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Abstract 
Molecular knowledge of biological processes is a cornerstone in the analysis of omics data. 

Applied to single-cell data, such analyses can provide mechanistic insights into individual cells 

and their interactions. However, knowledge of intercellular communication is scarce, scattered 

across different resources, and not linked to intracellular processes. To address this gap, we 

combined over 100 resources in a single database. It covers the interactions and roles of 

proteins in inter- and intracellular signal transduction, as well as transcriptional and 

post-transcriptional regulation. We also provide a comprehensive collection of protein 

complexes and rich annotations on the properties of proteins, including function, localization, 

and role in diseases. The resource is available for human, and via homology translation for 

mouse and rat. The data is accessible via OmniPath’s web service, a Cytoscape plugin, and 

packages in R/Bioconductor and Python, providing convenient access options for both 

computational and experimental scientists. Our resource provides a single access point to 

knowledge spanning intra- and intercellular processes for data analysis, as we demonstrate in 

applications to study SARS-CoV-2 infection and ulcerative colitis.  
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Introduction 
Cells process information by physical interactions of molecules. These interactions are 

organized into an ensemble of signaling pathways that are often represented as a network. This 

network determines the response of the cell under different physiological and disease 

conditions. In multicellular organisms, the behaviour of each cell is regulated by higher levels of 

organization: the tissue and, ultimately, the organism. In tissues, multiple cells communicate to 

coordinate their behavior to maintain homeostasis. For example, cells may produce and sense 

extracellular matrix (ECM), and release enzymes acting on the ECM as well as ligands. These 

ligands are detected by receptors in the same or different cells, that in turn trigger intracellular 

pathways that control other processes, including the production of ligands and the physical 

binding to other cells. The totality of these processes mediates the intercellular communication 

in tissues. Thus, to understand physiological and pathological processes at the tissue level, we 

need to consider both the signaling pathways within each cell type as well as the communication 

between them. 

Since the end of the nineties, databases have been collecting information about signaling 

pathways 1. These databases provide a unified source of information in formats that users can 

browse, retrieve and process. Signaling databases have become essential tools in systems 

biology and to analyze omics data. A few resources provide ligand-receptor interactions 2–6. 

However, their coverage is limited, they do not include key players of intercellular 

communication such as matrix proteins or extracellular enzymes, and they are not integrated 

with intracellular processes. This is increasingly important as new techniques allow us to 

measure data from single cells, enabling the analysis of inter- and intracellular signaling. For 

example, the recent CellPhoneDB 6 and ICELLNET 7 tools provide computational methods to 

prioritize the most likely intercellular connections from single cell transcriptomics data, and 

NicheNet 8 expands this to intracellular gene regulation. A comprehensive resource of inter- and 

intracellular signaling knowledge would enhance and expedite these analyses.  

To effectively study multicellular communication, a resource should: (a) classify proteins by their 

roles in intercellular communication, (b) connect them by interactions from the widest possible 

range of resources and (c) integrate all this information in a transparent and customizable way, 

where the users can select the resources to evaluate their quality and features, and adapt them 

to their context and analyses. Prompted by the lack of comprehensive efforts addressing 
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principle (a), we built a database on top of OmniPath 9, a resource which has already shown the 

benefits of principles (b) and (c). This new resource focuses on intercellular communication and 

its integration with intracellular signaling, providing prior knowledge for modeling and analysis 

methods. It combines 103 resources to build on an integrated database of molecular 

interactions, enzyme-PTM (post-translational modification) relationships, protein complexes and 

annotations about intercellular communication and other functional attributes of proteins.  

We demonstrate with two case studies that we provide a versatile resource for the analysis of 

single-cell and bulk omics data. First, we studied the potential influence of ligands secreted in 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on the inflammatory 

response through autocrine signaling. We identified signaling mechanisms that may lead to the 

dysregulated inflammatory and immune response shown in severe cases. Second, we 

examined the rewiring of cellular communication in ulcerative colitis (UC) based on single cell 

data from the colon. By analyzing downstream signalling from the intercellular interactions, we 

found pathways associated with the regulatory T cells targeted by myofibroblasts in UC.  

Results 
We used four major types of resources: (1) molecular interactions, (2) enzyme-PTM 

relationships, (3) protein complexes and (4) molecule annotations about function, localization 

and other attributes (Figure 1A). The pypath Python package combined the resources from 

those four types to build four corresponding integrated databases. Using the annotations, pypath 

compiled a fifth database about the roles in intercellular communication (intercell; Figure 1B). 

The ensemble of these five databases is what we call OmniPath, combining data from 103 

resources (Figure 1A and Supplementary Table S1). 
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Figure 1: The composition and workflow of OmniPath.  

(A) Database contents with the respective number of resources in parentheses. (B) Workflow and design: 

OmniPath is based on four major types of resources, and the pypath Python package combines the 

resources to build five databases. The databases are available by pypath, the web resource at 
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omnipathdb.org, the R package OmnipathR, the Cytoscape plug-in and can be exported to formats such 

as Biological Expression Language (BEL). 

A focus on intercellular signaling 
To create a database of intercellular communication, we defined the roles that proteins play in 

this process. Ligands and receptors are main players of intercellular communication. Many other 

kinds of molecules have a great impact on the behavior of the cells, such as matrix proteins and 

transporters. We defined eight major (Figure 2) and 17 minor generic functional categories of 

intercellular signaling roles (Supplementary Table S6 and S10). We also defined ten locational 

categories (e.g. plasma membrane peripheral), using in addition structural resources and 

prediction methods to annotate the transmembrane, secreted and peripheral membrane 

proteins. Furthermore, we provide 994 specific categories (e.g. neurotrophin receptors). Each 

generic category can be accessed by resource (e.g. ligands from HGNC) or as the combination 

of all contributing resources (Supplementary Figure S5). To provide highly curated annotations, 

we checked every entry in each category manually against UniProt datasheets to exclude wrong 

annotations. Overall we defined 1,170 categories and provided 54,330 functional annotations 

about intercellular communication roles of 5,781 proteins. 

We collected the proteins for each intercellular communication functional category using data 

from 27 resources (Supplementary Table S6). Combining them with molecular interaction 

networks from 48 resources (Supplementary Table S2) we created a corpus of putative 

intercellular communication pathways (Figure 2C). To have a high coverage on the intercellular 

molecular interactions, we also included ten resources focusing on ligand-receptor interactions 

(Figure 3, Supplementary Figure S1).  

