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ABSTRACT 

 

Identifying measures that predict future cognitive impairment in healthy 

individuals is necessary to inform treatment strategies for candidate dementia-

preventative and modifying interventions. Here, we derive such measures by 

studying “converters” who transitioned from cognitively normal at baseline to 

mild-cognitive impairment (MCI) in a longitudinal study of 1213 elderly 

participants. We first establish reduced grey matter density (GMD) in left 

entorhinal cortex (EC) as a biomarker for impending cognitive decline in healthy 

individuals, employing a matched sampling control for several dementia risk-

factors, thereby mitigating the potential effects of bias on our statistical tests. 

Next, we determine the predictive performance of baseline demographic, genetic, 

neuropsychological and MRI measures by entering these variables into an elastic 

net-regularized classifier. Our trained statistical model classified converters and 

controls with validation Area-Under-the-Curve>0.9, identifying only delayed 

verbal memory and left EC GMD as relevant predictors for classification. This 

performance was maintained on test classification of out-of-sample converters 

and controls. Our results suggest a parsimonious but powerful predictive model 

for MCI development in the cognitively healthy elderly.  
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Alzheimer’s disease (AD) is the most common form of dementia and is currently 

estimated to affect more than 46 million people worldwide, with prevalence predicted 

to rise to over 130 million by 20501. It has been established that certain 

pathophysiological hallmarks of AD (neurofibrillary tangles and amyloid plaques) 

emerge decades before the first manifestations of clinically observable dementia2-4, 

indicating that biomarkers of AD are likely present in those individuals that will 

develop AD even when they are cognitively normal. Thus, the clinical disease stages 

of AD can be divided into three phases4: 1) a presymptomatic phase, in which 

individuals are cognitively normal but already exhibit AD pathological changes, 2) a 

prodromal phase of AD, which overlaps with mild cognitive impairment (MCI), 

characterized by early cognitive symptoms (typically deficits in episodic memory) not 

severe enough to meet the criteria for dementia, 3) the dementia phase, in which 

multiple domains of cognition are impaired to the extent that the patient experiences 

loss of daily function. While currently there are limited treatment options available in 

AD, it is likely that future strategies will be most effective if applied at the earliest 

stage of the disease. Consequently, identification of well-characterized measures that 

manifest early and can track the AD process are necessary to inform treatment 

strategies for candidate preventative and disease-modifying interventions5-7. Indeed, 

the on-going A4 study8 aims to identify cognitively normal individuals with amyloid 

accumulation and treat with anti-amyloid therapy. 

 

Certain AD risk factors, such as increasing age, fewer years of education and the 

apolipoprotein E (APOE) ε4 allele, are well recognised9. However, the relative 

contribution of each of these factors to the likelihood of development of AD during a 

particular time-period, and from a defined cognitive starting point (e.g., within normal 
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limits on standard neuropsychological testing), is currently unknown. Large-scale 

studies are required to identify additional predictive indices that can be determined 

non-invasively and relatively routinely, such as neuropsychological tests or structural 

magnetic resonance imaging (MRI). The majority of large-scale longitudinal studies 

have focused on predicting the transition of MCI to AD10-12. By contrast, studies 

examining healthy to MCI transition are currently limited13-19, although relevant 

information has been obtained from presymptomatic studies of autosomal dominant 

familial AD studies20-23. The challenge is to determine which parameters show most 

discrimination between cognitively normal individuals destined for MCI and 

eventually to sporadic AD vs. those that remain healthy.  

 

A further difficulty relates to the causal chain of the AD process whereby known risk 

factors, such as age and APOEε4 genotype, in turn may influence neuropsychological 

performance and brain structure24-26. On the one hand, in assessing the efficacy of 

brain imaging as a predictor of future MCI conversion, we must appropriately sample 

or otherwise net out the confounding contribution of these risk factors to the 

prediction problem. On the other, we might wish to recruit all available subject 

attributes for the purposes of improving prediction. The latter scenario requires a 

statistical framework that can account for the likely correlation between subject 

attributes (e.g., medial temporal lobe structural integrity is known to correlate with 

memory test scores in the elderly27) and that can select those variables that maximize 

predictive power while pruning those that either contain no discriminant power or that 

are redundant in relation to their predictive contribution. 
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To address the first of these issues, we employed techniques from matched sampling28. 

Matching is a non-parametric pre-processing method that reduces covariate imbalance 

between groups rendering the treatment and outcome variables independent (or almost 

independent) of one another. Matching has several useful implications: improved 

causal inference, heightened power, and a reduced sensitivity to model specification. 

This strategy is typically applied in the comparison of treatment and control groups, 

and in case-control cohort designs, such as in biomarker research studies where 

controls can be selected that match cases on risk factors for the outcome. To address 

the second issue, accounting for likely correlation between subject attributes, we 

developed a classification model based on the Elastic net29. Elastic nets are 

advantageous for classification where numbers of predictors are large relative to the 

number of subjects. Elastic net optimization combines classification with an implicit 

feature selection step, tending toward retaining small numbers of isolated predictors 

while at the same time preserving groups of correlated features, if such structure 

exists between them.  

 

We applied these techniques to data from the Vallecas Project30, a single-site, 

community-based, longitudinal study on a recruited pool of 1,213 individuals aged 

69-86 and followed up at yearly intervals. At each visit, volunteers undergo detailed 

neuropsychological and clinical evaluation, and 3 Tesla (3T) MRI, to assess non-

invasively the macroscopic consequence of neuronal damage occurring in 

neurodegeneration. In the first analysis approach, we determined, using standard 

difference of means estimates, which of the demographic, genetic, neuropsychological 

and MRI variables significantly distinguished between the two groups of cognitively 

healthy individuals, with group membership defined by whether they developed MCI 
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the following year or remained cognitively normal. Since our dataset is observational 

in its native form, it is not balanced in any of the measured background covariates. 

We therefore apply matching techniques to identify a well-matched control group 

through the selection of subjects from a control reservoir using a large spectrum of 

relevant background variables to match upon. Our second approach invokes the 

elastic net classifier29 on a large number of clinical, demographic and imaging 

variables to automatically assess individuals according to their probability of future 

conversion to MCI. Both approaches were applied to Vallecas project participants 

who converted from cognitively normal to MCI from Visit 1 to 2. We subsequently 

applied the classifier to a test sample who converted to MCI in later visits. 

 

RESULTS 

Cognitively healthy individuals destined for MCI  

From a pool of 1213 participants, specific criteria were applied to select the cases for 

the present study (Figure 1). To approximate cognitive normality at baseline (visit 1; 

V1) we selected participants with Clinical Dementia Rating (CDR)=0 and mini-

mental state examination (MMSE)>26. We first focused on those cognitively healthy 

individuals developing MCI from V1 to V2. Participants who were considered 

converters in V2, but returned to a healthy state in V3 (i.e., ‘reverters’ in V3) were 

excluded, leaving 813 participants (63.25% females). By evaluating diagnostic status 

at V2 and V3, 23 participants were considered future converters (evolving from a 

cognitive normal state in V1 to a state of MCI in V2, which persisted at V3), and 790 

were considered controls (non-converters during this two year period). The number of 

converters is in line with incident rates in other populations3,31-32. Of the 23 converters, 

11 developed amnestic MCI and 12 multi-domain MCI. For each converter the closest 
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match in terms of APOE genotype, gender, age, years of education, MMSE and total 

intracranial volume (TIV; determined from structural MRI) was identified, creating a 

subgroup of 23 matched controls.  

 

Biomarkers associated with impending cognitive decline 

APOEε4 load was higher in converters vs. controls (Table 1), in line with the known 

risk conferred by this allele in developing AD9. There was also a significant effect of 

gender, reflecting more male converters in a predominantly female study population. 

