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Abstract

Transferring knowledge between species is challenging: different species con-
tain distinct proteomes and cellular architectures, which cause their proteins
to carry out different functions via different interaction networks. Many
approaches to proteome and biological network functional annotation use
sequence similarity to transfer knowledge between species. These similarity-
based approaches cannot produce accurate predictions for proteins without
homologues of known function, as many functions require cellular or organis-
mal context for meaningful function prediction. In order to supply this con-
text, network-based methods use protein-protein interaction (PPI) networks
as a source of information for inferring protein function and have demon-
strated promising results in function prediction. However, the majority of
these methods are tied to a network for a single species, and many species
lack biological networks. In this work, we integrate sequence and network
information across multiple species by applying an IsoRank-derived network
alignment algorithm to create a meta-network profile of the proteins of multi-
ple species. We then use this integrated multispecies meta-network as input
features to train a maxout neural network with Gene Ontology terms as
target labels. Our multispecies approach takes advantage of more training
examples, and more diverse examples from multiple organisms, and conse-
quently leads to significant improvements in function prediction performance.
Further, we evaluate our approach in a setting in which an organism’s PPI
network is left out, using other organisms’ network information and sequence
homology in order to make predictions for the left-out organism, to simulate
cases in which a newly sequenced species has no network information avail-
able.
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1. Introduction

Sequences have been the primary source of information protein function
prediction, mainly because of their abundance and the ease with which many
models can incorporate large amounts of sequence data. However, for func-
tion prediction, sequence information fails to give the context of a protein in
an organism; this context can be highly relevant in determining the protein’s
function. Protein interaction networks, on the other hand, offer a way to
understand how proteins function in cellular pathways, and thus have been
a powerful source of information for inferring the functions of unannotated
proteins [1, 2, 3, 4, 5].

In community benchmarks, such as the Critical Assessment of Functional
Annotation (CAFA), the best-performing methods rely on multiple comple-
mentary data sources — protein sequence, structure, and network informa-
tion — in order to make more accurate predictions [6, 7, 8]. There are
many reviews of protein function prediction methods in general [9, 10, 8,
11]. Most previous network-based approaches integrate different types of
networks containing complementary information to achieve state-of-the-art
performance[12, 4, 3], but are limited to training on and making predictions
for a single organism’s proteins. Methods for sequence and structure-based
function prediction are numerous [13, 14, 15]; these methods are inherently
able to predict functions for proteins of multiple organisms, and can have
certain other advantages such as region specificity for predictions [15, 16]. A
remaining challenge is using the vast amounts of network information from
multiple species in a single model.

Our method, NetQuilt, accomplishes several important goals in function
prediction. First, NetQuilt allows for the integration of sequences and net-
works, which allows the limited knowledge of the homology between proteins
to be supplemented by knowledge of the network topology, and vice versa –
incomplete protein-protein interaction networks are supplemented by homol-
ogy. NetQuilt also creates protein features that are not tied to single species
and that include evolutionary and functional information. As a result of the
increased training examples in the multispecies setting compared to methods
considering only single species, rarer Gene Ontology (GO)[17] terms are able
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to be trained on. The much larger set of training examples also serves to
improve prediction on more abundant terms. Most importantly, our method
enables network-based function prediction even for species for which knowl-
edge of their protein interaction networks is limited. We demonstrate the
achievement of these goals in several settings. We compare the quality of
protein features of a single organism in a single-species versus a multispecies
setting. We show that multispecies features are more indicative of a pro-
tein’s function than single-species features. We also test the model’s ability
to predict functions of a species whose entire PPI network is missing, with
the model trained on all other species in the set being considered, in an ap-
proach termed “leave one species out” (LOSO). We demonstrate that our
model is capable of using information from other species to correctly infer
functions of the missing species.