Many of the proteins in intercellular communication work as parts of complexes. We therefore 

built a comprehensive database of protein complexes and inferred their intercellular 

communication roles: a complex belongs to a category if and only if all members of the complex 

belong to it. We obtained 14,348 unique, directed transmitter-receiver (e.g. ligand-receptor) 

connections, around seven times more than the largest of the resources providing such kind of 

data (Figure 2D). This large coverage is achieved by not only integrating ten ligand-receptor 

resources, but also complementing these with data from annotation and interaction resources. 
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An essential feature of this novel resource is that it combines knowledge about intercellular and 

intracellular signaling. Thus, using OmniPath one can, for example, easily analyze the 

intracellular pathways triggered by a given ligand or check the transcription factors (TFs) and 

microRNAs (miRNAs) regulating the expression of such ligands.  
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Figure 2: The composition and representation of the intercellular signaling network.  

We assigned intercellular communication roles to proteins based on evidence from multiple resources. In 

all panels: T - transmitter; R  - receiver. (A) Schematic illustration of the intercellular communication roles 

and their possible connections. Cells are physically connected by proteins forming tight junctions (1), gap 

junctions (2) and other adhesion proteins (3); they release vesicles which can be taken up by other cells 

(4); some receptors form complexes (5) to detect secreted ligands (6); transporters might also be affected 

by factors released by other cells (8); enzymes released into the extracellular space act on ligands and 

the extracellular matrix (7, 9); cells release the components of the extracellular matrix and bind to the 

matrix by adhesion proteins (10). (B) The main intercellular communication roles (x axis) and the major 

contributing resources (y axis). Size of the dots represents the number of proteins annotated to have a 

certain role in a given resource. The darker areas represent the overlaps (proteins annotated in more than 

one resource for the same role) while the lighter color denotes those unique to that resource. (C) The 

intercellular communication network. The circle segments represent the eight main intercellular 

communication roles. The edges are proportional to the number of interactions in the OmniPath PPI 

network connecting proteins of one role to the other. (D) Number of unique, directed transmitter-receiver 

(e.g. ligand-receptor) connections by resources. 

OmniPath : an ensemble of five databases 
The abovementioned intercellular database exists in OmniPath together with four further 

databases (Figure 1B), supporting an integrated analysis of inter- and intracellular signaling.  

The network of molecular interactions 

The network database part covers four major domains of molecular signaling: (i) protein-protein 

interactions (PPI), (ii) transcriptional regulation of protein-coding genes, (iii) miRNA-mRNA 

interactions and (iv) transcriptional regulation of miRNA genes (TF-miRNA). We further 

differentiated the PPI data into four subsets based on the interaction mechanisms and the types 

of supporting evidence: 1) literature curated activity flow (directed and signed; corresponds to 

the original release of OmniPath, 9), 2) activity-flow with no literature references, 3) 

enzyme-PTM and 4) ligand-receptor interactions (Figure 3A-C). In total, the  resource contained 

103,396 PPI interactions between 12,469 proteins from 38 original resources (Supplementary 

Table S2). The large number of unique interactions added by each resource underscores the 

importance of their integration (Supplementary Figures S2-4). The interactions with effect signs, 

essential for mechanistic modeling, are provided by the activity flow resources (Figure 3B). The 

combined PPI network covered 53% of the human proteome (SwissProt), with an enrichment of 
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kinases and cancer driver genes (Figure 3C). The transcriptional regulation data in OmniPath 

was obtained from DoRothEA 10, a comprehensive resource of TF regulons integrating data from 

18 sources. In addition, six literature curated resources were directly integrated into OmniPath 

(Supplementary Table S8). The miRNA-mRNA and TF-miRNA interactions were integrated from 

five and two literature curated resources, with 6,213 and 1,803 interactions, respectively. 

Overall, we included 61 network resources in OmniPath (Supplementary Table S2). 

Furthermore, pypath provides access to additional resources, including the Human Reference 

Interactome 11, ConsensusPathDB 12, Reactome 13, ACSN (Kuperstein et al. 2015) and 

WikiPathways 14. 

Enzyme-PTM relationships 

In enzyme-PTM relationships, enzymes (e.g. kinases) alter specific residues of their substrates, 

producing so-called post-translational modifications (PTM). We combined 11 resources of 

enzyme-PTM relationships mostly covering phosphorylation (94% of all) and dephosphorylations 

(3%) (Figure 3F). Overall, we included 39,201 enzyme-PTM relationships, 1,821 enzymes 

targeting 16,467 PTM sites (Figure 3E-G). Besides phosphorylation and dephosphorylation, only 

proteolytic cleavage and acetylation account for more than one hundred interactions. Most of the 

databases curated only phosphorylation, and DEPOD exclusively dephosphorylation. Only 

SIGNOR  and HPRD contained a large number of other modifications(Figure 3F). 60% of the 

interactions were described by only one resource, and 92% of them by only one literature 

reference (Figure 3E). Self-modifications, e.g. autophosphorylation and modifications between 

members of the same complex comprised 4% and 18% of the interactions, respectively (Figure 

3G).  
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Figure 3: Quantitative description of the network, complex and enzyme-PTM databases.  

(A-C) Networks by interaction types and the network datasets within the PPI network. (A) Number of 

nodes and interactions. The light dots represent the shared nodes and edges (in more than one 

resource), while the dark ones show their total numbers. (B) Causality: number of connections by direction 

and effect sign. (C) Coverage of the networks on various groups of proteins. Dots show the percentage of 

proteins covered by network resources for the following groups: cancer driver genes from COSMIC and 

IntOGen, kinases from kinase.com, phosphatases from Phosphatome.net, receptors from the Human 

Plasma Membrane Receptome (HPMR) and transcription factors from the TF census. Gray bars show the 

number of proteins in the networks. The information for individual resources is in Supplementary Figures 

S1-3. (D-G) On each panel the bottom rows represent the combined complex and enzyme-PTM 

databases contained in OmniPath (D-E). Number of complexes (D) and enzyme-PTM (E) interactions by 

resource. (F) Enzyme-PTM relationships by PTM type. (G) Enzyme-PTM interactions by their target. 

Light, medium and dark dots represent the number of enzyme-PTM relationships targeting the enzyme 

itself, another protein within the same molecular complex or an independent protein, respectively. 