Although converters and controls were clinically indistinguishable at V1, and all their 

cognitive scores were above the 20th centile corrected for age (69-71 years)33, V1 

scores for subsequent converters vs. all controls were significantly reduced on delayed 

verbal memory testing (Free and Cued Selective Reminding Test, FCSRT, delayed 

total recall). By contrast, delayed non-verbal memory (Rey–Osterrieth Complex 

Figure) scores did not differ between groups. Critically, the FCSRT and functional 

activities questionnaire (FAQ) test scores remained significantly different following 

comparison of the 23 converters to the 23 matched controls (Table 1).  

 

Hippocampal volume was not strongly modulated by future MCI development (Table 

1), with the observed difference not surviving correction for multiple comparisons 

either when comparing against all controls or the matched control subgroup. White 

matter lesion load, indexed by the Fazekas score34, showed no difference between 

future converters and controls. By contrast, whole-brain voxel-wise analysis of grey 

matter density (GMD) showed reduced GMD in converters vs. all controls selectively 

in the medial temporal lobe (Figure 2a-c; Supplementary Table 1). Effects were 

observed in bilateral amygdala, bilateral anterior hippocampus, and left entorhinal 
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cortex (EC). A significant cluster in EC was observed, with a second cluster 

extending more anteriorly in, or near, transentorhinal cortex. Critically, in the 

comparison between converters and matched controls (Figure 2d-e), the only brain 

region surviving whole-brain family-wise error (FWE) correction at P<0.05 was 

within EC (Supplementary Table 2). There was no significant difference in EC 

GMD between the 11 converters subsequently developing amnestic MCI (mean; s.e.m. 

= 0.53; 0.01) and 12 multi-domain MCI (0.55; 0.01) (t(21) = -1.319, P = 0.201). 

 

The human EC has been segregated into posteromedial (pmEC) and anterolateral 

(alEC) portions on the basis of their patterns of functional connectivity35-36. To further 

refine the anatomical specificity of the EC GMD effect we observed, anatomical alEC 

and pmEC template images36 were warped to each participant’s anatomical image 

(Supplementary Figure 1). By averaging these warped templates over all 

participants, we obtained a template for each EC region for our study sample. The 

peak voxel within EC indexed by the comparison between converters and matched 

controls GMD (Figure 2d-e) localizes to alEC. However, to specifically test for 

differential reduction of GMD in anterolateral vs. posteromedial EC in converters vs. 

controls, we extracted the mean GMD from each region (alEC and pmEC), and 

hemisphere for each participant (Supplementary Figure 1). In the comparison of 

converters vs. matched controls, these were entered into a repeated measures ANOVA 

(with age, MMSE, years of education and TIV included as covariates). This analysis 

revealed a significant effect of group (F1,40 = 9.692, P = 0.003, η2
p = 0.195), a main 

effect of alEC vs. pmEC (F1,40 = 4.817, P = 0.034, η2
p = 0.107), and no main effect of 

hemisphere (F1,40 = 0.327, P = 0.570). The interaction between group and EC portion 

(F1,40 = 2.288, P = 0.138) and between group, hemisphere and EC portion (F1,40 = 
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1.523, P = 0.224) were not significant (Supplementary Table 3). Similar effects 

were obtained if converters were compared to all controls, and when these analyses 

were repeated on GMD images that had been spatially smoothed with a Gaussian 

kernel of 6mm at full-width half maximum (Supplementary Table 3). These results 

indicate that both portions of EC show reduced GMD one year prior to MCI diagnosis. 

 

The transition from healthy to MCI 

We next examined the longitudinal trajectory of the converters relative to controls 

from V1 to V2. Specifically, we verified the likelihood that our cohort of converters 

was following decline compatible with AD neurodegeneration by examining 

differential atrophy rates from V1 to V2 in converters vs. controls. As shown in 

Figure 3, the pattern of atrophy in this one-year period that was significantly greater 

for the converter group vs. all non-converters is restricted to the medial temporal lobes 

bilaterally, in left amygdala extending into EC and in right EC extending into 

hippocampal body (Supplementary Table 4). Neuropsychological scores in this one-

year time interval show significant worsening in MMSE, FCSRT and FAQ scores in 

converters relative to controls (Supplementary Table 5), consistent with 

development of MCI involving an amnestic component. White matter lesion load34 

change during this 1-year interval showed no difference between converter and 

control groups (Supplementary Table 5). 

 

Predicting future MCI development 

To explore the predictive performance of the different classes of data acquired in our 

cohort, we set up six different classification problems, calculating an elastic net 

regularized logistic regression on (i) demographic variables alone (age, gender, years 
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of education), (ii) demographic variables plus APOEε4 genotype, (iii) 

neuropsychological variables alone (MMSE, FAQ, FCSRT, Rey–Osterrieth Complex 

Figure scores, Phonological Verbal Fluency, Semantic Verbal Fluency, State-Trait 

Anxiety Inventory (STAI)), (iv) demographic plus neuropsychological variables (that 

is, variables acquired without need for APOE genotyping or MRI scanning), (v) MRI-

derived measures alone, which comprised hippocampal volumes and GMD values of 

1248 2x2x2mm voxels from left and right entorhinal cortex (incorporated within the 

anterior parahippocampal gyrus mask of the FSL-Harvard-Oxford atlas), and (vi) all 

data modalities together. For this sixth classifier, demographic, neuropsychological 

and imaging variables (1262 variables in total) were included in the same model and 

entered into the elastic net estimator. For each classifier, we split the data at random 

into training/testing subsets using repeated 10-fold Cross-Validation (i.e., a data 

subset comprising 90% of the original data was used to train the regression model 

while 10% of the data was held-out to assess out-of-sample model prediction 

performance). Note that data from 42 control participants, chosen pseudorandomly, 

were not introduced into these models, so as to serve as “unseen” control participants 

in a subsequent independent validation of our model (described below; 

Supplementary Table 6-7). Thus 720 controls were used in initial classifier 

construction (Figure 1). 

 

The results of logistic regression with elastic net regularization on individual variable 

groups showed increasingly effective classification (as indexed by area-under-the-

curve, AUC) in the order demographic < demographic plus APOEε4 genotype < MRI 

< neuropsychological parameters (Figure 4a). Adding demographic parameters to 

neuropsychological model did not improve performance, as the demographic 
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variables were not selected as important for classification by the elastic net. However, 

when all modalities of data were used (All Modalities model), the ROC curve showed 

best performance, with best cross-validated AUC = 0.919 (performance measures for 

the 6 classifications, along with model coefficients, are provided in Supplementary 

Table 8). For the All Modalities model, out of 1262 possible variables, the elastic net 

selected only 3 coefficients. One was a neuropsychological variable, FCSRT delayed 

recall, which constituted the most important variable for classification. The remaining 

variables were GMD values for two voxels in left EC (Supplementary Table 8). Our 

MCI prediction equation when fit, (with all terms except the intercept ranked left to 

right in order of decreasing variable importance) is given in equation (1).  

 

log (
𝑃(𝑀𝐶𝐼)

1−𝑃(𝑀𝐶𝐼)
) = −0.517 − 0.397 × 𝐹𝐶𝑆𝑅𝑇 − 0.304 × 𝑀𝑅𝐼(−26,−18,−28) − 0.185 × 𝑀𝑅𝐼(−28,−20,−26)  

(1) 

where P(MCI) is the probability of developing MCI within one year, FCSRT is total 

delayed recall performance on the FCSRT memory test, and MRI(x, y, z) is the grey 

matter density at MNI coordinates x, y, z (both in left entorhinal cortex). The variables 

are assumed to be standardized, i.e., all variables are expected to be zero mean and 

unit variance, to render them (and their coefficients) comparable. The equations with 

coefficients for use with raw (not normalized) variables for this, the All Modalities 

model, as well as for the Neuropsychology model, are provided in Supplementary 

equations (1) and (2). 