2. Related work

2.1. Graph node classification methods

Protein function prediction using PPI networks is a node classification
problem, the methods for which can be categorized into two groups: label-
propagation methods, and classifiers trained on graph features. Label prop-
agation methods propagate labels from labeled nodes to unlabeled nodes via
random walks; this strategy is used to predict protein function in a method
called GeneMANIA [3]. The category of classifiers trained on graph features
can be split further into two categories: those that manually engineer features
from the network data, or those methods that learn network embeddings of
nodes in order to be used in a classifier. The manually engineered graph
features can be based on graph measures such as node degree, neighborhood
size within some number of steps, number of shortest paths, etc. Other fea-
tures that can be constructed over nodes include graphlets [18], and random
walk profiles of nodes within their graph, which have been extended and
applied to heterogeneous and multiplex biological networks [19, 20]. Net-
work embedding has been extensively used in protein functional analysis and
includes methods based on matrix factorization [4], graph kernels [21] and
deep learning [12, 22, 23]. A comprehensive review of network embedding
in computational biology compared to other types of network-based algo-
rithms for several applications can be found in [24], and reviews of network
representation learning methods in general can be found in [25] and [26].
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2.2. Single-species network-based methods

Our previous study [12] introduced a method called deepNF (deep Net-
work Fusion), which involves using a multimodal autoencoder to create em-
beddings of nodes from different types of protein-protein interaction networks
of an organism. These embeddings are then used to train support vector ma-
chines (SVM) to predict GO terms. This method outperformed other meth-
ods using different types of interaction networks to predict function, includ-
ing Mashup[4] and GeneMANIA[3], all of which had access to six STRING
network types {’experimental’, ’coexpression’, ’coocurrence’, ’neighborhood’,
’fusion’, and ’database’}. This work demonstrated that multimodal autoen-
coder neural networks could effectively extract functionally informative fea-
tures from graphs with multiple edge types. Another method, STRING2GO,
uses maxout neural networks in order to create functional representations of
proteins from protein interaction networks of a single species [22]. The max-
out network is trained to predict GO terms from Mashup or Node2Vec [27]
node embeddings, and the representations of each protein is taken from the
layer before the output predictions. These representations are then used to
train SVMs to predict GO terms. The authors show that these representa-
tions are able to outperform the original Mashup and Node2Vec embeddings
of PPI networks when used to train SVMs for the function prediction task.
In [23], an unsupervised neural network is used to learn embeddings from
a tissue-specific multi-layer PPI graph. These task-independent embeddings
are then used to predict multi-cellular function.

However, these methods are limited to using information from single or-
ganisms for prediction, because they operate on a feature space common only
to proteins of that organism. A better approach would be to take into ac-
count information from proteins of many different organisms at once in order
to take advantage of large-scale training sets.

2.3. Multispecies methods

A few methods make use of information from protein interaction networks
of multiple species. One such method is NetGO, an ensemble learning-to-
rank method that combines six component methods, one of which is a k-
nearest-neighbors method that uses PPI networks of multiple species [28].
One drawback to this method is that it is unable to use the homology infor-
mation in any way beyond direct transfer of annotation between homologues.
Ideally, a protein function prediction method should be able to use homol-
ogy information to supplement network information even on proteins whose
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sequences are not similar to the training set protein sequences. Another
method, MUNK, is a kernel-based method that produces functional embed-
dings used for predicting synthetic lethality for pairs of proteins of multiple
species [21]; they additionally demonstrate that proteins close in this embed-
ding space are similar in function. The key idea of their approach is that
proteins from different species are embedded in the same vector space using
graph kernels with landmark proteins in the networks of the two species that
perform the same functions.