Protein complexes 

The complexes database of OmniPath included 22,005 protein complexes described by 12 

resources from 4,077 articles (Figure 3D). A complex is defined by its unique combination of 
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members. 14% of them were homomultimers, 54% had four or less unique components while 

20% of them had 18 or more. 71% of the complexes had stoichiometry information.  

Annotations: function, structure and localization 

Annotations provide information about the function, structure, localization, classification and 

other properties of molecules. We compiled the annotations database from 49 resources. The 

format of the records from each of these resources is different. The simplest ones only define a 

category of proteins, like Cell Surface Protein Atlas (CSPA) that collects the proteins localized 

on the cell surface. More complex annotation records express a combination of multiple 

attributes. For example, each of the annotations from the Cancer Pathway Association 

Database (CPAD) contain seven attributes to describe a relationship between a protein or 

miRNA, a pathway and their effect on a specific cancer type (Supplementary Figure S4). The 

pathway and gene sets are also part of the annotation database, as these are useful for 

functional characterization of omics data and enrichment analysis.  

Overall, the annotations database included 5,475,532 records about 20,365 proteins, virtually 

the whole protein-coding genome, 19,566 complexes and 182 miRNAs. The majority of the 

annotations for complexes were the result of our in silico inference: if all members of a complex 

share a certain annotation we assign this annotation to the complex itself. 

The annotations database can be used in different ways: selecting one resource, its data can be 

reconstituted into a conventional data frame with attributes as columns and annotations as rows. 

Alternatively, specific sets of proteins can be queried e.g. "the members of the Notch pathway 

according to SIGNOR" or "the hypoxia upregulated genes according to MSigDB". 

Homology translation to rodents 

OmniPath comprises human resources. We translated the network and the enzyme-PTM 

relationships to mouse and rat by protein homology using NCBI HomoloGene, covering 81% 

and 31% of the interactions for mouse and rat, respectively (Supplementary Table S9). In 

addition, pypath is able to translate to other organisms.  

Case Studies 

OmniPath provides a single-access point to resources covering diverse types of knowledge. 

Thus, it can be used as an input to many analysis tools, and is particularly useful for tools that 
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span over molecular processes typically considered separately (Figure 4A). To illustrate this, we 

used two examples where we extracted from OmniPath different types of intra- and intercellular 

knowledge for computational analysis of bulk and single-cell RNA-Seq data. 

Analysis of intra- and intercellular processes in SARS-CoV-2 infected lung epithelial cancer cells 

NicheNet is a recently developed method to prioritize ligand-target relationships between 

interacting cells by combining their expression data with prior knowledge on interaction networks 
8. For this purpose, NicheNet explores the most consistent inter- and intracellular protein 

interactions in accordance with a given gene expression dataset. In the NicheNet publication, 

the authors collected different types of interactions from more than 20 databases to build a 

ligand-receptor network, a signaling network and a gene regulatory network. Here, we built a 

network for analysis with NicheNet using exclusively OmniPath. 

We used this network to investigate the mechanistic processes leading to the excessive 

inflammatory innate response and dysregulated adaptive host immune defense that may occur 

in severe COVID-19 cases 15. We studied the autocrine regulatory effect of ligands secreted in 

SARS-CoV-2 infection of epithelial lung cancer cells (Calu3) on the expression of inflammatory 

response genes (Methods and Supplementary Note 1, data from 16). Out of a total of 117 ligands 

over-expressed in SARS-CoV-2 infection according to NicheNet, we selected the 12 top-ranked 

ones for subsequent analysis (Supplementary Figure 6). Among them, we found various 

cytokines: interleukins (IL23A and IL1A), tumor necrosis factors (TNF and TNFSF13B) and 

chemokines (CXCL5, CXCL9 and CXCL10), known to be involved in the inflammatory response. 

The top predicted target genes for these 12 ligands were enriched for inflammatory response 

gene sets (average p-value=3.25e-08 from Fisher’s exact tests after 10 cross-validation rounds). 

Then, we explored the signaling events linking these ligands to their target genes (Figure 4B, 

Methods and Supplementary Note 1). We identified several key proteins of the JAK-STAT 

pathway, a main regulator of the inflammatory response, that has been suggested as a potential 

target to treat COVID-19  17. We also found ligands that potentially trigger the MAPK pathway 

that has also been reported to be promoted by SARS-CoV-2 infection 18,19. We found further 

support for these results in the literature  (Supplementary Note 1). 

Alteration of intercellular communication in ulcerative colitis 

As a second case study, we used single-cell RNA-Seq data 20 from ulcerative colitis (UC) to 

investigate paracrine signaling using OmniPath. We explored the intercellular interactions 
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comparing the healthy state and non-inflamed UC. We selected five interacting cell types: 

dendritic cell, macrophage, regulatory T cell (Treg), myofibroblast and Goblet cell. Combining 

the expression data with OmniPath, we built a network of communication between these five cell 

types and quantified the disease specific changes. Then, we added the components from the 

OmniPath PPI network two steps downstream of the cell type specifically expressed receptors. 

Finally, we performed a pathway enrichment analysis using Reactome 13; Methods).  

We found that in healthy condition dendritic cells (DC) were tightly connected to the four other 

cell types. In contrast, in UC the connections shifted towards the Treg cells instead of DC, in 

agreement with previous findings 20 (Figure 4C). We found a 30% increase in the amount of 

ligand-receptor and ligand-adhesion interactions between myofibroblasts and Treg  in UC 

versus healthy, even though the number of connections is similar in both conditions. In an 

analysis of downstream signaling in Treg cells we found pathways known to downregulate the 

pro-inflammatory function of Treg cells to be active in healthy state, including the MAPK 21, TLR2 
22 and TLR7 23 pathways (Supplementary Table S11). In contrast, the pro-inflammatory TLR4 24 

and TLR3 pathways 25 were upregulated in UC. These results suggest a pro-inflammatory 

response in UC, where the anti-inflammatory role of regulatory T cells is deteriorated by 

myofibroblasts.  
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Figure 4: Illustrations of the integrated analysis of inter- and intracellular signaling.  

