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ABSTRACT 
 
Single-cell assays have transformed our ability to model heterogeneity within cell 
populations and tissues. Virtual reality has recently emerged as a powerful technology to 
dynamically explore complex data. However, expensive hardware or advanced data 
preprocessing skills are required to adapt such technology to single-cell data. To address 
current shortcomings, we built singlecellVR, a user-friendly website for visualizing single-
cell data, designed for cheap and easily available virtual reality hardware (e.g., Google 
Cardboard, ~$8). We provide a companion package, scvr to streamline data conversion 
from the most widely-adopted single-cell analysis tools and a database of pre-analyzed 
datasets to which users can contribute. 
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BACKGROUND 
 
Characterization of cell type, while once dominated by pathological description, has over 
the past decade shifted towards a more quantitative and molecular approach. As such, 
molecular measurements in single cells have emerged as a centerpiece in the current 
paradigm of mechanistic biological investigation [1]. While advancements have been 
made such that all aspects of the central dogma of molecular biology are now accessed 
in single cells [2], single-cell RNA sequencing (scRNA-seq), a technique that samples the 
total mRNA of each cell, and single-cell Assay for Transposase Accessible Chromatin 
using sequencing (scATAC-seq), a technique that assesses genome-wide chromatin 
accessibility, are the most well-established and widely-used of these methods [2, 3]. 
Additionally, assays to profile DNA methylation[5] or protein levels are now maturing and 
becoming more widely-accessible [5, 6].  
 
In scRNA-seq, the normalized count of each mRNA transcript acts as a dimension or 
feature by which cells may be characterized. Transcripts for >20,000 coded features are 
recorded and counted; the most informative features can distinguish one cell from 
another. In scATAC-seq, the feature space is even larger; cells are characterized by the 
genomic coordinates of the accessible regions or the features (e.g. transcription factor 
motifs, k-mer frequencies, etc.) derived from these regions. Initially performed in dozens 
to hundreds of cells, these experiments are now performed on the order of millions of 
cells. With high dimensionality as a result of thousands of features being considered for 
each cell and large (in cell number) experiments, analysis methods for this data has been 
required to advance concurrently with the development of these technologies [8, 9].  
  
Among others, PCA, tSNE, and UMAP are dimensional reduction methods that have 
become common choices for enabling the visualization of high-dimensional single-cell 
datasets. Dimensionally reduced datasets are plotted such that cells, which are most 
similar cluster together and those that are more transcriptionally (and hopefully, 
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phenotypically) distant are likewise clustered apart. In addition to the visualization of cells, 
some trajectory inference methods can also learn a latent topology structure  to 
reconstruct the putative time-ordering by which cells may progress along a dynamic 
biological process [10]. As single-cell technologies have advanced, techniques to cluster 
and organize cells transcriptionally (or based on other assays) have advanced alongside 
them to make key insights. However, representation of these dimensionally-reduced 
visualizations in press is limited to two or three dimensions. Even in three-dimensional 
plots from published studies, one cannot dynamically adjust or rotate the visualization to 
better understand the data from another angle. In addition, cells are typically annotated 
by features e.g. time points, cell type or clusters to investigate stratification along an axis 
of some biological process. To change the annotations presented in publication, one must 
often reprocess the raw data, which is time- and skill-intensive, highlighting the need for 
more dynamical visualization tools. Despite these limited, static representations, single-
cell omic datasets are often information-rich and, in many cases, important biological 
heterogeneity is unable to be visualized if it is outside the scope of a given publication, 
without spending considerable cost and time to reanalyze the dataset from scratch. This 
limitation could be overcome with the ability to rapidly explore a preprocessed dataset of 
choice and toggle multiple cell annotations. Per the limitations mentioned above, many 
biologists who would like to query the data and generate hypotheses are unable to do so. 
 