 

Thus, an independent analytical approach – logistic regression with elastic net 

regularization – demonstrated that the same variables that ensued from our mass-

univariate analyses performed best on distinguishing between subsequent converters 
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vs. controls. Interestingly, age, gender and APOEε4 genotype, despite being known 

dementia risk factors, were not selected by the elastic net classifier as predictors for 

those destined for MCI at one-year.  

 

Test of the predictive model with unseen converters and controls 

We next evaluated the classification performance of our trained statistical model on 

independent data derived from the Vallecas project. This project is currently in its 8th 

year of yearly follow-up. We therefore interrogated all available data from all visits of 

the cohort to determine further individuals who transitioned from cognitively healthy 

to MCI over a 1 year time period. We denote the visit at which the MCI diagnosis is 

made as Vconv, and the preceding visit (while still cognitively healthy) as Vconv-1. Thus, 

on interrogation of the data from 2017-2020, we identified 42 “test” converters who 

converted on later visits of the Vallecas project. These individuals satisfied the same 

criteria used to define our original cohort of 23 V1 to V2 “original” converters, 

including the requirement for cognitive impairment to be present at the subsequent 

visit after conversion. Of the 42 converters, 17 developed amnestic MCI and 25 multi-

domain MCI.  

 

Baseline parameters at Vconv-1 for these individuals who converted later in the Vallecas 

project are highly similar to those of the original V1 to V2 converter group (Table 2). 

As these converters were drawn from later visits of the Vallecas project, they are 

naturally older on average than our pool of V1 controls. Again, for test converters, 

APOEε4 and FCSRT showed robust effects relative to the entire (i.e., unmatched) 

control group, but for this comparison, FAQ, semantic verbal fluency and 

hippocampal volume also reached corrected significance. There were no significant 
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differences between original V1 to V2 converters vs. test converters. Similarly, the 

change in cognitive function from Vconv-1 to Vconv was significant in terms of MMSE, 

FAQ and FCSRT delayed total recall, with no difference observed between the 

original and test converters (Supplementary Table 6). In this older group of 

converters, white matter lesions (as measured by the Fazekas score34) also increased 

significantly in the year to conversion. The voxel-based morphometry comparison of 

test converters vs. controls showed a similar pattern of GMD reduction in the medial 

temporal lobes bilaterally (Supplementary Table 7; Supplementary Figure 2) with 

respect to the same comparison between original converters vs. unmatched controls 

(Figure 2), albeit more extensive in this older group of test converters. 

 

The ROC curve for the different models derived from V1 to V2 converters in this 

independent cohort of 42 converters and 42 controls (that had been excluded during 

model training) is shown in Figure 4b. Classification performance is similar for 

validation and test samples for the 6 models. Critically, applying the classification 

model shown in equation (1) to this test sample yielded an AUC (±95% CI) = 0.905 

(0.825 0.954), with specificity = 0.929 and sensitivity = 0.762. This remains the best 

performing model, although the AUC difference was not significantly different for the 

All Modalities vs. Neuropsychological model (Supplementary Table 9), the latter 

requiring only FCSRT and FAQ scores to reach test sample AUC (±95% CI) = 0.876 

(0.783 0.938).  

 

DISCUSSION 

We studied a large, single-site cohort, with yearly neuroimaging, and 

neuropsychological and clinical evaluation to determine biomarkers distinguishing 
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between 2 groups of cognitively intact elderly subjects: those that develop MCI the 

following year and remain cognitively impaired in year 3 vs. those that remain 

cognitively healthy. Despite the two groups being both psychometrically within the 

normal ranges and clinically indistinguishable at year 1, we demonstrate highly 

selective differences – reduced delayed verbal memory scores, functional activities of 

daily life (FAQ), and left EC GMD – in healthy elderly subjects with impending MCI. 

This selectivity arises by comparing with a subgroup of controls chosen using exact 

matching for gender and APOE genotype (2 known risk factors for AD) and 

propensity score calculation for age, years of education, MMSE and TIV. By 

extracting a randomized experimental design from the full data-set, this procedure 

offers new and more robust interpretations of between-group differences, since known 

risk factors, such as APOEε4 genotype (more prevalent in the converter group), have 

also been shown to influence neuropsychological performance26 as well as brain 

structure24. In short, we can view with increased confidence reduced GMD in these 

localized areas as being causally related to the underlying mechanisms supporting the 

likelihood of developing MCI as opposed to merely demonstrating a weaker 

(probably confounded) association. 

 

Neuropsychological evaluation revealed that although at baseline all converters had 

scores which fell entirely within the normal standard range of the control group on the 

different tests, delayed verbal memory (FCSRT) and FAQ were already significantly 

different between both groups. This suggests that delayed verbal memory recall (but 

not delayed visual memory assessed by the Rey–Osterrieth complex figure test) and 

functional activities can be considered neuropsychological markers in early, 

asymptomatic states of the disease. Indeed, in a large-scale population study37, 
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FCSRT free recall in cognitively normal participants exhibited good sensitivity and 

fair specificity for AD prediction at 5 years (92% and 64% respectively), but showed 

poor positive predictive value (~8%). The observation that FAQ scores differed 

between future converters and controls supports recent evidence that impairment in 

certain instrumental activities of daily living predicts greater risk of progressing from 

a diagnosis of cognitively normal to MCI38. 

 

Differences in GMD between subsequent converters and controls were limited to 

MTL, with the pattern of atrophy in EC showing left-sided predominance, as has been 

reported in previous studies of MCI39. There is growing evidence that EC atrophy is a 

predictor for conversion to AD in patients with MCI40-42. Furthermore, in autosomal 

dominant, familial AD, longitudinal studies show significant atrophy in both EC and 

hippocampus 3.5 years before clinical diagnosis21. By contrast, large-scale 

observational studies of presymptomatic phases of sporadic AD are currently limited13. 

These studies14-16 involved smaller sample sizes than described here. Structural MRI 

data were acquired on 1.5T scanners14-16,19 as opposed to the 3T data we present, and 

they have used a region-of-interest approach, limiting comparisons to the medial 

temporal lobe14-16 with regions manually delineated14,16, as opposed to the whole-

brain approach we report. Critically, previous studies have not used a matched-

sampling framework to minimize bias introduced by background covariates that 

cannot be adequately controlled by simple linear adjustment and which can have 

profound implications on final inferential conclusions. Nevertheless, these studies 

also point towards EC as a brain region that is atrophied in asymptomatic elderly 

individuals destined for MCI, which is also supported by data from a small sample of 

healthy normal elderly showing that decreased glucose metabolism in EC is a 
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predictor of impending MCI43. A larger prior study of progression of healthy to 

cognitive impairment14 (511 healthy individuals aged 60-90) performed manual 

region-of-interest (ROI) tracing on 1.5T scans and identified an association between 

reduction in hippocampal and amygdala volumes with the risk of developing of 

dementia, but did not measure EC volumes. Our data, however, show only a weak 

difference in hippocampal volume (automatic extraction at 3T) between future 

converters vs. non-converters. We note, however, that hippocampal atrophy indexed 

by our voxel-wise analysis (Figure 2a, Supplementary Table 1) is limited to anterior 

hippocampus, suggesting that volume measures subdivided along the hippocampal 

long-axis44 might reveal more pronounced differences in hippocampal head. 