(A) Examples of tools for integrated analysis of tissue level signaling from cell type specific 

transcriptomics data that can be applied with the prior knowledge available in OmniPath. (B) Inter and 

intracellular signaling interactions linking the top predicted ligands over-expressed after SARS-CoV-2 

infection to their potential immune response targets in the Calu3 cell line. Top-ranked ligands (orange) 

connect to their potential receptors (turquoise) that trigger an intracellular cascade until reaching TFs (light 

grey), that in turn regulate the expression of the target genes (blue). Signaling intermediates (dark grey) 

connect receptors to TFs across their shortest path. (C) Intercellular connections and their downstream 

effect in UC compared to healthy control. Top: communication network of five cell types reconstructed 

from scRNA-Seq; the thickness of the edges is proportional to the number of intercellular connections. 

Bottom: condition specific ligand-receptor connections between myofibroblasts and regulatory T cells 

trigger a immunosuppressive versus an inflammatory signaling in T cells, in healthy and UC, respectively. 
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Discussion 
A single access point to annotated causal knowledge 

Here, we present a single-access point to over 100 resources containing prior knowledge of 

intra- and intercellular processes, building on the OmniPath framework. To achieve this, we 

developed versatile annotations of intercellular communication roles, combined with a network 

covering intra- and intercellular signaling as well as gene regulation.  

We focused on resources that follow the activity flow representation where nodes are linked with 

signed and directed edges representing a certain influence. The alternative process description 

representation describes the underlying processes as biochemical reactions 26. Integrative 

resources such as STRING 27, PathwayCommons 28, ConsensusPathDB 12, PathMe  and 

ComPath 29 use mostly the major process description resources (e.g. Reactome 13 and ACSN 

(Kuperstein et al. 2015)) and resources with undirected interactions (e.g. IntAct 30 and BioGRID 
31), and only few activity flow resources.  

However, for many applications, process description representation must undergo a conversion 

to activity flow representation 28. This conversion is technically challenging, leads to information 

loss 28,32,33, alters the network topology, and affects downstream applications. On the other 

extreme, undirected interactions lack information about directionality and stimulatory and 

inhibitory effects, which are essential for many analytical methods, in particular those that aim to 

capture causal relationships. The activity flow representation is between both: interactions are 

presented as signed and directed edges, regardless of the underlying biochemistry. Due to this 

abstraction, activity flow has limitations and the stimulatory and inhibitory nature of the 

interactions can be ambiguous 34. Despite these limitations, activity flow databases are widely 

used because their level of abstraction provides a convenient input for multiple analysis 

techniques 35.  

Comprehensive knowledge for multicellular omics analysis  

As we demonstrated here, OmniPath is able to provide the input knowledge for different data 

analysis tools, such as CellPhoneDB 6, NicheNet 8 and CARNIVAL 36 to infer communication 

between and within cell types. OmniPath is not limited to literature curated interactions and it 

includes activity flow, kinase-substrate and ligand-receptor interactions without references as 

separate datasets, so that the users can decide which ones to use according to their purposes. 
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The rich annotations allow users to dive into specific knowledge and extract information across 

resources. Information obtained via text-mining approaches 37,38 can be used to complement the 

curated knowledge captured within OmniPath.  

As our case studies illustrate, OmniPath can replace the tedious collection of information from 

many different databases. In the first case study, we modelled with NicheNet the autocrine 

signaling after SARS-CoV-2 infection. Our results suggest potential signaling mechanisms 

leading to the dysregulated inflammatory and immune response characteristic of severe COVID 

cases. In the second study, we illustrated how conveniently OmniPath supports a combined 

analysis of inter- and intracellular signaling from single-cell transcriptomics data.  

In summary, we provide a new integrated resource of biological knowledge particularly valuable 

for network analysis and modeling of bulk and single-cell omics data. Furthermore, with the 

emergence of spatially resolved omics data 39, we anticipate that this prior knowledge of inter- 

and intracellular communication will be valuable to study tissue architecture. 

 

Methods 
Terminology 
In the manuscript we use consistently the following three definitions to describe the structure of 

OmniPath: 

● database: collection of similar records in a uniform format integrated from multiple 

resources (network, enzyme-PTM, complexes, annotations, intercell) 

● dataset: a subset or variant of a database, e.g. the transcriptional interaction network is 

a dataset of the network database 

● resource: any data source we use for building the databases 

Database build 
To build OmniPath we developed a free software, the pypath Python module 

(https://github.com/saezlab/pypath , version 0.11.20). We built each segment of the database by 

the corresponding submodules and classes in pypath. In addition to the database building 

process, all modules rely on common utility modules from pypath such as the identifier translator 
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or the downloading and caching service. Pypath downloads all data from the original sources. 

Many resources integrate data from other resources, we call these secondary resources and 

their relationships are listed in Supplementary Table S7. 

Network 

For the OmniPath network, we converted the identifiers of the different molecules and merged 

their pairwise connections, preserving the literature references, the information about the 

direction and effect sign (activation or inhibition). 

In OmniPath, we included nine network datasets built from 61 resources (Supplementary Table 

S2). The first four datasets provide PPI (‘post_translational’ in the web service) while the others 

transcriptional and post-transcriptional regulation. At each point below we highlight the label of 

the dataset in the web service. 

1. We compiled the “omnipath” network as described in 9. Briefly, we combined all resources 

we could get access to, that are literature curated and are either activity flow, enzyme-PTM 

or undirected interaction resources. We also added network databases with 

high-throughput data. Then we added further directions and effect signs from resources 

without literature references. 

2. The "kinaseextra" network contains additional kinase-substrate interactions without 

literature references. The direction of these interactions points from the enzyme to the 

substrate. 

3. In the "pathwayextra" network, we combined further activity flow resources without 

literature references. However, they are manually curated and many have effect signs. 

4. In the "ligrecextra" network, we provide additional ligand-receptor interactions from large, 

comprehensive collections. 

5. The "dorothea" network comes from DoRothEA database, a comprehensive resource of 

transcription factor-gene promoter interactions from literature curated databases, 

high-throughput experiments, binding motif and gene expression-based in silico inference, 

overall 18 resources 10. We included the interactions from DoRothEA subclassified by 
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confidence levels from A to D, excluding the lowest confidence level E. In OmniPath users 

are able to filter the TF-target interactions by confidence level.  

6. Transcriptional regulation (“tf_target”) directly from 6 literature curated resources. We 

show the size of the TF-target network at different settings in Supplementary Table S8. 

7. In the "post_transcriptional" network, we combined 5 literature curated miRNA-mRNA 

interactions. 