While other virtual reality (VR) visualization methods for single cell transcriptomic data 
have been recently proposed, they require either expensive hardware or very specific 
data inputs. Further, they have only demonstrated utility in the transcriptomic domain.  
Thus, a tool is required to enable researchers, especially those who are not able to 
efficiently reprocess the raw data, to explore the richness of published datasets (or their 
own unpublished data) through a simple, easy and affordable VR platform. Importantly, 
this platform must be flexible enough to accept all types of omics data from established 
processing tools currently employed by the single cell community. 
 
At the time of this writing, two non-peer-reviewed methods that employ VR technology to 
overcome the limitations of two- and three-dimensional visualizations of scRNA-seq data 
have recently been developed. CellexalVR enables the visualization of standard scRNA-
seq data though requires the user to preprocess their data through scripting, which 
requires intermediate to advanced programming skills [11]. Unfortunately, this tool 
requires expensive and dedicated VR hardware to operate. An alternative choice to 
CellexalVR is starmap [12], which enables the visualization of scRNA-seq data through 
inexpensive cardboard visor hardware, however lacks the advanced portability of outputs 
from commonly-used scRNA-seq analysis tools and cell annotation is limited to clustering 
results. Of note, there are currently no peer-reviewed tools available for the visualization 
of single-cell data in VR illustrating the novelty in this area of research. Additionally, there 
are no tools available that that support assays outside of scRNA-seq. To overcome their 
limitations as well as build on their qualities and initial progress, we here present 
singlecellVR, an interactive web application, which implements an innovative visualization 
for single-cell data built on VR technology. singlecellVR supports clustering, trajectory 
inference and abstract graph analysis for transcriptomic as well as epigenomic single cell 
data. singlecellVR is a browser-contained, free, and open-access tool. Importantly, we 
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have developed a one-command conversion tool called scvr to make the results of 
commonly-used single-cell analysis tools compatible with singlecellVR. 
  
RESULTS 
 
singlecellVR user experience and overview 
singlecellVR is an easy-to-use web platform and database that can be operated from 
inexpensive, cardboard visor hardware (~$8, available online from popular vendors 
including Google and Amazon). The webpage, available at http://www.singlecellvr.com 
enables users to explore several pre-loaded datasets or upload their own datasets for VR 
visualization. Visualization can be done either on a personal computer or smartphone. To 
facilitate the transition between the personal computer browser view and the phone-
enabled VR visor (VR mode), we have implemented an easy way to transition between 
these two visualizations as described in the next sections. In VR mode an interactive 
visualization is presented to the user, allowing them to manipulate and visualize single-
cell data and different annotations through the cardboard visor.  Additionally, singlecellVR 
features the ability to receive as inputs, the standard output files of commonly-used tools 
for standard single-cell analysis: Seurat, Scanpy (along with EpiScanpy), STREAM, and 
PAGA. A companion package enables the conversion of these standard outputs to VR-
compatible objects in a single command. 
 
Scanpy [13] and Seurat [14] are the most widely-used tools for performing routine single-
cell analyses including steps for preprocessing, clustering, trajectory inference, 
differential expression, and ultimately, visualization. Both of these packages have 
enabled even novice computational biologists to process single-cell data. Importantly, 
functions to convert data objects that result from these packages have enabled easy data 
sharing. Here, we have enabled compatibility with both Scanpy (AnnData) and Seurat 
objects. In addition to these two mainstream workflows, we have also implemented 
compatibility with two trajectory inference tools, PAGA [9] and STREAM [10]. PAGA 
(partition-based graph abstraction) is a method that  preserves topological features of 
scRNA-seq data in a dimensionally-reduced space through a graph-like map of a manifold 
fit to the data – this allows for variable resolution data structure inference [15]. STREAM 
(single cell trajectories reconstruction, exploration and mapping) developed by our group 
is a software package for the analysis of complex branching trajectories in single-cell 
omics data, supporting both scRNA-seq an scATAC-seq data [16].  
 