2.4. Global network alignment and IsoRank

The problem of network alignment is to find topological and functional
similarities between nodes of different networks. Local network alignment al-
gorithms aim to find subgraphs which are conserved between input networks,
while the goal of global network alignment algorithms is to find mappings
of all nodes between the input networks. Most network alignment meth-
ods focus on this latter goal [29, 30, 31, 32, 33, 34, 35]. IsoRank[29] is a
global network alignment algorithm used to align multiple PPI networks.
This is done in two stages: first by solving an eigenvalue problem across all
pairs of input networks to obtain protein similarity scores, and then by us-
ing k-partite matching to obtain the final alignment of all organisms, giving
sets of functional orthologs across species. IsoRankN[30] was developed as
an improvement to the alignment extraction portion of IsoRank in which
instead of k-partite matching, spectral clustering was applied to the meta-
graph of all organisms’ proteins induced by the similarity scores given by the
eigenvalue problem. More recent global network alignment algorithms in-
clude L-GRAAL [31], which uses a graphlet similarity-scoring function used
with a search heuristic based on Lagrangian relaxation, and GHOST, whose
key step uses a signature of nodes based on the spectrum of the normalized
Laplacian of local subgraphs; this signature is then used to measure topo-
logical similarity of networks [34]. Fuse [35] is another network alignment
method consisting of two steps. The first step calculates functional simi-
larity between proteins using a weighted sum of scores from a nonnegative
matrix tri-factorization of all considered PPI networks and sequence simi-
larity. The second step constructs an edge-weighted k-partite graph (where
k is the number of PPI networks) from these similarities and then obtains
the one-to-one network alignment using an approximate maximum weight
k-partite matching solver. A comprehensive review of biological network
alignment can be found in [36]. Other algorithms for network alignment in-
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clude those that focus on finding small network region similarities conserved
among networks, unconstrained by the assumption of one-to-one mapping
of nodes. These algorithms fall into the local network alignment category.
A comparison study of local and global network alignment methods can be
found in [37], where it was found that network topology has additional bio-
logical knowledge compared to sequence data; additionally, global and local
network alignment methods may give complementary information for protein
function prediction.

In this study, we use the first step of IsoRank to integrate sequence ho-
mology information with PPI network information to generate functionally-
informative similarity scores between species as well as within species them-
selves. We use these similarity scores for every protein as its feature repre-
sentation to enable the training of a neural network with proteins coming
from many different organisms’ PPI networks in the same input space.

3. Methods

In this section, we outline the components of our method, NetQuilt.
These components are the global network alignment algorithm for creat-
ing both intranetwork (within-species) and internetwork (between proteins
in different species) node-similarity profiles, and the maxout neural network,
which uses the concatenated aligned-network vectors to predict Gene Ontol-
ogy (GO) terms. See Fig. 1 for an overview of the procedure.

3.1. Creating multispecies similarity profiles with IsoRank

Consider a set of Norg undirected graphs, where each graph is a protein-
protein interaction network of a different organism. The graphs each have
a set of nodes representing proteins for each organism, and a set of edges
representing the interactions between these proteins. The graphs are rep-
resented by adjacency matrices {A(1),A(2), . . . ,A(Norg)}. See Figures 3, 2,
and Supplemental Tables 1 and 2 for statistics on the networks used in this
study. Consider further that we have a set {R1,1,R1,2,R1,3, . . . ,R1,Norg ,R2,2,
R2,3,R2,4 . . . ,RNorg ,Norg} of edges of another type, between all proteins of all
species. Our method computes profiles of the nodes in all species’ networks,
creating a shared feature space for all proteins, which we then use to train a
maxout neural network to predict protein function. We first compute simi-
larity scores between proteins of different species in a way derived from the
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Figure 1: Overview of our method for running on two organisms (human and yeast).
A) For each taxonomy ID, download network, annotation and sequence files from the
STRING-db static website (version 11). B) Use BLAST to create sequence identity links
between proteins of pairs of different species. C) Compute IsoRank scores between proteins
of different species, using BLAST sequence identity values and the organisms’ networks
to create a combination of network and homology information. D) Use BLAST to create
sequence identity links among proteins of each individual species. E) Compute IsoRank
alignment scores between proteins of the same species, creating denser matrices S11 and
S22 from weighted adjacency matrices A11 and A22 and sequence identity matrices R11 and
R22. F) Concatenate all IsoRank matrices between all species to make the full S matrix.
G) Train maxout neural network with the S matrix as features and the annotation matrix
as labels.

