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1 Abstract4

Balancing selection is an important adaptive mechanism underpinning a wide5

range of phenotypes. Despite its relevance, the detection of recent balancing6

selection from genomic data is challenging as its signatures are qualitatively7

similar to those left by ongoing positive selection. In this study we developed8

and implemented two deep neural networks and tested their performance to pre-9

dict loci under recent selection, either due to balancing selection or incomplete10

sweep, from population genomic data. Specifically, we generated forward-in-11

time simulations to train and test an artificial neural network (ANN) and a12

convolutional neural network (CNN). ANN received as input multiple summary13

statistics calculated on the locus of interest, while CNN was applied directly on14

the matrix of haplotypes. We found that both architectures have high accur-15

acy to identify loci under recent selection. CNN generally outperformed ANN16

to distinguish between signals of balancing selection and incomplete sweep and17
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was less affected by incorrect training data. We deployed both trained networks18

on neutral genomic regions in European populations and demonstrated a lower19

false positive rate for CNN than ANN. We finally deployed CNN within the20

MEFV gene region and identified several common variants predicted to be un-21

der incomplete sweep in a European population. Notably, two of these variants22

are functional changes and could modulate susceptibility to Familial Mediter-23

ranean Fever, possibly as a consequence of past adaptation to pathogens. In24

conclusion, deep neural networks were able to characterise signals of selection on25

intermediate-frequency variants, an analysis currently inaccessible by commonly26

used strategies.27

2 Introduction28

Balancing selection is a selective process that generates and maintains genetic29

diversity within populations, as firstly proposed by Dobzhansky in 1951 [1].30

Many diverse mechanisms of balancing selection have been described [2]. Over-31

dominance (or heterozygote advantage) occurs when heterozygote individuals32

at one locus have higher fitness than homozygotes. In sexually antagonistic33

selection, different alleles at the same locus have opposite effects in the two34

sexes creating a balanced polymorphism at the population level. In negative35

frequency-dependent selection, rare alleles have a fitness advantage. Finally,36

spatially and temporally varying selection creates a scenario where different37

alleles are advantageous in different environments.38

Until 2006 the general consensus was that only few loci in the human genome39

have been targets of balancing selection [3, 4]. Since then, the availability of40

large-scale population genomics data and the development of ad hoc statistical41

test contributed to the current view that balancing selection is a widespread42

adaptive mechanism underlying a broad spectrum of features in the genetic43

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 1, 2020. ; https://doi.org/10.1101/2020.07.31.230706doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.31.230706
http://creativecommons.org/licenses/by-nc-nd/4.0/


architecture of phenotypes [5, 6].44

In humans, balancing selection is responsible for shaping the diversity of45

genes involved in the adaptive and innate immune response [7, 8, 9, 10], meta-46

bolism [11] and other processes [12]. Notably, variants targeted by pathogen-47

driven balancing selection have been found to be associated with susceptibility48

to several autoimmune diseases [13]. Therefore, by elucidating the genomic sig-49

nals of balancing selection we have the ability to identify common alleles with50

critical functional consequences. For instance, balancing selection has been hy-51

pothesised to maintain a common variant in an angiotensin-converting enzyme52

[14] which has been recently associated to increased susceptibility to Sars-Cov253

[15].54

Several methods to identify targets of balancing selection have been proposed55

[16]. Genomic signatures of balancing selection have been detected by testing for56

an excess of heterozygous genotypes [17], a local increase in genetic diversity [18],57

a shift in the site frequency spectrum towards common frequencies [9, 19, 12], a58

population genetic differentiation lower or higher than expected under neutral59

evolution [20], presence of trans-species polymorphism [21, 22], by explicitly60

modelling the patterns of polymorphisms and substitutions [10, 23], and by61

correlating allele frequencies with environmental variables [24].62

The application of such methods to large-scale human population genomic63

data has enabled the characterisation of targets of long-term balancing selection64

(i.e. selection that predates the time to the most recent common ancestor in65

a species) in humans and their association to several diseases [19, 12]. Never-66

theless, all these studies contributed little to the understanding of the role of67

balancing selection in recent human evolution, despite short-term or transient68

balancing selection being predicted to be a common phenomenon in nature [25].69

Recent balancing selection leaves traces that are almost indistinguishable from70
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those left by recent positive selection [16], with beneficial alleles segregating at71

intermediate frequency in contemporary genomes in both cases [2]. Addition-72

ally, even when signatures of balancing selection are identified, the underlying73

evolutionary mechanism (e.g. overdominance or negative frequency-dependent74

selection) is often unknown [6]. As such, current methods have only limited75

power to identify and characterise signatures of recent balancing selection in76

the human genome.77

A promising solution to address this issue is provided by supervised machine78

learning (ML) which has been recently introduced in population genetics and79

successfully applied for evolutionary inferences [26]. ML algorithms automat-80

ically tune their internal parameters to maximize the prediction accuracy and,81

as such, require a known data set (called training set) to learn the relationship82