8. Transcriptional regulation of miRNA (“tf_mirna”) from 2 literature curated resources. 

9. lncRNA-mRNA interactions from 3 literature curated resources (“lncrna_mrna”). 

Enzyme-PTM interactions 

After translating the identifiers, we merged enzyme-PTM interactions from 11 databases 

(Supplementary Table S3) based on the identity of the enzyme, the substrate and the modified 

residue and its position. In addition, we discarded the records where the residue could not be 

found in any of the isoform sequences from UniProt 40. For each enzyme-PTM interaction, we 

included the original sources and the literature references. We also kept the records without 

literature support, e.g. from high-throughput screenings or in silico prediction. 

Complexes 

We combined 12 databases to build a comprehensive set of protein complexes (Supplementary 

Table S4). Seven of these databases provide information about the stoichiometry of the 

complexes while three contain only the lists of components. We translated the names of the 

components to UniProtKB accession numbers. We merged the complexes based on their 

identical sets of components and preserved the stoichiometry if available. We represent each 

complex by the UniProt IDs of their components sorted alphabetically, separated by dashes and 

prefixed with `COMPLEX:`. From the original sources, we kept the literature references, the 

human readable names (synonyms) and the PDB structure identifiers if available. 

Annotations 

Annotation resources provide diverse information about the localization, function or other 

characteristics of the molecules. We obtained annotations from 49 databases (Supplementary 

Table S5). For these databases, we translated IDs and extracted the fields with relevant 
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information. Due to the heterogeneous nature of the data, in the annotation database, the 

content of the resources is not merged, but rather all entries are provided independently.  

Each annotation record assigns one or more attributes to a molecule. One protein might have 

more than one annotation record from the same database. For example, Vesiclepedia provides 

two attributes: the vesicle type and the tissue where the protein has been detected. We 

combined the annotation resources into a uniform table where one column is the name of the 

attribute and the other is the value. As one record might have multiple attributes the records are 

identified by unique numbers (Supplementary Figure S4). Providing the data in this format in our 

web service, it can be easily reconstituted to conventional tables with standard tools like tidyr 

(https://tidyr.tidyverse.org )  in R or pandas (https://pandas.pydata.org) in Python. 

Complex annotations 

Only four resources curate annotations of protein complexes, from these we processed the 

complex annotations as we did for proteins. Furthermore, we inferred annotations for complexes 

based on the annotations of their components. We assigned the annotations to the complex if all 

components agreed in all attributes that we considered relevant e.g. if all members of a complex 

belong to the WNT pathway then the complex is also annotated as a member of the WNT 

pathway. 

Intercellular signaling roles 

From the resources used in annotations, we selected 26 with function, location or structure 

information relevant in intercellular signaling. The relevant attributes we processed and 

combined to account for main roles in intercellular communication (e.g. ligand, receptor, ECM 

proteins) as well as the locational and topological properties (e.g. secreted, transmembrane). In 

addition, we built Boolean expressions from Gene Ontology terms to define the same 

categories. Overall we created 25 functional  and 10 locational categories (Supplementary Table 

S6). Each category carries the attributes described in Supplementary Table S10 

(Supplementary Figure S5). We manually checked the members of all the annotation groups, 

relying on literature knowledge and UniProt datasheets 40, discarding the wrong annotations. We 

provide the classification of proteins and complexes by these categories in the intercell query of 

the web service. 
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Identifier translation 

For each type of molecule, we chose a reference database: for proteins the UniProtKB ACs 

while for miRNAs the miRBase mature ACs. From these databases we obtained a reference set 

of identifiers for each type of molecular entity and organism. We then used translation tables 

provided by them to map other kinds of identifiers to the reference set. For UniProt, we 

corrected for deprecated or secondary ACs by translating to primary gene symbol and then to 

primary UniProt AC. We applied corrections to handle non-standard notations (e.g. extra 

dashes, greek letters). We also accounted for the ambiguity in the mapping, i.e. if one foreign 

identifier may correspond to multiple reference identifiers we keep all target identifiers in 

OmniPath. 

Translation by homology to rodent species 

The homology translation in pypath uses the NCBI HomoloGene database 41. Because 

HomoloGene uses RefSeq IDs, the translation takes three steps: from UniProt to RefSeq, then 

to the homologous RefSeq and finally from RefSeq to UniProt. The success rate of this 

translation is around 80% for mouse and roughly 30% for rat (Supplementary Table S9). We 

translated the network data and the enzyme-PTM interactions from human to mouse and rat, the 

two most popular mammalian model organisms. In addition, we looked up PTMs in PhosphoSite 
42 which provides homology data for PTM sites. Then we checked the residues in the UniProt 

sequences 40, and discarded the ones that did not match. The homology-translated data is 

included also in the OmniPath web service. 

Data download and caching 

At the database build we download all input data directly from the original sources 

(Supplementary Table S1). Certain databases either temporarily or ultimately went offline; we 

deposited their data in the OmniPath Rescued Data Repository 

(http://rescued.omnipathdb.org/). Pypath contains the URLs for all resources used including the 

identifier translation tables. It automatically downloads, extracts and preprocesses the data for 

each operation. Then it stores the downloaded data in a local cache directory which belongs to 

the user account on the computer. Once cache is created, pypath reads from it and performs the 

download only if requested by the user. 
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Joint analysis of intra- and intercellular processes in SARS-CoV-2 infection 
The NicheNet method 8 was built, trained and applied to a case study using interactions and 

annotations from OmniPath resources. This information was downloaded via our R package, 

OmnipathR. 

Network construction 

NicheNet generates a model based on prior knowledge to describe potential regulatory effects 

of ligands on target genes. To reproduce their procedure, we first built three networks 

accounting for protein interactions of different categories retrieved from OmniPath: 

1. Ligand-receptor network : we downloaded the "ligrecextra" network which specifically 

contains known interactions between ligands and receptors. In addition, we selected proteins 

annotated as ligands or receptors as their main “intercellular signaling role” . Then we 

extended this network with PPI whose source is a ligand and its target a receptor.  

2. Signaling network:  we retrieved PPI from the original OmniPath network 9, the 

"kinaseextra" network and the "pathwayextra" network. 

3. Gene regulatory network:  we selected TF-target interactions with confidence level A, B 

and C from the DoRothEA dataset of the "transcriptional" network of OmniPath. 