IsoRank method of multispecies network alignment [29]. The scores are given
by the following recurrence equation:

S
(t+1)
ij = αAT

i S
(t)
ij Aj + (1− α)Rij (1)

where:

• S
(t)
ij is the similarity matrix between networks (species) i and j after t

steps of diffusion;
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• Rij[k, l] = − log(eval[k, l]) is the blast e-value similarity between pro-
tein k in network (species) i and protein l in network (species) j; and

• Ai, Aj are the row-normalized adjacency matrices of networks (species)
i and j.

Starting with S(0) = Ini×nj , we iterate this calculation (Equation 1) until
convergence with respect to the norm of the difference between the pre-
vious matrix S

(T−1)
i,j and the current matrix S

(T )
i,j . We then calculate Iso-

Rank similarity scores between proteins within each species. This computes
”alignment” scores between a network and itself, integrating (normalizing)
sequence homology scores computed using BLAST and protein-protein in-
teractions.

We can now construct a large symmetric matrix S in which the IsoRank
similarity matrices of all species with themselves are placed along the diag-
onal, resulting in a block-diagonal matrix. Next, each interspecies protein
similarity matrix Si,j is placed on the off-diagonal, comprising the subma-
trix with row indices of the proteins of species i and column indices of the
proteins of species j. Refer to steps B, C, D, E & F in Fig. 1 for a visual
description of this matrix construction. S now contains the information from
all the individual protein interaction networks as well as the links between
them, integrated with sequence-similarity information. We finally use this
matrix as input to a maxout neural network, with each row of the matrix S
being used as a single training sample.

3.2. Using maxout neural networks to predict protein function from aligned
meta-network features

Maxout neural networks, introduced in [38], are neural networks whose
layers have the maxout activation function. The maxout activation of a layer
is the element-wise maximum of a set of affine transformations to the input
of that layer. More explicitly, a maxout layer’s ith output value hi ∈ Rm

given an input x ∈ Rd is defined as:

hi(x) = max
j∈1,k

zi,j

where zij = xTW:,i,j + bi,j is the ith element of the jth affine transformation
of the input vector with learned parameters W ∈ Rd×m×k and b ∈ Rm×k.
Maxout activation functions are able to approximate arbitrary convex func-
tions, and therefore enable the neural network to learn not only relationships
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Hyperparameters Bacteria Eukaryotes
Hidden Layer Dimensions [500, 800, 800] [500, 800, 800]
Maxout Units 3 4
Dropout 0.2 0.2
Batch Normalization[41] True True
Learning Rate 0.01 0.01
Batch Size 16 32
Max Number of Epochs 100 300
Optimizer AdaGrad[42] AdaGrad

Table 1: Model architectures for Eukaryote and Bacteria datasets (see Section 4.1 for a
description of these datasets). “Maxout units” refers to the number of separate weight
matrices for a given layer; the element-wise max is computed over the product of the
weight matrices with the outputs of the previous layer.

between hidden units but also the activation functions themselves. This pro-
vides additional flexibility, which enables the neural network to learn features
that are more specifically tailored to a prediction task.

The architectures for our models are listed in Table 1 (see also part G
in Fig. 1). To avoid overfitting, we use early stopping with the criterion
of improving AUPR calculated over a validation set consisting of 20% of
the training data, with patience 30 (i.e., if the AUPR score does not im-
prove in 30 consecutive epochs, the training is stopped). The architectures
were chosen using cross-validation performance on datasets for eukaryotes
and bacteria using the previous version of STRING (v10.5) [39] for anno-
tations and network information. The hyperparameter search started with
an architecture based on [22], with three rounds of random search, trying
1% of possible models each round. Empirically, maxout neural networks
performed better than neural networks with sigmoid or ReLU activation
functions for this task. Other benefits of maxout neural networks include
fast gradient computations relative to other activation functions, e.g. sig-
moid, and fewer choices of hyperparameters, since the activation function is
learned. The search space was restricted after each round by removing possi-
ble values of hyperparameters that were correlated with lower performance.
The models were implemented using Keras [40]; the code is freely available
at https://github.com/nowittynamesleft/NetQuilt.
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4. Experiments