between input and output. Deep learning is a class of ML algorithms based83

on artificial neural networks (ANNs) which comprise nodes in multiple layers84

connecting features (input) and responses (output) [27]. Weights between nodes85

are optimized during the training to minimize the distance between predictions86

and the ground truth. After training, an ANN can predict the response given87

any arbitrary new input data. ANNs have the potential to be used in popula-88

tion genetics to estimate parameters from genomic data using multiple summary89

statistics in input [28].90

Unlike ML approaches which use summary statistics as input, deep learn-91

ing algorithms can effectively learn which features (i.e. measurable properties92

of the data) are sufficient for the prediction [27]. This is an important aspect93

as summary statistics are meaningful but human-constructed features. A key94

finding of deep learning was that such features emerged within a well-trained95

deep network: they are effectively suggested/discovered by a network during96

training [29]. Despite deep learning in population genetics being in its infancy,97
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several studies have already introduced the use of Convolutional Neural Net-98

works (CNNs) to full population genomic data with convolutional layers auto-99

matically extracting informative features [30, 31, 32, 33]. A convolution layer is100

comprised of several weight matrices that slide across the input image and per-101

form a matrix convolutional to produce image matrices [34, 35]. Typically, each102

convolution layer is followed by a pooling layer, which reduces the dimension103

of image matrices while maintaining potentially important information. After104

several cycles of convolutional and pooling layers, resulting image matrices are105

flattened into one dimensional feature vector, followed by one or more layers of106

fully-connected units which perform the final prediction. Recent reviews provide107

more detailed information on convolutional neutral networks in population ge-108

netic inference [30, 33].109

In this study we aimed at developing and implementing deep neural net-110

works to predict loci at intermediate allele frequency (i.e. between 40% and111

60%) under natural selection (Test 1). By doing so, our goal is also to distin-112

guish between signals of incomplete sweep (i.e. ongoing positive selection) and113

signals of balancing selection (Test 2), either due to overdominance or negative114

frequency-dependent selection. As mentioned above, these two types of selection115

are different biologically but leave similar signatures in genomes, making their116

discernment particularly challenging. Specifically, we compared the predictive117

power between ANNs (i.e. based on summary statistics) and CNNs (i.e. based118

on full population genomic data) to perform such classification.119

Finally, we deployed the trained deep neural networks on population gen-120

omic data to identify and characterise signals of natural selection acting on the121

MEFV gene. Mutations in the MEFV gene have been associated with sus-122

ceptibility to Familial Mediterranean Fever (FMF), an autoinflammatory dis-123

ease with recurrent episodes of fever, abdominal pain (peritonitis), joint pain124
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(arthritis), chest pain (pleuritis and pericarditis) with gradual development of125

nephropathic amyloidosis (kidney failure) [36]. FMF shows a high prevalence in126

populations of Mediterranean origin [36] and the 3’ terminal region of the MEFV127

gene has been hypothesised to be under balancing selection due to overdomin-128

ance in some European populations [17]. On the other hand, disease-linked129

mutations in the MEFV gene have been recently suggested to be targeted by130

recent positive selection in the Turkish population as they confer resistance to131

Yersinia pestis [37]. By applying our deep neural networks on a large sample132

size of genomic data we sought to establish which type of natural selection has133

been acting on MEFV with regards to susceptibility to FMF.134

3 Materials and Methods135

3.1 Simulations of population genomic data136

We performed extensive simulations both to assess the predictive power of sum-137

mary statistics and to train deep neural networks. We generated synthetic138

population genomic data using SLiM 3.2, a forward-in-time genetic simulation139

software [38]. We simulated four different scenarios: neutrality (NE), incomplete140

sweep (IS), overdominance (OD) and negative frequency-dependent selection141

(FD). A locus under balancing selection (BS) was considered to be under either142

OD or FD. All simulations were conditioned on a previously proposed demo-143

graphic model for European populations [39] with a mutation rate of 1.44e− 8,144

a generation time of 29 years, and a recombination rate sampled from a Normal145

distribution with mean 1e − 8 and standard deviation 1e − 9. Further details146

on the simulation model employed are available in Table S1.147

For simulating scenarios of natural selection, we generated loci of 50k bp148

(base pairs) with the selected variant at the center of the simulated sequence. We149
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assumed a model of selection on a de novo mutation. For illustrative purposes150

of this study, the selected mutation was introduced in the European population151

at 21 different times, ranging from 40k to 20k ya (Figure S1). We classified152

these times into three categories: recent (20k to 26k ya), medium (27k to 33k153

ya), and old (34k to 40k ya) selection.154

To mimic the effect of a selected variant at intermediate frequency, we con-155

ditioned the final (i.e. contemporary) allele frequencies to be between 40% and156

