 10% are shown for clarity.
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This increased prevalence in loop hydrophobicity of polyreactive antibodies has been suggested224

before in the literature [16] along with a net increase in positive charge [32], so we next aimed225

to analyze this matrix systematically using biophysical properties inherent to the loops. A simple226

analysis of the full human and mouse-derived dataset investigating classical parameters explored227

previously by other groups (CDR loop length, net charge, net hydrophobicity, and gene usage)228

and some new properties (side chain flexibility, side chain bulk, and Kidera Factors [39]) show229

some significant differences between polyreactive and non-polyreactive antibodies (Figure 3A,B).230

The versatility of the positionally sensitive amino acid matrix allows for the application of multiple231

”property masks” to tease out the specific regions of each CDR loop that contributes most to these232

significant differences. Given a property, amino acid charge for example, we can replace each simple233

1-21 representation with a distinct representation based upon amino acid properties.234
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Figure 3: Position-sensitive quantification of CDR loop properties of mouse and human antibody

sequences highlights differences between polyreactive and non-polyreactive populations. Plotting the

average CDR loop lengths (A) and net antibody biophysical properties (B) show small but significant differences

when analyzed in bulk. Basic properties 1-5 are hydrophobicity1, charge, hydrophobicity2, side chain flexibility, and

side chain bulk. Plotting the average net charge (C) and hydrophobicity (D) as a function of position of polyreactive

and non-polyreactive sequences highlights significant differences in CDR3H. Light shadow around lines represent

bootstrap standard errors. All uncertainties obtained via bootstrapping. Stars indicate p-value ≤ 0.05 calculated via

nonparametric Studentized bootstrap test. Bars with a single star above represent contiguous regions of significance.

In the matrix of Figure 2A leucine, histidine, and arginine are represented by the integers 3, 16,236

and 17. As an example, when the charge property mask is applied, the matrix representations237
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of these three amino acids in all sequences is changed to 0.00, 0.091, and 1.00, respectively. We238

apply 62 such masks to this matrix, including simple metrics like charge, hydrophobicity, side chain239

flexibility, and side chain bulkiness to go along with more carefully curated metrics from the works240

of Kidera et. al. and Liu et. al [39,40]. A complete description of these properties can be found in241

Supplemental Table 1. The application of these masks gives an entirely new matrix describing the242

localization of amino acids with a given property.243

244

By averaging across all sequences in the polyreactive or non-polyreactive dataset when these masks245

are applied, we can readily see differences in charge patterning and hydrophobicity when com-246

paring polyreactive and non-polyreactive sequences (Figure 3C,D). Including errors obtained via247

bootstrapping, we see that these differences are most pronounced in the center of CDR3H, with248

some differences also apparent in the remaining five loops. This analysis shows an overall bias249

towards neutrality (i.e. neither positively nor negatively charged, neither strongly hydrophilic nor250

hydrophobic) in these regions. These results also contextualize the findings of Figure 2C. The251

trend towards hydrophobic residues in CDR2H of polyreactive antibodies importantly does not252

make these regions net hydrophobic, but instead make these regions slightly less hydrophilic on253

average.254

Systematic Determination of the Key Contributions to Polyreactivity255

Along with simple property averaging, these masks also give a high dimensional space from which256

we can determine, in an unbiased way, the primary factors that discriminate polyreactive and non-257

polyreactive antibodies. As a first pass, we apply a principal component analysis (PCA) to the258

matrix of all antibody sequences in an attempt to separate the polyreactive or non-polyreactive259

populations along the axes of highest variation in the dataset. Unfortunately, the principal com-260

ponents of these data do not effectively distinguish between the two populations (Figure S5).261

262

To further investigate the physical and sequence-based properties of polyreactivity in antibodies in263

a more targeted manner, we employ linear discriminant analysis (LDA), a common technique often264

applied in classification problems [41–43]. LDA works in a manner conceptually similar to PCA,265

reducing the dimensionality of a given dataset via a linear combination of the original dimensions.266

However, LDA takes one additional input, the label or class of each sequence. Whereas the objec-267

tive of PCA is to identify the axes which maximize the variance in the dataset, LDA has the dual268

objective of maximizing the projected distance between two classes while minimizing the variance269

within a given class. While LDA is more well adapted for classifying two distinct populations, it270

is susceptible to overfitting, unlike PCA [44]. Here, we have labelled our two classes in the matrix271