 

The ROI approach to EC volume calculation employed in prior studies15-16 does not 

consider recently observed functional subdivisions within this structure. Whereas the 

anatomical and functional dissociations of the lateral and medial entorhinal cortex in 

the rodent are well established, these two regions in the human have only recently 

been segregated into posteromedial and anterolateral portions on the basis of their 

patterns of functional connectivity35-36. In view of the suggested diverging cognitive 

roles of these two subregions of EC35-36, determining which area shows most atrophy 

prior to MCI development is important for predicting subtle cognitive deficits not 

immediately apparent in otherwise asymptomatic individuals destined for MCI. In 

rodents, the medial EC, the putative human homologue is the posteromedial part of 

EC35, is essential for spatial navigation45. However, we do not see differences in a 

direct test of GMD in the two EC portions, contrary to a previous suggestion that 

onset of MCI is in lateral EC46, when using functional measures of cerebral blood 

volume.  
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Having established (with a mass-univariate approach) biomarkers that distinguish 

between cognitively normal elderly individuals on the basis of progression to MCI 

within 1 year, we next explored the predictive capability of these parameters. This 

proceeded in an unbiased manner: all parameters were entered into a logistic 

regression with elastic net-regularization and automatic variable selection29. 

Consistent with our mass-univariate results, the combination of EC GMD and delayed 

verbal memory scores are most efficacious at predicting conversion from a 

cognitively healthy state to a state of MCI in this population. Our cross-validated 

model was effective in classifying a test sample of later converters and controls that 

were not used in the creation of the original model. Such out-of-sample testing is 

uncommon in previous studies on prediction of MCI in healthy elderly18. As a next 

step, it will be critical to test the generalizability of our statistical model when data 

from large-scale population studies employing 3T MRI scanning (e.g., the DELCODE 

study47) become available.  

 

Both our original and test sample of converters comprised individuals who developed 

amnestic and multi-domain MCI. Despite this diagnostic heterogeneity, both subtypes 

show impaired episodic memory, which is seen most commonly in MCI patients who 

subsequently progress to a diagnosis of AD dementia48. That is, distinct MCI subtypes 

may have different outcomes, with the amnestic (single or multi-domain) MCI 

subtype being associated with a higher risk of progression to AD. This is important in 

the context of prediction, as in studies that mix amnestic and non-amestic future MCI 

converters, structural MRI parameters from prefrontal and parietal cortex show most 
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discriminative power between converters and controls49, as opposed to the selective 

MTL effects we observe. 

 

A potential limitation to our analyses is that the primary outcome of MCI was based 

only on clinical assessment, without identification of in vivo β-amyloid or tau, or post-

mortem neuropathological diagnosis, which may have led to classification errors. 

MCI is a clinical and etiological heterogeneous entity, which can evolve to different 

dementia syndromes, remain stable or even revert to a state of normal cognition50. To 

mitigate classification errors, we integrated the clinical information from the visit 

after MCI diagnosis to exclude individuals who either reverted to a healthy state at or 

developed other neurological features outside of the most common MCI due to AD. 

The lack of a significant difference in neuroradiological index of white matter disease 

(Fazekas score) between V1 to V2 converters and controls indicates that a vascular 

cause for cognitive decline in the converters is less likely in this group of converters. 

Moreover, the observation of reduced GMD in EC of asymptomatic individuals 

destined for MCI is in keeping with the neuroanatomical pattern of post-mortem 

neurofibrillary changes characterizing Braak stage I-II, traditionally considered 

clinically silent2,51. Furthermore, whole-brain longitudinal analysis of atrophy from 

visit 1 to visit 2 revealed a focal decline in hippocampus and EC that accompanied 

conversion to MCI, indicating that most of the converters are likely marching towards 

an AD-type pathology.  

 

FCSRT, FAQ and EC GMD measures can all be acquired non-invasively and 

relatively routinely in the clinical setting. The predictive algorithm presented here 

could therefore be implemented as a first screen to detect individuals destined to 
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present with MCI the following year. Certain protective strategies could, at this stage, 

be implemented, such as blood pressure management52-54, management of depression 

and diabetes7, and exercise, smoking cessation and dietary advice7, potentially 

beneficial to elderly individuals at risk of MCI regardless of underlying pathology. 

This could be followed by measurement of brain, CSF or indeed plasma55-56 β-

amyloid and tau levels, representing a step-wise strategy for screening to identify 

those at risk of impending decline in cognitive function specific to aetiology. Most 

importantly, at the time of identification, these individuals are 

functioning at a high level, allowing them to make decisions about their future care 

and treatment and make personal life choices at a time when it is still optimal to do so.  
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ONLINE METHODS 

 

Participants  

Subjects involved in this study were volunteers participating in the ‘Alzheimer's 

disease Vallecas Project’, a single-centre longitudinal community-based study30, 

currently in its eighth year. Participants, recruited by advertisement mostly from the 

Vallecas area in Madrid, Spain, provided written informed consent. The project was 

approved by the ethics committee of the Carlos III Institute of Health. From the initial 

pool of n=2077 contacted participants, the final sample size was n=1213 after 

excluding those that were not interested in participating in the study or met some of 

the exclusion criteria (Figure 1).  

Inclusion criteria were as follows: 1) community-dwelling individuals; 2) both sexes; 

3) from 69 to 86 years of age; 4) independent for activities of daily living; 5) no 

neurological or psychiatric disorder impeding daily functioning; 6) reasonable 

expectation of survival at a 4-year period, operationalized as absence of any severe 

disease at recruitment; and 7) able to sign informed consent. Exclusion criteria 

comprised: 1) dementia or severe cognitive deterioration, operationalized as Mini 

Mental Statement Examination (MMSE)57 below 24 and Functional Activities 

Questionnaire (FAQ)58 scores over 6 at the baseline assessment; 2) history of 

neurological or psychiatric disease with clinically relevant impact on cognition (e.g., 

cerebrovascular disease, major depression); 3) incidental structural brain findings with 

impact on cognitive impairment or survival (e.g., malignant brain tumour); 4) 

presence of a severe systemic disease (e.g., cancer under treatment); and 5) problems 

for understanding spoken or written Spanish language. 

For the purpose of the current study, we applied further specific exclusion criteria. In 
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our first analyses, conducted in 2015-2016, we identified individuals who converted 

from cognitively healthy to MCI from baseline visit (V1) to V2 (Figure 1). To 

approximate cognitive normality at baseline, we selected participants with Clinical 

Dementia Rating (CDR)=0 or MMSE>26. We excluded 1) ‘reverters’ in V3 (namely 

participants who were considered converters in V2, but returned to a cognitive normal 

state in V3), 2) participants with incidental finding on MRI (such as large space-

occupying lesions that invalidated the volumetric analysis), and 3) participants 

developing any other non-AD neurodegenerative disease in V2 or V3. 

In addition to the 23 participants who converted to MCI on Visit 2 and fulfilled the 

above criteria, on subsequent interrogation of the data for the period 2017 to 2020, we 

identified a further 42 individuals who converted at later visits during the Vallecas 

project longitudinal study (4 more from V1 to V2, 10 from V2 to V3, 11 from V3 to 

V4, 4 from V4 to V5, 5 from V5 to V6, and 8 from V6 to V7). As for the original 

cohort of converters, all participants had Clinical Dementia Rating (CDR)=0 and 

MMSE>26 on the visit prior to conversion. We again excluded those participants 

whom, on the visit after being diagnosed with MCI, developed any other non-AD 

neurodegenerative disease or reverted to a cognitively healthy state. 

Yearly evaluation 

In the baseline visit, sociodemographic data, vital signs, and blood samples (for 

measuring APOE genotype) were collected, followed by neuropsychological, clinical, 

and multi-sequence MRI assessment. In the following visits in subsequent years (V2 

onwards) the same procedure was repeated, excluding genetic testing. 

Neuropsychological testing comprised a comprehensive battery including the 

following tests: Cognitive performance: MMSE, FCSRT, Rey–Osterrieth Complex 

Figure (acquired in all visits except V2) and phonological and semantic verbal 
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fluency; Depression and Anxiety: Geriatric Depression Scale, State-Trait Anxiety 

Inventory; Functional scales: CDR, FAQ. A more detailed description of the Vallecas 

Project design, demographic and neuropsychological measures and clinical 

assessments is described elsewhere30,59. 