60% in the sample. If the final frequency of the selected allele was not within157

this range, the simulation restarted at the generation where the selected vari-158

ant was introduced. For each selection scenario and time of onset of selection,159

we chose selection coefficients and parameters which maximised the probability160

of the final allele frequency being between 40% and 60% (Table S2). At the161

end of the simulations, we sampled 198 chromosomes (i.e. haploid individuals)162

to match the sample size of CEU (Central European) individuals in the 1000163

Genomes Project [40].164

In the neutral scenario, no selected variant was introduced. Instead, we165

generated data with a neutral variant at the center of the sequence with a166

frequency between 40% and 60%. To achieve this, we (i) simulated a larger167

region of 500k bp under neutral evolution, (ii) sampled 198 chromosomes, (iii)168

identified a variant with a frequency between 40% and 60%, (iv) trimmed the169

large region to obtain a 50k bp locus (Figure S2).170

3.2 Calculation of summary statistics and genomic images171

We processed the simulated genomic data to be received as input to deep neural172

networks (i.e. both ANN and CNN). For ANN, we summarized each genomic173

sequence as a vector of summary statistics. As ANN performance is not negat-174

ively affected by uninformative or correlated data features [28], we included all175
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potentially informative summary statistics. Additionally, we divided each sim-176

ulated 50k bp sequence into two sub-regions: (1) proximal to the selection site177

(20-30k bp), and (2) distal from the selected site (0-20k bp + 30-50k bp) (Figure178

S3). For each region, we calculated 33 summary statistics, similar to previous179

studies [28]. The main statistics are: nucleotide diversity π [41], Watterson’s es-180

timator θ [42], Tajima’s D [43], linkage disequilibrium (LD) r2 [44], Kelly’s ZnS181

[45], Fu and Li’s F* and D* [46], H1, H12, H123, H2/H1 [47], iHS [48], EHH182

[49], Zeng et al.’s E [50], Fay and Wu’s H [51], nSL [52], NCD1/2 [12], rag-183

gedness index [53], observed and expected heterozygosity, haplotype diversity,184

number of unique haplotypes, and number of singletons. Finally, we included185

some derivatives of these main statistics, such as mean, median and maximum186

values of mean pairwise distances calculated for all chromosome pairs in a sim-187

ulation (Figure S3). All summary statistics were calculated using scikit-allel188

library (https://github.com/cggh/scikit-allel) and then scaled using the189

StandardScaler function from sklearn library [54]. All scaled summary statistics190

were considered as input features to the ANN.191

For CNN, we created images from the alignment of sampled haplotypes,192

similar to previous studies [31, 30, 32]. In this data representation, each row of193

the image is a sampled haplotype (i.e. individual chromosome) and each column194

corresponds to a specific segregating site. The colour coding indicates if a variant195

is derived or ancestral, or any other polarisation of alleles (e.g. major/minor,196

reference/alternate). To disentangle the effect of random sorting of sampled197

haplotypes [32], we reordered rows of images as follows: (i) sampled haplotypes198

are divided into two groups based on the presence or absence of the targeted199

allele, (ii) haplotypes within each of the two groups are sorted separately based200

on haplotype frequency, (iii) the two sorted groups are combined to obtain the201

final reordered image. Lastly, to take into account the different dimensions of202

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 1, 2020. ; https://doi.org/10.1101/2020.07.31.230706doi: bioRxiv preprint 

https://github.com/cggh/scikit-allel
https://doi.org/10.1101/2020.07.31.230706
http://creativecommons.org/licenses/by-nc-nd/4.0/


simulated loci, we resized images into 128 × 128 pixels [32] using the Image203

module from Pillow package (https://pypi.org/project/Pillow).204

3.3 Implementation and training of neural networks205

Both ANN and CNN models were implemented in Python using Keras library206

with Tensorflow backend [55]. ANN model comprises one input, three hidden,207

and one output fully-connected (i.e. dense) layers. Similar to a previous study208

[28], the hidden layers consist of 20, 20, and 10 neurons, respectively, all with209

a Rectified Linear Units (ReLU) activation function. The output layer, which210

performs the binary classification, consists of a single neuron with a sigmoid211

(i.e. logistic) activation function. To control for overfitting, in addition to212

batch normalization, we used a dropout rate of 0.5 and L2 weight decay of213

0.005 across all but the output layers. Models were optimized using the Adam214

optimizer with a batch size of 64 and a learning rate of 0.005 [56].215

The CNN model consisted of three sets of 2D convolution layers, each fol-216

lowed by a batch normalization layer and ReLU activation layer. A max-pooling217

layer was also applied after the first two convolution layers. All convolutional218

layers consisting of 32 filters had a kernel size of 3x3, applied at stride 1. The size219

of the pooling layers was 2x2, which were applied at stride 2. The convolutional220

layers were followed by a flatten layer, which transforms a two-dimensional fea-221

ture matrix into a vector. Finally, we used a fully-connected layer consisting of222