11

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 30, 2020. ; https://doi.org/10.1101/2020.07.30.229013doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.30.229013
http://creativecommons.org/licenses/by/4.0/


with either a “1” for polyreactive, or “0” for non-polyreactive. In our application of LDA we parse272

down the large number of input vectors using either PCA or an algorithm which selects the vectors273

with the largest average differences between the two populations. This reduction in dimensionality274

ensures the data are not being overfit, and the tunable number of input vectors allows us to control275

for overfitting in each individual application.276

277

Figure 4A shows the results of LDA when applied to a parsed dataset comprised of 311 polyreactive278

antibodies and 362 non-polyreactive antibodies. A limitation of the full human and mouse-derived279

polyreactivity dataset is that there exists an intermediate between the two classes. It is not imme-280

diately obvious where the line for polyreactivity should be drawn. An antibody that binds to 2-3281

ligands may not necessarily achieve broad reactivity through the same mechanism as an antibody282

that binds 4 or more ligands from a panel of 6 or 7. To remove these ambiguities, in this parsed283

dataset we denote antibodies that bind 4-7 ligands as polyreactive, antibodies that bind 0 panel284

ligands as non-polyreactive, and those that bind 1-3 are removed from the analysis.285

286

LDA analysis is versatile in its applications, and in this work we utilize the method in two distinct287

modes. In the first mode, all of the available data is used as input with the output vector repre-288

senting the features that best distinguish between the two complete populations. Plots of the data289

projected onto this vector (as in Figure 4A) represent the maximum achievable separation between290

the two populations for a defined number of input components from the given biophysical property291

matrix. In the second mode, we utilize LDA as a more canonical classification algorithm separat-292

ing the data randomly into training and test groups. In this classification mode of operation, a293

combination of correlation analysis coupled with maximal average differences is used to parse input294

features, and a support vector machine (SVM) is used to generate the final classifier from these295

features. Accuracy of the resultant classifiers is assessed via leave one out cross validation, these296

accuracies are shown in Figure 4B.297

298

In the first mode, we find that the data can be split more effectively when the parsed dataset is299

broken up into the distinct “reactivity” groups, i.e. those antibodies specific for influenza viruses,300

HIV, or found in the mouse gut (Figure 4A). This suggests there may be some bias due to antigen301

specificity, or lack thereof, whereby influenza virus-specific antibodies take a slightly different path302

towards polyreactivity compared to HIV reactive or mouse gut IgA antibodies. However, when303

using the classification mode, the classification accuracy is roughly equivalent across all tested304

datasets (Figure 4B). Testing this classifier with a scrambled dataset, where the labels are ran-305

domly assigned, shows the expected decrease in classification accuracy for each individual dataset306

for all ranges of input features.307
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Figure 4: Linear discriminant analysis (LDA) can meaningfully separate the two populations and these

meaningful differences can be used to generate a polyreactivity classifier. LDA applied individually to the

complete parsed, Influenza, HIV, and mouse datasets. Percentages indicate the accuracy of the linear discriminant in

labelling polyreactive and non-polyreactive antibodies. For these data, the plotted linear discriminants are comprised

of different linear weights. (B) Accuracies of a polyreactivity classifier with a separate test and training dataset.

Groupings in this figure are the same as those in panel A. A support vector machine is generated for each individual

population, and the reported values are accuracies calculated through leave one out cross validation. Shown are test

data and a scrambled dataset where the labels of “polyreactive” or “non-polyreactive” are applied randomly (grey

bars). The dotted line indicates 50% accuracy threshold. (C) Property matrices highlighting the top 10 weights

of the linear discriminants in panel A for the parsed dataset with 75 vectors (C) and the HIV dataset with 75

vectors (D). Color bar represents the normalized weight of each property, where pink rectangles represent properties

positively correlated with increased polyreactivity, and green rectangles represent properties negatively correlated

with decreased polyreactivity. For clarity, only the top ten linear weights are included. The full matrix of this data

can be found in supplemental Figure S6.

When applying LDA in the first mode (Figure 4A), we can directly pull the linear weights of each309

component comprising linear discriminant 1 and reveal which biophysical properties at each CDR310

position best distinguish between the two populations. The differences in the linear weights from311

the heavy chain CDR loops comprising each discriminant show clear differences when comparing the312

complete parsed dataset (Figure 4C) to the HIV only dataset (Figure 4D). In the parsed dataset,313

the discriminating weights are heavily concentrated in CDR2H. Whereas in the HIV dataset, these314

weights are centered around the CDR3H loop. Only the top ten linear weights are shown in315

13

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 30, 2020. ; https://doi.org/10.1101/2020.07.30.229013doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.30.229013
http://creativecommons.org/licenses/by/4.0/


Figure 4C,D. The full matrix of linear weights can be found in Figure S6. The predominant316

discriminating factors between datasets might be due to the significant difference in CDR3H length317

between the mouse (IgA) and the human datasets, which confounds the analysis in this region.318