4.1. Datasets

Figure 2: Proportions of STRING proteins of a given Eukaryote taxonomy ID that are
annotated in at least one branch of the Gene Ontology with any evidence code and pro-
portions that are in the STRING experimental network’s largest connected component,
sorted by the sum of the two proportions of each species.

We conduct our analyses on both a collection of eukaryote networks and
a separate collection of bacteria networks. Each dataset consists of STRING
PPI networks, of which we use only the “experimental” category for our
method, and Gene Ontology annotations of each organism retrieved from
STRING version 11 [39]. The statistics on the organisms we include in our
study are given in Figures 2 and 3, which show the networks’ largest con-
nected component ratios and the annotation percentages of proteins present
in STRING. The numbers of nodes and edges, for bacteria and eukaryotes,
are shown in Supplemental Tables 1 and 2 respectively. In order to select the
value of the α parameter for our experiments for each set, we tested several
values in a single-species cross-validation setting (see Supplemental Figures
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3, 4, and 5 for the results of the search). The chosen organisms come from
the set of organisms that were evaluated in CAFA 4. For the bacteria, all of
the organisms from CAFA 4 were used in our pipeline; for the eukaryotes, we
selected a subset to conserve memory when training our models (C. elegans,
D. melanogaster, D. rerio, H. sapiens, S. scrofa, M. musculus, and R. norvegi-
cus). We use GO terms that cover between 0.5% - 5% of the species’ proteins
in its PPI network, and remove proteins without annotations of these GO
terms from training and evaluation sets.

Figure 3: Proportions of STRING proteins of a given Bacteria taxonomy ID that are anno-
tated in at least one branch of the Gene Ontology with any evidence code and proportions
that are in the STRING experimental network’s largest connected component, sorted by
the sum of the two proportions of each species.

4.2. Cross-validation

In our first set of evaluations, in order to compare with single-species
methods, we perform cross-validation on a single test species at a time. The
performance is averaged over 5 repetitions with 20% of data used as the test
set. We train our models on GO term annotations of any evidence code[17],
but evaluate our predictions with annotations of the evidence codes EXP,
IDA, IPI, IMP, IGI, IEP, TAS and IC, as previously used in CAFA papers
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[6]. Since, realistically, our method has access to more training examples
than the single-species methods, we include three benchmark versions of our
method:

1. NetQuilt trained on a subsampled set of multispecies annotations, where
we randomly subsample training examples equal to the number of train-
ing examples we would have if only considering the species being tested
on

2. NetQuilt trained on single-organism annotations, in which we take only
rows corresponding to the particular organism being evaluated from the
original matrix S containing protein similarities among all organisms
(for example, training the maxout neural network only on the rows
corresponding to human proteins in the block S matrix represented in
Fig. 1(B))

3. Single-species Maxout, in which we take only the IsoRank-score ma-
trix for integrating the single organism’s PPI network with sequence
homology information from BLAST, but not including similarities to
any other organisms’ proteins (for example, training the maxout neural
network only on the S11 matrix for human proteins represented in Fig.
1(E))

These benchmarks allow us to disentangle the effects that the number of
training examples and the addition of new features have on performance.
In addition to these, we also include deepNF and BLAST (propagating la-
bels from training to test proteins based on sequence similarity as in CAFA
[6]). deepNF includes information from STRING network types not used by
our models: i.e., the coexpression, cooccurrence, neighborhood, fusion, and
database networks. BLAST, like our main multispecies model, uses proteins
from all organisms in the set of chosen species to make predictions on the
cross-validation test proteins.