128 units that uses the flattened feature vector as an input, followed by an out-223

put layer. Again, we used ReLU activation function on the output from the fully224

connected layer and the sigmoid function for the output layer. We performed225

extensive hyper-parameter tuning on training data over 25 epochs to optimise226

values of learning rate (Figure S4), number of units per layer (Figure S5), L2227

regularisation (Figure S6), dropout rates (Figure S7), batch normalization (Fig-228
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ure S8), image reshaping (Figure S9), to maximise accuracy for predicting loci229

under incomplete sweep or balancing selection (Test 2). A complete list of all230

hyper-parameter values used in the CNN model is available in Table S3. Fur-231

ther, we performed data augmentation during the training of CNN models by232

randomly flipping images horizontally (Figure S10) using the ImageDataGener-233

ator function from Keras [55].234

We performed 480, 000 simulations in total for training all deep neural net-235

works. Each single model employed 80, 000 simulated data samples, 64, 000 of236

them for training and the remaining 16, 000 for validation. All models were237

trained for 50 epochs each. Testing was performed on approximately 16, 000238

data samples. We trained both ANN and CNN to perform two classification239

task: predict loci under natural selection vs. neutral evolution (Test 1) and240

predict loci under balancing selection vs. incomplete sweep (Test 2). The pre-241

dictive power of ANN and CNN for each test was quantified with a confusion242

matrix, where each row represents the instances of true class and each column243

the corresponding number of predicted instances.244

3.4 Prediction of natural selection from genomic data245

We deployed the trained networks on phased population genomic data from the246

1000 Genomes Project for the CEU population [40]. We filtered all non-biallelic247

positions and selected all variants with a frequency between 40% and 60% in248

CEU populations within the MEFV gene region. We retrieved 41 such variants249

and, for each one, generated a haplotype matrix [32] of 50k bp surrounding the250

putative target variant. We calculated summary statistics (for ANN) and gen-251

erated images (for CNN) for each variant by applying the same pipeline used for252

training the networks. Test 2 was performed only on variants predicted to be253

under selection for Test 1. Genomic annotations were obtained using the En-254
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sDb.Hsapiens.v75 package in R [57] and Gviz package was used for visualization255

[58]. We also employed the same procedure on data from 99 randomly sampled256

individuals of Tuscans in Italy (TSI) from 1000 Genomes Project [40].257

We further deployed the trained networks on genomic regions hypothesised to258

be neutrally evolving. We extracted two putative neutral regions (chr16:62,852,764-259

62,944,210 and chr16:63,651,950-63,684,341) predicted by the NRE Tool [59]260

which was run with default parameters for a large region proximal to MEFV261

gene on chromosome 16. We identified a total of 42 biallelic variants with in-262

termediate allele frequency and applied the same procedure aforementioned to263

predict signals of selection using both trained networks.264

3.5 Software availability265

A Python package called BaSe (Balancing Selection) that implements deep266

neural networks (both ANN and CNN) for the detection of selection and for267

discerning between incomplete sweep and balancing selection is available at268

https://github.com/ulasisik/balancing-selection. Data visualizations269

were performed in R, using ggplot2 [60], ggpubr [61], and pheatmap [62] lib-270

raries. All remaining analyses were performed in Python.271

4 Results272

4.1 Summary statistics are not sufficient to discriminate273

between balancing selection and incomplete sweep274

Our first aim was to test whether commonly used summary statistics were suf-275

ficient to discriminate between loci under neutrality and natural selection, the276

latter comprising both incomplete sweep and balancing selection (Test 1). We277

calculated a total of 66 different summary statistics and compared their distri-278
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butions calculated on simulated loci under either neutrality or selection, with279

the targeted allele at intermediate frequency (between 40% and 60%) in the280

center of the region (Figure S11). Figure 1 (upper panel a) shows a subset281

of these comparisons and indicates that the distribution of several summary282

statistics under neutral evolution or natural selection are statistically different.283

Therefore, these summary statistics can be used to predict loci under natural284

selection. This effect is particularly notable for haplotype-based summary stat-285

istics (Figure 1, upper left panel a) and it is consistent across all times of onset286

of selection (recent, medium, old), in line with the effect of recent selection on287

patterns of LD.288

Next, we tested whether summary statistics were able to distinguish between289

loci under incomplete sweep and balancing selection (Test 2) and, again, we com-290

pared their distributions (Figure S12). Figure 1 (lower panel b) shows the same291

subset of comparisons. These results suggest that only few summary statistics292

can discern genomic patterns created by incomplete sweep from those created by293

balancing selection, and only marginally. This deficiency is particularly severe294

for allele frequency-based summary statistics and for medium to old times of295

selection onset.296

4.2 CNN has higher prediction accuracy than ANN to297

distinguish between incomplete sweep and balancing298

selection299

As summary statistics do not have power to discriminate between incomplete300

sweep and balancing selection if considered individually, we then tested whether301

their predictive power increased when jointly integrated. Thus, we implemented302

a deep ANN which receives as input all calculated summary statistics [28] and303

predicts whether a given locus is under either neutrality or natural selection,304
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either due to an incomplete sweep or balancing selection (Test 1). We compared305

the predictive accuracy of ANN to an approach based on convolutional layers,306

in form of a CNN applied to full population genomic data as an alignment of307

sampled haplotypes [32].308

Figure 2 illustrates the performance of ANN and CNN to predict loci under309

different classes of evolution. The upper panel (a) on the left side shows the310

training loss and accuracy over epochs for classifying a locus under either neutral311

evolution (NE) or selection (S, Test 1). CNN showed a high loss and lower312

accuracy during the first few epochs, but both methods reached qualitatively313

similar levels of loss and accuracy after approximately ten epochs. Confusion314

matrices on testing data (top panel a on the right side of Figure 2) indicate315

similar predictive power for ANN and CNN. Recent selective events were more316

likely to be correctly classified than older events. For instance, we observed317

that the false negative rate of identifying a gene under old selection is 10% for318