However, when examining each individual subset of the complete dataset we do find that there are319

common properties that seem to be the primary discriminators (i.e. largest linear weights). These320

are hydrophobicity 1, hydrophobicity 2, and hotspot variable 6 (a structural parameter related to321

alpha-helix propensity).322

An Information Theoretic Approach323

While analysis of the biophysical property differences between polyreactive and non-polyreactive324

sequences provides some insight into the molecular basis for the polyreactivity phenomenon, a325

broad unifying pattern which could discern the biophysical mechanism behind polyreactivity was326

not readily evident across all types of antibodies. To probe these polyreactive sequences in a quan-327

titative yet more coarse manner, we applied the formalism of information theory to our dataset328

of antibody sequences. Information theory, a theory classically applied to communication across329

noisy channels, is incredibly versatile in its applications, with high potential for further applications330

in immunology [45–50]. In this work, we utilize two powerful concepts from information theory,331

namely Shannon entropy and mutual information.332

333

Shannon entropy, in its simplest form, can be used as a proxy for the diversity in a given input334

population. This entropy, denoted as H has the general form:335

H(X) = −
∑
X

p(x) log2 p(x) (1)

Where p(x) is the occurrence probability of a given event, and X is the set of all events. We can336

then calculate this entropy at every position along the CDR loops, where X is the set of all amino337

acids, and p(x) is the probability of seeing a specific amino acid at the given position. In other338

words, we want to determine, for a given site in a CDR loop, how much diversity (or entropy) is339

present. Figure 5A shows this Shannon entropy distribution for the full dataset of polyreactive340

and non-polyreactive antibodies. Given there are only 20 amino acids used in naturally derived341

antibodies, we can calculate a theoretical maximum entropy of 4.2 bits, which assumes that every342

amino acid occurs at a given position with equal probability. Although the observed entropy of the343

CDR3H loop approaches this theoretical maximum, it hovers below it (3.5 Bits) due to the relative344

absence of the amino acids cysteine and proline in the center of this loop. The difference in the345

entropy distributions in CDR1H are consistent with the bias in amino acid usage in this region,346

shown previously in Figure 2.347
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348

Importantly, from this entropy we can calculate an equally interesting property of the dataset,349

namely the mutual information. Mutual information is similar, but not identical to, correlation.350

Whereas correlations are required to be linear, if two amino acids vary in any linked way, this will351

be reflected as an increase in mutual information. In addition, due to some of the highly conserved352

residues in the non-CDR3H loops, high covariance can be achieved for residues that have not been353

specifically selected for in the germinal center. Using this information theory framework, these354

conserved residues have a mutual information of 0. Overall, the mutual information can be used to355

identify patterns in antibody sequences that were not readily evident through the previous analysis356

in this or other studies. If there is some coevolution or crosstalk between residues undergoing some357

selection pressure in the antibody maturation process, it will be reflected as an increase in the358

mutual information.359

360

In this work, mutual information I(X;Y ) is calculated by subtracting the Shannon entropy de-361

scribed above from the conditional Shannon entropy H(X|Y ) at each given position as seen in362

equations 2 and 3:363

H(X|Y ) = −
∑
y∈Y

p(y)
∑
x∈X

p(x|y) log2 p(x|y) (2)

I(X;Y ) = H(X)−H(X|Y ) (3)

To orient ourselves in physical space, Figure 5B gives an example crystal structure (PDB: 5UGY)364

[51] highlighting the lateral arrangements of the CDR loops. The matrix in Figure 5C shows that365

the mutual information between CDR loops on this binding surface is increased in the heavy chains366

of polyreactive antibodies over non-polyreactive ones, suggesting there exists more loop crosstalk367

in antibodies that exhibit polyreactivity. Interestingly, it appears that there is a corresponding368

decrease of loop crosstalk in the light chains of polyreactive antibodies. This observed crosstalk369

persists across all polyreactive antibodies within all subsets of our tested dataset and is evident370

both in intra-loop and inter-loop interactions. Figure 5D highlights some examples of the interest-371

ing significant differences of this crosstalk at distinct given positions within CDR1H and CDR3H.372

A complete plot of the statistically significant differences (p ≤ 0.05) of Figure 5C (Figure S7) shows373

that a large portion of these differences are in fact significant.374

375
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Figure 5: An information theoretic analysis of antibody sequences shows an increase in polyreactive

antibody loop crosstalk. (A) The sequence diversity of the polyreactive and non-polyreactive datasets, quantified

using Shannon Entropy, highlight similar diversities between the two groups. (B) A crystal structure (PDB: 5UGY)

provides a visual representation of the lateral organization of the CDR loops on the antibody binding surface.