4.3. Leave-one-species-out validation

The next set of experiments we performed simulate a scenario in which
we use the networks of multiple species in order to predict the functions of
proteins of an organism with no PPI network available (a reasonably common
occurrence for non-model species). An outline of the procedure is shown
in Figure 4. We first take a single organism with its annotations left out
from training and used as the test set, and leave out the network for that
organism. In order to construct the features of the organism for use in
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Figure 4: Procedure for predicting a network to be used in the leave-one-species-out
validation setting, where we assume no knowledge of the PPI network for one organism.
First, BLAST connections (represented as purple dashed lines) between the proteins of
the known network and the left-out network are created. IsoRank is then run for the
interspecies matrix, using the known network A1 and the left-out network given by the
identity matrix I, giving the IsoRank connections S12 depicted by the large green dashed
lines. We finally obtain a predicted network by taking the one-mode projection of the
IsoRank connections: ST

12S12 = Â2. In the case of multiple known organisms, we simply
take the average of all organisms’ one-mode projections with the left-out organism.

the maxout neural network, we first need to obtain interspecies connections
between the test organism and all other organisms in the dataset. To do
this, we first calculate the sequence similarity between the test organisms’
proteins and all other organisms’ proteins, and run IsoRank in the previously
described way, except that we use the identity matrix in place of the PPI
network of the left-out organism. We obtain an ni×ntest interspecies protein
similarity matrix Si,test relating each species’ ni proteins with the test species’
ntest proteins. We then perform a one-mode projection, given by ST

i,testSi,test,
which predicts connections between the nodes of the test species from their
shared neighbors (through the IsoRank connections) in other species. Since
we have a prediction matrix for every other species in the set besides the test
species, we take the element-wise mean of these different matrices to get the
predicted network Âtest. Finally, using this matrix as a proxy for a real PPI
network, we run IsoRank on the matrix with itself, combined with its own
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species’ BLAST connections, to obtain the matrix Stest,test.

5. Results

In the following sections, we present the performance of our method in two
evaluation settings. The first setting is cross-validation over the annotations
of a single species, in which we can compare our method to single-species
network-based methods. The second setting is leave-one-species-out (LOSO)
evaluation, in which we leave out both a species’ PPI network and its an-
notations while using the rest of the organisms to train, as outlined in the
previous section.

5.1. Cross validation over annotations of one species

Figure 5: Performance comparison of NetQuilt method with baselines. Methods shown:
NetQuilt trained on model bacteria annotations; NetQuilt trained on subsampled model
bacteria annotations; NetQuilt trained only on E. coli str. K-12 substr. MG1655 examples;
single-species NetQuilt (taking only the E. coli IsoRank matrix and annotations); deepNF
(single-species, but integrating 6 STRING network types); and CAFA BLAST annotation
transfer method using all selected bacteria annotations.
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Figure 6: Performance comparison of NetQuilt method with baselines. Methods shown:
NetQuilt trained on model eukaryote annotations; NetQuilt trained on subsampled model
eukaryote annotations; NetQuilt trained only on human examples; single-species NetQuilt
(taking only the human IsoRank matrix and annotations); deepNF (single-species, but
integrating 6 STRING network types); and CAFA BLAST annotation transfer method
using all selected eukaryote annotations.