A diagnosis of MCI was made when the following criteria were fulfilled60 (1) concern 

regarding a change in cognition, from the patient, a proxy informant or a trained 

clinician, (2) impairment in one or more cognitive domain (performance is typically 

below 1-1.5 SD, according to participant age and education, but these ranges are 

guidelines and not cut-off scores), (3) preservation of independence in functional 

abilities, (4) not demented. MCI diagnosis was further split into the three subgroups 

of amnestic, non-amnestic and mixed61. Participants who developed MCI in the 

follow-up visits were considered ‘converters’ and those who remained cognitively 

healthy were considered ‘controls’. The diagnosis of MCI was agreed between 2 

experienced clinicians, one neurologist and one neuropsychologist. In the case of lack 

of agreement between neurologist and neuropsychologist about the diagnosis of 

particular individual, the case was reviewed at an independent consensus meeting 

involving 3 further members of the research team (neurologists and 

neuropsychologists). Importantly, at the time of making the diagnosis of MCI, the 

clinical team was blind to neuropsychological test scores obtained the previous year 

(i.e., those used in the predictive algorithm), as well as to the current MRI scanning. 

That is, all the diagnoses were made only with the clinical information available at 

each visit and without knowing any detail about the cognitive trajectory of the 

participants, precluding a circularity bias. 

APOE genotyping 

Total DNA was isolated from peripheral blood following standard procedures. 
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Genotyping of APOE polymorphisms (rs429358 and rs7412) was determined by 

Real-Time PCR62. Failure rate of genotyping was 0.3%. The frequency of APOE ε4 

allele in our cohort is 17.6%, consistent with previous findings in the Spanish 

population63. 

Matched sampling.  

Because our grouping (MCI conversion) variable lies outside of experimental control, 

inference will be biased due to two interrelated factors (a) parametric model 

misspecification, and (b) treatment-control group covariate imbalance. While in 

experimental design, randomization provides some guarantee that treatment and 

control groups are only randomly different in background attributes, valid inference in 

the present scenario requires the extraction of a randomized design (assuming one 

exists) from the dataset. To this end, and to mitigate the effect of potential confounds, 

we used the framework of potential outcomes to develop a matched-sampling 

procedure64. The potential outcomes approach postulates a counterfactual model for 

subject i in the conversion group and seeks to estimate how the measured outcome for 

subject i would have been manifested had they not undergone the conversion. 

Matching, in its simplest form, estimates the unobserved counterfactual by selecting 

an observed outcome measure from the potential control group that is an exact match 

in all of the measured background variables. However, in practice, there is a curse of 

dimensionality problem when the number of discrete background covariates is either 

large relative to the number of subjects, or when one or more of the balancing 

covariates contains continuous values. In either case, approximate methods are 

necessary which can summarize, while preserving certain key properties, large 

numbers of covariates into a convenient one dimensional summary. The propensity 

score is one such measure and is defined as the probability of a subject being 
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classified as an MCI converter conditional on everything that is known a priori about 

that subject that does not influence either the likelihood of MCI or the outcome 

variable. The propensity score is known as an equal percent bias reducing (EPBR) 

technique64 meaning that if a close match is obtained in the propensity score 

distribution between the groups then the groups will also be close in the original 

covariates. For this study we implemented a two-level optimization procedure that 

first ranks covariates by importance followed by exact matching on the main risk 

factor variables associated with AD: gender and APOEε4 status. The exact matching 

yields subgroups of subjects identical in these risk factors. Within each of the 23 

subgroups (one subgroup per member in the converter group), the subjects were next 

assigned a propensity-based distance relative to their assigned converter. Next within 

each subgroup each potential control is ranked according to the propensity score 

distance computed from age, years of education, MMSE and total intracranial head 

volume at Visit 1. We next need to decide k, the top number of controls to be selected 

as the optimal control group. Each of our 23 converter subgroups had at least one 

potential control and so we chose k=1, corresponding to a pair-matched experimental 

design. While this choice implies we have minimized bias with some correspondent 

increase in variance, we have improved the interpretability of our subsequent outcome 

measures. Our effect-sizes in this particular application are strong relative to variance 

reduction of bias, which, in our opinion, dominates this choice over a variable-k 

matching. For the matching procedure, we performed list-wise deletion of participants 

whose data in one or more demographic or neuropsychological variables at V1 were 

missing, leading to a further 26 control participants being excluded. We note that list-

wise deletion is known to incur a potentially significant estimation bias depending on 

the nature and scale of subject attrition65.  
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Statistical analyses: Neuropsychological, genetic and demographic group 

comparisons. These variables were analysed using SPSS software (version 21.0; 

SPSS Inc., Chicago, USA). Welch’s t-test and χ2 test were used to compare 

quantitative and qualitative variables respectively, between converters and controls in 

V1 and subsequently for test converters in Vconv-1. A two-way analysis of variance 

(ANOVA) was performed for testing the interaction of the different 

neuropsychological measures in converters and controls between Vconv-1 and Vconv.  

Brain Imaging 

Image acquisition. All magnetic resonance images were acquired using the 3 Tesla 

MRI (Signa HDxt General Electric, Waukesha, USA) at the Queen Sofia Foundation 

for Alzheimer’s Research, Madrid Spain. Using a proprietary phased array 8 channel 

head coil, whole brain T1-weighted images were acquired for each participant using 

the following protocol: 3D sagittal sequence fast spoiled gradient recalled (FSPGR) 

with inversion recovery (repetition/echo/inversion time 10/4.5/600ms, field-of-

view=240mm, matrix=288x288, 166 sagittal slices of thickness=1mm), yielding an 

overall non-isotropic image resolution of 1.0x0.5x0.5mm. 

Fazekas scoring. This was performed by a neuroradiologist and recorded as the higher 

value of periventricular or deep white matter hyperintensities score, assessed using 

fluid-attenuated inversion recovery (FLAIR) imaging (repetition/echo/inversion time 

9000/130/2100ms, field-of-view=240mm, slice thickness 3.4cm). 

Cross-sectional grey matter density analysis on Visit 1. Voxel-based morphometry 

(VBM) analysis66, using the DARTEL (Diffeomorphic Atlas Registration Tool with 

Exponentiated Lie Algebras) suite within statistical parametric mapping SPM12 

software (Welcome Trust Centre for Neuroimaging, University College London; 
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http://www.fil.ion.ucl.ac.uk/spm/), was performed to compare whole-brain GMD 

between converters and controls on V1. For each participant, the T1-weighted 

structural image was first registered to a common MNI anatomical orientation, using a 

low dimensional affine transformation, bias corrected to mitigate potential 

inhomogeneities in the image intensities and resliced to 1mm isotropic resolution. 

Images were then segmented into grey matter, white matter and CSF. A nonlinear 

spatial registration technique (DARTEL) was then applied to the grey matter tissue 

maps. The template for registration was constructed using all participants from our 

converter group plus selected control participants. For each V1 to V2 converter, those 

participants from the control group who were exact matches in terms of age (in years), 

gender and total intracranial volume (discretized after computing the bin width based 

on the data interquartile range bin-size=2*(Q3-Q1)*n-1/3, into four categories), were 

selected. This resulted in a total of 348 participants (all converters plus 325 controls) 

being included in the DARTEL template creation. 

Next, each participant’s segmented grey matter map was “modulated” by the Jacobian 

map to preserve the amount of grey matter signal relative to the original (unwarped) 

image. Finally, each modulated gray matter map was affine transformed onto the MNI 

template and smoothed with a Gaussian kernel of 6-mm full width at half maximum. 