(C) The difference in mutual information between polyreactive and non-polyreactive sequences shows that CDR

loops of the heavy chain have more crosstalk in polyreactive antibodies. Each individual row represents the given

condition, whereas each column gives the location the mutual information is calculated. (D) Singular slices of the

mutual information show the data in (C), projected from the matrix onto a line, highlighting the significance of the

differences at these particular locations. The positions of the “given” amino acid, i.e. the particular Y in H(X|Y ),

are highlighted by grey boxes in panel C. Solid black lines indicate where on the X-axis this “given” amino acid is

located. Stars indicate statistical significance (p ≤ 0.05) calculated through a nonparametric permutation test. Bars

with a single star above represent contiguous regions of significance.

The ordering of these entropy and information plots was chosen to reflect the spatial arrangement376

of the loops on the antibody surface; as such they show also that mutual information between loops377

drops off with physical distance between these loops. In other words, loops (and residues) that are378

located close to each other will have more of an effect on their direct neighbors as opposed to those379
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that are more physically distant. This increased mutual information suggests that in the heavy380

chains of polyreactive antibodies, there is enhanced cooperativity or co-evolution of the amino acids381

of intra- and inter-CDR loop pairs.382

Application to Therapeutic Antibodies383

As discussed previously, many studies on antibody repertoires specific to a given target have also384

revealed polyreactivity in these binders. Given the architecture of the software built around this385

bioinformatic analysis of polyreactivity in natural immune responses, the identical treatment of386

therapeutic antibodies is a logical next step. Using the published experimental tests of Jain &387

Sun et. al. and the extensive database provided by Thera-SAbDab we were able to compare the388

polyreactivity of a natural immune response with that seen in therapeutic antibodies [25,52,53].389

390

Figure 6A shows the extent to which a linear discriminant trained on the parsed polyreactivity391

dataset can effectively discriminate approved and discontinued antibody therapeutics. From these392

plots we see that polyreactivity status of naturally-derived antibodies does not correlate well with393

the acceptance or discontinuation of a therapeutic antibody. Additionally, the polyreactivity sta-394

tus of naturally-derived antibodies correlates poorly with the reported polyreactivity of therapeutic395

antibodies (Figure S8). Importantly however, polyreactivity for these therapeutic antibodies is re-396

ported in a different manner compared to the other antibodies in this study. Rather than a count397

of the number of ligands the antibody reacts to, the polyreactivity is reported as an average score.398

Re-training the linear discriminant on these therapeutic antibodies (Figure 6B), shows an ability399

to split the approved and discontinued antibodies with an accuracy of 76% when using LDA mode400

1 with 15 input vectors. While the software does seem able to effectively split approved and dis-401

continued therapeutic antibodies to some extent, the biophysical properties which are effectively402

creating this split are not as obvious as in the case of polyreactive and non-polyreactive naturally403

derived antibodies.404

405

Both the position-sensitive charge and hydrophobicity (Figure S9) show no significant differences406

between approved and discontinued antibodies. Plotting the linear weights of LD1 from Figure 6B,407

we can see that the primary discriminating factors between approved and discontinued antibodies408

are unsurprisingly centered around CDR3H. Significant differences can be seen in the CDR3H409

average value of Kidera Factor 7, a metric based upon side chain partial specific volume (Figure410

6D). Overall, the software can meaningfully separate and analyze a binary split between groups,411

demonstrating its applicability to a broad array of sequence analyses.412
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Figure 6: An application of the linear discriminant analysis module of the software to therapeutic

antibodies highlights the broad applicability of this analysis. (A) A linear discriminant generated using

the parsed naturally-derived antibody dataset applied to approved and discontinued therapeutic antibodies. (B)

Projection of the approved and discontinued antibodies onto a linear discriminant trained on that data. (C) The

location and intensity of the linear weights of the linear discriminant in panel B highlight the properties that best

split the approved and discontinued antibodies. (D) Position sensitive plot of Kidera Factor 7, for approved and

discontinued therapeutic antibodies. Stars indicate significance of p ≤ 0.05, calculated via one-sided non-parametric

bootstrap test. Error bars calculated using the bootstrapped standard deviation.