Then, we computed ligand–target regulatory potential scores based on the topology of our 

aforementioned networks, following the protocols described in the NicheNet original study and 

using its associated nichenetr package 8. Briefly, Personalized PageRank was applied on the 

union of the ligand-receptor and signaling networks considering every individual ligand as 

starting node. To estimate the impact of every ligand in the expression of target genes, a matrix 

containing the PageRank scores is multiplied by the weighted adjacency matrix of the gene 

regulatory network.  

Analysis of altered ligands and pathways 

We applied our OmniPath-based version of NicheNet analyses on RNA-seq data of a human 

lung cell line, Calu3 (GSE147507) 16. In this study, differential expression analysis at the gene 

level between controls and SARS-CoV-2 infected cells was carried out using the DESeq2 

package 43. We selected over-expressed ligands (adjusted p-value < 0.1 and Log2 fold-change 

> 1) after SARS-CoV-2 infection for further analysis. Then, we executed Gene Set Enrichment 
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Analysis (GSEA) taking the Wald statistic and the hallmark gene sets from MsigDB as inputs 

using the fgsea package 44. Inflammatory response appeared as one of the top enriched sets. 

We therefore selected the leading edge genes of inflammatory response, i.e. genes  contributing 

the most to the enrichment of this particular set, as potential targets of the over-expressed 

ligands. 

Ligand activity analysis on the aforementioned samples was conducted using the nichenetr 

package 8. We then selected the shortest paths between receptors (the ones interacting with the 

top predicted ligands) and transcription factors (the ones regulating the expression of the 

inflammatory target genes). These paths were exported to Cytoscape 45 to generate Figure 4B. 

 

Intercellular communication in ulcerative colitis 
 
Intercellular interactions from OmniPath2 

We downloaded intercellular interactions using the ‘ import_intercell_network()’ method in 

OmnipathR and filtered for direct cell-cell connections: we discarded extracellular matrix 

proteins, extracellular matrix regulators, ligand regulators, receptor regulators and matrix 

adhesion regulators and kept only membrane-bound (transmembrane or peripheral site of the 

membrane) proteins. This resulted in connections involving ligands, receptors, junction, 

adhesion, ion channel, transporter and cell surface or secreted enzyme proteins. 

Single cell RNA-Seq data processing 

We downloaded the raw scRNAseq data and processed it according to Smillie et al. 2019 . 51 

cell types have been characterized by average gene expressions in healthy state and 

non-inflamed UC. A gene was considered expressed if its log2 expression value was above the 

mean minus 2 standard deviations of the expressed genes within the cell type.  

Specific interactions between cell types 

We examined all possible connections among the selected 5 cell types. We considered 

interactions condition specific if they appeared either only in healthy or in UC, i.e. at least one 

member expressed only in the given condition. We counted the unique PPIs between each cell 

pair in the two conditions separately (Figure 4C). 
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Cell type specific network of regulatory T cell and downstream pathway analysis 

To highlight the downstream effect connections from myofibroblasts to regulatory T cells, we 

created a cell specific signalling network and we carried out a pathway enrichment analysis. We 

used the OmniPath Cytoscape application 46 to combine the gene expression data with the 

OmniPath network. We limited the network to genes expressed in  regulatory T cells. We 

selected the receptors targeted by condition-specific ligand-receptor connections in regulatory T 

cells. Finally, we pruned the network to the two steps neighborhood of the T cell specific 

receptors. We used the online interface of the Reactome database for a pathway enrichment 

analysis of the network described above.  

 

Software and data availability 
OmniPath is available via the Python package pypath (https://github.com/saezlab/pypath ), the 

web resource (http://omnipathdb.org ), the R/Bioconductor package OmnipathR 

(https://saezlab.github.io/OmnipathR) and the OmniPath Cytoscape plug-in 46. In addition, 

pypath is able to export the network and the enzyme-PTM databases in BEL (Biological 

Expression Language) format 47, as well as to generate input files for CellPhoneDB. The BEL 

format databases are available in BEL Commons 48. Code is licensed open source (GPLv3). 

Pypath builds the OmniPath databases directly from the original resources, hence it gives the 

highest flexibility for customization and the richest API for queries and manipulation among all 

access options. Furthermore, it is possible to convert each database to a plain data frame and 

export in a tabular format. Pypath also generates the web resource’s contents which is 

accessible for any HTTP client at http://omnipathdb.org . Information about the resources is 

available at http://omnipathdb.org/info . OmnipathR and the OmniPath Cytoscape plug-in work 

from the web resource data with convenient post-processing features. All data in OmniPath 

carry the licenses of the original resources (Supplementary Table S12), for profit users can 

easily limit their queries to fit the legal requirements. A comprehensive guide for pypath is 

available at http://pypath.omnipathdb.org/notebooks/pypath_guide.html . 
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Apart from the figures presented in this paper, further regularly updated statistics and 

visualizations are available at http://insights.omnipathdb.org . 

The code to build and train the NicheNet method 8 exclusively using OmniPath resources as well 

as to reproduce the SARS-CoV-2 case study is freely available at 

https://github.com/saezlab/NicheNet_Omnipath . The code for building the cell type specific inter- 

and intracellular networks is available at https://github.com/korcsmarosgroup/uc_intercell . 
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Supplementary Figure S1: Quantitative description of the PPI network by resource. ( A) Number of 

nodes and interactions. The light dots represent the shared nodes and edges (in more than one 

resource), while the dark ones show their total numbers. (B) Causality: number of connections by direction 

and effect sign. (C) Coverage of the networks on various groups of proteins. Dots show the percentage of 

proteins covered by network resources for the following groups: cancer driver genes from COSMIC and 

IntOGen, kinases from kinase.com, phosphatases from Phosphatome.net, receptors from the Human 

Plasma Membrane Receptome (HPMR) and transcription factors from the TF census. Gray bars show the 

number of proteins in the networks. 

 

 

 

Supplementary Figure S2: Quantitative description of the transcriptional network by resource 

Quantitative description of the transcriptional network by resource.  Panels and notations are the 

same as on Supplementary Figure S1. 
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Supplementary Figure S3:Quantitative description of the post-transcriptional network by resource. 

Panels and notations are the same as on Supplementary Figure S1. 
 