We present the performance of our method in cross-validation on human,
fly, mouse and E. coli. We summarize our results using AUPR under micro
and macro averaging, accuracy score (Acc) and F1-score (in the same man-
ner as in [12]). The AUPR and F1 scores are computed in a function-centric
manner and averaged over all GO terms. Accuracy is computed as the pro-
portion of correctly predicted proteins of the set, where a prediction for a
GO term is made if the model outputs a score greater than 0.5. A protein
is considered “correctly predicted” if our predictions match the label vector
of considered GO terms. We show results separately for the three differ-
ent branches of Gene Ontology, molecular function (MF), biological process
(BP), and cellular component (CC). In Figures 5, 6, and 8, we see that the
NetQuilt network trained on model bacteria proteins outperforms the other
methods significantly across the three branches of Gene Ontology for E. coli,
human and mouse. This can primarily be attributed to the large number
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Figure 7: Performance comparison of NetQuilt method with baselines. Methods shown:
NetQuilt trained on model eukaryote annotations; NetQuilt trained on subsampled model
eukaryote annotations; NetQuilt trained only on D. melanogaster examples; single-species
NetQuilt (taking only the fly IsoRank matrix and annotations); deepNF (single-species,
but integrating 6 STRING network types); and CAFA BLAST annotation transfer method
using all selected eukaryote annotations.

examples included in the training set. In addition, the diversity of train-
ing examples across multiple species also serves to increase performance,
as indicated by the higher performance of the maxout network trained on
subsampled sets of annotations from multiple species equal in size to the
training set for a single species. For fly, shown in Figure 7, deepNF outper-
forms our method in the biological process and cellular component branches.
We note that deepNF has additional information – the coexpression, cooc-
currence, neighborhood, fusion, and database networks – in addition to the
experimental network from STRING, while our method incorporates only
the experimental network and BLAST connections. The performance of the
CAFA BLAST baseline method also performs poorly for fly, which reflects
the smaller number and magnitude of BLAST connections between fly and
the other organisms (see Supplemental Figure 7 for network and homology
comparisons between eukaryotes). This indicates that the homology of the
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Figure 8: Performance comparison of NetQuilt method with baselines. Methods shown:
NetQuilt trained on model eukaryote annotations; NetQuilt trained on subsampled model
eukaryote annotations; NetQuilt trained only on Mus musculus examples; single-species
NetQuilt (taking only the mouse IsoRank matrix and annotations); deepNF (single-species,
but integrating 6 STRING network types); and CAFA BLAST annotation transfer method
using all selected eukaryote annotations.

organisms in the set does not give as much information as the other sources
of information that deepNF takes into account for the fly protein function
prediction task. Since our method also relies on homology information, we
expect a corresponding decrease in performance when such information is
not as salient to the classification task. We see this effect also in the max-
out network trained in the subsampled setting, where homology information
from the proteins of other organisms is included in the training data at the
expense of other proteins in the fly network.

For all organisms, NetQuilt trained only on a single species’ annotations
performs similarly whether it uses multispecies features or single-species fea-
tures. For E. coli and human, training on multispecies features gives slightly
better performance with regard to the molecular function ontology than
training on single-species features. However, for cross-validation on human
in the biological process ontology, the multispecies features actually decrease
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performance. This may be because adding a significantly larger number
of features without increasing the number of training examples has limited
benefits, with a higher number of parameters needing more samples to train
on. On the other hand, both of these baseline models’ performances are
comparable to that of deepNF for the molecular function ontology for all
of the considered organisms. This suggests that the features based on PPI
networks integrated with homology through our method can enable the neu-
ral network to have competitive performance even without large numbers of
training examples.

Figure 9: E. Coli annotations.

5.2. Leave-one-species-out validation

In order to explore the performance of our method in a situation in which
no PPI interaction network is known for an organism but homology infor-
mation is present, we present results for E. coli and fly LOSO validation in
Figures 9 and 10, and for human and mouse in Supplemental Figures 1 and
2. This setting often describes the case for many newly sequenced species;
mass spectrometry or yeast two-hybrid data may not be available for such
organisms.

For E. coli, we see that our model significantly outperforms the CAFA
BLAST labeling method. There are annotations available from all other
bacteria, including another well-annotated substrain of E. coli (K-12 substr.
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Figure 10: D. melanogaster annotations.