Discussion413

Previous research has highlighted the importance of hydrophobicity, charge, and CDR loop flex-414

ibility on antibody specificity. In this work, we expand upon these previous results with a new415

bioinformatic and biophysical characterization of polyreactive antibodies. The software generated416

for this study provides a powerful computational tool which can be utilized by researchers inter-417

ested in discerning differences between populations of adaptive immune molecules in broad contexts.418

Building off of the efforts of our own work and that of experimental collaborators, we were able419

to aggregate to date one of the largest publicly available datasets of antibodies tested for polyre-420

activity. Differences in the germline gene frequency and amino acid frequencies show there exists421

some underlying differences between polyreactive and non-polyreactive antibodies. A surface level422
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analysis of this dataset is able to discriminate certain features of polyreactive and non-polyreactive423

antibodies, namely that on average, polyreactive antibodies are less strongly negatively charged,424

less hydrophilic, and have a higher prevalence of antibodies with longer CDR loops of the heavy425

chain. Importantly, however, these binding surfaces do not have a net positive charge nor are they426

net hydrophobic.427

428

To dig deeper into the biophysical differences between polyreactive and non-polyreactive antibod-429

ies, we created an adaptable software for the automated analysis of large antibody datasets and430

the application of a new analysis pipeline for the study of polyreactive antibodies. Overall, the431

improvements of this software to the current state of antibody sequence analysis are sufficient to432

highlight key differences in the two populations with improved spatial resolution. The position433

sensitive sequence alignment is able to further parse through the genetic differences and show that434

in general, polyreactive antibodies have a tendency to have more hydrophobic residues in CDR2H,435

and a decreased preference for phenylalanine in CDR1H. While these observational differences pro-436

vided some initial insight, a more rigorous biophysical treatment was necessary. With the addition437

of 62 biophysical properties analyzed using the position sensitive alignment, significant differences438

between the CDR3H loops in polyreactive and non-polyreactive antibodies became immediately439

evident, providing a more detailed depiction of the antigen binding surface of polyreactive antibod-440

ies.441

442

These data suggest a movement towards neutrality or “inoffensive” residues in the CDR loops of443

polyreactive antibodies: amino acids that are neither exceptionally hydrophobic nor hydrophilic444

and with a net charge close to 0. Previous studies have suggested that polyreactive antibodies tend445

to have more hydrophobic CDR loops, such that low affinity Van der Waals interactions might446

be the primary means of polyreactive interactions [16, 30]. However, these studies counted the447

number of hydrophobic residues per sequence or averaged the hydrophobicity of all six CDR loops.448

While our results partially agree with these previous findings, our analysis extends much further449

into defining the biophysical basis of this phenomenon. For example, while our position sensitive450

representation of the sequences shows that CDR3H does become more hydrophobic in polyreactive451

sequences, it is still net hydrophilic on average. A highly hydrophobic binding surface would pro-452

vide an avenue for non-specific interactions with other hydrophobic proteins, but it would occlude453

binding to highly hydrophilic ligands like DNA. A slightly hydrophilic, neutral-charged binding454

surface would permit weak interactions with a wide range of ligands.455

456

Using these and other biophysical properties as input feature vectors, we were able to generate a457

generalizable protocol for binary comparisons between two distinct populations of Ig-domain se-458
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quences. This framework is able to successfully split all tested polyreactive and non-polyreactive459

antibody datasets. Care was taken to not overfit these data and a preliminary classifier built from460

this algorithm was able to identify the proper number of input vectors for each LDA application.461

While there are general features which best split the polyreactive and non-polyreactive antibod-462

ies in these datasets, including charge, hydrophobicity, and beta sheet propensity, these features463

alone are not sufficient to discriminate between the two populations. Instead, 75 vectors taken464

from the position-sensitive biophysical property matrix are necessary to properly split the groups,465

including both simple properties like charge, hydrophobicity, flexibility, and bulkiness and more466

carefully curated properties like the often used Kidera factors and the hotspot detecting variables467

of Liu et. al [39, 40, 54]. The inability to arrive at a core few biophysical properties that could468

effectively distinguish polyreactive and non-polyreactive antibodies necessitated the application of469

further approaches, namely information theory.470

471

The tools provided by information theory proved to be effective in the present study. The classic472

approach to information theory considers some input, communication of this input across a noisy473

channel, and then reception of a meaningful message from the resultant output. We can think of474

the analogous case for these antibodies, whereby the sequence and structure of the antibodies can475

be seen as our input, the thermal noise inherent to biological systems can complicate biochemical476

interactions, and the necessary output is antigen recognition, i.e. binding between the antibody and477

the ligand. Focusing just on the antibody side of this communication channel, we determined the478

underlying loop diversity through the Shannon entropy of the polyreactive and non-polyreactive479

datasets. This diversity was found to be nearly equivalent while the mutual information, a metric480

of “crosstalk” across populations, between and within CDR loops was found to be increased in the481

heavy chain and decreased in the light chain of polyreactive antibodies. What this loop crosstalk482

entails physically is not immediately clear from these measurements.483

484

The mutual information increase could come from gene usage being somehow coupled, amino acid485

usage coupling with the cognate ligand, or the amino acids directly interacting physically with each486

other. In some way, this crosstalk appears to be selected for in the polyreactive population. If this487

increase in mutual information manifests as an increase of charge-charge interactions, this could488

explain why there is a minimal change in net charge of antibodies between the two groups, yet a489

significant move towards neutrality in the CDR loops of polyreactive antibodies. The pairing of490

two charged groups would help move the binding surface of polyreactive antibodies towards a more491