These images were next entered into a two-sample t-test, comparing whole-brain 

differences in GMD of converters and controls. We first performed an analysis 

comparing converters vs. all controls, including as covariates of no interest age, 

gender, APOEε4, MMSE, years of education, and individual TIV values. The latter 

were obtained by summing the volumes of the grey matter, white matter and 

cerebrospinal fluid. Second, we repeated the same analysis entering converters and 

only matched controls. Age, MMSE, years of education and TIV values were again 
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included as covariates of no interest, to account for residual imbalance following 

propensity score matching. There is currently a lack of consensus on whether to 

perform a paired t-test over two-sample t-test on matched data67. When doing a two 

sample t-test, it is assumed that the two samples are not dependent on each other. This 

assumption will not be violated just because the participants had similar 

demographics. That is, we do not view these as paired observations; we have only 

made the two populations more comparable by matching. 

Entorhinal Cortex Anatomy. alEC and pmEC and masks are predicted clusters derived 

by multivariate classification of perirhinal cortex and parahippocampal cortex 

connectivity preference36. The construction of participant-specific masks for alEC and 

pmEC proceeded as follows. The high-resolution whole brain T1-weighted template 

(0.6 mm isotropic resolution) associated with the EC masks36 was segmented in 

SPM12 and the resultant grey matter image was normalized to the unsmoothed, 

modulated grey matter density image for each participant separately. The warp 

parameters ensuing from normalization were applied to the EC masks in order to 

obtain participant-specific masks of alEC and pmEC.  The mean GMD from each EC 

subregion was then extracted. 

Longitudinal analysis. Longitudinal registration, tissue segmentation, and spatial 

normalization were performed using the SPM12 pairwise longitudinal toolbox, which 

uses the time between scans to perform a “symmetric” registration of longitudinal 

scans to an estimated midpoint image. In addition to alleviating potential bias in the 

choice of reference image, this procedure ensures intra-participant images have 

identical processing to render their comparability across time. From the 23 converters, 

21 had MRI studies in V2 as well as V1. Thus, T1 images from V1 and V2 were co-

registered and the midpoint image calculated, as well as a map of the rate of 
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volumetric change (the divergence field) estimated using the difference in warp fields 

of the two scans relative to the midpoint in unit time. The former serve as inputs for 

tissue segmentation, while the divergence field represent annualized volume change 

within participant. Thus, for each participant, the midpoint average image was 

segmented into grey matter, white matter and CSF and the ensuing grey matter image 

was multiplied by the divergence field to yield images of yearly grey matter atrophy. 

A two-sample t-test was performed on spatially normalized atrophy maps smoothed 

with a 6mm kernel comparing whole-brain differences between converters and 

controls.  

Automated hippocampal volume extraction. Automatic segmentation of hippocampal 

subfields was performed on each participant’s T1-weighted image using FreeSurfer 

5.3.0 (https://surfer.nmr.mgh.harvard.edu/). Eight subregions were obtained: CA1, 

CA2–3, CA4-Dentate gyrus, pre-subiculum, subiculum, fimbria, hippocampal tail, 

and hippocampal fissure. Segmentations for all participants were visually inspected. 

The whole hippocampus volume was obtained by adding subfields CA1, CA2–3, 

CA4-Dentate gyrus, hippocampal tail, and subiculum. 

Elastic-Net-penalized Logistic Regression for the Prediction of MCI 

We set up six different classification problems and for each fit a logistic regression 

classifier with an elastic net penalty, implemented using the Matlab R2018b and 

glmnet toolbox68 (version 11 March 2015). The EC voxels entered into two of these 

classification problems were extracted from each participants’ grey matter density 

image (modulated, normalized to MNI space and smoothed at 6mm in SPM12 version 

v6225), with anatomical boundaries defined by the anterior parahippocampal gyrus 

mask of the FSL-Harvard-Oxford atlas (http://www.fmrib.ox.ac.uk/fsl/). This mask 

shows good overlap with EC in our elderly T1 scans, with the anterior extent 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 31, 2020. ; https://doi.org/10.1101/2020.07.30.227496doi: bioRxiv preprint 

http://www.fmrib.ox.ac.uk/fsl/
https://doi.org/10.1101/2020.07.30.227496
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 32 

including putative transentorhinal cortex. Before fitting the elastic net model, the data 

were standardized so that each variable had zero mean and unit variance. This was 

done without any reference to class labels. The missing data was imputed using k-

nearest neighbours variable imputation69, with k = 3, again using no label information 

and imputing test data (42 test converters and matched controls) only based on the 

data from training and validation set (23 V2 converters and 720 controls). Note that in 

view of class imbalance, each member of the class with more samples was 

downweighted according to its empirical frequency. That is, we probability weighted 

the subjects depending on the frequency of each group (in a way that the weights in 

both groups sum to 0.5).  

The elastic net penalty compensates for the large number of variables relative to 

number of subjects. This is achieved by combining a lasso (L1) penalty that performs 

an automatic model selection, often choosing groups of parameters that are most 

correlated, with regularization of the large number of potential variables by shrinking 

similar variables towards one another (the grouping property)29. Two hyperparameters 

need to be chosen in elastic net regression problems. Lambda controls the extent to 

which the model is penalized; a Lambda of 0 reduces the estimate to an unpenalised 

and perhaps unidentifiable ordinary least squares estimate whereas a large Lambda 

will result in a heavily penalized model with small coefficient vectors. The second 

hyperparameter is alpha, which governs the amount of interplay within the penalty, 

between the model selection and the assumed correlation between the parameters. A 

choice of alpha close to 1 will tend to focus on a highly sparse model selection and 

will tend to ignore potential groupings between the parameters. Conversely, a choice 

of alpha close to zero will lead to the inclusion of all parameters and will tend to 

exploit correlations across a larger number of parameters.  
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Model Fitting and Hyper-parameter Estimation 

To select hyper-parameters that optimize model performance while protecting against 

overfitting, we performed a two-dimensional tuning grid search embedded within a 

cross-validation procedure. We chose lambda to run between 0 and 0.5 and alpha to 

run between 0 and 1 with a respective spacing of 0.01 resolution across the grid.  

Model performance may be assessed using one of a number of metrics, such as R², 

accuracy or Area under the curve (AUC). In our case we chose AUC as it was the 

most appropriate given our final study objectives. AUC can be taken as an estimate of 

the probability of the classifier ranking a randomly chosen positive example 

(converter) higher than a randomly chosen negative example (non-converter control). 

For each possible choice of alpha and lambda, we assessed model performance in the 

following manner. 

First we split the data at random into training/testing subsets using repeated k-fold 

Cross-Validation with k=10. The cross-validation was stratified, i.e., each fold 

contained (approximately) equal number of converters. In standard k-fold cross-

validation, uncertainty in performance estimates may be reduced by repeating each k-

fold cross-validation L times (in our case L=25) and averaging across the L estimates 

returned from each single k-fold. Within each of the k-folds, one repeat iteration 

proceeded as follows: we fit the model to the training subset, and estimated the out-

of-sample AUC from the held-out 10% subset. Next the held out data was returned to 

the main dataset and the process repeated until each subset of the data had been used 

in both model training and in assessing its out-of-sample performance on the unseen 

data subset. The AUC for a single cross-validation run was computed using the 

pooling method70 and the process iterated another L-1 times. After the Lth repeat, the 
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AUC measure was averaged over the L repeats onto the location on the tuning grid 

corresponding to that choice of alpha and lambda. The net result was a set of cross-

validation error curves and their associated standard errors plotted as a function of 

tuning parameter. We next selected the point on these curves yielding maximal model 

performance (AUC) and plotted the corresponding (cross-validated) receiver 

operating characteristic (ROC) for elastic-net classifier with the optimal hyper-

parameters for each of the data classification problems shown in Figure 4a. 

Confidence intervals for AUCs were computed with accelerated bias corrected 

bootstrap method implemented in the Matlab function perfcurve (Version 2018b). The 

DeLong test71 was used to derive P-values for the differences between different 

models (employed in the StaR online tool72).  