 

Supplementary Figure S4: Example of the annotations query in the OmniPath web service.  For the 

protein mTOR a large variety of information is available from different databases. The ‘record_id’ binds 

together the fields of the record from the original resource. Each field has a ‘label’ and a ‘value’. 
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Supplementary Figure S5: Example of the intercell query in the OmniPath web service. Each 

category has a parent category and a database of origin. The scope of a category is either ‘generic’ (e.g. 

ligand) or ‘specific’ (e.g. interleukin). The aspect is either ‘locational’ or ‘functional’. Further attributes show 

whether the protein is a signal transmitter or a receiver, and whether it is secreted, or a transmembrane or 

peripheral protein of the plasma membrane. 

  

33 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2020. ; https://doi.org/10.1101/2020.08.03.221242doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.221242
http://creativecommons.org/licenses/by-nc/4.0/


 

 

34 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2020. ; https://doi.org/10.1101/2020.08.03.221242doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.03.221242
http://creativecommons.org/licenses/by-nc/4.0/


 

Supplementary Figure S6: OmniPath-based NicheNet analysis to predict overexpressed ligands in 

SARS-CoV-2 infection potentially affecting the expression of inflammatory response related genes 

in Calu3 cells.  A) Most significantly enriched gene sets after SARS-CoV-2 infection on the Calu3 cell 

line. Inflammatory response is highlighted in red. B) Results of NicheNet’s ligand activity analysis: Number 

of overexpressed ligands after SARS-CoV-2 infection and their potential to predict the inflammatory 

response gene set based on the Pearson correlation coefficient. The top 12 ranked ligands, out of a total 

of 117 overexpressed ligands, were selected. C) Regulatory potential of the top ranked ligands and target 

genes from the inflammatory response program based on NicheNet’s prior knowledge model. D) 

Ligand-receptor interaction potential based on NicheNet’s prior knowledge model between the top ranked 

ligands and the receptors expressed in the Calu3 cell line. 

 
Supplementary Table S1: List of resources in OmniPath and pypath. Besides the name, webpage 

and publication of the resources we list which ones of the five major OmniPath databases (network, 

enzyme-PTM, complexes, annotations, intercell) each resource contributes to, and which datasets within 

the network database. Certain resources are not redistributed by the OmniPath web service or not used 

for any of the databases, but available only by pypath or used for different purposes such as identifier 

translation, curation facilitation, etc. 

 

Supplementary Table S2: Quantitative description of the OmniPath network database. Number of 

shared (overlap with any other resource) and unique molecular entities in total and by entity type, number 

of interactions in total, and by direction and effect sign, number of references and curation effort (unique 

reference-interaction pairs). Total rows are shown for each dataset and interaction type (PPI, 

transcriptional, post-transcriptional, TF-miRNA). In the total rows the components are counted as shared if 

they can be found in more than one resource. 

 

Supplementary Table S3: Quantitative description of the OmniPath enzyme-PTM database. Number 

of shared (overlap with any other resource) and unique enzyme-PTM relationships, references and 

curation effort (reference-record pairs), list of available modification types. 

Supplementary Table S4:  Quantitative description of the OmniPath complexes database. Number 

of protein complexes, homomers and heteromers, shared (overlap with any other resource) and unique 

records, availability of stoichiometry information, number of references and curation effort 

(reference-record pairs). 
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Supplementary Table S5: Quantitative description of the OmniPath annotations database. Each 

record carries the attributes listed in the ‛fields‛ column. At resources where no attributes are listed here, 

the annotation can be considered a set, i.e. a molecular entity either belongs to this set or not. One 

molecular entity might have more than one annotation records from the same resource. 

 

Supplementary Table S6: Quantitative description of the OmniPath intercell database. Size and 

contents of the generic functional and locational categories in the intercellular communication roles 

(intercell) database. Functional categories are either transmitters, receivers or both; locational don’t have 

these attributes. ‛OmniPath’ in the resources column appears if certain subclasses of the category are 

defined directly by OmniPath not by an integrated resource. The specific categories are not shown in this 

table. 

 

Supplementary Table S7: Secondary resources in OmniPath. Some resources integrate data from 

other resources. In OmniPath the records carry information both about the primary (directly integrated into 

OmniPath) and the secondary resources. 

 

Supplementary Table S8: Size of the transcriptional regulatory network. Number of nodes, 

interactions, transcription factors and target genes are shown for networks of interactions with or without 

literature references,  using DoRothEA confidence levels A-D vs. A-E. All networks include, apart from 

DoRothEA, other resources integrated directly into OmniPath: ABS, ENCODE, HTRI, ORegAnnO, 

PAZAR, SIGNOR. 

 

Supplementary Table S9: Success rate of homology translation.  Here we show the success rate of 

homology translation of the OmniPath human PPI signaling network to mouse and rat using the NCBI 

HomoloGene database. Number and percentage of nodes (genes) and interactions successfully 

translated. 
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Supplementary Table S10: Terminology in the intercellular communication roles (intercell) 

database. The attributes category name, parent category, source, aspect and scope are carried by each 

category in the intercell database. Below we define the possible values of these attributes. We also define 

here those major categories (e.g. secreted, receptor, etc) which are pivotal for an unambiguous definition 

of the intercellular communication roles. 

 

Supplementary Table S11: Dominant pathways in healthy and ulcerative colitis networks. The 

networks have been created from condition specific receptors and proteins within two steps from the 

receptors. Using the Reactome database, we highlighted the top ten pathways. 

 

Supplementary Table S12: Licensing terms of the resources in OmniPath. The license field is 

highlighted in green if the resource is freely available for commercial (for-profit) use, in yellow if only for 

academic or non-profit use, and in grey if we are awaiting clarification from the copyright holders. In the 

OmniPath interfaces (pypath, web service, OmnipathR) users are able to set their license preferences to 

ensure their data usage meets the legal requirements. 
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Supplementary Note 1: Joint analysis of intra- and intercellular processes in 
SARS-CoV-2 infected lung epithelial cancer (Calu3) cells 
 
In this note, we provide further details and supporting literature for the results obtained in the 

SARS-CoV-2 case study and presented in Figure 4B and Supplementary Figure S6. In this case 

study, we aim to explore the potential autocrine regulatory effect of ligands overexpressed in 

SARS-CoV-2 infection of epithelial lung cancer cells (Calu3) on the expression of inflammatory 

response genes. We used expression data from a recent publication 1.  