“inoffensive” binding surface. A binding surface that is neither exceptionally hydrophobic nor hy-492

drophilic, and lacks a significant positive or negative charge, would represent a relatively appealing493

binding interface for a low-affinity interaction with a large array of diverse ligands. A patchwork494
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of hydrophobic and hydrophilic non-charged residues exposed to potential ligands would represent495

an ideal candidate polyreactive surface. The corresponding decrease in the mutual information496

between the light chain CDR loops of polyreactive antibodies could be caused by a de-emphasis in497

the involvement of these loops due to differential binding configurations of polyreactive ligands, as498

has been previously hypothesized [4, 55].499

500

In addition to the insights into polyreactivity, the computational tools developed for this study501

are broadly applicable to future studies of large antibody or T cell receptor repertoires. One of502

the strengths of this approach is a decreased emphasis on structural information when crystal503

structures are unavailable. Computational prediction of loop conformation is difficult, and draw-504

ing inferences from incorrect models regarding side-chain interactions and positioning could be505

misleading. Reliable structural information on these polyreactive antibodies will be critical to a506

further understanding of the mechanisms of polyreactivity, including complex structures of antibod-507

ies bound to various ligands. In the high-throughput analysis of antibody sequences, our approach508

strikes a careful balance of the structural assumptions that should apply consistently across anti-509

body populations.510

511

This streamlined analysis allows for the generation of each figure in this study to be applied to512

thousands of sequences in a matter of minutes. The classification capabilities of the software could513

prove particularly useful when comparing binary classes, such as T cell receptors or antibody se-514

quences derived from healthy and diseased tissue samples. To demonstrate this broad applicability,515

a database of nearly 500 therapeutic antibodies was analyzed using the linear analysis module of516

the software. This linear analysis highlighted the differences between polyreactivity of therapeutic517

antibodies and naturally derived antibodies. When applying this linear analysis to split approved518

and discontinued therapeutics, the biophysical property differences were less stark than those be-519

tween polyreactive and non-polyreactive antibodies. This makes intuitive sense, as therapeutics can520

be discontinued for a myriad of reasons, not necessarily due just to non-specificity or instability of521

the antibody.522

523

Those therapeutic antibodies that were tested for polyreactivity appeared have little overlap with524

the polyreactivity of the naturally derived antibodies central to this study. This could be due to525

fundamental differences between the biophysical determinants of polyreactivity arising from anti-526

bodies generated in vivo vs in vitro, or could be due to experimental differences in the reporting527

of polyreactivity. While a single metric for polyreactivity, as is sometimes reported, is convenient,528

information on the binding of each sequence to all tested ligands is important. It is not necessarily529

obvious a higher average ELISA score corresponds to increased polyreactivity. Is an antibody that530
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binds to three targets with high affinity more polyreactive than one that binds to seven ligands with531

somewhat lower affinity? These nuances require as much transparency as possible when reporting532

experimental results.533

534

Further experimental assays will be necessary to more comprehensively identify the underlying535

mechanisms of polyreactivity, including further sequencing and biochemical analysis of polyreac-536

tive and non-polyreactive antibodies. Antibodies specific to other pathogens or those from other537

organisms tested for polyreactivity will help form a more complete picture and improve the gener-538

ality of the results. As with any machine learning based approach, the classification algorithm is539

only as good as the data it is trained on. Adding further data in the training set, including more540

mutations and germline reversions that turn a polyreactive antibody non-polyreactive or vice-versa,541

will be critical for a comprehensive analysis of polyreactivity. Additionally, a more complete un-542

derstanding of the germinal center and the selection processes inherent to the affinity maturation543

process will assist in the determination of whether polyreactivity is a byproduct or a purposeful544

feature of the affinity maturation process.545

546

The software generated for this study is publicly available as a python application (see Methods).547

The unique aspect of this software is its hybrid approach to position-sensitive amino acid sequence548

analysis. Structural information is implicitly encoded by the alignment strategy employed, yet549

these assumptions are weaker than those imposed by explicit structural prediction. Downstream550

analysis from this positional encoder is streamlined and can be generalized to analyze any binary551

or higher order classification problems. Acceptable inputs are not restricted to CDR loops of im-552

munoglobulins, and in fact the software has already been adapted for analyzing MHC-like molecules553

(data not shown). This software represents a strong addition to the existing toolkit for repertoire554

analysis of diverse molecular species.555

Methods556

Software557

All analysis was performed in python, with code tested and finalized using Jupyter Notebooks [56].558