Out-of-sample testing 

To select a control group for the test converters (described in the section 

‘Participants’ above), for each converter on visit Vconv-1 (i.e., the data is from visit 

Vconv-1, conversion at Vconv), a control was randomly selected from visit Vconv-1, with 

the constraints of being of the same age and gender as that converter. This control was 

then removed from the large set of controls. This process was continued until all 

converters had a matched control. The model with the optimal hyper-parameters, now 

trained with the combined training and validation set, was then subjected to testing 

with this out-of-sample test set of 42 converters and 42 matched controls. The ROC 

curve for this classification problem is plotted in Figure 4b. The P-values and CIs for 

AUCs were computed as described above for validation.   

In calculating specificity and sensitivity for the test sample, we assumed that there is a 

dataset shift (due to learning effects on repeat neuropsychological tests over visits), 

hence, we cannot expect 0.5 threshold to be correct. We therefore derived a new 
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optimal threshold/constant term by two methods. In an optimal threshold approach, 

used for reporting accuracy, sensitivity and specificity in the main manuscript for the 

All Modalities model, the labels in the test set were used to decide which cut-off 

threshold (converters vs. non-converters) is optimal in terms of (balanced) accuracy 

along the ROC curve (i.e., which point of ROC curve gives the best accuracy). Since 

the labels in the test set are being used, these thresholds are decided based on the test 

data. In the split-half method, motivated by 73, we sampled half of the test subjects (21 

controls, 21 converters) and solved the optimal threshold (cut-off point) using (0,1)-

criterion74. We then applied this threshold to calculate sensitivity and specificity 

values for the other half of subjects (the other 21 controls and 21 converters). Then, 

we reversed the roles of two split-halves and averaged resulting sensitivity and 

specificity values. This method produces two thresholds for the test sample, but it is a 

straight-forward way to calibrate the data for learning effects that can work with a 

small calibration set. Note that just using the optimal thresholds would lead to training 

on the test data type problem and tuning the decision threshold with linear classifiers 

is equivalent to tuning the constant parameter of the classifier. In reporting the results, 

we repeated split-half division 50 times to ensure that the results did not depend on a 

particular split-half division. Performance measures pertaining to both these optimal 

threshold approaches, and taking a threshold of 0.5, are provided in Supplementary 

Table 8. 
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Data availability. The data that support the findings of this study are available from 

the corresponding author upon reasonable request. 

 

Code availability. Structural MRI data were analysed using SPM12 

(http://www.fil.ion.ucl.ac.uk/spm) run on Matlab (The Mathworks). Cross-sectional 

and longitudinal analyses of V1 to V2 converters, conducted in 2015-2016, were 

performed using SPM12 beta version v6015. All subsequent analyses were performed 

with SPM12 version v6225. Propensity scoring was calculated within the R-

environment for statistical computing (https://www.r-project.org/; using CRAN 

packages optmatch). Elastic net-regularized logistic regression was performed using 

the glmnet toolbox in Matlab. The KNN imputation Matlab-code is available at 

https://github.com/jussitohka/MCIpredict as well as the Matlab scripts to run the 

elastic net training and classification.   
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TABLES 

 

Table 1. Demographic, genetic and neuropsychological participant values, as well as 

hippocampal volumes and Fazekas white matter integrity score, at Visit 1. 

Abbreviations: APOEε4: APOEε4 allele, df: degrees of freedom, FAQ: Functional 

Activities Questionnaire, FCSRT: Free and Cued Selective Reminding Test, GDS: 

Geriatric Depression Scale, M/F: Males/Females, MMSE: Mini Mental State 

Examination, STAI: State-Trait Anxiety Inventory - Trait, stdev: standard deviation. 

†These values are obtained from exact matched-samples, so by definition are not 

different. ‡Values obtained after propensity score matching, which included this 

variable. Significant P-values are given in bold. T values pertain to Welch’s t-test 

(two-tailed). *Survives Bonferroni correction for the 14 tests. There was no 

correlation between hippocampal volume and total intracranial volume across 

converters and controls (Pearson’s r = 0.043; P = 0.217), so raw hippocampal 

volumes are presented. 
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 Converters V1 
to V2 (23) 

(Mean,  
stdev,  
range) 

All Controls  
(790) 

Difference 
Converter 
V1 to V2 
vs All 
Controls 

Matched 
Controls 
(23) 

Difference 
Converter 
V1 to V2 vs 
Matched 
Controls 

Age 75.48 
4.01 
(69-84) 

74.11 
3.86 
(69-86) 

T = -1.61 
P = 0.12 
df = 23.19 

75.43 
3.30 
(70-81) 

T = -0.04 
P = 0.97 ‡ 
df = 42.43 

Gender 13 M 
10 F 

274 M 
516 F 

χ2 = 8.75 
P = 0.0031 
*  

df = 1 

13 M 
10 F 

† 

APOEε4 16: None 
5:Heterozygotes 
2: Homozygotes 

663: None 
124:Heterozygotes 
3: Homozygotes 

χ2 = 9.94 
P= 0.0007 * 

df = 2 

16: None 
5:Heterozygotes 
2: Homozygotes 

† 

Years of 
education 

11.17 
7.92 
(2- >12) 

11.28 
6.49 
(0- >12) 

T = 0.06 
P = 0.95 

df = 22.87 

11.20 
8.70 
(0- >12) 

T = 0.01 
P = 0.99 ‡ 

df = 43.62 

MMSE 28.43 
1.20 
(27-30) 

29.03 
0.970 
(27-30) 

T = 2.37 
P = 0.026 

df = 22.85 

28.43 
1.12 
(27-30) 

T = 0.00 
P = 1.00 ‡ 

df = 43.80 

FAQ 1.13 
1.14 
(0-4) 

0.35 
0.69 
(0-6) 

T = -3.25 
P = 0.0036  

df = 22.48 

0.30 
0.56 
(0-2) 

T = -3.12 
P = 0.0038  

df = 31.99 

FCSRT  
(delayed total 
recall) 

11.82 
1.89 
(8-15) 

14.60 
1.64 
(7-16) 

T = 6.83 
P =  
7.50x10-7 * 

df = 21.88 

14.78 
1.62 
(10-16) 

T = 5.63 
P = 
1.42x10-6 * 

df = 41.38 

Rey–
Osterrieth 
Complex 
Figure 

11.46 
5.78 
(1.5-23.5) 

12.95 
6.02 
(0-35) 

T = 1.22 
P = 0.23  
df = 23.42 

12.65 
5.79 
(1-24.5) 

T = 0.70 
P = 0.49 
df = 43.99 

Phonological 
Verbal 
Fluency 

12.96 
3.59 
(6-19) 

14.02 
4.34 
(4-27) 

T = 1.39 
P = 0.18 

df = 23.88 

12.70 
3.67 
(7-19) 

T = -0.24 
P = 0.81 

df = 43.97 

Semantic 
Verbal 
Fluency 

16.70 
4.05 
(6-26) 

18.97 
4.76 
(8-35) 

T = 2.65 
P = 0.014 

df = 23.81 

17.91 
4.56 
(12-27) 

T = 0.96 
P = 0.34 
df = 43.39 

GDS  2.21 
3.13 
(0-11) 

1.42 
2.09 
(0-12) 

T = -1.22 
P = 0.24 
df = 22.57 

1.00 
1.24 
(0-5) 

T = -1.73 
P = 0.09 
df = 28.76 

STAI 16.30 
11.02 
(2-42) 

16.83 
9.44 
(0-49) 

T = 0.23 
P = 0.82 
df = 22.57 

15.91 
8.18 
(3-32) 

T = -0.14 
P = 0.89 
df = 40.59 

Raw 
Hippocampal 
Volume; left 
plus right 
(cm3) 

4.97 
0.68 
(3.81-6.18) 
 

5.33 
0.61 
(2.97-7.20) 
 

T = 2.65 
P = 0.011 

df = 23.22 

5.37 
0.70 
(4.05-6.69) 
 

T = 2.06 
P = 0.045 

df = 43.86 

White matter 
lesion load 
(Fazekas 
score) 

1.09 
1.04 
(0-3) 

1.13 
0.80 
(0-3) 

T = 0.18 
P = 0.86 

df = 22.77 

1.17 
0.65 
(0-2) 

T = 0.34 
P = 0.74 

df = 36.91 
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Table 2. Demographic, genetic and neuropsychological participant values, as well as 

hippocampal volumes and Fazekas white matter integrity score, of test converters. 