ANN and 14% for CNN, whereas it was 4% for ANN and 1% for CNN in case319

of recent selection (i.e. 20k ya).320

The lower panel (b) of Figure 2 on the left side illustrates training loss and321

accuracy over epochs for classifying a locus under either incomplete sweep (IS)322

or balancing selection (BS, Test 2). The results recapitulated what previously323

observed on the higher loss during the first few epochs for CNN. However, for this324

classification task, CNN exhibited a consistently higher prediction accuracy than325

ANN across all epochs. This observation was confirmed when investigating the326

confusion matrices calculated on testing data (Figure 2, right side of lower panel327

b). CNN consistently outperformed ANN for predicting loci under incomplete328

sweep or balancing selection although the overall accuracy was lower than the329

one obtained for Test 1. For instance, we observed a false negative rate of330

identifying a locus under old balancing selection of 30% for ANN and 22%331
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for CNN, and 29% for ANN and 16% for CNN in case of recent selection.332

Again, recent selective events were more likely to be correctly classified than333

older events. Overall, CNN had high power to identify loci under selection334

and substantial power to distinguish between incomplete sweep and balancing335

selection, two modes of evolution that leave extremely similar genomic patterns.336

4.3 CNN is more robust than ANN to misspecified train-337

ing data338

The training of a neural network for population genetic inferences is conditional339

on a demographic and selection model to generate genomic data under different340

evolutionary scenarios. Therefore, we tested the robustness of both ANN and341

CNN to misspecified evolutionary parameters during training. Specifically, we342

used the already generated synthetic data and calculated the prediction accur-343

acy for identifying loci under selection (Test 1) and for distinguishing between344

incomplete sweep and balancing selection (Test 2) when both ANN and CNN345

were trained on a specific time of onset of selection (recent, medium, old) but346

tested on a different value. By doing so, we were able to quantify any drop in347

accuracy when the training data did not reflect the underlying true evolutionary348

model.349

Figure 3 shows the prediction accuracy for both tests (Test 1 and Test 2,350

on columns) and networks (ANN and CNN, on rows) for all possible pairs of351

time of onset of selection between training and testing data. Numbers on the352

antidiagonal represent accuracy values when the model used for both training353

and testing was the same. Numbers outside the antidiagonal indicate accuracy354

values when the models employed for training and testing differed. We observed355

a marginal decline in accuracy when using incorrect training data for Test 1 for356

both networks which performed similarly. These results were confirmed when357

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 1, 2020. ; https://doi.org/10.1101/2020.07.31.230706doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.31.230706
http://creativecommons.org/licenses/by-nc-nd/4.0/


investigating all corresponding confusion matrices (Figure S14). For Test 2,358

the drop in accuracy when employing a different model for training was more359

evident than for Test 1, although CNN outperformed ANN in most scenarios360

(Figures 3, S13).361

4.4 CNN identifies signatures of recent natural selection362

in MEFV gene363

We deployed the trained networks, both ANN and CNN, on genomic data for364

the MEFV gene from CEU population from the 1000 Genomes Project [40]. We365

sought to test whether any intermediate frequency allele in the MEFV gene have366

been subjected to natural selection and, if so, whether it was due to balancing367

selection or incomplete sweep, in line with previous and contrasting findings368

[17, 37].369

To assess the false positive rate, we extracted flanking genomic regions to370

MEFV predicted to be under neutral evolution [59], and deployed both ANN371

and CNN algorithms on all intermediate frequency variants. We expected the372

networks not to predict signals of selection within these control neutral regions.373

ANN predicted 23 out of 42 sites to be under selection regardless of the time374

of onset of selection (Figure S15). Therefore, we decided not to use the ANN375

algorithm for inferences on the MEFV gene, as it showed a high false positive376

rate based when applied to putative neutral genomic regions. In contrast, CNN377

provided strong support for 39 out of 42 sites to be under neutral evolution,378

with only three sites possibly predicted to be under selection regardless of the379

time of onset (Figure S16).380

Next, we aimed to identify signals of natural selection and deployed the381

trained CNN within the MEFV genomic region of European samples (CEU)382

from the 1000 Genomes Project database [40]. We observed a large proportion383
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of sites with intermediate allele frequency predicted to be under natural selection384