Figures were generated with matplotlib [57] or seaborn [58], while the majority of data analysis was559

carried out using Pandas [59], SciPy [60], and SciKit-learn [61]. All code will become available at560

https://github.com/ctboughter/AIMS upon publication, including the original Jupyter Notebooks561

used to generate the data in this manuscript as well as generalized versions for analysis of novel562

datasets.563

22

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 30, 2020. ; https://doi.org/10.1101/2020.07.30.229013doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.30.229013
http://creativecommons.org/licenses/by/4.0/


Statistical Analysis564

Error bars in all plots are provided by the standard deviation of 1000 bootstrap iterations. Statis-565

tical significance is calculated using either a two-sided nonparametric Studentized bootstrap or a566

two-sided nonparametric permutation test as outlined in “Bootstrap Methods and Their Applica-567

tion” [62]. For the Studentized bootstrap, the bootstrapped data are drawn from a resampling of568

the empirical distributions of each respective group with replacement. Practically, what this entails569

is a separation of the polyreactive and non-polyreactive antibodies into distinct matrices and using570

the Scikit-learn resample module to preserve the number of sequences in each population. From571

these resampled populations, all of the relevant properties used in this study were re-calculated.572

These 1000 iterations of each property were then compared to the empirical distribution to calculate573

a p-value using the relation:574

p =
1 + ](z2 ≥ z20)

R+ 1
(4)

Here, we calculate the p-value by counting the number of bootstrap iterations where z2 is greater575

than or equal to z20 . z2 and z20 are Studentized test statistics taken from the bootstrap and empirical576

and distributions, respectively. R is the number of times this bootstrapping process is repeated.577

The general form of z is given by:578

z =
Ȳ2 − Ȳ1 − (µ2 − µ1)

(
σ2
2
n2
− σ1

1
n1

)1/2
(5)

Where Ȳ represents the bootstrapped sample mean, µ is the observed sample mean from the origi-579

nal data, σ is the bootstrapped sample standard deviation, and n is the number of samples. Sample580

1 and 2 in this case correspond to polyreactive and non-polyreactive antibodies. To calculate z581

for the empirical distribution (z0), the Ȳ terms are set to 0 and all other values correspond to the582

empirical rather than bootstrapped values.583

584

To calculate p-values for differences in mutual information, the permutation test was used rather585

than the Studentized bootstrap. Here, the test statistic t is set to a simple difference of means, and586

rather than sampling with replacement from the empirical distribution, we randomly permute the587

data into “polyreactive” or “non-polyreactive” bins. We then count the number of permutations588

where the randomly permuted test statistic is greater than or equal to the empirical test statistic.589

This count then replaces the count (]) in the above equation for p.590
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Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Hen-818

riksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pe-819
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Figure S1: Gene usage plots comparing mouse polyreactive (A) and (B) non-polyreactive clones including J-gene

usage. Colors represent the most commonly used genes in each individual dataset, with colors not necessarily consis-

tent between panels. Sequence alignments comparing the amino acids of these most common genes for polyreactive

and non-polyreactive mouse antibodies for the heavy chain (C) and the light chain (D). Prevalent genes are present

in both populations. Cysteine is colored yellow, hydrophobic amino acids are colored white, hydrophilic amino acids

are colored grey, and positively or negatively charged amino acids are colored blue or red, respectively.
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Figure S2: Gene usage plots comparing human polyreactive (A) and (B) non-polyreactive clones including J-gene

usage. Data is the same as that in Figure 1A and 1B, with a different color scheme used for genes. Colors represent

the most commonly used genes in each individual dataset, with colors not necessarily consistent between panels.
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QVQLVQSGA EVKKPGSSVKVSCKASGGTF... SSYAISWVRQAPGQGLEWMGGIIPI..FGTANYAQKFQ GRVTITADESTSTAYMELSSLRSEDTAVYYCAR...
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Figure S3: Sequence alignment of the most polyreactive genes compared to the most prevalent gene and the

most non-polyreactive genes. Alignment uses IMGT numbering scheme and displays the entirety of the heavy chain

variable gene’s amino acid sequence. Boxes represent the sections highlighted in Figure 1C. Cysteine is colored yellow,

hydrophobic amino acids are colored white, hydrophilic amino acids are colored grey, and positively or negatively

charged amino acids are colored blue or red, respectively.

Polyreactive Antibodies Non-Polyreactive AntibodiesA B

Figure S4: Amino acid usage plot highlighting the occurrence of each amino acid in non-polyreactive (A) and

polyreactive (B) CDR loops. Each line represents an individual clone, and each point along the line represents the

count of each amino in that given clone. Black dots represent the average counts per clone.