As shown in Figure 1, to use singlecellVR, the user needs to select a precomputed 
dataset or convert their data from these pipelines (i.e. Scanpy, EpiScanpy, Seurat, PAGA, 
or STREAM). This can be easily accomplished by using scvr, a simple one-line command 
we provide that performs data conversion and produces a VR-compatible file for direct 
visualization with singlecellVR. To highlight the generalizability of scvr across data types, 
we have processed and visualized scATAC-seq data in addition to several scRNA-seq 
datasets. Taken together we believe, singlecellVR addresses the key limitations of 
previously-developed tools mentioned above and we compare them in detail below [4, 5]. 
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VR Database and scvr preprocessing tool. singlecellVR provides a growing database 
of several datasets processed for VR visualization. This was possible thanks to the 
streamlined scvr utility. Importantly, this tool has been made available as a pip package 
and can be installed and run in just two commands, total (one for installation and one for 
running the conversion). To showcase this functionality, we have preprocessed with scvr, 
a collection of eight published datasets, which includes both scRNA-seq as well as 
scATAC-seq that are compatible with our VR engine and made them available in the user 
interface for immediate visualization. The file produced by the scvr companion package 
is formatted as a .json file and contains the 3-D coordinates of cells in a specified space 
(e.g. UMAP, LLE, etc.), cell annotations (e.g. FACS-sorting labels, clustering solutions, 
pseudotime, etc.), and feature quantification (gene expression levels, transcription factor 
deviation, etc.). It also contains the graph structure (the coordinates of nodes and edges) 
for trajectory inference methods.  Excitingly, given the small footprint of these files, we 
are offering users the ability to submit their processed data to our repository (see 
Supplementary Note 1) to make our tool a general resource for the field. In this way, we 
hope to even further extend the ability of biologists to visualize once static datasets and 
easily generate new hypotheses through manipulation of a large number of rich datasets. 
Therefore we envision that our website will function as a repository for VR visualization 
data and information. In addition, we have made a Github repository to document how to 
generate and view datasets in VR with several step by step tutorials. 
  
A simple, cloud-based web tool for VR visualization. To build singlecellVR we have 
adopted the web technology, Dash by Plotly and a recently-developed javascript 
framework for VR/AR, A-FRAME. This allowed us to create a tool that is portable and 
does not require any installation. The input to our visualization engine is a simple .json 
file. As discussed above, conversion from the standard output of any single-cell analysis 
tool to this format would normally pose a significant methodological roadblock to most 
users, especially non-computational biologists. To bridge this gap, we use the 
aforementioned companion package, scvr to parse and convert the outputs of the 
common single-cell data workflows, Scanpy,  EpiScanpy, Seurat, PAGA, and STREAM 
and create an A-FRAME-compatible .json file (Supplementary Note 2). These workflows 
produce .h5ad, .loom, and .pkl files; a hypothetical expansion of this tool may be found in 
the ability to convert outputs from other tools that use these file formats as their output. 
We have provided a tutorial in an accompanying Github repository and filmed a short 
video tutorial found on the homepage of singlecellVR to assist users in preparing their 
singlecellVR data visualizations. 
 
We predict that in most cases, users will prefer to upload their data through a computer. 
The website, http://www.singlecellvr.com can be reached through any web browser. 
Browser compatibility was tested against Google Chrome, Apple Safari, and Mozilla 
Firefox. All browsers demonstrated stable functionality with this VR tool on the array of 
web browsers for both Android and Apple smartphones. 
 
Once the user has uploaded their data to the VR tool, they have the option to view and 
explore the data in 3-D directly in their web browser or to quickly jettison the data to their 
mobile device for visualization in a VR headset (Figure 2). A key challenge associated 
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with developing a method for visualization of single-cell data is transporting data that is 
typically processed on desktop setting to the smartphone-based VR visualization. To 
overcome this challenge and enable a seamless transition to a smartphone for VR view, 
our software dynamically generate a QR code that enables users to open the VR view on 
their phone of the website-uploaded data. This phone-based approach is particularly 
useful as most users are not processing single-cell data analysis from a phone nor would 
they keep the files on a mobile device. 
 