(Test 1) regardless of the time of onset of selection (Figure 4, upper panel). All385

sites under selection were predicted to be under incomplete sweep rather than386

balancing selection (Figure 4, second panel from top).387

Sites predicted to be under selection (or in LD with the target of selection)388

encompass a haplotype block spanning from intron 2 to 3’ UTR (untranslated389

region, Figure S17). Most of these variants are possibly functionally silent as390

they lay within introns or represent synonymous substitutions (Figure 4, third391

to fifth panels from top). However, two mutations within this region represent392

either missense (rs1231123, rs1231122) or stop-gained (rs1231122) substitutions,393

depending on the corresponding isoform. The predicted signals of selection in394

the MEFV gene were confirmed when deploying the trained network to gen-395

omic data from TSI samples [40], another European population (Figure S18).396

However, the results obtained using TSI population showed a higher false pos-397

itive rate when deployed to neutral genomic regions (Figure S19) than the ones398

obtained using CEU population, possibly because the network was trained on399

simulated data conditional on a demographic model inferred for the CEU pop-400

ulation. In fact, 7, 14 and 10 out of 38 neutral sites were predicted to be under401

selection with recent, medium and old time of onset, respectively, using TSI402

population. In contrast, 3, 13 and 9 out of 42 neural sites were labelled as tar-403

gets of selection with recent, medium and old time of onset, respectively, using404

CEU population.405

5 Discussion406

In this study we demonstrated the utility of deep learning to identify gen-407

omic signals of recent natural selection on intermediate frequency variants. We408

showed that algorithms based on either summary statistics (i.e. ANN) or full409
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genomic data (i.e. CNN) had comparably high power to infer selective regimes410

(Figure 2). However, CNN had higher accuracy to distinguish between loci un-411

der balancing selection and incomplete sweep (Figure 2), it was generally more412

robust to incorrect training data (Figure 3), and it had a lower false positive413

rate when deployed on neutral genomic regions than ANN (Figures S15-S16).414

Finally, we illustrated the applicability of deep neural networks to detect and415

characterise signals of natural selection on common variants within the MEFV416

gene region (Figure 4).417

Our results on the high predictive power offered by deep learning, and spe-418

cifically by convolutional neural networks, to detect signals of natural selection419

expand previous findings [31, 30, 32, 33] to cases where the beneficial allele is420

at intermediate frequency. CNN outperformed ANN to distinguish between in-421

complete sweep and balancing selection although, in our analyses, its training422

was slower by a factor of 300. In fact, CNN had more than 4 million parameters423

to estimate, in contrast to ANN which had approximately 2,000. Additionally,424

ANN received as input informative features (i.e. summary statistics) while con-425

volutional filters in the CNN learned the optimal features from the raw data426

whilst training. In machine learning, the design of such features had been a ma-427

jor part of information engineering. As an illustration, in the field of computer428

vision, the ”features” used for many practical algorithms until the early 2000s429

consisted of hand-engineered gradient estimators [63], typically at multiple spa-430

tial scales [64, 65], applied to images (arrays of pixels). The observation that431

features emerge within a deep network has been repeated in different domains.432

Therefore, we envisage that a novel area of research will focus on extracting433

informative features from trained networks for population genetic inference,434

possibly by analysing activation or saliency maps [66].435

This study also contributes to ongoing efforts to design architecture and436
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devise training techniques for deep learning algorithms in population genetics437

[33]. Resizing images to smaller dimensions appeared to reduce overfitting and438

learning time (Figure S9) and could be considered a complementary strategy439

to approaches based on cropping or padding [30]. The strategy to separately440

sort rows based on the presence or absence of the putative target variant is an441

alternative solution to adopt more general, but computational expensive, ar-442

chitectures based on exchangeable neural networks [31, 33]. We also explored443

the applicability of forward-in-time simulations to train deep neural networks444

for population genetics and the usefulness of data augmentation (Figure S10)445

to reduce the computational time required to generate synthetic training data.446

The use of forward-in-time simulations should generate more realistic synthetic447

population genomic data and model more complex evolutionary scenarios than448

by using coalescent simulations. In any case, as suggested in this study (Fig-449

ures S15-S16), false positive and negative rates should be assessed by deploying450

trained networks on loci previously identified as targets of selection or neutrally451

evolving.452

We show that deep neutral networks achieved higher prediction power to453

differentiate between the effects of neutral evolution, balancing selection and454

incomplete sweep for variants segregating at intermediate frequency (Figure 2)455

than commonly used summary statistics (Figure 1). However, the accuracy456

to distinguish between incomplete sweep and balancing selection using CNN457

ranges from 72% to 80% depending on the time of onset of the selection, with458

more recent events (around 20k ya) more accurately classified (Figure 3). While459

this accuracy is far higher than that achieved using summary statistics, higher460

accuracy could be achieved by employing a larger training data set, by using461

more extensive hyper-parameter tuning and architecture search, and by treating462

overdominance and negative frequency dependent selection as separate predic-463
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tion categories. In fact, future extensions of this study will include testing to464

distinguish between overdominance and negative frequency-dependent selection465

once a variant is predicted to be under balancing selection. It is likely that466