34

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 30, 2020. ; https://doi.org/10.1101/2020.07.30.229013doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.30.229013
http://creativecommons.org/licenses/by/4.0/


A B

 C

Figure S5: Principal component analysis (PCA) applied to the full amino acid usage matrix and the top 75

discriminating vectors used for linear discriminant analysis shows an inability to distinguish the two populations

when showing the first three (A) and first two (B) principal components. (C) Examination of the weights of these

first three components shows there is no one property disproportionately contributing to the variance in the dataset.

The vector normal of each set of weights is equivalent to 1. The red dot represents the transition from the simple

property-based representation of each set of CDR loops to the top 75 discriminating properties.
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Figure S6: The complete representation of the 75 linear weights that most effectively separate polyreactive and

non-polyreactive sequences in the parsed complete dataset (A) and the parsed HIV dataset (B). The x-axes each

represent a single biophysical property selected after parsing down the full feature list using a maximal difference

algorithm and a correlation analysis.
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Figure S7: The statistical significance of the values reported in Figure 5C. Each black dot represents statistical

significance (p ≤ 0.05) at that given location. Significance was calculated using a non-parametric permutation test.
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Figure S8: A mapping of the therapeutic antibodies tested for polyreactivity by Jain & Sun et. al. (PNAS 2017)

onto the linear discriminant trained on the parsed dataset of naturally derived polyreactive antibodies. The linear

discriminant here is identical to that in Figure 6A, while the sequences plotted above are subset of the “Therapeutic

Antibodies” in that same panel. These therapeutic antibodies were tested for polyreactivity using an ELISA based

assay aggregated into a single value reported in the original study. These values are represented in this plot by color,

with the color bar providing the scale.
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Figure S9: Plotting the average net charge (A) and net hydrophobicity (B) as a function of distance of discontinued

and accepted therapeutic antibodies highlights a lack of significant differences. Light shadow around lines represents

standard deviation obtained via bootstrapping.
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Table S1: List of all of biophysical properties used for this study. For hotspot detecting variables844

(HS) a simplified form of the description is used. For more in-depth descriptions, the original845

reference should be used.846

Property Shorthand Description

Phob1 Hydrophobicity Scale [-1,1]

Charge Charge [ec]

Phob2 Octanol-Interface Hydrophobicity Scale

Bulk Side-Chain Bulkiness

Flex Side-Chain Flexibility

KD1 Helix/Bend Preference

KD2 Side-Chain Size

KD3 Extended Structure Preference

KD4 Hydrophobicity

KD5 Double-bend Preference

KD6 Flat Extended Preference

KD7 Partial Specific Volume

KD8 Occurrence in alpha-region

KD9 pK-C

KD10 Surrounding Hydrophobicity

HS1 Normalized Positional Residue Freq at Helix C-term

HS2 Normalized Positional Residue Freq at Helix C4-term

HS3 Spin-spin coupling constants

HS4 Random Parameter

HS5 pK-N

HS6 Alpha-Helix Indices for Beta-Proteins

HS7 Linker Propensity from 2-Linker Dataset

HS8 Linker Propensity from Long Dataset

HS9 Normalized Relative Freq of Helix End

HS10 Normalized Relative Freq of Double Bend

HS11 pK-COOH

HS12 Relative Mutability

HS13 Kerr-Constant Increments

HS14 Net Charge

HS15 Norm Freq Zeta-R

HS16 Hydropathy Scale

HS17 Ratio of Average Computed Composition
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HS18 Intercept in Regression Analysis

HS19 Correlation coefficient in Reg Anal

HS20 Weights for Alpha-Helix at window pos

HS21 Weights for Beta-sheet at window pos -3

HS22 Weights for Beta-sheet at window pos 3

HS23 Weights for coil at win pos -5

HS24 Weights coil win pos -4

HS25 Weights coil win pos 6

HS26 Avg Rel Frac occur in AL

HS27 Avg Rel Frac occur in EL

HS28 Avg Rel Frac occur in A0

HS29 Rel Pref at N

HS30 Rel Pref at N1

HS31 Rel Pref at N2

HS32 Rel Pref at C1

HS33 Rel Pref at C

HS34 Information measure for extended without H-bond

HS35 Information measure for C-term turn

HS36 Loss of SC hydropathy by helix formation

HS37 Principal Component 4 (Sneath 1966)

HS38 Zimm-Bragg Parameter

HS39 Normalized Freq of ZetaR

HS40 Rel Pop Conformational State A

HS41 Rel Pop Conformational State C

HS42 Electron-Ion Interaction Potential

HS43 Free energy change of epsI to epsEx

HS44 Free energy change of alphaRI to alphaRH

HS45 Hydrophobicity coeff

HS46 Principal Property Value z3 Wold et. al. 1987
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