Supported tools and analysis. As previously mentioned, Scanpy and Seurat are two 
commonly-used tools for performing cell clustering as well as differential expression 
analysis. Here we demonstrate the utility of singlecellVR to visualize the common outputs 
of these tools, showcasing both the clustering solutions as well as differentially expressed 
genes or features that are visualized easily through the VR interface (Figure 3). A key 
advantage of our tool is the ability to supply multiple annotations to cells to visualize 
various attributes of the measured data, for example based on the biological query of 
interest or experimental design. This may include stratification by cluster identity, time 
points, tissues, or FACS-based labels. In Figure 3, we demonstrate the ability to select 
visualizations by various cluster identifications, which are user-customizable. With the 
advent of cross-experiment integration methods that can integrate not only multiple 
scRNA-seq experiments but experiments across modalities of single-cell data collection, 
this flexible labelling strategy should enable the user in the future to visualize even the 
most novel and complicated experiments in rich detail. 
 
In addition to flexibility for visualizing complex experimental setups, singlecellVR is able 
to process large experiments. To demonstrate this utility, we processed (using Scanpy 
and scvr) and visualized on singlecellVR, the scRNA-seq data from the Chan-Zuckerberg 
Biohub Tabula Muris project, a dataset consisting of 44,949 cells and 20 tissues from 
seven mice [17].  In Figure 3A, clustering analyses of this dataset are projected into VR, 
colored by mouse tissue (left) and Louvain cluster identity (right). 
 
 
Single-cell measurements are also particularly useful for capturing cross-section 
snapshots of a biological process. With dense cell sampling, one can often observe 
transient cell states that exist between two, more stable states. However, without an 
intrinsic understanding of the process being studied, it may be difficult to order these cells 
along a time axis of a biological process. To enable ordering cells by transcriptional state, 
pseudotemporal ordering has become a goal of the single-cell field using trajectory 
inference machine learning algorithms. Trajectory inference, like clustering, describes a 
high-dimensional biological process and being limited to a two/three-dimensional 
representation with a limited selection of visualized genes or pathways in a static paper 
is not ideal. Thus, we intend for our tool to leverage the richness of these datasets and 
make their general usefulness to the field more widespread. We therefore wanted to 
extend our VR visualization to the results of common trajectory inference tools (Figure 
3B). singlecellVR supports two trajectory inference tools: PAGA is a partition-based graph 
abstraction trajectory inference method, while STREAM is a method to tease apart 
developmental trajectories and visualize the relative densities of cell populations along a 
developmental timeline.  
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To showcase the ability of singlecellVR to visualize trajectory inference results, we 
reprocessed a popular myeloid and erythroid differentiation dataset from Paul, et al., 2015 
[18],  performing trajectory inference using PAGA. In the depiction of the PAGA-generated 
trajectory we are able to observe the nodes (gray) indicating each relative cell 
populations. Importantly, we are also able to explore the trajectory created by PAGA 
(indicated by the black lines between nodes) – being able to explore this trajectory is a 
key benefit of visualizing PAGA-analyzed datasets in VR as PAGA is designed 
specifically to preserve relative cell topology in constructing the trajectory along a 
pseudotime axis. Here we show the PAGA visualization colored by both clusters/nodes 
(Figure 3B, top-left) as well as by the relative gene expression of klf1 (Figure 3B, top-
right). Below the PAGA visualization in Figure 3B, we show STREAM trajectory plots of 
data that shows the developmental trajectories that occur in mouse blood [19]. These 
plots are colored by both cell identity (Figure 3B, bottom-left) as well as differential 
expression of Gata1 (Figure 3B, bottom-right). In STREAM, a set of smooth curves, 
termed principal graph, are fit into a single-cell population. Each curve represents a 
developmental branch and the label (e.g.S0_S1) attached to it indicates the branch 
identity; within singlecellVR, we are able to easily explore this axis and observe 
qualitatively, the distribution of cells along each trajectory in the UMAP space. The 
branches of these trajectories are represented by the curves that cut through the cells.  
 