a different CNN architecture and training data is needed for this purpose as,467

for instance, information on heterozygosity (not considered herein given the468

simulation strategy) will likely emerge as an important feature.469

The analyses on the MEFV gene performed herein complement previous470

findings [67] to suggest that this gene has been subjected to different evolu-471

tionary forces. The MEFV gene encodes for the Pyrin protein which plays an472

important role in inflammatory processes [68]. Five different functional domains473

have been identified within the Pyrin protein. The PYD domain (aa 1-92) is474

present in at least 20 human proteins involved in inflammatory pathways. How-475

ever, in the analyses we performed the PYD domain seems to have neutrally476

evolved. The Pyrin central region hosts three domains: a bZIP domain (aa 266-477

280), a B-box domain (aa 370-412) and a coiled-coil domain (CC, aa 420-440).478

The role of these three domains has not been thoroughly elucidated and few479

FMF-causing variants localize to Pyrin’s central region [69, 70]. Nevertheless,480

from our data this central region is apparently under recent selection (Figure481

4) or is in LD with beneficial alleles (Figure S17). Similarly, the B30.2 domain482

(also known as PRY/SPRY domain), which is encoded by the MEFV exon 10483

where most of the FMF-causing variants cluster [71] shows the same genetic484

patterns of ongoing selection.485

A recent study demonstrated that the FMF-associated variants M694V,486

M680I and V726A, all localizing to the B30.2 region, decrease the binding of487

Yersinia pestis virulence factor YopM [37]. Further, the authors provided evid-488

ence that M694V and V726A variants were subject of recent positive selection489

in a cohort of Turkish individuals. Finally, FMF knock-in mice demonstrated490
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survival advantage compared to wild type mice. Thus, these experimental evid-491

ences suggest that mutations in the human Pyrin may have conferred resistance492

to Yersinia pestis [37]. However, the possibility that other pathogens could have493

concurred in conferring a selective advantage cannot be ruled out. Indeed, con-494

trary to previous claims of overdominance acting on MEFV [17], our new results495

and Park et al.’s study suggest that the selection on human Pyrin is either re-496

cent or possibly still ongoing. In fact, the frequency of M694V and V726A kept497

rising [37] although no plague outbreaks rose to the scale of a pandemic after498

the 17th century.499

The population sample we analysed in this study is different from the Turk-500

ish cohort investigated by Park et al. which overlaps significantly with one of501

the plague outbreak site. Nevertheless, even in the different population sample502

we analysed, the data presented herein suggest signals of recent selection on503

the human Pyrin. While our computational predictions are unable to identify504

the causal variant, it is possible to hypothesise that Pyrin, specifically its B30.2505

region, could confer resistance to a broader range of pathogens including those506

causing more recent pandemics. A more comprehensive picture of ongoing selec-507

tion signatures in MEFV could be achieved by deploying deep neural networks508

trained on variants segregating at low or high frequency and to a wide range509

of Mediterranean populations. Finally, additional power to characterise recent510

selection in MEFV could be gained by integrating data from ancient genomes511

[72] as this would be particular suitable to relate adaptation to past epidemics512

to current pathogenic threats [73].513

In this study we demonstrated how deep learning, and in particular convolu-514

tional neural networks, were able to perform predictions currently inaccessible515

by commonly used strategies based on summary statistics. In particular, we516

showed that deep neutral networks can differentiate between signals of incom-517
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plete sweep and balancing selection, despite the two evolutionary events leaving518

qualitatively similar patterns of genetic variation. Furthermore, our application519

to detect signals of selection on FMF-associated alleles highlighted the import-520

ance of a population genetic approach to understand the molecular basis of521

susceptibility and/or resistance to infectious diseases.522
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Figure 1: Distribution of a subset of summary statistics calculated on simu-
lated loci under either neutral evolution or natural selection at different times
of onset (recent, medium or old). Panel (a) shows the comparison between
neutral evolution and natural selection (either ongoing positive selection or bal-
ancing selection). Panel (b) shows the comparison between incomplete sweep
and balancing selection. Left panels group summary statistics based on haplo-
type diversity while right panels group summary statistics based on allele fre-
quency. Comparisons which are statistically significant (two-sided two-sample
Mann-Whitney U test) are depicted with * (p¡0.05), ** (p¡0.01), *** (p¡0.001),
otherwise are depicted with n.s. (not significant).
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Figure 2: Performance of ANN and CNN to predict loci under selection (Test
1, upper panel a.) and to distinguish between incomplete sweep and balancing
selection (Test 2, lower panel b.). For each category of time of onset of selection
(recent, medium, old), training loss and accuracy over epochs are shown on the
left side while confusion matrices are shown on the right side. Different classes
to predict are neutrality (NE), selection (S), incomplete sweep (IS), balancing
selection (BS).
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Figure 3: Prediction accuracy for classifying loci under different evolutionary
events (Test 1 and Test 2, on columns) and methods (ANN and CNN, on rows)
for all pairs of classes for time of onset of selection between training (y-axis) and
testing data (x-axis). The antidiagonal shows accuracy values when the model
used for both training and testing is the same.
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Figure 4: Prediction of sites under natural selection (Test 1, upper panel) or
balancing selection vs. incomplete sweep (Test 2, second panel from top) on
intermediate-frequency variants in the MEFV gene for a European population.
For each tested variant, the predicted functional impact on all isoforms is re-
ported (from third to fifth panel from the top).
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11 Tables and Figures (with captions)798

12 Supplementary Tables and Figures (with cap-799

tion)800

Table S1: Parameters used in the demographic model to simulate genomic data.