W3110; see Figure 3). BLAST can use these presumably useful homologs
in transferring annotations to the E. coli K-12 substr. MG1655, our test
organism. However, even with this information, our method outperforms
BLAST by more than double in the macro-AUPR performance for biological
process, and by similarly large margins in the molecular function and cellular
component ontologies. For fly, we also see NetQuilt generally outperform-
ing the CAFA BLAST labeling method, though for cellular component, the
improvement is not as significant. This shows that our method of integrat-
ing multiple species’ PPI networks and their homology link information can
be used effectively to annotate proteins for organisms for which neither PPI
network nor annotations are available. In particular, it shows that we can
outperform strictly homology-based predictions when there is PPI network
information available for species related to the organism we want to annotate.

On human and mouse, our model performs approximately as well as
the CAFA BLAST-labeling method. The BLAST-labeling method performs
much better for these organisms than it does for fly and E. coli. When ho-
mology information is highly informative, as is the case in human and mouse,
BLAST is difficult to improve upon. However, in cases where homology is
not as informative for the annotation task, the complementary PPI data used
by our model allows for significant improvements in performance.
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6. Conclusions and discussion

With the arrival of high-throughput experimental techniques came large
PPI network datasets of thousands of organisms. Many function prediction
algorithms use PPI information for function prediction using a single species
at a time. In order to fully exploit this rich source of information, new
protein function prediction algorithms should be designed so that multiple
PPI networks can be integrated, along with the most abundant source of
protein information: homology. We present here a method that is the first
of its kind: a multispecies network-based deep learning method for protein
function prediction that effectively integrates PPI network information and
homology. The integration of multiple PPI networks is based on IsoRank, a
PPI network alignment technique that uses homology to transfer topological
similarity scores between nodes of different networks. We use the integrated
similarity scores as input to a maxout neural network in order to accurately
predict protein function. We demonstrate the superiority of our method in
Gene Ontology term prediction to single-species network-based approaches
as well as to the homology transfer method from the Critical Assessment of
Function Annotation (CAFA) using a cross-validation evaluation.

The multispecies approach enables us not only to produce better predic-
tions in situations involving completing the annotations of a single species
using its PPI network, but also to make accurate network-informed pre-
dictions on species for which the organism has either an incomplete or an
entirely nonexistent PPI network. We show this capability through a leave-
one-species-out validation whereby we leave out a species’ network and an-
notations and train our model on multiple other species, and then evaluate
our function predictions on the left-out species. We show that our method
can be at least as good as the CAFA homology transfer method in settings
in which homology is very informative, and is a great improvement over the
CAFA homology transfer method in settings in which homology information
is not enough to produce accurate predictions.

This method shows promise for training deep learning models on large
multispecies PPI network datasets. In light of the informative representa-
tions learned by deep-learning algorithms trained on sequence datasets with
millions of training examples, we have a vision of applying deep learning
techniques similarly to the millions of nodes in all PPI networks. In future
work, we hope to explore principled ways of integrating much larger numbers
of PPI networks with homology information for function prediction.
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7. Appendix

Note that the IsoRank formula in Equation 1 can be interpreted as per-
sonalized PageRank for the matrix of the Kronecker product AT

j ⊗ Ai of
row-normalized adjacency matrices. This can also be seen as solving the
eigenvalue problem for this tensor product graph when α = 1. Vectorizing
the right hand side of equation 1, we have:

vec(αAT
i SijAj + (1−α)Rij) = α(AT

j ⊗Ai)vec(Sij) + (1−α)vec(Rij) (2)

The problem can then be formulated as the following, which we can solve for
Sij:

vec(Sij) = αvec(Sij)(A
T
j ⊗Ai) + (1− α)vec(Rij)

vec(Sij)− αvec(Sij)(A
T
j ⊗Ai) = (1− α)vec(Rij)

vec(Sij)(I − α(AT
j ⊗Ai)) = (1− α)vec(Rij)

vec(Sij) = (1− α)vec(Rij)(I − α(AT
j ⊗Ai))

−1

(3)
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