Finally, we demonstrate the ability of singlecellVR (and scvr) to process and visualize 
epigenomic data. First, we used the EpiScanpy workflow to cluster the 10,000 cell PBMC 
(healthy donor) scATAC-seq dataset from 10x Genomics (Figure 3C, left). We then 
employed singlecellVR to visualize a STREAM-analyzed trajectory inference result from 
a scATAC-seq dataset, which captures mouse hematopoietic development (Figure 3C, 
right) [20]. Taken together, visualization of both the EpiScanpy clustering results of the 
10x Genomics dataset and the STREAM trajectory inference analysis, singlecellVR 
proves to be a robust, generalizable tool for multiple modalities of single-cell analysis.  
 
Comparison of singlecellVR to existing methods. As mentioned above, there are two 
previous reports of VR tools created to visualize single-cell data: CellexalVR [11] and 
starmap [12]. Notably, each of these tools offer only solutions for visualizing scRNA-seq 
clustering results in VR, leaving single-cell epigenomic analysis and trajectory inference 
unsolved. CellexalVR proposes a versatile, user-friendly visualization that can make use 
of standard scRNA-seq workflow outputs. A major drawback to CellexalVR is that it 
requires specific and expensive hardware (HTC Vive or HTC Vive Pro; > US$500-800). 
They also recommend a machine with an Intel i7 processor, NVIDIA GTX1080, 16 GB 
ram, 1 TB solid state HD. These are computational equipment that most biologists will not 
have at their disposal within their lab, likely limiting use of this tool to more 
computationally-focused labs. Additionally, software to pre-process the data in 
preparation for VR visualization is required and therefore requires of the user, an ability 
to perform scripting. In contrast, singlecellVR is made such that one can view their data 
quickly and easily with just a smartphone and cheap cardboard visor (~$8). With no 
advanced hardware required, singlecellVR is more accessible to a non-computational 
biologist or novice to the field, enabling ease of use.  
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In addition to building on the contributions of CellexalVR, singlecellVR is designed to 
address aspects of single-cell biology that have not been explored by Starmap, the only 
other available tool that we are aware of at the time of this writing. Starmap takes as input 
comma-separated values containing information of the three-dimensional coordinates of 
cells in the visualization as well as annotations (i.e., cluster ID), and up to 12 features per 
cell. This file must be prepared entirely by the user without assistance from the Starmap 
platform, limiting the audience of this tool to experienced computational biologists.  
 
Notably, while both CellexalVR and Starmap provide a high-quality visualization of cell 
clustering, visualization of inferred cell trajectory is not incorporated into either tool. 
singlecellVR aims to take the best aspects of both of these tools (flexibility and ease of 
access) and expand them with important features to abate the current challenges each 
tool faces, individually. In doing so, we enable users to visualize their own precomputed 
data directly from the output of commonly-used single-cell RNA-seq analysis tools. 
Currently supported are Scanpy, EpiScanpy, Seurat, PAGA, and STREAM. singlecellVR 
is the only tool of the three discussed that features a QR code to quickly transport the VR 
data visualization to another device. Finally, singlecellVR is the only technology of those 
reported that has demonstrated utility in visualizing scATAC-seq data. 
 
DISCUSSION 
 
The amount of publicly available scRNA-seq data has exploded in recent years.  With 
new assays to capture chromatin accessibility, DNA methylation and protein levels in 
single cells, we predict a second wave of dataset generation. Each of these datasets are 
extremely high-dimensional and thus, rich with latent information about a given biological 
sample. Ideally, biologists would be able to explore this treasure-trove of data from any 
angle and make hypotheses regarding their own interests, perhaps rapidly testing in silico 
hypotheses at little to no time cost. Often however, experimental biologists lack the 
advanced computational skills and/or time required to reprocess and reanalyze raw data 
from published experiments to gain an understanding of the data from their desired angle 
of interest. Additionally, biologists who wish to thoroughly explore data prior to publication 
may rely on a computational specialist who is less connected to the biological problem of 
interest, introducing a disconnect in hypothesis-driven experimental turnover.  
 