Table S2: Optimised parameters to generate intermediate frequency alleles un-
der different scenarios of selection.

Table S3: Parameters of the CNN architecture. Layer notations: I=Input,
C=Convolution, BN=Batch Normalization, P=Pooling, A=Activation(ReLU),
D=Droupout, F=Flatten, FC=Fully-Connected(Dense), O=Output.
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Figure S1: Examples of simulated allele frequency trajectories for different times
of onset and different modes of selection: incomplete sweep (IS), overdominance
(OD), negative frequency dependent selection (FD).
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Figure S2: A cartoon illustrating the strategy to generate simulations of neutral
regions with intermediate frequency alleles.
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Figure S3: A cartoon illustrating the strategy to calculate all summary statistics
used. For each locus, each statistic is calculated on both regions labelled 1 (20-
30k bp) and 2 (0-20k bp + 30-50k bp).
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Figure S4: Training and validation loss and accuracy plots for hyper-parameter
tuning of learning rate to train CNN for Test 2 (incomplete sweep vs. balancing
selection) at different times of onset of selection (see Methods).
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Figure S5: Training and validation loss and accuracy plots for hyper-parameter
tuning of number of units for convolutional (conv) and fully-connected (fc) layers
to train CNN for Test 2 (incomplete sweep vs. balancing selection) at different
times of onset of selection (see Methods).
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Figure S6: Training and validation loss and accuracy plots for hyper-parameter
tuning of regularisation rates to train CNN for Test 2 (incomplete sweep vs.
balancing selection) at different times of onset of selection (see Methods).
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Figure S7: Training and validation loss and accuracy plots for hyper-parameter
tuning of dropout rates for convolutional (conv) and fully-connected (fc) layers
to train CNN for Test 2 (incomplete sweep vs. balancing selection) at different
times of onset of selection (see Methods).
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Figure S8: Training and validation loss and accuracy plots for hyper-parameter
tuning of batch normalisation to train CNN for Test 2 (incomplete sweep vs.
balancing selection) at different times of onset of selection (see Methods).
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Figure S9: Training and validation loss and accuracy plots for hyper-parameter
tuning of reshaping images to train CNN for Test 2 (incomplete sweep vs. bal-
ancing selection) at different times of onset of selection (see Methods).
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Figure S10: Training and validation loss and accuracy plots for hyper-parameter
tuning of data augmentation (i.e. flipping images) to train CNN for Test 2
(incomplete sweep vs. balancing selection) at different times of onset of selection
(see Methods).
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Figure S11: Distributions of a subset of summary statistics calculated on genes
under either neutral evolution or natural selection (either ongoing positive se-
lection or balancing selection) at different times of onset (recent, medium or
old).
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Figure S12: Distributions of a subset of summary statistics calculated on genes
under either incomplete sweep or balancing selection at different times of onset
(recent, medium or old).
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Figure S13: Confusion matrices accuracy for classifying loci under incomplete
sweep (IS) or balancing selection (BS) (Test 2) with both ANN and CNN for
all pairs of classes for times of onset of selection (recent, medium, old) between
training (y-axis) and testing data (x-axis).
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Figure S14: Confusion matrices accuracy for classifying loci under neutral evol-
ution (NE) or natural selection (S) (Test 1) with both ANN and CNN for all
pairs of classes for times of onset of selection (recent, medium, old) between
training (y-axis) and testing data (x-axis).
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Figure S15: Prediction of sites under selection (S) against neutral evolution
(NE) in two control neutral regions using ANN algorithm. For each site at
intermediate allele frequency, the probability of being under selection (Test 1)
at different times of onset (recent, medium or old) is reported.
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Figure S16: Prediction of sites under selection (S) against neutral evolution
(NE) in two control neutral regions using CNN algorithm. For each site at
intermediate allele frequency, the probability of being under selection (Test 1)
at different times of onset (recent, medium or old) is reported.
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Figure S17: LD r2 values for all pairs of tested variants at intermediate allele
frequency in the MEFV gene.
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Figure S18: Prediction of sites under natural selection (Test 1, upper panel) or
balancing selection vs. incomplete sweep (Test 2, second panel from top) on
intermediate-frequency MEFV variants for samples from TSI population from
Italy. For each tested variant, the predicted functional impact on all isoforms
is reported (from third to fifth panel from the top).
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Figure S19: Prediction of sites under selection (S) against neutral evolution
(NE) in two control neutral regions using CNN algorithm and samples from
TSI population from Italy. For each site at intermediate allele frequency, the
probability of being under selection (Test 1) at different time of onset (recent,
medium or old) is reported.
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