We first performed a differential expression analysis of SARS-CoV-2 infected cells versus mock 

treated controls. This allowed us to carry out a gene set enrichment analysis revealing 

inflammatory response as one of the most enriched sets (Supplementary Figure S6A). We 

subsequently selected the most relevant genes involved in inflammatory response (Methods). In 

addition, we selected over-expressed ligands after infection that are likely to be secreted to the 

extracellular milieu (Methods). We then applied our OmniPath-based version of NicheNet to 

rank the overexpressed ligands secreted by infected Calu3 cells that are most likely to be 

involved in the regulation of inflammatory response related genes (Methods). Out of a total of 

117 overexpressed ligands, we selected the 12 top-ranked ones for subsequent analysis 

according to the distribution of correlation values (Supplementary Figure S6B) and nichenetr 

guidelines 2. Among them, we found different types of cytokines: interleukins (IL23A and IL1A), 

tumor necrosis factors (TNF and TNFSF13B) and chemokines (CXCL5, CXCL9 and CXCL10). 

These proteins are known to be involved in the immune and inflammatory response, hence 

supporting our OmniPath-based approach. Indeed, we evaluated to which extent our top 12 

prioritized ligands can together predict whether the top predicted targets belong to our 

previously defined inflammatory response gene set or not (average p-value=3.25e-08 from 

Fisher’s exact tests after 10 cross-validation rounds). We can therefore assume that the 

overexpressed ligands secreted after SARS-CoV-2 infection can explain, at least to some 

extent, the expression of inflammatory response related genes in the Calu3 cells. 

NicheNet ranks the ligands based on their potential effect to regulate the whole set of 

inflammatory response genes 2. In order to get more detailed functional and mechanistic 

insights, we next investigated the inter- and intracellular signaling events that can lead to the 

activation of a particular ligand-target link. First, we explored the NicheNet regulatory potential 

scores between our top-scored ligands and the top inflammatory response target genes 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2020. ; https://doi.org/10.1101/2020.08.03.221242doi: bioRxiv preprint 

https://paperpile.com/c/iI1Orp/2tys
https://paperpile.com/c/iI1Orp/xVn8
https://paperpile.com/c/iI1Orp/xVn8
https://doi.org/10.1101/2020.08.03.221242
http://creativecommons.org/licenses/by-nc/4.0/


 

according to our OmniPath-based prior knowledge network (Supplementary Figure S6C). Then, 

we selected the receptors expressed in Calu3 cells after infection that can potentially bind our 

top ranked ligands, i.e. a known interaction is described between them in our ligand-receptor 

network (methods). The most likely ligand-receptor pairs according to their NicheNet prior 

interaction potential score are displayed in Supplementary Figure S6D. We finally inferred the 

most likely paths connecting some of our top ranked ligands to their inflammatory response 

target genes (Figure 4B and methods).  

Among the top predicted ligands, we found three C-X-C motif chemokines (CXCL5, CXCL9 and 

CXCL10). CXCL9 and CXCL10 are well known pro-inflammatory chemokines that participate in 

the inflammatory response by recruiting immune cells to infected areas 3. According to our 

results, these ligands may potentially bind to C-X-C chemokine  receptors (CXCR1 and CXCR2) 

and to the CCR3 receptor (Figure 4B). Then, CXCR1 and  CCR3 can both activate MAPK14, a 

serine/threonine kinase which plays a key role in the signalling responses to extracellular stimuli 

such as proinflammatory cytokines or physical stress leading to direct activation of transcription 

factors 4. In addition, CXCR1, CXCR2 and  CCR3 directly interact with JAK2, activating the 

STAT transcription factors. In particular, JAK2 mediates the cytokine-driven activation of the 

FOS  transcription factor, which is a key component in the regulation of  proinflammatory genes 
5.  Consequently, the use of ruxolitinib, a JAK1 and JAK2 inhibitor, has been suggested as a 

potential way to prevent the harmful effects of the excessive secretion of proinflammatory 

proteins, the so-called cytokine storm, in severe cases of COVID-19 6. 

We also identified two interleukins (IL23A and IL1A) among the top predicted ligands. IL23A 

forms a heterodimeric cytokine by associating with IL12B, the IL-23 interleukin. IL-23 binds to 

the IL12RB1-IL23R receptor complex and activates the JAK-STAT signaling cascade promoting 

the production of proinflammatory cytokines. Furthermore, IL-23 induces autoimmune 

inflammation and its inhibition is the main treatment for psoriasis, an autoimmune disease 7. In 

our results (Figure 4B), we identified the interaction between IL23A and IL12RB1, and how 

IL12RB1 directly activates some of the STAT transcription factors (STAT1, STAT3 and  STAT4). 

IL1A is known to play key roles in the regulation of the immune and the inflammatory response. 

It binds to the interleukin-1 receptor, interaction that was partially recovered in our signaling 

network (IL1R2, Figure 4B). Then, IL1R2 activates CASP3, whose role in the modulation of 
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cytokine expression and inflammation has been proposed 8, although is not as straightforward 

as in the previous discussed examples.  

Finally, we also retrieved some tumor necrosis factors (TNF and TNFSF13B) as top ligands 

potentially regulating the expression of inflammatory response related genes. The main 

functions of TNF are the regulation of immune cells and the systemic inflammatory response. 

Once TNF comes to contact with their potential receptors, the TRADD protein can also bind to 

the receptor resulting in the potential initiation of three different pathways:  activation of the 

NFKB pathway, activation of the MAPK pathway or induction of death signaling 9. Our results 

capture the interaction between TNF and TRADD to their potential receptor, TNFRSF21, which 

in turn activates RELA (Figure 4B). The activation of RELA suggests an activation of the NF-kB  

pathway, known to be active in SARS-CoV-2 infection 10. The TNFSF13B  gene encodes the 

B-cell activating factor (BAFF) protein, which can bind to the  TNFRSF13C receptor as identified 

in our results. The interaction between BAFF and its receptors triggers the activation of the 

classical and non-canonical NF-kB signaling pathway 11. In our results, we identified the 

activation of MAP3K14, which indeed appears to be involved in the activation of the NF-kB 

complex and its transcriptional activity 12.  

In summary, we studied how the ligands secreted after SARS-CoV-2 infection could influence 

the inflammatory response of neighboring cells. We were able to capture known biological 

processes supported by the literature. These processes and signaling cascades may lead to the 

exacerbated inflammatory response observed in COVID-19 most severe cases.  
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