While once primarily reserved for entertainment, VR has found utility in both industrial 
and academic applications. In this manuscript we present singlecellVR a VR-based 
visualization platform for single cell data and discuss its differences with existing methods. 
Importantly, we provide a simple mechanism to prepare results from commonly-used 
single-cell analysis tools for VR visualization with a single command to considerably 
increase accessibility (see methods) With this added utility, we seek to empower non-
computational biologists to explore their data and employ rapid hypothesis testing that 
could not be made from the traditional static representations typical of communication in 
a scientific report on paper or a computer screen. 
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We anticipate that VR will become increasingly useful as a research and education tool 
and that the construction of software libraries will aid such advancements. Our scalable 
and flexible VR visualization framework is not limited to scRNA-seq and it can be also 
easily adapted to other single-cell assays. EpiScanpy [21], Seurat [22], and STREAM [16] 
are able to process epigenomic data, most commonly scATAC data. Of note, as we have 
demonstrated here in Figure 3C, singlecellVR is able to visualize such epigenomic data. 
With the recent advances in spatially-resolved transcriptomics, a new sort of three-
dimensional VR will also become especially useful [23]. Finally, technologies that derive 
the RNA velocity of single cells could hypothetically be visualized in VR; in future work, 
this framework could be extended to such data [24].  As software to analyze single cells 
reach their maturity, one could imagine the incorporation of such visualizations into more 
clinically translatable settings, such as medical devices.  
   
CONCLUSION 
 
singlecellVR is a platform that enables any researcher to easily visualize single-cell data 
in VR. Our platform is user-friendly, doesn’t require advanced technical skills and 
dedicated hardware. Importantly, we have curated and preprocessed several recent 
single-cell datasets from key studies, providing the scientific community with an important 
resource from which they may readily explore and extract biological insight. 
 
Methods 
 
All datasets were processed using Scanpy (version 1.5.1), EpiScanpy (version 0.1.8, 
Seurat (version 3.1.5), PAGA (part of Scanpy, version 1.5.1), and STREAM (version 1.0), 
following their documentations. Jupyter notebooks to reproduce data processing are 
available at https://github.com/pinellolab/singlecellvr. Analyses were performed on a a 
2019 MacBook Pro (2.4 GHz Intel Core i9, 16 GB RAM). To build singlecellVR, we used 
A-FRAME (version 1.0.0), Dash (version 1.13.3) by Plotly. The preprocessing package, 
scvr generates a series of .json files containing the spatial coordinates representative of 
cell embeddings in the UMAP or spectral embedding space and information including 
labels and features (e.g., gene expression, TF motif deviation, etc). These .json files are 
zipped upon output from scvr into a single file that can be easily uploaded to singlecellVR 
for visualization.  The documentation for scvr is available here: 
https://github.com/pinellolab/singlecellvr. Video tutorials for learning about and running 
visualization experiments with singlecellVR (and using scvr to prepare the data) are 
available on YouTube, here: 
https://www.youtube.com/playlist?list=PLXqLNtGqlbeMaAuiBStnBzUNE6a-ULYx8. 
 
 
 
Data Availability  
The dataset shown in Figure 3A is from the Chan Zuckerberg Tabula Muris project and 
was downloaded here: 
https://figshare.com/projects/Tabula_Muris_Transcriptomic_characterization_of_20_org
ans_and_tissues_from_Mus_musculus_at_single_cell_resolution/27733. The dataset 
shown in Figure 3B (top) is from Paul, et al. 2015 [18] and was downloaded from 
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GSE72859. The dataset shown in Figure 3B (bottom) is from Nestorowa, et al. 2016 
[19]. and was downloaded from GSE81682. The scATAC dataset shown in the clustering 
result of Figure 3C (left) is the 10x PBMC (healthy donor) generated by 10x Genomics 
and was downloaded here: https://support.10xgenomics.com/single-cell-
atac/datasets/1.2.0/atac_pbmc_10k_v1. The scATAC dataset shown in the trajectory 
inference result in Figure 3C (right) is from Buenrostro, et al. 2018 [20] was downloaded 
from GSE96769. 
 