Note that the reduction in size of the control group (now 762) reflects the fact that 

some test converters were originally controls at V1 (their V1 data have been excluded 

to preclude mixing between- and within-subject comparisons). Abbreviations are as 

for Table 1. Significant P-values are given in bold. T values pertain to Welch’s t-test 

(two-tailed). *Survives Bonferroni correction for the 14 tests. 

 

 Test Converters (42) 
 (Mean,  
stdev,  
range) 

All Controls 
(762) 

 

Difference Test 
Converters vs. 
All Controls 

Difference Original 
V1-V2 Converters 
vs. Test Converters 

Age 77.43 
4.31 
(71-87) 

74.09 
3.84  
(69-86) 

T = -4.91 
P =  
1.0x10-5 * 

df = 44.67 

T = 1.83 
P = 0.07 

df = 48.24 

Gender 14 M 
28 F 

264 M 
498 F 

χ2 = 0.03 

P = 0.86 
df = 1 

χ2 = 3.29 

P = 0.07 
df = 1 

APOEε4 27: None 
14: Heterozygotes 
1: Homozygote 

643: None 
116: 
Heterozygotes 
3: 
Homozygotes 

χ2 = 13.16 
P = 0.001 * 

df = 2 

χ2 = 1.54 
P = 0.46 
df = 2 
 

Years of 
education 

10.74 
5.66 
(0-24) 

11.23 
6.49 
(0-50) 

T = 0.55 
P = 0.59 
df = 47.14 

T = -0.23 
P = 0.82 
df = 34.55 

MMSE 28.40 
1.06 
(27-30) 

29.04 
0.969 
(27-30) 

T = 3.78 
P = 0.0005 * 

df = 44.85 

T = -0.10 
P = 0.92 
df = 40.85 

FAQ 1.21 
1.14 
(0-4) 

0.34 
0.68 
(0-6) 

T = -4.94 
P = 0.0001 * 

df = 42.66 

T = 0.28 
P = 0.78 
df = 45.30 

FCSRT  13.38 
2.17 
(9-16) 

14.64 
1.61 
(7-16) 

T = 3.70 
P = 0.0006 * 

df = 43.52 

T = 2.98 
P = 0.005 

df = 48.25 

Rey–Osterrieth 
Complex Figure 

10.67 
7.73 
(0-36) 

13.04 
6.01 
(0-35) 

T = 1.46 
P = 0.16 
df = 22.82 

T = -0.39 
P = 0.70 
df = 40.73 

Phonological 
Verbal 
Fluency 

13.90 
4.94 
(6-24) 

14.01 
4.34 
(4-27) 

T = 0.13 
P = 0.90 
df = 44.57 

T = 0.89 
P = 0.38 
df = 57.90 

Semantic 
Verbal 
Fluency 

15.93 
33.78 
(9-26) 

19.05 
4.74 
(8-35) 

T = 5.14 
P = 5.0x10-6 * 

df = 48.40 

T = -0.75 
P = 0.46 
df = 42.74 

GDS  2.43 
2.57 
(0-9) 

1.38 
2.04 
(0-12) 

T = -2.59 
P = 0.013 

df = 43.91 

T = 0.28 
P = 0.78 

df = 38.38 

STAI 14.78 
10.46 
(1-39) 

16.78 
9.41 
(0-49) 

T = 1.20 
P = 0.24 

df = 43.58 

T = -0.54 
P = 0.59 

df = 43.69 

Raw 
Hippocampal 
Volume - left 
plus right (cm3) 

4.99 
0.62 
(4.07-6.53) 
 

5.34 
0.61 
(2.97-7.20) 
 

T = 3.56 
P = 0.0009 * 

df = 45.41 

T = 0.12 
P = 0.91 
df = 42.22 

Fazekas score 
for white matter 
lesions 

1.38 
0.96 
(0-3) 

1.11 
0.79 
(0-3) 

T = -1.78 
P = 0.08 

df = 44.11 

T = 1.12 
P = 0.27 

df = 42.40 
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FIGURES 

Figure 1. Flowchart of participant recruitment from the Vallecas Project. The 

exclusion criteria applied to the current study and ensuing groups of converters and 

controls are indicated. Note that 827 participants were included in the 2017-2020 

analyses, as converters from V2 to V3, or controls not yet attending V3, were 

excluded from the control group in our 2015-2016 analyses. 
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Figure 2. Medial temporal atrophy in healthy elderly individuals destined for 

MCI. Decreased grey matter density (GMD) in Visit 1 for 23 subsequent converters 

vs. all 790 controls (a-c) is limited to the medial temporal lobe. Reduced GMD, 

selective to bilateral amygdala, bilateral hippocampus, and left EC in converters one 

year before MCI onset, is depicted (a) on a glass-brain and (b) on serial coronal 

sections, overlaid on the group averaged T1 scan (threshold P < 0.05 whole-brain 

family-wise error corrected). (c) GMD in the global peak voxel (right amygdala; 30, -

3, -22) is plotted for converters and controls. For each boxplot (here and in Figure 3), 

the central mark indicates the median, and the bottom and top edges of the box 

indicate the 25th and 75th percentiles, respectively. Whiskers extend 1.5 times the 

interquartile range away from the top or bottom of the box, and outliers (+) are plotted 

individually. (d) In the comparison of the 23 converters vs. 23 matched controls, only 

left EC (-26, -16, -28) survives whole-brain family-wise error correction at P < 0.05. 

This effect is overlaid on the group average T1 scan in yellow (and at a more liberal 

threshold of P < 1x10-5 uncorrected in red) and GMD values plotted in (e). 
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Figure 3. Atrophy rates in the medial temporal lobe over one year are 

significantly greater in those who develop MCI than those who remain 

cognitively intact. Accelerated grey matter atrophy, calculated from Visit 1 to 2, for 

21 subsequent converters vs. 625 controls is limited to the medial temporal lobe. (a) 

Increased atrophy rates, selective to left amygdala/EC and right EC/hippocampus in 

converters is depicted on serial coronal sections, overlaid on the group averaged T1 

scan (threshold P < 0.05 whole-brain family-wise error corrected in yellow and a 

more liberal threshold of P < 1x10-5 uncorrected in red). (b) Atrophy rates in the 

global peak voxel (left amygdala/EC; -21, -2, -26) are plotted for converters and 

controls. 
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Figure 4. Predicting conversion to MCI within one-year. a. Receiver operating 

characteristic (ROC) curves generated by logistic regression with elastic net 

regularization on variables from visit 1 in our cohort of n=743 participants (23 

subsequent converters and 720 controls). ROC curves are plotted for each group of 

variables individually: demographic variables (age, gender, years of education) 

(Demographics) and demographic variables plus APOEε4 genotype 

(APOE+Demographics), neuropsychological variables (Neuropsychology) alone 

(MMSE, FAQ, FCSRT, Rey–Osterrieth Complex figure, phonological verbal fluency, 

semantic verbal fluency, GDS and STAI), MRI-derived measures (MRI) alone 

(hippocampal volumes and GMD values of 1248 2x2x2mm voxels from left and right 

entorhinal cortex), and all data modalities combined (All Modalities). b. The ROC 

curve for the independent test cohort (unseen during training) is shown. Applying the 

All Modalities model to our new, independent sample of these new 42 converters and 

42 controls yielded an Area-Under-the-Curve=0.905.  
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