The source code and the supporting data for this study are available online on GitHub at 
https://github.com/pinellolab/singlecellvr. The preprocessing package, scvr is included 
within that repository and further instruction for its use as well as the source code can be 
found at https://pypi.org/project/scvr/. The data in this manuscript can be reproduced 
using the Jupyter notebooks available at https://github.com/pinellolab/singlecellvr.  
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Figure legends 
 
Figure 1 | An overview of the singlecellVR user experience. Top, grey: The outputs of a 
standard 2-dimensional scRNA-seq analysis. Middle and bottom, blue: a step-by-step 
overview of the singlecellVR workflow: 1. Schematic of flexible data conversion. One 
command to install (via pip) and one command to convert the data to be VR-compatible. 
2. Rendering of an interactive webpage for uploading and exploring VR data. 3. A sample 
of what the viewer might see in a given visualization as well as a generic version of a 
common VR smart-phone-adaptive headset. 
  
Figure 2 | Architecture of singlecellVR. A. Users can quickly pre-process their data from 
any of the sources listed at the top in a single command. B. Once users have selected 
their data, they can then upload their data (step 1) and scan the QR code with their phone 
to begin the VR visualization (step 2). 
  
Figure 3 | Rendering the single-cell virtual reality visualization. A. Clustering applications. 
Scanpy and Seurat offer tools for clustering, which can be visualized using singlecellVR. 
Cells can be visualized and colored by various annotations (shown: mouse tissue type, 
left) or their cluster ID (right). The Scanpy-analyzed dataset shown here is from 
Nestorowa, et al., 2016 [19]. B. Trajectory inference applications. PAGA offers a partition-
based graph abstraction, which can be visualized by individual graph nodes (top-left) or 
relative gene expression (top-right). The PAGA-analyzed dataset shown here is from 
Paul, et al., 2015 [18]. STREAM offers the visualization of developmental trajectories, 
which can be visualized by individual branch trajectory (bottom-left) or by relative gene 
expression (bottom-right). C. Epigenomic applications. EpiScanpy enables the 
clustering and visualization of scATAC-seq data (left). The EpiScanpy-analyzed dataset 
shown here is from the 10x PBMC (healthy donor) 10,000 cells dataset is colored by 
Louvain clustering solution. STREAM was used to perform trajectory inference on the 
Buenrostro, et al., 2018 scATAC-seq dataset [20] (right).  
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Supplementary Notes 
1. Contributing VR-processed data to the singlecellVR data repository. Users that 
wish to contribute to the growing repository of VR datasets my do so by means of a pull 
request here: https://github.com/pinellolab/singlecellvr. We ask that users add the ‘VR 
Dataset’ flag (purple, already added to the sidebar) to their pull request. In addition, in the 
commit message of the object or comment section of the pull request, please describe 
your data and the methods by which it was processed, summarizing all labels and genes 
included.  
 
2. Usage. Users may navigate the virtual reality visualization via a combination of gaze 
controls and keyboard inputs. A circle, centered in the user’s FOV, indicates the direction 
that a user will move through the virtual space and also acts as the appendage through 
which the user will interact with objects in the visualization. Particularly, a user may gaze 
at the buttons on the menu to select from various clustering annotations and gene 
expression colorations and to toggle the rotation of the entire visualization. Movement 
proceeds in the direction of the user’s gaze and is controlled with the forward and back 
arrows on the keyboard. Alternatively, users of VR goggles with a button allowing 
interaction with a phone screen, may hold the button down to move forward in the 
direction toward which they are facing. Alphanumeric character input appears in the 
search field of the menu and may be used to search for available gene expression profiles 
which will appear in the result fields.The enter key clears the current search value and 
removes old results from the menu. Additionally, the space bar may be used to summon 
the menu into the user’s FOV. When the user is finished with the menu, they may press 
the space bar while holding down the control key to return the menu to its starting position. 
Ocassionally, due to the wide range of data sources supported by singlecellVR, cells may 
obscure other features of a visualization or may be too small to easily explore. On such 
occasions, users may hold down the control key and press either the plus or minus key. 
These combinations will increase and decrease the size of the cells respectivey. Finally, 
in VR mode on a mobile device, holding the shift key will summon the HUD into view. 
Subsequently releasing shift will hide the HUD. 
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